Collier, Martin A., Ryan, Maryanne C. and McCaffrey, John G. (2005) Luminescence spectroscopy of matrix-isolated atomic manganese: Excitation of the "forbidden" a6DJ-a6S transitions. Journal of Chemical Physics, 123.
PDF
Luminescence.pdf
Download (381kB)
Luminescence.pdf
Download (381kB)
Abstract
Laser-induced excitation spectra recorded for the electric-quadrupole 3d64s a6DJ-3d54s2a6S5/2 transitions of atomic Mn, allow assignment of the red emission features, previously observed in Mn/RG RG=Ar, Kr and Xe matrices with resonance 3d54s4pz6P52/3d54s2 a6S5/2 excitation, to
the metastable a6D9/2 state. Narrow excitation bands recorded for the red site in the Mn/Kr system
allow identification of all five spin-orbit levels J=1/2, 3/2, 5/2, 7/2 and 9/2 in the a6D state. The coincidence of the lowest energy excitation band and the observed 585.75 nm 17 072 cm-1 emission band of atomic Mn in Kr matrices, yielded a definitive assignment of this emission to a
transition from the J=9/2 spin-orbit level. Temperature dependent emission scans lead to the identification of the zero phonon line for the a6D9/2-a6S5/2 transition at 585.75 nm. The identified matrix-shift of +20 cm-1 allows an assessment of the extent of the ground state stabilization in the red 2° site of atomic Mn isolation in solid Kr. Emission produced with direct a6D state excitation
yielded both the 585.75 and 626 nm features. The former band arises for Mn atoms occupying the red site' the latter from blue site occupancy in solid Kr. The excitation linewidths recorded for these two sites differ greatly, with the blue site yielding a broad featureless profile, in contrast to the narrow, structured features of the red site. The corresponding red site a6DJ-a6S5/2 transitions in Ar and Xe matrices are broader than in Kr-a difference considered to originate from the site sizes
available in these hosts and the interatomic Mn/RG potentials. The millisecond decay times recorded for the red emission bands in the Mn/RG systems are all much shorter than the 3 s value predicted for the gas phase a6D9/2-a6S5/2 transition. This enhancement allows optical pumping of the forbidden a6DJ-a6S transitions with low laser powers when atomic manganese is isolated in
the solid state. However all the emission decays are complex, exhibiting triple exponential decays.
This behavior may be related to the dependence of the excitation linewidths on the J value, indicating removal of the J degeneracy due to weak matrix-induced, crystal field splitting.
Item Type: | Article |
---|---|
Additional Information: | http://jcp.aip.org/jcp/copyright.jsp#cpr |
Keywords: | Luminescence spectroscopy, matrix-isolated atomic manganese,a6DJ^a6S |
Academic Unit: | Faculty of Science and Engineering > Chemistry |
Item ID: | 527 |
Depositing User: | Dr. John McCaffrey |
Date Deposited: | 18 May 2007 |
Journal or Publication Title: | Journal of Chemical Physics |
Publisher: | American Institute of Physics |
Refereed: | Yes |
Related URLs: | |
URI: | https://mu.eprints-hosting.org/id/eprint/527 |
Use Licence: | This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available here |
Repository Staff Only (login required)
Downloads
Downloads per month over past year