MURAL - Maynooth University Research Archive Library



    Reversible self-assembly of gold nanoparticles in response to external stimuli


    Zubair Iqbal, M., Ali, Israt, Khan, Waheed S., Kong, Xiangdong and Dempsey, Eithne (2021) Reversible self-assembly of gold nanoparticles in response to external stimuli. Materials & Design, 205. p. 109694. ISSN 0264-1275

    [thumbnail of EithneDempseyRev2021.pdf]
    Preview
    Text
    EithneDempseyRev2021.pdf

    Download (6MB) | Preview

    Abstract

    Noble metal nanoparticles are highly attractive, owing to their optical, physical, electrical and chemical properties. Specifically, ease of surface modification, exceptional plasmonic and optical properties of gold nanoparticles (Au NPs) have created increasing interest in the assembly process. Once assembly is achieved successfully, the disassembly of the Au NPs is considered to be an exciting challenge. There are different kinds of forces involved in the assembly and disassembly process of Au NPs with a great deal involving the chemistry of surfactants. These forces can be externally triggered to achieve reversible assembly and disassembly. Less effort has been devoted to collate the study and mechanism involved behind environmentally or chemically triggered reversible assembly of Au NPs. Hence, the emphasis of this review is to highlight a number of promising stimuli such as light, pH, temperature and magnetic fields that can cause the reversible assembly of Au NPs. In addition, the surfactants utilized for assembly and disassembly of Au NPs under external stimuli response are examined. Furthermore, this review gives an account of the mechanism and chemistry of reversible assembly of Au NPs, taking into account the latest published literature. Indeed, it covers many ligands, biomolecules and thiol-mediated surfactants that can be linked to the surface of Au NPs and can also respond to external stimuli, realizing reversible assembly. The emerging challenges and an outlook on future developments in this research area are also discussed. The ultimate goal of this review is to encourage synthetic chemists to use ligand functionalized
    Item Type: Article
    Additional Information: Cite as: M. Zubair Iqbal, Israt Ali, Waheed S. Khan, Xiangdong Kong, Eithne Dempsey, Reversible self-assembly of gold nanoparticles in response to external stimuli, Materials & Design, Volume 205, 2021, 109694, ISSN 0264-1275, https://doi.org/10.1016/j.matdes.2021.109694
    Keywords: Gold; Nanostructures; Self-assembly; Reversible assembly; Biomedical Applications;
    Academic Unit: Faculty of Science and Engineering > Chemistry
    Faculty of Science and Engineering > Research Institutes > Human Health Institute
    Item ID: 17377
    Identification Number: 10.1016/j.matdes.2021.109694
    Depositing User: Eithne Dempsey
    Date Deposited: 29 Jun 2023 14:47
    Journal or Publication Title: Materials & Design
    Publisher: Science Direct
    Refereed: Yes
    Related URLs:
    URI: https://mu.eprints-hosting.org/id/eprint/17377
    Use Licence: This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available here

    Repository Staff Only (login required)

    Item control page
    Item control page

    Downloads

    Downloads per month over past year

    Origin of downloads