Coyle, Shirley (2005) Near-Infrared Spectroscopy for Brain Computer Interfacing. PhD thesis, National University of Ireland Maynooth.
Preview
Shirley_Marie-Claire_Coy_20140722112116.pdf
Download (5MB) | Preview
Abstract
A brain-computer interface (BCI) gives those suffering from neuromuscular
impairments a means to interact and communicate with their surrounding
environment. A BCI translates physiological signals, typically electrical,
detected from the brain to control an output device. A significant problem with
current BCIs is the lengthy training periods involved for proficient usage, which
can often lead to frustration and anxiety on the part of the user and may even lead
to abandonment of the device. A more suitable and usable interface is needed to
measure cognitive function more directly. In order to do this, new measurement
modalities, signal acquisition and processing, and translation algorithms need to
be addressed. This work implements a novel approach to BCI design, using noninvasive
near-infrared spectroscopic (NIRS) techniques to develop a userfriendly
optical BCI. NIRS is a practical non-invasive optical technique that can
detect characteristic haemodynamic responses relating to neural activity. This
thesis describes the use of NIRS to develop an accessible BCI system requiring
very little user training. In harnessing the optical signal for BCI control an
assessment of NIRS signal characteristics is carried out and detectable
physiological effects are identified for BCI development. The investigations into
various mental tasks for controlling the BCI show that motor imagery functions
can be detected using NIRS. The optical BCI (OBCI) system operates in realtime
characterising the occurrence of motor imagery functions, allowing users to
control a switch - a “Mindswitch”. This work demonstrates the great potential of
optical imaging methods for BCI development and brings to light an innovative
approach to this field of research.
Item Type: | Thesis (PhD) |
---|---|
Keywords: | Spectroscopy; Brain Computer; |
Academic Unit: | Faculty of Science and Engineering > Electronic Engineering |
Item ID: | 5267 |
Depositing User: | IR eTheses |
Date Deposited: | 01 Aug 2014 13:41 |
URI: | https://mu.eprints-hosting.org/id/eprint/5267 |
Use Licence: | This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available here |
Repository Staff Only (login required)
Downloads
Downloads per month over past year