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Bounding the Integrator Outputs of Second-Order
Sigma–Delta Modulators

Ronan Farrell,Student Member, IEEE,and Orla Feely,Member, IEEE

Abstract—The development to date of the bounds for the out-
puts of the integrators of second-order sigma–delta modulators
has relied on a mixture of theoretical analysis and extensive use of
simulation. This paper presents a new approach that analyzes the
behavior of such systems, and identifies the external boundaries
of the trapping region for the outputs of the integrators. With this
approach, it is possible to develop tight results for the standard
second-order modulator with constant input, without the need
for simulation. This approach is flexible, and can be adapted for
other second-order architectures, and gives strong insight into
the behavior of these systems.

Index Terms—Chaos, nonlinear analysis, sigma–delta.

I. INTRODUCTION

DUE to advances in very large scale integration (VLSI)
technology, sigma–delta modulator-based analog-to-

digital converters have become popular, especially in
low-frequency, high-precision applications. A sigma–delta
modulator produces a coarsely quantized output, requiring
only simple analog components. Complex digital circuitry is
then used to produce a high-precision digital representation
from this coarse quantization. This balance of simple analog
components and complex high-speed digital circuitry is
particularly suited to VLSI implementation, and facilitates
the direct incorporation of these modulators with other digital
signal processing systems.

In recent years, a variety of sigma–delta modulator architec-
tures has been suggested for a range of applications [1], [2].
Despite their increasing popularity, accurate analysis of these
systems has lagged behind implementation. This weakness in
analysis is due to the highly nonlinear nature of the modulator.
Recent approaches to analyzing this system have concentrated
on determining stability criteria for second- and higher order
modulators [3]–[6], on developing upper limits on the voltage
span of the integrator outputs [3], [5]–[8], and on spectral
analysis of the output [9]. In this paper, a new method for
developing tight upper bounds on the output of the integrators
of a second-order modulator (Fig. 1) will be presented. These
bounds are important as they determine the clipping level of
the system, and are a factor in determining the required on-chip
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area for the capacitors. It is desirable to minimize any excess
in both of these criteria when implementing these systems.

Bounding the outputs of the integrators involves finding a
trapping region for the system within the two-dimensional
space defined by the integrator outputs. A trapping region
has the property that, once within this region, the integrator
outputs will never take on values outside this region. Methods
for determining the trapping region range from the fully
theoretical to approaches which depend on simulations for
their final results, but which have a strong theoretical back-
ground. The fully theoretical approach is best demonstrated
by Hein and Zakhor’s work on stability and bounds [3],
and in Wang’s independent but related analysis of second-
order systems [6]. Their approach uses parabolic bounds to
produce a smooth approximation to the trapping region. This
produces fully analytical results, but these are not exact as
the trapping region has been shown to have a complex and
jagged shape (as suggested by the trajectory in Fig. 2) [8].
The computational approach to determining the bounds is
contained in the work of Wang in his Ph.D. dissertation [8]
and of Schreieret al. [10]. Wang explained this jagged shape
using a computational procedure which identified invariant
spaces arising from successive mappings. Schreieret al.used a
similar computational approach in which a candidate region is
iterated and enlarged until an invariant region is found. These
approaches produce tighter bounds than those of Hein and
Zakhor, and have the advantage that they can be adapted to
any second-order system and some higher order systems. The
main disadvantage of these computational approaches is the
lack of general analytical results.

The aim of the work presented in this paper is to present
a new method which produces tighter analytical bounds than
those previously obtained, and at the same time yields insight
into the behavior of this complex system. Our approach
depends upon developing an understanding of the behavior
of the system, and then applying this knowledge to determine
the jagged outer boundary of the trapping region. Of the work
mentioned earlier, this work most resembles that of Wang [8],
but differs in that the bounds will be determined analytically.
This analytical approach yields general results and insight
into the behavior of the second-order system. The analysis
considers only systems with constant input, as is the case
for most of the work done in this area to date. With high
oversampling ratios and slowly changing inputs, bounds for
the integrator outputs resulting from a constant input analysis
are useful in practical applications.
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Fig. 1. Standard second-order sigma–delta modulator.

Fig. 2. Trajectory of (1) with inputx = 0:161027 and initial condition
(0.077, 0.08).

II. OVERVIEW

The aim of this paper is to demonstrate a novel approach
to the understanding of the behavior of the second-order
sigma–delta system, and thus to develop tight bounds on the
maximum values that the outputs of the integrators may reach
for a constant input. This will be achieved by examining the
region that the outputs of the integratorsand inhabit. We
will utilize the fact that the trajectories of these variables are
piecewise linear within each half-plane, where the half-planes
are defined by the sign of the output of the second integrator
( ). The half-planes will be referred to as the positive or
negative half-plane according to the sign of. It is possible
to determine closed-form equations to describe the trajectories
within a half-plane, given their conditions upon entry into the
half-plane. These entry conditions, together with the closed-
form equations, determine the maximum integrator output
while the trajectory remains within this half-plane. Much of
our analysis, therefore, will be concerned with formulating
bounds on these entry conditions.

The pair of values will denote the point at which
a trajectory enters the positive half-plane after having been
in the negative half-plane. The allowable range of these
entry conditions is dependent on the number of iterations
the trajectory has just spent in the negative half-plane. Thus,
knowledge of the maximum number of negative iterations
yields bounds on the entry conditions, and hence on the
maximum integrator outputs in the positive half-plane. In

Fig. 3. Subset of the trajectory of Fig. 2 consisting of the points at which
the trajectory enters the positive half-plane.

Section III, an approach will be presented that will enable
the maximum values of and to be determined by
considering certain sections of the trapping region. These
sections contain all of the possible values that the integrators
may take after a certain condition has been satisfied. Two
such sections will be of interest: the section within which all
possible entry conditions to the positive half-plane
must lie (the sector, Fig. 3), and the section within which
all entry conditions to the negative half-plane must
lie (the sector).

To identify the maximum number of negative iterations, an
iterative approach will be applied. Specifically, the number of
negative iterations results in an outer bound for thesector,
restricting the range of values of and . This bounded
region, when mapped forward to the negative half-plane,
yields another boundary within the sector. This boundary
can be tested against a set of analytical conditions which
determine the number of successive negative iterations that
the trajectory may now undergo. This procedure is repeated
until the maximum number of negative iterations the system
may undergo, for a given input, is determined. Once this is
known, the range of and can be ascertained.

In Section IV, functions which describe the rate of change of
the individual trajectories will be used to identify the location
along the trajectory where the maximum values will occur.
With the maximum entry conditions, the maximum possible
values for the output of the integrators can be determined.
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Fig. 4. Plot of the integrator outputs versus time with inputx = 0.85 and initial conditions (2.0, 2.9).

The fifth section will expand the analyzes of the previous
sections to consider the cases of both leaky and chaotic mod-
ulators. These are modulators whose integrators are no longer
ideal, i.e., whose poles are no longer equal to one. The problem
of nonideal integrators does not require any alteration in the
methodology of the previous sections—the only difference is
due to the much more complex expressions for the trajectories.
The final section will then discuss the results and conclusions
developed from the analysis, in particular, the strengths of this
approach and other avenues where it may be applied.

III. D ETERMINING THE TRAPPING REGION

The second-order sigma–delta modulator, shown in Fig. 1
(also known as the standard Candy double-loop modulator
[1]), with constant input is modeled by two coupled difference
equations:

(1)

where

value of the input;
output of the first and second integrators, respec-
tively;

It is also possible to have nonunity gains in the feedback path
from the output of the quantizer to the input of each integrator.
In these cases, the above equations and the following analysis
can be easily modified. A positive input will be assumed, but
as the system is symmetrical about zero input, the analysis is
equally valid for negative inputs. The system can be analyzed
in a piecewise-linear manner since the difference equations
(1) are linear within each half-plane, as defined by the sign
of . Fig. 4 shows a plot of the way in which the value
of each integrator output changes with successive iterations.
From (1), closed-form expressions can be developed to express
the value of the integrator outputs iterations after some
entry condition, provided that the trajectories stay within a

half-plane:

(2)

The behavior of the system changes when the output of the
second integrator changes sign; therefore, it is important to de-
velop relationships between the two sets of entry conditions to
the positive and negative half-planes and ,
respectively.

A. Determining the Maximum Value of

The boundaries of the sector, which contains all possible
values of and , can be determined by mapping the
axis forward one iteration, and using the axis itself as the other
bounding line. This defines a semi-infinite sector, Fig. 5, given
by

(3)

and

(4)

Trajectories enter the negative half-plane at points
in the sector. The number of iterations before the trajectory
again enters the positive half-plane depends on the location
of within the sector. It is possible to determine
regions within this sector which contain all entry conditions
that will result in subsequent iterations in the negative
half-plane. The boundaries of these regions within thesector
can be identified by the conditions that, after iterations,
the trajectory must be negative and that, after iterations,
it must be nonnegative

(5)

(6)

The sector is in this manner broken down into a series
of subregions bounded by (3)–(6) as shown in Fig. 5. These
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Fig. 5. Subregions within the� sector defined by (5) and (6) according to
the number of successive negative iterations.

subregions consist of all entry conditions that will experience
iterations before reentering the positive half-plane. The

location of this reentry is obtained by mapping these bound-
aries forward through iterations. After iterations,
boundaries (5) and (6) give boundaries

(7)

(8)

These form the boundaries of the sector, containing the
location of all entry points into the positive half-plane. [They
could also have been obtained in the manner used to obtain the
boundaries (3) and (4) of the sector.] After iterations,
boundaries (3) and (4) give the boundaries

(9)

(10)

In this way, the sector is divided into subregions, bounded
by (9) and (10), based on the number of iterations that the
trajectory spent in the negative half-plane before entering the
positive half-plane at point . The upper bound on
in any of these subregions occurs at the intersection of the
boundaries (8) and (10), and the upper bound onfollows
from (8). Letting denote the upper bound on in the
subregion corresponding to preceding negative iterations,
we have

(11)

and, in particular,

(12)

Thus, after a given number of negative iterations , there
is an outer bound (10) on the region of thesector in which
the entry conditions must reside. In fact, (10) also
forms the outer bound on the entry conditions after any number
of iterations less than or equal to . (The case of only one
negative iteration needs special attention since, from (11),
is greater than either or . Appendix A shows that,
due to other considerations, the bound resulting from only one
negative iteration does not exceed those due to more than one
negative iteration.)

B. Determining the Maximum Number of Negative Iterations

For a given number of negative iterations , there is a
maximum number of iterations that the trajectory may spend in
the positive half-plane . As long as the trajectory remains
within the positive half-plane, we have from (2)

(13)

The maximum number of iterations in the positive half-plane
can be obtained by finding the smallest integer value of

that satisfies the following inequality, which has been obtained
from (13) with and and the
condition :

(14)

If the region bounded by (8) and (10) is mapped forward, an
outer boundary for the entire trapping region is formed. This
is demonstrated in Fig. 6. The outer boundary of the trapping
region in the sector is found by mapping the upper boundary
(8) of the sector times.1 Once this outer boundary is
known, then it is possible to identify which areas of the
sector lie within the trapping region. This will enable us to
determine which regions within the sector the trajectories may
enter, and hence the maximum number of negative iterations
possible. If the outer boundary (8) is mapped forward
iterations, it will produce a boundary line inside thesector:

(15)

It is possible to develop a measure of the distance between this
line and the line defining the edge of the regions representing
a specific number of iterations in the negative half-plane by
comparing the intersection points of each with the boundary
line (4), as shown in Fig. 7. For the system to have the possi-
bility of entering the region corresponding to successive
negative iterations

(16)

where

intersection of the outer boundary of the trapping region
boundary (15) and the lower boundary of thesector
(4), and
intersection of the region boundary (5) and the
lower boundary of the sector (4).

1The case of a single positive iteration would seem to produce an outer
boundary in the� sector which is outside that resulting from the maximum
number of positive iterations. In fact this is not the case as there is a restriction
on the left-hand side of the� sector which excludes any area which extends
beyond the boundary due to the maximum number of negative iterations. This
boundary in the� sector arises from the outer boundary of the trapping region
in the� sector, even if the boundary resulting fromN+ = 1 is used.
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Fig. 6. Boundaries of the� sector mapped forward to bound the trapping
region.

This can be expanded to produce a condition on the input
value in terms of the maximum number of positive iterations
and the number of negative iterations being tested:

(17)

(18)

which produces a general expression for (16):

(19)
In summary, a candidate number of successive negative iter-
ations gives bounds on and which are used to find

from (14). The allowable number of successive negative
iterations on the next pass through the negative half-
plane is then constrained by (19). Therefore, for any given
number of negative iterations, it is possible to develop a set
of conditions that can be solved to determine whether that
number will increase or decrease with time. In this way, it is
possible to show that for all values of input less than one,
the system will collapse down to three negative iterations,
and often at most two. Fig. 8 shows the transient behavior
of the system. The trajectories collapse very quickly from a
high number of negative iterations down to at most three, and
often only two, negative iterations in fewer than ten cycles.
In this manner, it is possible to prove the global stability
of the second-order modulator for inputs of magnitude less
than one. It would be possible, using the same technique, to
identify any regions of instability that may arise (as happens
in the chaotic modulators discussed in Section V). The same
method can also be used to prove that one negative iteration
can be followed by two or three, but that one, two, or three
consecutive negative iterations cannot be followed by four or
more. Thus, this method can identify an invariant region even
if unstable regions exist outside it.

It is now important to identify the input ranges in which
the system will experience at most two successive negative
iterations in steady state and those in which it can experience

Fig. 7. Intersection points of the two boundaries (5) and (15) with the lower
boundary of the� sector (4).

Fig. 8. Decay in the maximum number of possible consecutive negative
iterations upon successive cycles shown for various values of input, from
0.014 to 0.95 in steps of 0.0094 (increasing to right).

three. This will be tackled in two steps: first, by identifying
the input ranges where two successive negative iterations can
be followed by three, and then, by seeing if three negative
iterations can be sustained outside these ranges. From (19),
three negative iterations can follow positive iterations if

(20)

This must be compared with the minimum input value that is
required to obtain iterations. This can be found from the
fact that the inequality in (14) must fail for :

(21)

With and , (21) reduces to

(22)

Therefore, two negative iterations may be followed by three
negative iterations if the input lies between the bounds (20)
and (22) for some value of the intervening number of
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TABLE I
BOUNDS DEFINING THE INPUT RANGES WHERE THREE NEGATIVE

ITERATIONS MAY FOLLOW TWO NEGATIVE ITERATIONS

N
+ xmin xmax

3 0.0000 0.1111
4 0.1667 0.1905
5 0.3143 0.2667

TABLE II
BOUNDS DEFINING THE INPUT RANGES WHERE THREE NEGATIVE

ITERATIONS MAY FOLLOW THREE NEGATIVE ITERATIONS

N
+ xmin xmax

3 -0.1111 0.1111
4 0.0952 0.1905
5 0.2333 0.2667
6 0.3333 0.3333
7 0.4095 0.3905

positive iterations, i.e.,

(23)

The results from this inequality are expressed in Table I.
For , and therefore, three successive

negative iterations may follow two only if the intervening
number of positive iterations is fewer than five and if the input
is in the range (0.000, 0.1111) or (0.1667, 0.1905). Outside
these input ranges, two successive negative iterations can never
lead to three consecutive negative iterations.

Similarly, we can check to see if three successive negative
iterations can follow three successive negative iterations. If
not, then three successive negative iterations will arise again
only in the input ranges given in Table I. The analysis is the
same as before, except this time we substitute
in (21). This yields a similar table of results (Table II).

For , and therefore, three successive
negative iterations may follow three only if the intervening
number of positive iterations is fewer than six. Three negative
iterations may follow three for inputs less than 0.1111, but
this is not important as it overlaps with the results from Table
I. For inputs in the range (0.1111, 0.1905), three negative
iterations may follow three if the intervening number of
positive iterations is four, and for inputs in the range (0.2333,
0.2667) if the intervening number of positive iterations is
five. If, within these input ranges, the number of negative
iterations drops to two, it can never again reach three except
in the range (0.1667, 0.1905) from Table I. Thus for the input
ranges (0.1111, 0.1667) and (0.2333, 0.2667), three succes-
sive negative iterations will arise in steady state only within
an infinitely repeating sequence of three negative iterations
interspersed with exactly positive iterations where
can be either four or five. Appendix B uses this condition to
identify the input values at which this may occur and the initial
conditions required to obtain them. It will also be shown that
these repeating sequences are very fragile, and can be ignored
in the general analysis. Thus, excluding these sequences, three
successive negative iterations can only occur for inputs (0.000,
0.1111) and (0.1667, 0.1905), and outside these ranges, the
maximum number of successive negative iterations during
stable operation is two.

IV. BOUNDS ON THE INTEGRATOR OUTPUTS

Given the range of entry conditions to thesector, it is
possible to determine the maximum values for bothand
using (2). To determine the location of the maximum value for
the output of each integrator along the trajectory, it is necessary
to be able to evaluate the rate of change of the trajectory at
all points along the trajectory. The maximum obtained by the
trajectory within a half-plane is a local maximum, but if the
maximum values for the entry conditions are used for that
trajectory, it is clear from (2) that the resultant maximum is a
global maximum for that half-plane. It can also be shown by
comparing the magnitudes of the local maxima in both half-
planes that the local maximum in the half-plane of the same
sign as the input is the greater. In a continuous system, a local
maximum occurs when the rate of change of a function equals
zero. The equivalent property of a discrete-time system is that
the maximum will occur on the iteration before the rate of
change goes negative.

A. Determining the Maximum Values

The rate-of-change function of a discrete-time system may
be defined as the difference between two successive iterations.
These functions in the positive half-plane can be obtained
directly from (1):

(24)

and

(25)

From inspection, it can be seen that is a constant value,
independent of the iteration number. If is positive, then
the trajectory of the output of the first integrator will climb
linearly to infinity or to the clipping voltage. If is
negative, which is the case for stable operation, then the
maximum value of the first integrator must occur on the first
iteration in the positive half-plane, the entry condition. This
maximum value has been determined in the previous section
to be (12)

after two negative iterations

after three negative iterations.

The rate of change function for shows that it will become
negative when no longer exceeds one. This occurs after a
number of iterations given by

int (26)

Thus, the maximum value will occur iterations after
entering the sector, when the maximum entry conditions are
chosen:

(27)

These equations can be used to determine tight bounds on
the maximum values that either integrator will reach for any
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Fig. 9. Graph of the theoretical results (12), (27) compared with the maxima obtained from simulations for the ideal modulator.

combination of input and feedback gains. The appropriate
value of can be selected using Table I.

B. Comments Upon the Results

Fig. 9 shows a comparison of the theoretical bounds, ob-
tained from (11) and (27), with the maximum values obtained
through simulation. The method used in the simulations was
to randomly select initial conditions for the integrators. The
values of the outputs of the integrators for the first 100
cycles were ignored to avoid transient effects, although this
is unnecessary if the initial conditions are within the trapping
region. The system was then iterated another 5000 times, and
the largest value obtained by each integrator was retained.
This process was repeated 500 times, with a different set of
initial conditions each time, and the greatest maximum was
kept. This method of repeatedly restarting the simulation is in
order to prevent limit-cycles or limit-cycle-like behavior from
developing, which may prevent the largest possible values
from occurring.

There is a good match between the simulated maxima and
the theoretical bounds, with the percentage difference varying
between parts of 1% for the lower input values, and up to 5%
for the higher values of input. The reason for the relatively
poor results toward the higher end of the input spectrum is
due to the internal structure of the and sectors. From
Fig. 3, it is possible to see distinct regions containing the
entry conditions that the trajectory may take, and the gaps
between them representing values which the entry conditions
do not take. This structure is due to the discrete nature of the
trajectories. The entry conditions are mapped across

the positive half-plane. If the entry conditions are mapped
times, they will form a certain region, and if they are mapped

times, then another region will be described. These
regions will not always overlap, and are the cause of the
internal structure that can be seen in thesector (Fig. 3). If the
maximum value of lies in one of the gaps between
the regions, then it cannot be achieved. The true maximum
value of could be found by determining this internal
structure, but the equations predicting these bounds become
significantly more complex with little benefit. This problem
is particularly noticeable when increases by one, for
example, at an input value of 0.1667 in Fig. 9. The problem
is more visible for larger input values due to the increasingly
close changes in the maximum number of positive iterations.
These rapid changes in the value of increase the difficulty
for simulations in obtaining the maximum possible values.

Another feature discernible from the graph is the step-like
nature of the bounds. This is due to the variation in the number
of iterations in the negative half-plane. Also visible is the
noticeable change in slope as the value of the input increases,
particularly at an input value of 0.42. This is one of the input
values at which the value of changes by one. This results
in a change of slope in (27).

In summary, the equations developed in Sections III and
IV produce tight bounds for the maximum values that the
output of the integrators can reach. The analysis also gives
good insight into how the trajectories spend different numbers
of iterations in each half-plane depending upon the input value,
and how this affects the maximum values that can be reached
by the outputs of the integrators.



698 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 45, NO. 6, JUNE 1998

V. CHAOTIC AND LEAKY SYSTEMS

Discrete-time integrators can be modeled by a unit delay and
a feedback loop, where the gain of the feedback loop represents
the pole of the integrator. In an ideal system, the gain of the
feedback loop is unity, but in real systems, the gain is slightly
less than one, and such an integrator is said to be leaky [11].
If the feedback gain is greater than one, the system is chaotic.
A leaky system is stable, but is prone to limit cycle behavior,
which reduces the accuracy of the output. A chaotic system
has no stable limit cycles, which is beneficial in terms of
tone removal, but suffers from reduced noise performance and
dynamic range [12]. Most real modulators have poles which
are slightly less than one. When the poles deviate from unity,
the analysis of these systems becomes much more complex. It
is possible to use the same approach as was used for the ideal
case to determine the maximum values that the outputs of the
integrators may reach for any combination of pole positions.
Once the closed-form equations for the trajectories within a
half-plane are determined, the rest of the analysis is as before.
In order to get these closed-form equations, it is necessary to
consider four cases: 1) only the first pole is not equal to one,
2) only the second pole is not equal to one, 3) both poles are
not equal to one, but are equal in value, and finally, 4) both
poles are not equal to one, and are not equal to each other.

A. Detailing the Approach to Determining the Bounds

The state equations for a system with nonideal integrators
can be expressed in the following manner, where the poles of
the integrators are represented byand :

(28)

From this, it is possible to develop closed-form equations for
the trajectories of the two integrators in the positive half-
plane. For the first integrator, a single equation will cover
all combinations of the two poles:

(29)

whereas for the second integrator, four separate equations are
required:

where (30)

where (31)

where (32)

where (33)

where

(34)

(35)

(36)

From the above equations and (28), it is possible to repeat
every step used in the analysis of the ideal system (Section III).
As before, the maximum number of consecutive iterations the
trajectories can undergo in the negative half-plane is a major
factor in the maximum value that the outputs of the integrators
may reach. It is possible to use this approach to determine
exact results, but it is cumbersome due to the presence of
implicit equations. For practical purposes, the approach used
can be converted into a simple test to check for the maximum
number of iterations in the negative half-plane.

It is possible to develop a closed-form expression bound
on the maximum value that the output of the first integrator
may reach, as given in (37) and (38), shown at the bottom of
the page. These bounds were developed in the same manner
as those in Section III, although the nonunity pole values
complicate the expression. These bounds are valid for any
combination of pole positions. With each pole at unity, the
expressions will simplify to those for the ideal case (11).

Due to the complexity of the equations for the second inte-
grator output (30)–(36), it has not been possible to determine a
closed-form expression for the bound on the maximum value
of this quantity. Only for the case when the second pole
is equal to one can a closed-form expression be developed
for . For the other cases, numerical solutions will be
necessary, but as must be an integer, this is relatively
simple. The correct value for may be obtained by using
(37) and (38) to determine the maximum value of. The
same bound on may be used as in the ideal case (8).

With the relevant expression (30)–(33) and , the
maximum output of the second integrator may be determined.
Unlike the ideal case, the largest absolute value of the integra-
tor outputs may arise in the negative half-plane for a positive
input. This may be checked by comparing and the mod-
ified form of . The maximum value of can then be easily
obtained [13]. An example of the results that can be obtained

(37)

(38)
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Fig. 10. Graph of the theoretical results from Section V compared with the maxima obtained from simulations for the chaotic modulator with the first
pole at 1.023 and the second pole at 1.035.

from these equations is shown in Fig. 10 for the case where
both poles are greater than one and different from each other.

B. Comments on Results

The simulated results were obtained in the same manner
as that used for the ideal system in Section IV. The
predicted bounds closely match the maxima obtained
from the simulations, and compare favorably with the
bounds developed by Hein [14] for chaotic modulators. By
examining the equations and comparing them to the graph,
it is possible to explain all of the major features, especially
the step-like nature of the curve, in the same manner as for
the ideal system. Other features noted in the ideal system are
also valid here, in particular, the comments on the effect of
assuming that the maximum value is always obtained. One
new feature is the sudden increase in bounds at about 0.05.
This is due to the bounds arising in the negative half-plane.

There are some limitations to the use of this method in de-
termining the bounds of the system. For a leaky system, strong
limit cycle behavior will develop. Once these limit cycles have
developed, they will restrict the outputs of the integrators to
a set of values, and the maximum values of this set may be
substantially lower than that predicted by the bounds. This
becomes more pronounced as the two poles become smaller.
There is also the problem of instability as the values of the
poles increase. The dynamic range of the system is reduced
as the poles increase in value. The approach presented will
fail once instability develops, as it will be impossible to
determine a value of that does not increase after every
cycle. This failure can be used as a test for instability [15],

and provides some insight into the development of instability.
Once these two restrictions on the usability of this approach
are considered, the results for the range of acceptable pole
positions are tight enough for design purposes.

VI. CONCLUSIONS

A new method has been presented for developing upper
bounds on the maximum values that the outputs of the in-
tegrators of the standard second-order sigma–delta modulator
may obtain. This has been achieved through an analysis of
the behavior of the system, and by identifying the external
boundaries of the trapping region of the trajectories. This
approach to analyzing the second-order modulator has been
shown to be flexible, and can be used to determine bounds
for not only the standard second-order modulator, but also
for chaotic and leaky systems. This approach can also be
used to develop bounds for other modulator architectures once
closed-form equations for the trajectories of the modulators
can be obtained. Further developments of this work include
the extension of this analysis to consider time-varying inputs
and the analysis of higher order systems.

APPENDIX A
THE MAXIMUM VALUE OF

According to the analysis in Section III, the maximum value
of the first integrator after only one negative iteration, ,
can exceed the maximum possible value ofafter either two
or three negative iterations. In practice, this is not the case as
there are additional constraints on the maximum value of
that were not considered in Section III. In Fig. 5, the maximum
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value that can obtain within the sector is one. It was not
considered if this maximum value of is permissible.

The maximum value of is dependent on the maximum
possible number of iterations that the trajectory may undergo
on its previous passage through the negative half-plane, before
entering the positive half-plane and then experiencing only
one negative iteration. To show this, it will be necessary
to determine the maximum value that may reach given
a certain number of consecutive iterations in the negative
half-plane on the previous cycle. This can be determined by
examining the range of values of which forms the

sector. The sector is bounded by (7), (8), and (10). The
third boundary (10) is dependent on the maximum number
of consecutive iterations that the system may undergo in the
negative half-plane during steady-state behavior, and which
defines the upper limit on the maximum value of . Given
the maximum number of consecutive negative iterations, it is
be possible to identify the range of values of and .

Given this set of permissible entry conditions, it is possible
to subdivide the sector into regions representing the number
of iterations that the trajectory will spend in the positive half-
plane. As we are in search of the maximum value of, it is
only necessary to consider the maximum value ofwithin
each of these regions. This value can then be mapped forward
into the negative half-plane, resulting in . The regions in
the sector representing a given number of positive iterations
can be bounded by the same technique as was used for the
sector in Section III, resulting in the boundaries

(A1)

(A2)

The maximum value of for a given number of positive
and negative iterations and can be obtained from the
solution of (10) and (A2). If this point is now mapped forward

iterations, the maximum value for will be obtained.
The relationship between and is given by

(A3)

Using this, an expression for the maximum value of,
after a given number of iterations in both the positive and
negative half-planes, can be obtained, as shown in (A4) at the
bottom of the page. If this value of is mapped forward one
iteration, the maximum value of can be obtained in terms
of the previous number of negative ( ) and positive ( )
iterations, as shown in (A5) at the bottom of the page.

This result suggests that, in certain cases, where more than
one consecutive iteration in the negative half-plane may occur,
the maximum value of that can occur after only one

negative iteration may still exceed the maxima that can occur
after a higher number of negative iterations if there is only
one intervening positive iteration, e.g., . This will
henceforth be referred to as . This does not arise
as there is a further constraint on the minimum number of
positive iterations that may occur, , after undergoing
negative iterations. If this minimum number is greater than
one, then from (A5), the maximum value of will never
exceed the maxima that may occur after a higher number of
negative iterations. This constraint on the minimum value of

means that, for example, a single positive iteration may
not follow three negative iterations during stable operation.
It is possible to check if such a combination is possible by
reverse mapping times the upper boundary of the region
representing positive iterations (A2) from the sector
to the sector. This will produce a boundary in thesector
which, if it is inside the trapping region defined in Section
III, will mean that positive iterations may follow
negative iterations. To show that will never exceed

for all values of , we must prove that for the larger
values of input, for example, where exceeds (12),
the trajectories must spend more than one iteration in the
positive half-plane. If this can be shown, then by (A5), it can
be easily shown that the resulting values of will not
exceed for .

To check if one iteration in the positive half-plane may
follow negative iterations, it is necessary to reverse map

times the upper boundary (A2) of the region representing
only one positive iteration. This will result in the following
boundary in the sector:

(A6)

It is possible to test this boundary in the same manner as
was used to test if a region in the sector, representing

negative iterations, was within the trapping region. This
will produce several inequalities which can be obtained by
examining the intersection point of (A6) with (4), and that of
the trapping region (17) with (4). This will give an inequality
defined in terms of and the input.

for one positive iteration to
follow two negative iterations

(A7)

for one positive iteration to
follow three negative iterations

(A8)

(A4)

(A5)
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where is the maximum number of iterations in the positive
half-plane. The value of can be determined from (21)
given the maximum value of , as given by the greatest of

, , , or .
If the condition given in (A8) and the condition required to

obtain iterations (21) are compared, one can see that three
negative iterations can never be followed by only one positive
iteration during stable operation. Examination of shows
that for the range of values where it can exist, it will never
exceed , and that for higher values of input, two negative
iterations will not be followed by only one positive iteration.
Thus, at no point does the maximum value of exceed the
value of , for .

APPENDIX B
DETERMINING THE MAXIMUM

NUMBER OF NEGATIVE ITERATIONS

In Section III, it was shown that there were some input
ranges where three consecutive negative iterations could be
sustained indefinitely within an infinite sequence consisting
of three negative iterations and either four or five positive
iterations, depending on the input value. After one cycle, i.e.,
one pass through the positive half-plane ( iterations) and
one pass through the negative half-plane ( iterations),
is incremented by the amount

(B1)

Since can never leave the region of the sector corre-
sponding to positive iterations, this increment must be
zero; hence

(B2)

For and or , this allows two options:

(B3)

As before, over one cycle, is incremented by the amount

(B4)

Again, this must be zero if is not to leave the constrained
region; thus,

for

for
(B5)

The only restriction on the value of is that it must be in
the range necessary to obtain the required number of iterations
in the positive and negative half-planes. These limits can be
found by considering the boundaries of thesector (7), (8),
and those of the region representing iterations in the

sector (A1), (A2), giving the ranges below:

for

for (B6)

Since both and must return to their starting points after
one cycle, the trajectory is a periodic orbit. Equations (B5) and
(B6) define very strict conditions on the set of entry conditions

that are necessary for these periodic sequences to
form, and any slight deviation from them will result in an
eventual collapse of the periodic sequences into the trapping
region defined in Section III. The periodic orbits described in
this section are the only such cycles that can exist for the given
conditions and, due to their fragile nature and very specific
entry conditions, may be ignored in the general analysis of the
system. In a leaky modulator where there is significant limit
cycle behavior, increased ranges of input values could satisfy
the above requirements. These ranges can be determined,
and they may be tested to see if any limit cycles, outside
the trapping region, will persist. In the chaotic modulator,
stable periodic orbits do not form, although when close to
unstable orbits, it may require a larger number of iterations
than normal before the trajectories collapse to the trapping
region.
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