MURAL - Maynooth University Research Archive Library



    The LOST Algorithm: finding lines and separating speech mixtures


    O'Grady, Paul D. and Pearlmutter, Barak A. (2008) The LOST Algorithm: finding lines and separating speech mixtures. EURASIP Journal on Advances in Signal Processing . pp. 1-17. ISSN 1687-6172

    [thumbnail of 2008-784296.pdf] PDF
    2008-784296.pdf

    Download (6MB)
    Official URL: http://www.hindawi.com/journals/asp/2008/784296.ab...

    Abstract

    Robust clustering of data into linear subspaces is a frequently encountered problem. Here, we treat clustering of one-dimensional subspaces that cross the origin. This problem arises in blind source separation, where the subspaces correspond directly to columns of a mixing matrix. We propose the LOST algorithm, which identifies such subspaces using a procedure similar in spirit to EM. This line finding procedure combined with a transformation into a sparse domain and an L1-norm minimisation constitutes a blind source separation algorithm for the separation of instantaneous mixtures with an arbitrary number of mixtures and sources. We perform an extensive investigation on the general separation performance of the LOST algorithm using randomly generated mixtures, and empirically estimate the performance of the algorithm in the presence of noise. Furthermore, we implement a simple scheme whereby the number of sources present in the mixtures can be detected automatically
    Item Type: Article
    Additional Information: All articles published in Hindawi journals are open access and distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    Keywords: Blind source separation (BSS); Sparseness assumption; LOST algorithm; Separating Speech mixtures; Hamilton Institute;
    Academic Unit: Faculty of Science and Engineering > Computer Science
    Faculty of Science and Engineering > Research Institutes > Hamilton Institute
    Item ID: 1699
    Identification Number: 10.1155/2008/784296
    Depositing User: Hamilton Editor
    Date Deposited: 01 Dec 2009 12:45
    Journal or Publication Title: EURASIP Journal on Advances in Signal Processing
    Publisher: Hindawi Publishing Corporation
    Refereed: Yes
    Related URLs:
    URI: https://mu.eprints-hosting.org/id/eprint/1699
    Use Licence: This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available here

    Repository Staff Only (login required)

    Item control page
    Item control page

    Downloads

    Downloads per month over past year

    Origin of downloads