Bracken, Carl (2009) Pseudo Quasi-3 Designs and their Applications to Coding Theory. Journal of Combinatorial Designs, 17 (5). pp. 411-418. ISSN 1063-8539
PDF
CB_Coding_Theory.pdf
Download (116kB)
CB_Coding_Theory.pdf
Download (116kB)
Abstract
We define a pseudo quasi-3 design as a symmetric design with the property
that the derived and residual designs with respect to at least one block
are quasi-symmetric. Quasi-symmetric designs can be used to construct
optimal self complementary codes. In this article we give a construction
of an infinite family of pseudo quasi-3 designs whose residual designs allow
us to construct a family of codes with a new parameter set that meet the
Grey Rankin bound.
Item Type: | Article |
---|---|
Additional Information: | Preprint version of published article, © 2009 Wiley Periodicals, Inc. |
Keywords: | quasi-symmetric design; quasi-3 design; Grey Rankin bound; error correcting code; |
Academic Unit: | Faculty of Science and Engineering > Mathematics and Statistics |
Item ID: | 2634 |
Identification Number: | DOI 10.1002/jcd.20208 |
Depositing User: | Library Editor |
Date Deposited: | 12 Aug 2011 15:55 |
Journal or Publication Title: | Journal of Combinatorial Designs |
Publisher: | Wiley Blackwell |
Refereed: | No |
Related URLs: | |
URI: | https://mu.eprints-hosting.org/id/eprint/2634 |
Use Licence: | This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available here |
Repository Staff Only (login required)
Downloads
Downloads per month over past year