MURAL - Maynooth University Research Archive Library



    Non-Contact Sleep Monitoring


    Walsh, Lorcan (2012) Non-Contact Sleep Monitoring. PhD thesis, National University of Ireland Maynooth.

    [thumbnail of L_Walsh_-_PhD_Thesis_-_29_Nov_2012.pdf] PDF
    L_Walsh_-_PhD_Thesis_-_29_Nov_2012.pdf

    Download (23MB)

    Abstract

    "The road ahead for preventive medicine seems clear. It is the delivery of high quality, personalised (as opposed to depersonalised) comprehensive medical care to all." Burney, Steiger, and Georges (1964) This world's population is ageing, and this is set to intensify over the next forty years. This demographic shift will result in signi cant economic and societal burdens (partic- ularly on healthcare systems). The instantiation of a proactive, preventative approach to delivering healthcare is long recognised, yet is still proving challenging. Recent work has focussed on enabling older adults to age in place in their own homes. This may be realised through the recent technological advancements of a ordable healthcare sen- sors and systems which continuously support independent living, particularly through longitudinally monitoring deviations in behavioural and health metrics. Overall health status is contingent on multiple factors including, but not limited to, physical health, mental health, and social and emotional wellbeing; sleep is implicitly linked to each of these factors. This thesis focusses on the investigation and development of an unobtrusive sleep mon- itoring system, particularly suited towards long-term placement in the homes of older adults. The Under Mattress Bed Sensor (UMBS) is an unobstrusive, pressure sensing grid designed to infer bed times and bed exits, and also for the detection of development of bedsores. This work extends the capacity of this sensor. Speci cally, the novel contri- butions contained within this thesis focus on an in-depth review of the state-of-the-art advances in sleep monitoring, and the development and validation of algorithms which extract and quantify UMBS-derived sleep metrics. Preliminary experimental and community deployments investigated the suitability of the sensor for long-term monitoring. Rigorous experimental development re ned algorithms which extract respiration rate as well as motion metrics which outperform traditional forms of ambulatory sleep monitoring. Spatial, temporal, statistical and spatiotemporal features were derived from UMBS data as a means of describing movement during sleep. These features were compared across experimental, domestic and clinical data sets, and across multiple sleeping episodes. Lastly, the optimal classi er (built using a combina- tion of the UMBS-derived features) was shown to infer sleep/wake state accurately and reliably across both younger and older cohorts. Through long-term deployment, it is envisaged that the UMBS-derived features (in- cluding spatial, temporal, statistical and spatiotemporal features, respiration rate, and sleep/wake state) may be used to provide unobtrusive, continuous insights into over- all health status, the progression of the symptoms of chronic conditions, and allow the objective measurement of daily (sleep/wake) patterns and routines.
    Item Type: Thesis (PhD)
    Keywords: Non-contact sleep; monitoring;
    Academic Unit: Faculty of Science and Engineering > Electronic Engineering
    Item ID: 4212
    Depositing User: IR eTheses
    Date Deposited: 20 Feb 2013 11:54
    URI: https://mu.eprints-hosting.org/id/eprint/4212
    Use Licence: This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available here

    Repository Staff Only (login required)

    Item control page
    Item control page

    Downloads

    Downloads per month over past year

    Origin of downloads