MURAL - Maynooth University Research Archive Library



    A regional (land–ocean) comparison of the seasonal to decadal variability of the Northern Hemisphere jet stream 1871–2011


    Hallam, Samantha, Josey, Simon A., McCarthy, Gerard and Hirschi, Joël J.-M. (2022) A regional (land–ocean) comparison of the seasonal to decadal variability of the Northern Hemisphere jet stream 1871–2011. Climate Dynamics. ISSN 1432-0894

    [thumbnail of Hallam2022_Article_ARegionalLandOceanComparisonOf.pdf]
    Preview
    Text
    Hallam2022_Article_ARegionalLandOceanComparisonOf.pdf

    Download (17MB) | Preview

    Abstract

    Seasonal to decadal variations in Northern Hemisphere jet stream latitude and speed over land (Eurasia, North America) and oceanic (North Atlantic, North Pacific) regions are presented for the period 1871–2011 from the Twentieth Century Reanalysis dataset. Significant regional differences are seen on seasonal to decadal timescales. Seasonally, the jet latitude range is lower over the oceans compared to land, reduced from 20° over Eurasia to 10° over the North Atlantic where the ocean meridional heat transport is greatest. The mean jet latitude range is at a minimum in winter (DJF), particularly along the western boundary of the North Pacific and North Atlantic, where the land-sea contrast and SST gradients are strong- est. The 141-year trends in jet latitude and speed show differences on a regional basis. The North Atlantic has significant increasing jet latitude trends in all seasons, up to 3° in winter. Eurasia has significant increasing trends in winter and sum- mer, however, no increase is seen across the North Pacific or North America. Jet speed shows significant increases evident in winter (up to 4.7 ms −1 ), spring and autumn over the North Atlantic, Eurasia and North America however, over the North Pacific no increase is observed. Long term trends are generally overlaid by multidecadal variability, particularly evident in the North Pacific, where 20-year variability in jet latitude and jet speed are seen, associated with the Pacific Decadal Oscil- lation which explains 50% of the winter variance in jet latitude since 1940. The results highlight that northern hemisphere jet variability and trends differ on a regional basis (North Atlantic, North Pacific, Eurasia and North America) on seasonal to decadal timescales, suggesting that different mechanisms are influencing the jet latitude and speed. This is important from a climate modelling perspective and for climate predictions in the near and longer term.
    Item Type: Article
    Keywords: Northern Hemisphere jet stream; Ocean–Atmosphere Interactions; Decadal trends; Jet stream variability; Twentieth Century Reanalysis;
    Academic Unit: Faculty of Social Sciences > Geography
    Faculty of Social Sciences > Research Institutes > Irish Climate Analysis and Research Units, ICARUS
    Item ID: 15560
    Identification Number: 10.1007/s00382-022-06185-5
    Depositing User: Gerard McCarthy
    Date Deposited: 23 Feb 2022 10:30
    Journal or Publication Title: Climate Dynamics
    Publisher: Springer Verlag
    Refereed: No
    Related URLs:
    URI: https://mu.eprints-hosting.org/id/eprint/15560
    Use Licence: This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available here

    Repository Staff Only (login required)

    Item control page
    Item control page

    Downloads

    Downloads per month over past year

    Origin of downloads