Hallam, Samantha, Josey, Simon A., McCarthy, Gerard and Hirschi, Joël J.-M. (2022) A regional (land–ocean) comparison of the seasonal to decadal variability of the Northern Hemisphere jet stream 1871–2011. Climate Dynamics. ISSN 1432-0894
Preview
Hallam2022_Article_ARegionalLandOceanComparisonOf.pdf
Download (17MB) | Preview
Abstract
Seasonal to decadal variations in Northern Hemisphere jet stream latitude and speed over land (Eurasia, North America)
and oceanic (North Atlantic, North Pacific) regions are presented for the period 1871–2011 from the Twentieth Century
Reanalysis dataset. Significant regional differences are seen on seasonal to decadal timescales. Seasonally, the jet latitude
range is lower over the oceans compared to land, reduced from 20° over Eurasia to 10° over the North Atlantic where the
ocean meridional heat transport is greatest. The mean jet latitude range is at a minimum in winter (DJF), particularly along
the western boundary of the North Pacific and North Atlantic, where the land-sea contrast and SST gradients are strong-
est. The 141-year trends in jet latitude and speed show differences on a regional basis. The North Atlantic has significant
increasing jet latitude trends in all seasons, up to 3° in winter. Eurasia has significant increasing trends in winter and sum-
mer, however, no increase is seen across the North Pacific or North America. Jet speed shows significant increases evident
in winter (up to 4.7 ms −1 ), spring and autumn over the North Atlantic, Eurasia and North America however, over the North
Pacific no increase is observed. Long term trends are generally overlaid by multidecadal variability, particularly evident in
the North Pacific, where 20-year variability in jet latitude and jet speed are seen, associated with the Pacific Decadal Oscil-
lation which explains 50% of the winter variance in jet latitude since 1940. The results highlight that northern hemisphere
jet variability and trends differ on a regional basis (North Atlantic, North Pacific, Eurasia and North America) on seasonal
to decadal timescales, suggesting that different mechanisms are influencing the jet latitude and speed. This is important from
a climate modelling perspective and for climate predictions in the near and longer term.
Item Type: | Article |
---|---|
Keywords: | Northern Hemisphere jet stream; Ocean–Atmosphere Interactions; Decadal trends; Jet stream variability; Twentieth Century Reanalysis; |
Academic Unit: | Faculty of Social Sciences > Geography Faculty of Social Sciences > Research Institutes > Irish Climate Analysis and Research Units, ICARUS |
Item ID: | 15560 |
Identification Number: | 10.1007/s00382-022-06185-5 |
Depositing User: | Gerard McCarthy |
Date Deposited: | 23 Feb 2022 10:30 |
Journal or Publication Title: | Climate Dynamics |
Publisher: | Springer Verlag |
Refereed: | No |
Related URLs: | |
URI: | https://mu.eprints-hosting.org/id/eprint/15560 |
Use Licence: | This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available here |
Repository Staff Only (login required)
Downloads
Downloads per month over past year