MURAL - Maynooth University Research Archive Library



    Geophysical and geochemical analysis of shallow gas and an associated pockmark field in Bantry Bay, Co. Cork, Ireland


    Jordan, S.F., O'Reilly, S.S., Praeg, D., Dove, D., Facchin, L., Romeo, Roberto, Szpak, M., Monteys, X., Murphy, B.T., Scott, G., McCarron, Stephen and Kelleher, B.P. (2019) Geophysical and geochemical analysis of shallow gas and an associated pockmark field in Bantry Bay, Co. Cork, Ireland. Estuarine, Coastal and Shelf Science, 225 (106232). ISSN 0272-7714

    [thumbnail of SM_geophysical.pdf]
    Preview
    Text
    SM_geophysical.pdf

    Download (4MB) | Preview

    Abstract

    An integrated geophysical, geological, and geochemical investigation of seabed fluid venting was carried out in upper Bantry Bay, a large marine inlet on the southwest coast of Ireland. The results provide evidence of the seafloor venting of gas rich fluids, resulting in the formation of a pockmark field identified here for the first time. The pockmarks occur in an area where sub-bottom profiles provide evidence of chimney-like features interpreted to record upward gas migration through Quaternary sediments to the seafloor. Three vibrocores up to 6 m long were acquired in water depths of 24–34 m, two from the pockmark field and one from outside. Methane of predominantly biogenic origin was quantified in all three cores by headspace analysis of sediment sub-samples. Well-defined sulfate methane transition zones (SMTZs) were observed in two of the cores, the shallowest (1.25 m below sea floor (mbsf)) inside the pockmark field and the other (3.75 mbsf) outside. It is likely that an SMTZ occurs at the location of the third core, also within the pockmark field, although deeper than the samples obtained during this study. Gas migration towards the seafloor is suggested to involve both diffuse pore fluid migration across wide areas and focused flow through the pockmarks, together driven by methanogenesis of pre-glacial lacustrine sediments preserved in a bedrock basin, and possible gas release from the Owenberg River Fault. Analysis of phospholipid fatty acids (PLFAs) and archaeal isoprenoid hydrocarbons was used to investigate the microbial ecology of these sediments. Anaerobic oxidation of methane (AOM) may play a role in controlling release of CH4 to the water column and atmosphere in this shallow gas setting, potentially mediated by syntrophic sulfate reducing bacteria (SRB) and anaerobic methanotrophic archaea (ANME).
    Item Type: Article
    Additional Information: Cite as: S.F. Jordan, S.S. O'Reilly, D. Praeg, D. Dove, L. Facchin, R. Romeo, M. Szpak, X. Monteys, B.T. Murphy, G. Scott, S.S. McCarron, B.P. Kelleher, Geophysical and geochemical analysis of shallow gas and an associated pockmark field in Bantry Bay, Co. Cork, Ireland, Estuarine, Coastal and Shelf Science, Volume 225, 2019, 106232, ISSN 0272-7714, https://doi.org/10.1016/j.ecss.2019.05.014
    Keywords: Seafloor; Pockmarks; Biogeochemical processes; Fluid migration; Anaerobic oxidation of methane (AOM); Lipid biomarkers; Methane; Climate change; Geohazards;
    Academic Unit: Faculty of Social Sciences > Geography
    Faculty of Social Sciences > Research Institutes > Irish Climate Analysis and Research Units, ICARUS
    Item ID: 14148
    Identification Number: 10.1016/j.ecss.2019.05.014
    Depositing User: Dr. Stephen McCarron
    Date Deposited: 09 Mar 2021 15:17
    Journal or Publication Title: Estuarine, Coastal and Shelf Science
    Publisher: Elsevier
    Refereed: Yes
    Related URLs:
    URI: https://mu.eprints-hosting.org/id/eprint/14148
    Use Licence: This item is available under a Creative Commons Attribution Non Commercial Share Alike Licence (CC BY-NC-SA). Details of this licence are available here

    Repository Staff Only (login required)

    Item control page
    Item control page

    Downloads

    Downloads per month over past year

    Origin of downloads