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Abstract

Recent work on positive matrices has resulted in a new matrix method for generating chaotic maps with arbitrary
piecewise constant invariant densities, sometimes known as the inverse Frobenius–Perron problem (IFPP). In this
paper, we give an extensive introduction to the IFPP, describing existing methods for solving it, and we describe our
new matrix approach for solving the IFPP.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The inverse Frobenius–Perron problem (IFPP) refers to the problem of creating chaotic maps with desired invariant
densities [1]. A number of different approaches to the problem have appeared in the literature, including conjugate-func-
tion, control-based, and matrix-based approaches [2–4]. The IFPP can be seen as a stepping-stone to new applications
of chaos, which will only burgeon when systematic synthesis and control techniques are available. Some researchers,
unaware of the work on the IFPP, tend to use the logistic map for every conceivable application. We do not feel that
this is the best approach when there are a variety of ways available to control and synthesize maps with desired
properties.

We recently developed a straightforward matrix approach to the IFPP which is completely mechanical, requiring
little effort to generate a chaotic map with a desired invariant density. This work has potential applications in data mod-
elling and creating random numbers with desired statistics, and was first described in [5]. In this paper, after an exten-
sive introduction to the IFPP, we look in more detail at our matrix method, especially controlling the overall dynamics
of system, and the effect of the various parameters on Lyapunov exponent and mixing rates. We also examine what
happens to invariant densities when we switch between chaotic maps.
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2. Background to the inverse Frobenius–Perron problem

Normally, when we iterate a chaotic map starting from some initial condition x0, the iterates fall chaotically on some
attractor. It can be difficult to see the attractor if we just look at the time-series of the iterates. If we partition the state
space into a series of bins, and count the fraction of iterates in each bin, a statistical picture of the chaotic attractor
emerges. For almost all initial conditions, the same picture emerges: a unique invariant density q(x). It is true that
for certain initial conditions (rational numbers, or extreme points) other invariant densities are possible, but for the
maps we will be considering, there will be only one physically relevant invariant density [6]. This density is stable if
a small amount of noise is added to the system. In order to characterize the density mathematically, we consider an
ensemble of initial conditions described by a probability density function q0(x) and observe how it changes as the entire
ensemble is iterated. Eventually, the invariant density is reached, after, say n iterates. Further iteration of the ensemble
of points just gives the invariant density q(x) each time. The collection of initial conditions has reached a stable fixed-
point of the Frobenius–Perron equation where the Frobenius–Perron operator (FPO), P, is a linear operator acting on
distributions of points [1]:
PqðxÞ ¼ d

dx

Z
f�1ð½a;x�Þ

qðyÞdy: ð1Þ
For piecewise linear maps, Eq. (1) can be rewritten in the following more convenient form:
PqðyÞ ¼
X

x2f�1ðyÞ

qðxÞ
jf 0ðxÞj : ð2Þ
Solving Eq. (1) is a difficult (if not impossible) problem for arbitrary continuous maps: Firstly, the invariant density
may be a fractal or Cantor set, in which case the intervals concerned have measure zero; secondly, it may not be possible
to solve the resulting functional equations, assuming the invariant measure is continuous. So the inverse problem, of
choosing an arbitrary invariant measure, and finding which map gives rise to it, must seem like quite an impossible task.
All is not lost though. There are two main approaches to the IFPP in the literature. The first method uses a conjugate
function approach, the second is based on approximation of the FPO by a Markov matrix.

The conjugate function approach, which was first described by Grossman and Thomae [2], makes use of the follow-
ing equivalence relation between two mappings: The maps f : I! I and g : J! J on intervals I and J are conjugate if
there exists a one-to-one map h : I !onto

J such that
gðxÞ ¼ hðf ½h�1ðxÞ�Þ: ð3Þ
The conjugating function h, assumed to be continuous and sufficiently smooth, establishes a one-to-one correspondence
between the iterates of the two maps f and g. The invariant densities of g and h are related as follows:
qgðxÞ ¼ qf ½h�1ðxÞ� dh�1ðxÞ
dx

����
����: ð4Þ
Numerous examples are given in the paper by Grossman. Also, this approach can be used to find the invariant density
of the logistic map. It is conjugate to the tent map through the conjugating function hðxÞ ¼ sin2 px

2

� �
when r = 4 (see [7]

for details). The invariant density of the tent map is constant and equals one, and so Eq. (4) reduces to
qgðxÞ ¼
dh�1ðxÞ

dx

����
���� ð5Þ
The inverse function h�1 can be shown to be
h�1ðxÞ ¼ 2

p
sin�1 ffiffiffi

x
p
: ð6Þ
We can find the derivative, and thus the required invariant density, as follows:
qgðxÞ ¼
d

dx
2

p
sin�1 ffiffiffi

x
p� �

¼ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞ

p : ð7Þ
Fig. 1 illustrates the two conjugate maps, the conjugating function hðxÞ ¼ sin2 px
2

� �
, and the invariant densities of the

logistic and tent maps.
The Markov matrix approach, upon which our new results are based, was first suggested by Ulam [8]. The FPO is a

Markov operator, in the sense that the density at step n + 1 is only a function of the density at step n (see [9]). Ulam
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Fig. 1. (i) Logistic and tent maps, (ii) conjugating function, (iii) invariant densities of both maps.
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suggested that the state-space (the unit interval in all of our work) be arbitrarily partitioned into N subintervals,
I1, . . . , IN. Then define a probability vector at step n:
P n ¼
Z

I1

qnðxÞdx; . . . ;

Z
IN

qnðxÞdx
� 	

: ð8Þ
Now introduce an N · N transition matrix, W, which gives the probabilities of iterates moving from any subinterval to
any other subinterval in the partition. Ulam hypothesized that the FPO could now be approximated by the following
matrix equation:
P nþ1 ¼ WP n: ð9Þ
It is clear that as N!1, Eq. (9) gives a better and better approximation of the FPO. Ulam’s hypothesis was later
proved by Li [10]. It is remarkable that the statistical properties of chaotic systems can be represented by such a simple
linear equation, allowing us to bring many of the results of positive matrix theory to bear on the problem.

There has been a large amount of work done on controlling the statistical properties of 1-D maps in recent years.
Apart from the seminal work of Grossman and Thomae cited earlier, we mention the paper of Baranovsky and Daems
[11], in which piecewise linear Markov maps are used as references whose statistical properties are known. These maps
are then transformed into non-Markov maps and smooth maps, using conjugating functions. They also consider the
problem of designing maps with prescribed correlation functions. Pingel and co-workers [12] manage to solve the
Frobenius–Perron equation exactly for a class of unimodal chaotic maps, whose invariant densities are members of
a class of beta distributions. The group led by Setti have studied the Markov approach to the IFPP with a view to
applying it to signal processing tasks (see especially [13] and the copious references therein). They consider a variety
of piecewise linear maps including n-way Bernoulli shifts and develop a matrix–tensor formulation for quantifying
high-order correlations of such maps. Another active area of research is the use of chaotic maps to model packet traffic
in computer networks. Packet traffic is notoriously bursty, and chaotic maps are ideal for modelling the fractal prop-
erties of the traffic. Mondragon neatly summarizes the previous work in this area in [14], and introduces some different
types of intermittency maps along with a discussion of the statistical properties of these maps.
3. A matrix method for solving the IFPP

A recent analysis of the transmission control protocol (TCP) in synchronised communication networks [15,16] gave
rise to a positive matrix with special properties that allows us to solve the IFPP in a novel and elegant way. In the TCP
protocol, each data source is allocated a congestion window, which governs how much data it can send. The protocol
uses an additive-increase multiplicative-decrease (AIMD) algorithm for allocating window size: if the network is uncon-
gested, the amount of data each source can send increases additively, but when congestion is detected, the sources back
off in a multiplicative way. It can be shown that if there are n sources competing for some finite bandwidth, and all these
sources are operating the TCP congestion control algorithm in the presence of a drop-tail buffer bottleneck, then the
dynamics of the system may be modelled by the following matrix equation:
W ðk þ 1Þ ¼ AW ðkÞ; ð10Þ
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where W(k) is a vector of the congestion windows of each source. The matrix A has the form:
A ¼

b1 0 � � � 0

0 b2 0 0

..

.
0 . .

.
0

0 0 � � � bn

0
BBBB@

1
CCCCAþ

1Pn
i¼1ai

a1

a2

..

.

an

0
BBBB@

1
CCCCA 1� b1 1� b2 � � � 1� bnð Þ: ð11Þ
The ai are the additive increase parameters for each of the n sources, and the bi are the corresponding multiplicative
decrease parameters. The matrix A has many interesting properties, which we outline here:

1. Matrix A is column stochastic (which means each column sums to 1).
2. The matrix is a positive matrix (all entries are positive real numbers).
3. The matrix has a single dominant eigenvalue of value 1.
4. There is a single eigenvector of A in the positive orthant called the Perron eigenvector, corresponding to the dom-

inant eigenvalue, whose value is given by
xT
P ¼

a1

1� b1

;
a2

1� b2

; . . . ;
an

1� bn


 �
: ð12Þ
5. If the eigenvalues (ki) and the bi are arranged in decreasing order, then the following interlacing scheme holds:
1 ¼ k1 > b1 P k2 P b2 P . . . P kn P bn: ð13Þ
The interlacing result and the form of the Perron eigenvector are given in the paper by Wirth [17], and are based on
standard results on the symmetric eigenvalue problem (see, e.g., [18] or [19]).

We will be using the A matrix to describe the transition probabilities between intervals in a partition. At the heart of
our synthesis approach is the Perron eigenvector of A: that it is parameterized in terms of the ai and bi unlocks the
inverse Frobenius–Perron problem.

Ulam’s conjecture was that the principle eigenvector of a Markov process is the invariant density of that process,
and that transformations on the interval could be approximated using this matrix approach.

We have a way of choosing our invariant density first, and automatically determining the Markov process that gave
rise to it. The Markov process can then easily be turned into a 1-D map.

3.1. Synthesis procedure

Suppose that the desired invariant density (Perron eigenvector) xd is
xT
d ¼ ½d1; d2; . . . ; dn�: ð14Þ
Choose the bi subject to the constraint: 0 < bi < 1. (The bi control how rapidly the map converges on the invariant
density.) Often, we find it convenient to keep all the bi equal. Having chosen the bi, determine the ai as follows:
a1 ¼ d1ð1� b1Þ;
a2 ¼ d2ð1� b2Þ;

..

.

an ¼ dnð1� bnÞ:
Now form the matrix A from the ai and bi:
A ¼

b1 0 � � � 0

0 b2 0 0

..

.
0 . .

.
0

0 0 � � � bn

0
BBBB@

1
CCCCAþ

1Pn
i¼1ai

a1

a2

..

.

an

0
BBBB@

1
CCCCA 1� b1 1� b2 � � � 1� bnð Þ:
Next, we let the A matrix represent a 1-D map on the unit interval to itself. We partition the unit interval into n equal
subintervals, {I1, . . . , In} (assuming A is an n · n matrix). Note that the partition can also be nonuniform (to be illustrated
later). Let entry aji of A denote the probability of a transition from subinterval Ii to Ij. (The order of the subscripts is
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Fig. 2. Illustration of the construction of a 1-D map from a Markov matrix.
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important here.) To construct the map, place a line segment of slope ±1/aji in the square defined by the subintervals Ii, Ij,
as illustrated in Fig. 2. By controlling the slope of the line segment, we can control how much of the overall subinterval
will interact with that portion of the map, which in turn relates to the transition probabilities. The most straightforward
way of constructing the map is to start at the origin, and add the line segments end to end. In the figure, it can be seen how
the probability of a transition from I1 to Ij is 0.5, corresponding to a line of slope 2 in that region. In other words, 50% of
the points in I1 are mapped to Ij. The slope could have been �2, and it could have been positioned anywhere within the
square defined by those subintervals. This would affect the actual trajectory of the chaotic iterates, but it would not
change the invariant density. A positive slope maps the extremities of an interval to the corresponding extremity (e.g.,
inf(Ii)! inf(Ij)), while a negative slope maps each extremity to its opposite (e.g., inf(Ii)! sup(Ij)).

3.2. Examples

We now give a mixture of examples of the synthesis procedure in action, using simple MATLAB code. The values of
the bi are the same in each example.

(a) Invariant density xd = [1,2,3]. We let all the bi = 0.1 for convenience. The values of ai are computed to be
[0.9,1.8,2.7]. The transition matrix A is then found to be:
A ¼
0:25 0:15 0:15

0:3 0:4 0:3

0:45 0:45 0:55

0
B@

1
CA; ð15Þ
A is clearly column stochastic, and has eigenvalues of [1,0.1,0.1], which we could have deduced from the interlacing
property mentioned earlier. Fig. 3 shows the one-dimensional map corresponding to matrix A and constructed in
the manner outlined above. Fig. 4 is the invariant density of the map after 20000 iterations. The y-axis has been scaled
to allow ready comparison with xd. A typical chaotic time-series from the map is shown in Fig. 5.

(b) The invariant density of the synthesized map has the shape of a sine-wave, but with an offset so that the values
are all positive (see Figs. 6–8). The unit-interval is partitioned into 13 subintervals, giving a 13 · 13 transition
matrix.

(c) In this example, we illustrate how a synthesized map could generate random numbers with useful statistics. The
invariant density of the synthesized map has the shape of a normal (Gaussian) distribution (see Fig. 9). The
transition matrix used in this example is 121 · 121. The points of the time-series are shown in Fig. 10, with
the maximum density clearly in the mid-point of the unit-interval.
3.3. The role of the b parameters

In the examples above, the values of the bi parameters were just taken to be some small value without any further
explanation. If matrix A represents a linear system xn+1 = Axn, then the bi control how quickly the map converges to



Fig. 4. Invariant density of map in Fig. 3.

Fig. 5. Time-series of chaotic map in Fig. 3.

Fig. 3. One-dimensional chaotic map with partition on unit-interval shown.
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Fig. 6. One-dimensional chaotic map with sinusoidal invariant density.

Fig. 7. Invariant density of map in Fig. 6.

Fig. 8. Time-series of chaotic map in Fig. 6.
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Fig. 9. Gaussian-shaped invariant density generated from a 121 · 121 transition matrix.

Fig. 10. Time-series of chaotic map from example (c), corresponding to invariant density in Fig. 9.
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the equilibrium state upon iteration. Say we order the eigenvalues of the A matrix: [1,k2,k3, . . . ,kn], and let the corre-
sponding normalized eigenvectors be [V1,V2, . . . ,Vn]. Any initial condition x0 can be written in terms of the
eigenvectors:
x0 ¼ c1V 1 þ c2V 2 þ � � � þ cnV n: ð16Þ
Thus after k iterations we get
Akx0 ¼ c1V 1 þ c2k
k
2V 2 þ � � � þ cnk

k
nV n: ð17Þ
Since the eigenvalues are interlaced with the bi, and all of the bi < 1, it is clear from Eq. (17) that all of the terms except
the first will rapidly decay to zero. The equilibrium state is thus the Perron eigenvector, as expected. The second largest
eigenvalue imposes an upper bound on how fast the system approaches the equilibrium state (see Fig. 11).

The bi play a different role when matrix A represents a map. Before we start iterating the map, the density is zero,
and so the initial condition is at the origin. As the map is iterated, the density evolves along the Perron eigenvector. The
invariant density is a statistical concept: we do not expect it to exactly equal the desired value at all times. If iterates
spend long times in each subinterval before being mapped to another subinterval, then the invariant density can diverge
markedly from the desired value at times. We find that it is the values of the bi that determine the length of time iterates
spend in each subinterval. We now explore the mechanism giving rise to this.
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1. Large values of b
If we assume that all of the bi are equal and close to 1, then we find that the diagonal values of the A matrix are
approximately equal to the bi, and the off-diagonal entries are all very small, due to the 1 � bi factors. In terms
of transitions between subintervals, the probability of an iterate staying in the same subinterval is very high. Iterates
are mapped to other subintervals very infrequently. Looked at dynamically, an n · n matrix will have n slightly
unstable fixed points, or repellors (see Fig. 13(a)). Iterates near these fixed points move away very slowly. This is
also evident in the state-space plot (see Fig. 13(b)).

2. Small values of b
If the bi are small, then the transition matrix is dominated by the ai terms. The precise values of the matrix entries are
of course dependent on the desired invariant density, but it would be unusual to encounter a situation where iterates
spent most of their time in one subinterval. The values of the slopes in the 1-D map tend to be large, and so the
repelling fixed points are usually very unstable.

3. Various values of b
It is possible to engineer a situation where some subintervals contain weakly repelling fixed points, and others have
strongly repelling fixed points, just by choosing a large or small value of b for that subinterval.
Fig. 12. Detailed plot of a 1-D map with large b values: trajectories become trapped in subintervals and transitions occur infrequently.



Fig. 13. 1-D map and time-series plot with: (a), (b) bi = 0.9; and (c), (d) bi = 0.1.
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While the 1-D maps obtained using large values of b still give rise to chaotic trajectories, these trajectories have long
laminar regions, reminiscent of intermittency (Fig. 12). Two initially close points may remain close for a long time.

3.4. Lyapunov exponents

The Lyapunov exponent of a 1-D map gives the average rate of divergence of trajectories over the attractor. It is
particularly straightforward to calculate for piecewise linear maps because it is related to the slopes of the map seg-
ments. For a 1-D map the Lyapunov exponent is defined as follows, using the chain rule in line 2:
k ¼ lim
N!1

1

N
ln

df N ðx0Þ
dx0

����
���� ¼ lim

N!1

1

N
ln
YN�1

i¼0

f 0ðxiÞ
�����

����� ¼ lim
N!1

1

N

XN�1

i¼0

ln jf 0ðxiÞj: ð18Þ
Essentially, it is the sum of the logs of the slope magnitudes averaged over the attractor. There are methods for com-
puting the exponent numerically, but in this case, we know the slopes of the map, and the density of points in each
subinterval, so it is possible to derive an analytic expression for the exponent. For the 2 · 2 case, if we assume
b1 = b2, then the invariant density q = {a1,a2}, and a1 + a2 = 1. If we denote the entries of the transition matrix aij,
then the Lyapunov exponent can be written as
k ¼ a1a11 ln
1

a11

þ a1a21 ln
1

a21

þ a2a12 ln
1

a12

þ a2a22 ln
1

a22

: ð19Þ
This is a direct application of Eq. (18), except that the density of points in each subinterval is known a priori (given by
the aiaij terms), so we do not need to take an average over the attractor. Substituting in for the values of the aij, we get
k ¼ a1 b1 þ a1ð1� b1Þ ln
1

b1 þ a1ð1� b1Þ

� 	
þ a1 a2ð1� b1Þ ln

1

b1 þ a2ð1� b1Þ

� 	

þ a2 b1 þ a2ð1� b1Þ ln
1

b1 þ a1ð1� b1Þ

� 	
þ a2 a2ð1� b1Þ ln

1

b1 þ a1ð1� b1Þ

� 	
: ð20Þ
If we let b1! 0 (a reasonable assumption), then we get a rather nice looking expression for k:
k ¼ a2
1 ln

1

a1

þ a2
2 ln

1

a2

þ a1a2 ln
1

a1a2

: ð21Þ
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Fig. 14. Variation in Lyapunov exponent with b and a1 = a2 = 0.5.
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For a 3 · 3 matrix, the corresponding expression is
k ¼ a2
1 ln

1

a1

þ a2
2 ln

1

a2

þ a2
3 ln

1

a3

þ a1a2 ln
1

a1a2

þ a2a3 ln
1

a2a3

þ a3a1 ln
1

a3a1

: ð22Þ
Generalising to an n · n matrix, the Lyapunov exponent would be given by
k ¼
Xn

i¼1

a2
i ln

1

ai
þ
X
i 6¼j

Yn

i;j¼1

aiaj ln
1

aiaj
: ð23Þ
Fig. 14 shows how the Lyapunov exponent varies with b for a 2 · 2 map with a1 = a2 = 0.5. As expected, the max-
imum value of k occurs as b! 0, and equals ln2.

3.5. Nonuniform partitions

The method may be easily modified to generate maps on nonuniform Markov partitions of the unit interval. Indeed, the
synthesis method remains unchanged, as the transition matrix concerns only transitions between states. The states may be
defined arbitrarily, and for one-dimensional maps, we may define the partition arbitrarily. The only difference is in the
construction of the one-dimensional map, as illustrated in Fig. 15. The unit interval is partitioned into subintervals of
xn

Xn+1

w1 w2

w1

w2 a11w1

a21w1

a12w2

a22w2

Fig. 15. Construction of 1-D map with a nonuniform partition.



172 A. Rogers et al. / Chaos, Solitons and Fractals 35 (2008) 161–175
width w1,w2, . . . ,wn. Each of these subintervals, wi is then further partitioned according to the entries of column i of the
transition matrix A. The column entries determine the widths of the piecewise linear elements of the map. For a transition
from interval i to interval j, the slope of that element of the map, mji, is given by
mji ¼ �
1

aji
� wj

wi
: ð24Þ
This reduces to mji ¼ �a�1
ji when the partition is uniform, as we saw previously. In Figs. 16 and 17, we show an example

of the synthesis of a one-dimensional map with q = [1,2,3,2,1] and with interval widths wi = [0.4,0.2,0.1,0.2,0.1]. The
only noteworthy effect of the nonuniform partition is that the map may no longer be everywhere expanding (i.e., some
of the slopes of the map may be less than one).

3.6. Switching between chaotic maps

An interesting extension of the above work is to consider what happens when we switch randomly between some set
of 1-D maps at each iteration of the process. This question has been considered by Boyarsky and Gora [20], where they
use this process to model the famous two-slit experiment in quantum physics.

Theorem 3.1. Let A(k) 2 A1,A2 and let pk = p(A(k)) being chosen from the set. Assume the values of the bi to be the same

for both maps. Let q1 and q2 be the invariant densities of the two maps. If we choose either A1 or A2 randomly

(independently identically distributed) at each step of an iterative process with fixed probabilities p1 and p2, respectively,

then the invariant density of the resultant orbit, q is given by q = p1q1 + p2q2.

Proof.
A1 ¼

b1 0 � � � 0

0 b2 0 0

..

.
0 . .

.
0

0 0 � � � bn

0
BBBB@

1
CCCCAþ

a1

a2

..

.

an

0
BBBB@

1
CCCCA 1� b1 1� b2 � � � 1� bnð Þ;

A2 ¼

b1 0 � � � 0

0 b2 0 0

..

.
0 . .

.
0

0 0 � � � bn

0
BBBB@

1
CCCCAþ

â1

â2

..

.

ân

0
BBBB@

1
CCCCA 1� b1 1� b2 � � � 1� bnð Þ:
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Fig. 16. Synthesized nonuniform map.
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It is well-known that the expected value of the transition matrix which results when switching randomly between two
matrices is given by A0 = E(Pk) = p1A1 + p2A2.

By simple substitution we can show that
A0 ¼

b1 0 � � � 0

0 b2 0 0

..

.
0 . .

.
0

0 0 � � � bn

0
BBBB@

1
CCCCAþ

p1a1 þ p2â1

p1a2 þ p2â2

..

.

p1an þ p2ân

0
BBBB@

1
CCCCA 1� b1 1� b2 � � � 1� bnð Þ;
A0 thus has a perron eigenvector of
xT
P ¼

p1a1 þ p2â1

1� b1

;
p1a2 þ p2â2

1� b2

; . . . ;
p1an þ p2ân

1� bn


 �
: � ð25Þ
Theorem 3.1 shows that when the values of b are the same in each matrix, the overall invariant density is just a weighted
sum of the invariant densities of the original maps. This result also holds when switching between any number of maps. We
illustrate this in the figures below where we switch between two maps. The maps have invariant densities q1 = 0.1[1,2,3,4]
and q2 = 0.1[4,3,2,1], and each map is chosen with probability 0.5. As can be seen in Fig. 18 the state-space plot of the
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Fig. 18. State-space plot of switched-chaotic map.
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switched system is just the superposition of the two individual maps, and the invariant density shown in Fig. 19 is the
average of the two individual invariant densities.
4. Conclusions

The inverse Frobenius–Perron problem (IFPP) has achieved widespread attention over the past number of years as it
offers a way of controlling the invariant density of chaotic maps, which in turn may lead to new applications of chaos.
In this paper, we have extended our previous work on a new and simple matrix method for solving the IFPP. In the
method outlined, one has complete control over the map in terms of invariant density, Lyapunov exponent, and mixing
properties. The method is described is completely mechanical and highly suited to computer implementation. It could
be used to generate desired distributions of (quasi-)random numbers, or to model chaotic phenomena or time-series. We
also gave some preliminary results for a switched-chaotic map system.
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