MURAL - Maynooth University Research Archive Library



    Luminescence spectroscopy of matrix-isolated atomic manganese: Excitation of the "forbidden" a6DJ-a6S transitions


    Collier, Martin A., Ryan, Maryanne C. and McCaffrey, John G. (2005) Luminescence spectroscopy of matrix-isolated atomic manganese: Excitation of the "forbidden" a6DJ-a6S transitions. Journal of Chemical Physics, 123.

    [thumbnail of Luminescence.pdf] PDF
    Luminescence.pdf

    Download (381kB)

    Abstract

    Laser-induced excitation spectra recorded for the electric-quadrupole 3d64s a6DJ-3d54s2a6S5/2 transitions of atomic Mn, allow assignment of the red emission features, previously observed in Mn/RG RG=Ar, Kr and Xe matrices with resonance 3d54s4pz6P52/3d54s2 a6S5/2 excitation, to the metastable a6D9/2 state. Narrow excitation bands recorded for the red site in the Mn/Kr system allow identification of all five spin-orbit levels J=1/2, 3/2, 5/2, 7/2 and 9/2 in the a6D state. The coincidence of the lowest energy excitation band and the observed 585.75 nm 17 072 cm-1 emission band of atomic Mn in Kr matrices, yielded a definitive assignment of this emission to a transition from the J=9/2 spin-orbit level. Temperature dependent emission scans lead to the identification of the zero phonon line for the a6D9/2-a6S5/2 transition at 585.75 nm. The identified matrix-shift of +20 cm-1 allows an assessment of the extent of the ground state stabilization in the red 2° site of atomic Mn isolation in solid Kr. Emission produced with direct a6D state excitation yielded both the 585.75 and 626 nm features. The former band arises for Mn atoms occupying the red site' the latter from blue site occupancy in solid Kr. The excitation linewidths recorded for these two sites differ greatly, with the blue site yielding a broad featureless profile, in contrast to the narrow, structured features of the red site. The corresponding red site a6DJ-a6S5/2 transitions in Ar and Xe matrices are broader than in Kr-a difference considered to originate from the site sizes available in these hosts and the interatomic Mn/RG potentials. The millisecond decay times recorded for the red emission bands in the Mn/RG systems are all much shorter than the 3 s value predicted for the gas phase a6D9/2-a6S5/2 transition. This enhancement allows optical pumping of the forbidden a6DJ-a6S transitions with low laser powers when atomic manganese is isolated in the solid state. However all the emission decays are complex, exhibiting triple exponential decays. This behavior may be related to the dependence of the excitation linewidths on the J value, indicating removal of the J degeneracy due to weak matrix-induced, crystal field splitting.
    Item Type: Article
    Additional Information: http://jcp.aip.org/jcp/copyright.jsp#cpr
    Keywords: Luminescence spectroscopy, matrix-isolated atomic manganese,a6DJ^a6S
    Academic Unit: Faculty of Science and Engineering > Chemistry
    Item ID: 527
    Depositing User: Dr. John McCaffrey
    Date Deposited: 18 May 2007
    Journal or Publication Title: Journal of Chemical Physics
    Publisher: American Institute of Physics
    Refereed: Yes
    Related URLs:
    URI: https://mu.eprints-hosting.org/id/eprint/527
    Use Licence: This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available here

    Repository Staff Only (login required)

    Item control page
    Item control page

    Downloads

    Downloads per month over past year

    Origin of downloads