MURAL - Maynooth University Research Archive Library



    Using LCZ data to run an urban energy balance model


    Alexander, Paul John, Mills, Gerald and Fealy, Rowan (2015) Using LCZ data to run an urban energy balance model. Urban Climate, 13. pp. 14-37. ISSN 2212-0955

    [thumbnail of ICARUS_LCZData2015.pdf]
    Preview
    Text
    ICARUS_LCZData2015.pdf

    Download (2MB) | Preview

    Abstract

    In recent years a number of models have been developed that describe the urban surface and simulate its climatic effects. Their great advantage is that they can be applied in environments outside the cities in which they have been developed and evaluated. Thus, they may be applied to cities in the economically developing world, which are growing rapidly, and where the results of such models may have greatest impact with respect to informing planning decisions. However, data requirements, particularly for the more complex urban models, represent a major obstacle to their employment. Here, we examine the potential for running the Surface Urban Energy and Water Balance model (SUEWS) using readily obtained data. SUEWS was designed to simulate energy and water balance terms at a neighbourhood scale (⩾1 km2) and requires site-specific meteorological data and a detailed description of the surface. Here, its simulations are evaluated by comparison with measurements made over a seven month (approximately 3 seasons) period (April–October) at two flux tower sites (representing urban and suburban landscapes) in Dublin, Ireland. However, the main purpose of this work is to test the performance of the model under ‘ideal’ and ‘imperfect’ circumstances in relation to the input data required to run SUEWS. The ideal case uses detailed urban land cover data and meteorological data from the tower sites. The imperfect cases use parameters derived from the Local Climate Zone (LCZ) classification scheme and meteorological data from a standard weather station located beyond the urban area. For the period of record examined, the simulations show good agreement with the observations in both ideal and imperfect cases, suggesting that the model can be used with data that is more easily derived. The comparison also shows the importance of including vegetative cover and of the initial moisture state in simulating the urban energy budget.
    Item Type: Article
    Keywords: LCZ; SUEWS; UEB; Urban; Landcover;
    Academic Unit: Faculty of Social Sciences > Geography
    Faculty of Social Sciences > Research Institutes > Irish Climate Analysis and Research Units, ICARUS
    Item ID: 8349
    Identification Number: 10.1016/j.uclim.2015.05.001
    Depositing User: Rowan Fealy
    Date Deposited: 19 Jun 2017 15:55
    Journal or Publication Title: Urban Climate
    Publisher: Elsevier
    Refereed: Yes
    Related URLs:
    URI: https://mu.eprints-hosting.org/id/eprint/8349
    Use Licence: This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available here

    Repository Staff Only (login required)

    Item control page
    Item control page

    Downloads

    Downloads per month over past year

    Origin of downloads