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Bounding the Integrator Outputs of Second-Order
Sigma—Delta Modulators

Ronan Farrell Student Member, IEEERNd Orla FeelyMember, IEEE

Abstract—The development to date of the bounds for the out- area for the capacitors. It is desirable to minimize any excess
puts of the integrators of second-order sigma—delta modulators n both of these criteria when implementing these systems.

has relied on a mixture of theoretical analysis and extensive use of Bounding the outputs of the integrators involves finding a
simulation. This paper presents a new approach that analyzes the

behavior of such systems, and identifies the external boundaries trapping region for the system within the two-dimensional
of the trapping region for the outputs of the integrators. With this  Space defined by the integrator outputs. A trapping region
approach, it is possible to develop tight results for the standard has the property that, once within this region, the integrator
second-order modulator with constant input, without the need  othuts will never take on values outside this region. Methods
for simulation. This approach is flexible, and can be adapted for for determining the trapping region range from the fully
other second-order architectures, and gives strong insight into . . s -
the behavior of these systems. theoretical to approaches which depend on simulations for
their final results, but which have a strong theoretical back-
ground. The fully theoretical approach is best demonstrated
by Hein and Zakhor's work on stability and bounds [3],
and in Wang's independent but related analysis of second-
) _ ) order systems [6]. Their approach uses parabolic bounds to
DUE to advances in very large scale integration (VLSHoguce a smooth approximation to the trapping region. This
-/ technology, sigma—delta modulator-based = analog-t9roqyces fully analytical results, but these are not exact as
digital converters have become popular, especially {Re trapping region has been shown to have a complex and
low-frequency, high-precision appllcat!ons. A S|gma—dglﬁggged shape (as suggested by the trajectory in Fig. 2) [8].
modulator produces a coarsely quantized output, requirifgle computational approach to determining the bounds is
only simple analog components. Complex digital circuitry iEontained in the work of Wang in his Ph.D. dissertation [8]
then us_ed to produce a h_igh-pre_cision digital re_zpresentatigﬂd of Schreieet al. [10]. Wang explained this jagged shape
from this coarse quantization. .Thls balancg (.)f S|mple .analﬂging a computational procedure which identified invariant
components a}nd complex .hlgh-speed. digital C|rcg|-try '§‘paces arising from successive mappings. Sche¢mrused a
pamc_ularly suited t.o VLS| implementation, and famhtatg,%lim”ar computational approach in which a candidate region is
the direct incorporation of these modulators with other d'g't"ﬁerated and enlarged until an invariant region is found. These

signal processing systems. é@proaches produce tighter bounds than those of Hein and

Index Terms—Chaos, nonlinear analysis, sigma—delta.

I. INTRODUCTION

In recent years, a variety of sigma—delta modulator archit khor, and have the advantage that they can be adapted to

tures_has b_egn sugg_ested for a range of appllcat|o.ns 1] Y second-order system and some higher order systems. The
Despite their increasing popularity, accurate analysis of thes

systems has lagged behind implementation. This weaknesd'| in disadvantage of.these computational approaches is the
analysis is due to the highly nonlinear nature of the modulati?.C of general analytical results. . . .
Recent approaches to analyzing this system have concentrate-gﬂ'e aim of the yvork presente_d in this Paper 1 to present
on determining stability criteria for second- and higher ord& NeW met.hod wh|ch.produces tighter analytllcal bpund; than
modulators [3][6], on developing upper limits on the voltag@ose prewousl;_/ obtame(_:i, and at the same time yields insight
span of the integrator outputs [3], [5]-[8], and on spectr?ﬂto the behavior of thls complex syste'm. Our approach
analysis of the output [9]. In this paper, a new method f¢ePends upon developing an understanding of the behavior
developing tight upper bounds on the output of the integratd?s the system, and then applying this knowledge to determine
of a second-order modulator (Fig. 1) will be presented. The¥ jagged outer boundary of the trapping region. Of the work
bounds are important as they determine the clipping level B¥entioned earlier, this work most resembles that of Wang [8],
the system, and are a factor in determining the required on-c differs in that the bounds will be determined analytically.
This analytical approach yields general results and insight
into the behavior of the second-order system. The analysis
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Fig. 1.

Standard second-order sigma—delta modulator.
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Fig. 2. Trajectory of (1) with input: = 0.161027 and initial condition
(0.077, 0.08).

Fig. 3. Subset of the trajectory of Fig. 2 consisting of the points at which
the trajectory enters the positive half-plane.

[I. OVERVIEW Section Ill, an approach will be presented that will enable

The aim of this paper is to demonstrate a novel approalllf Maximum values of/, and V. to be determined by
to the understanding of the behavior of the second-ordefnsidering certain sections of the trapping region. These
sigma—delta system, and thus to develop tight bounds on R€tions contain all of the poss!b_le values that the_ln_tegrators
maximum values that the outputs of the integrators may red®qy take after a certain condition has been satisfied. Two
for a constant input. This will be achieved by examining theuch sections will be of interest: the section within which all
region that the outputs of the integrat@fsand V' inhabit. We Possible entry conditiongl/s, V4) to the positive half-plane
will utilize the fact that the trajectories of these variables afBust lie (thea sector, Fig. 3), and the section within which
piecewise linear within each half-plane, where the half-plan@¥ entry conditionsUs, V;3) to the negative half-plane must
are defined by the sign of the output of the second integrafst (the 3 sector).
(V). The half-planes will be referred to as the positive or To identify the maximum number of negative iterations, an
negative half-plane according to the sign1of It is possible iterative approach will be applied. Specifically, the number of
to determine closed-form equations to describe the trajectorfé@gative iterations results in an outer bound for ¢heector,
within a half-plane, given their conditions upon entry into théestricting the range of values éf, and V. This bounded
half-plane. These entry conditions, together with the closet®gion, when mapped forward to the negative half-plane,
form equations, determine the maximum integrator outpMields another boundary within thé sector. This boundary
while the trajectory remains within this half-plane. Much ofan be tested against a set of analytical conditions which
our analysis, therefore, will be concerned with formulatingetermine the number of successive negative iterations that
bounds on these entry conditions. the trajectory may now undergo. This procedure is repeated

The pair of valuegU,, V,,) will denote the point at which until the maximum number of negative iterations the system
a trajectory enters the positive half-plane after having beeray undergo, for a given input, is determined. Once this is
in the negative half-plane. The allowable range of thes#own, the range o/, andV, can be ascertained.
entry conditions is dependent on the number of iterationsIn Section IV, functions which describe the rate of change of
the trajectory has just spent in the negative half-plane. Thike individual trajectories will be used to identify the location
knowledge of the maximum number of negative iteratiormlong the trajectory where the maximum values will occur.
yields bounds on the entry conditions, and hence on théth the maximum entry conditions, the maximum possible
maximum integrator outputs in the positive half-plane. Imalues for the output of the integrators can be determined.
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Fig. 4. Plot of the integrator outputs versus time with ingut 0.85 and initial conditions (2.0, 2.9).

The fifth section will expand the analyzes of the previousalf-plane:
sections to consider the cases of both leaky and chaotic molg-

_ N =Ui + N[z — sgn(V3)]
ulators. These are modulators whose integrators are no longef N[N + 1] Vo)l
H H T — Sgn .
ideal, ie., whose poles are no longer egual to one. The problem+A, =V + S Vk
of nonideal integrators does not require any alteration in the 2 5
methodology of the previous sections—the only difference is (2)

due to the much more complex expressions for the trajectorigsie behavior of the system changes when the output of the

The final section will then discuss the results and COﬂC'USiOgécond integrator Changes Sign; therefore, it is important to de-

developed from the analysis, in particular, the strengths of thiglop relationships between the two sets of entry conditions to

approach and other avenues where it may be applied. the positive and negative half-plan@s,,, V) and (Us, Vj),
respectively.

+ N[Uy — sgn(Vy)].

[Il. DETERMINING THE TRAPPING REGION o ,
) _ . A. Determining the Maximum Value bf,
The second-order sigma—delta modulator, shown in Fig. 1

(also known as the standard Candy double-loop moduIatorThe boundaries of thg sector, whigh contains aII_ possible
[1]), with constant input is modeled by two coupled differenc@!ues ofUs and Vs, can be determined by mapping the

equations: axis forward one iteration, and using the axis itself as the other
' bounding line. This defines a semi-infinite sector, Fig. 5, given
Uni1 =U, +x —sgn(V,) by
Vn—l—l = Vn + Un—l—l - Sgn(Vn) (1) V<0 (3)
where and
z value of the input; V>U-1 (4)
u,v ?u(taylau.t of the first and second integrators, reSpe‘1"'rajectories enter the negative half-plane at pofifs, V3)
pe +¥’ Vo0 in the 8 sector. The number of iterations before the trajectory
sgn(v) ={ _1’ V<0 again enters the positive half-plane depends on the location

It is also possible to have nonunity gains in the feedback pa% (.U"” V"’.) ‘.’V'”"T‘ the § sectgr. Itis p_ossmle to deterrln.me
regions within this sector which contain all entry conditions

from the output of the guantizer to the input of each integrat%at will result in N~ subsequent iterations in the negative

In these cases, the above equations and the following anal¥1$|

can be easily modified. A positive input will be assumed, butaﬁ‘-plane. The boundaries of these regions withiryttsector

. , . - can be identified by the conditions that, affér —1 iterations,
as the system is symmetrical about zero input, the anaIyS|st IS

. L hde trajectory must be negative and that, after iterations,
equally valid for negative inputs. The system can be analyz% .

) 4 L . . It ‘must be nonnegative

in a piecewise-linear manner since the difference equations

(1) are linear within each half-plane, as defined by the sign . _ [N~ = 1[U +1] - E[N*][N* 1z +1] )

of V. Fig. 4 shows a plot of the way in which the value 2

of each integrator output changes with successive iterations. v > _ [N ][I/ + 1] — E[N,][N, + 1][= + 1]. (6)
From (1), closed-form expressions can be developed to express 2

the value of the integrator output¥ iterations after some The 3 sector is in this manner broken down into a series

entry condition, provided that the trajectories stay within af subregions bounded by (3)—(6) as shown in Fig. 5. These
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B. Determining the Maximum Number of Negative Iterations

For a given number of negative iteratiods—, there is a
maximum number of iterations that the trajectory may spend in

N~ =3
V- 74"-»-.. the positive half-planéVt. As long as the trajectory remains
N within the positive half-plane, we have from (2)
Region
" Boundaries

Unin =Us + N[z — 1]
N[N +1][z - 1]
2

— (3-sector boundary

Vaarn =Vo + +N[U,—1]. (13)
Fig. 5. Subregions within thg sector defined by (5) and (6) according to
the number of successive negative iterations.

The maximum number of iterations in the positive half-plane

bredi ist of all ent diti that will . N can be obtained by finding the smallest integer valug of
subregions consist ot all entry conartions that Wil EXpENenGg . oarisfies the following inequality, which has been obtained

N~ iterations before reentering the positive half-plane. T om (13) with U, = U/, x— and V., = U, x- + 1 and the
location of this reentry is obtained by mapping these boun ndition Vs < 0:
aries forward throughV— iterations. After N~ iterations, s '

boundaries (5) and (6) give boundaries
V=0 (7)
V<U+ 1 (8)

N[N +1][z - 1]

Upn-IN+1] - [N -1]+ 5

<0. (14)

If the region bounded by (8) and (10) is mapped forward, an
These form the boundaries of the sector, containing the outer boundary for the entire trapping region is formed. This
location of all entry points into the positive half-plane. [Theys demonstrated in Fig. 6. The outer boundary of the trapping
could also have been obtained in the manner used to obtain fsgion in thes sector is found by mapping the upper boundary
boundaries (3) and (4) of the sector.] After N~ iterations, (8) of the « sector Nt times! Once this outer boundary is

boundaries (3) and (4) give the boundaries known, then it is possible to identify which areas of the
~ _ ONT[NT =1z +1] sector lie within the trapping region. This will enable us to
V<UN" 4+ N — 5 (9)  determine which regions within the sector the trajectories may
N=[N~ + 1]z + 1] enter, and hence the maximum number of negative iterations

V>UNT+1]+ [N —-1] - (10) possible. If the outer boundary (8) is mapped forwa¥d

i o ) 2 i iterations, it will produce a boundary line inside tHesector:
In this way, thex sector is divided into subregions, bounded
by (9) and (10), based on the number of iterations that the NH[NT +1][z — 1]

trajectory spent in the negative half-plane before entering thé < U[Nt 4+ 1] — [NT — 1] — (15)

positive half-plane at pointl/,,, V4, ). The upper bound of,

in any of these subregions occurs at the intersection of tjgs possible to develop a measure of the distance between this

boundaries (8) and (10), and the upper boundVarfollows  jine and the line defining the edge of the regions representing

from (8). Lettingl/,, - denote the upper bound @n. in the 5 gpecific number of iterations in the negative half-plane by

subregion corresponding v preceding negative iterations,comparing the intersection points of each with the boundary

we have line (4), as shown in Fig. 7. For the system to have the possi-
1 oy . . - — .

CINT 2]+ 5 [IN-IIV= + e + 1] bility of entering the region corresponding 16~ successive

2

Uy <U,n = (11) negative iterations
(o3 LN N7
and, in particular, Ir < Ig (16)
3
== 1
U 2 o +1] where
Uz =22 + 2 (12) Ir intersection of the outer boundary of the trapping region
3 boundary (15) and the lower boundary of thesector
Thus, after a given number of negative iteratiols, there (4), and
is an outer bound (10) on the region of thesector in which Iz intersection of theN~ region boundary (5) and the
the entry conditiongU,,, V,,) must reside. In fact, (10) also lower boundary of the3 sector (4).

forms the outer bound on the entry conditions after any number

of iterations less than or equal f8~. (The case of only one | _ L
The case of a single positive iteration would seem to produce an outer

_negatlve 'teratlon_needs special attention S_'nce’ from (L1), boundary in the3 sector which is outside that resulting from the maximum
is greater than eithet,,» or U,,3. Appendix A shows that, number of positive iterations. In fact this is not the case as there is a restriction

due to other considerations, the bound resulting from only O@@the left-hand side of the sector which excludes any area which extends

.. . eyond the boundary due to the maximum number of negative iterations. This
negat!ve |Ferat|pn does not exceed those due to more than Qgémary in thex sector arises from the outer boundary of the trapping region
negative iteration.) in the 3 sector, even if the boundary resulting fraWi™ = 1 is used.
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This can be expanded to produce a condition on the input E’E
value in terms of the maximum number of positive iterations ¢ £ .|
and the number of negative iterations being tested: ;5.,
[Nt —2] [N+ 41z —1] 52
Ir = 17 8 101
T Nt T 5 17) g :
2-N"] [N~ —1]z+1] Ek:
Ip= - 18 5
R N-— 2 ( ) = & 5
which produces a general expression for (16):
2 2 NT +N- N-—-Nt_-2 03 4 6 8 10 12 14
2 — F — F x 5 + 5 < 0. Number of Cycles
(19)

. . ) .Fig. 8. Decay in the maximum number of possible consecutive negative
In summary, a candidate number of successive negative it@frations upon successive cycles shown for various values of input, from

ations gives bounds oV, and V, which are used to find 0.014 to 0.95 in steps of 0.0094 (increasing to right).
Nt from (14). The allowable number of successive negative

iterations N on the next pass through the negative halfyee This will be tackled in two steps: first, by identifying
plane is then constrained by (19). Therefore, for any giveRe innut ranges where two successive negative iterations can
number_(_)f negative iterations, it is possible _to develop a $5¢ followed by three, and then, by seeing if three negative
of conditions that can be solved to determine whether thi?érations can be sustained outside these ranges. From (19),

numk_Jer will increase or decrease with tn_ne. In this way, it tree negative iterations can folloW+ positive iterations if
possible to show that for all values of input less than one,

the system will collapse QOwn to three negatiye iteratior!s, 3NT[N*' + 1] — [1ANT — 12]
and often at most two. Fig. 8 shows the transient behavior T < Tmax =

: . ) SN+H[N+ + 3]
of the system. The trajectories collapse very quickly from a

high number of negative iterations down to at most three, afflis must be compared with the minimum input value that is

often only two, negative iterations in fewer than ten CYC|9§equired to obtainV+ iterations. This can be found from the
In this manner, it is possible to prove the global stability,ct that the inequality in (14) must fail faV = N+ — 1:
of the second-order modulator for inputs of magnitude less

than one. It would be possible, using the same technique, to [Nt —2] [Nt —1][z—1]
identify any regions of instability that may arise (as happens Unn- 2 N+ 2 : (21)
in the chaotic modulators discussed in Section V). The same
method can also be used to prove that one negative iteratidith N~ =2 andU,,,» = g[a: + 1], (21) reduces to
can be followed by two or three, but that one, two, or three
consecutive negative iterations cannot be followed by four or 2 [NT-2 Nt —4
more. Thus, this method can identify an invariant region even T > Tmin = N+ [N+ + 2} [N+ 42
if unstable regions exist outside it.

It is now important to identify the input ranges in whichTherefore, two negative iterations may be followed by three
the system will experience at most two successive negativegative iterations if the input lies between the bounds (20)
iterations in steady state and those in which it can experiermed (22) for some valuévt of the intervening number of

(20)

} L (22
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TABLE | IV. BOUNDS ON THE INTEGRATOR OUTPUTS
BounDs DEFINING THE INPUT RANGES WHERE THREE NEGATIVE . .. L.
ITERATIONS MAY FoLLow Two NEGATIVE ITERATIONS Given the range of entry conditions to the sector, it is
T — — possible to determine the maximum values for botand 1/

3 50000 RERE! using (2). To determine the location of the maximum value for
4 0.1667 0.1905 the output of each integrator along the trajectory, it is necessary
5 0.3143 0.2667 to be able to evaluate the rate of change of the trajectory at

all points along the trajectory. The maximum obtained by the

TABLE Il trajectory within a half-plane is a local maximum, but if the

BouUNDS DEFINING THE INPUT RANGES WHERE THREE NEGATIVE maximum values for the entry conditions are used for that
ITERATIONS MAY FoLLOw THREE NEGATIVE ITERATIONS trajectory, it is clear from (2) that the resultant maximum is a
N+ Trmin Trmax global maximum for that half-plane. It can also be shown by

3 -0.1111 0.1111 comparing the magnitudes of the local maxima in both half-

4 0.0952 0.1905 planes that the local maximum in the half-plane of the same
2 8;222 8'5222 sign as the input is the greater. In a continuous system, a local
7 0.4095 0.3905 maximum occurs when the rate of change of a function equals
zero. The equivalent property of a discrete-time system is that

the maximum will occur on the iteration before the rate of

positive iterations, i.e., change goes negative.
Tmin < T < Tmax- (23)

_ . . A. Determining the Maximum Values
The results from this inequality are expressed in Table I.

For Nt >5 oo > and therefore. three successive The rate-of-change function of a discrete-time system may

negative iterations may follow two only if the intervenin e defined as the difference between two successive iterations.

number of positive iterations is fewer than five and if the inpdf"€S€ functions in the positive half-plane can be obtained
is in the range (0.000, 0.1111) or (0.1667, 0.1905). Outsig&ectly from (1):
these input ranges, two successive negative iterations can never AU, =Upyy —U,=2—1 (24)
lead to three consecutive negative iterations.
Similarly, we can check to see if three successive negati@@d
iterations can follow three successive negative iterations. If AV, = Vg1 — Vi = Upgq — 1. (25)
not, then three successive negative iterations will arise again
only in the input ranges given in Table I. The analysis is tHe'0m inspection, it can be seen that/,, is a constant value,
same as before, except this time we substititgy- = U3 independent of the iteration number. A/, is positive, then
in (21). This yields a similar table of results (Table II). the trajectory of the output of the first integrator will climb
For N+ > 6, Zmin > Zmax, and therefore, three successivéinearly to infinity or to the clipping voltage. IfAU, is
negative iterations may follow three only if the intervening'€gative, which is the case for stable operation, then the
number of positive iterations is fewer than six. Three negativ@aximum value of the first integrator must occur on the first
iterations may follow three for inputs less than 0.1111, biieration in the positive half-plane, the entry conditidn. This
this is not important as it overlaps with the results from Tabf@aximum value has been determined in the previous section
l. For inputs in the range (0.1111, 0.1905), three negatit@ be (12)
iterations may follow three if the intervening number of 3

positive iterations is four, and for inputs in the range (0.2333, Uma = 5[“7 +1], after two negative iterations
0.2667) if the intervening number of positive iterations is _ 5 . .
five. If, within these input ranges, the number of negative Uy =2z + 3’ after three negative iterations.

iterations drops to two, it can never again reach three exceffe rate of change function far shows that it will become

sive negative iterations will arise in steady state only within

an infinitely repeating sequence of three negative iterations Nopax = int {
interspersed with exactlywv+ positive iterations wherev+

can be either four or five. Appendix B uses this condition tPhus, the maximum value will occulNV,,,, iterations after
identify the input values at which this may occur and the initigntering thex sector, when the maximum entry conditions are
conditions required to obtain them. It will also be shown thahosen:
these repeating sequences are very fragile, and can be ignored

in the general analysis. Thus, excluding these sequences, three Vinax = Upnv=[Nmax +1] — [Vinax = 1]

successive negative iterations can only occur for inputs (0.000, + Ninax [Nmax + 1[z — 1]. 27)
0.1111) and (0.1667, 0.1905), and outside these ranges, the 2

maximum number of successive negative iterations durififnese equations can be used to determine tight bounds on
stable operation is two. the maximum values that either integrator will reach for any

(26)

— X

Ua—l}




FARRELL AND FEELY: INTEGRATOR OUTPUTS OF SIGMA-DELTA MODULATORS 697

20

Simulation
------ Theoretical

Magnitude

,M’MW‘W] Second Integratog

V)

T T T Vo W S
et 7L First Integrator

)

0

0 0.1 0.2 0.3 0.4 Input 0.5 0.6 0.7 0.8 0.9

Fig. 9. Graph of the theoretical results (12), (27) compared with the maxima obtained from simulations for the ideal modulator.

combination of input and feedback gains. The appropriatiee positive half-plane. If the entry conditions are mappéd

value of I/, 5~ can be selected using Table I. times, they will form a certain region, and if they are mapped
N + 1 times, then another region will be described. These
B. Comments Upon the Results regions will not always overlap, and are the cause of the

iernernaI structure that can be seen in theector (Fig. 3). If the
ob- . T
aximum value of(U,, V,) lies in one of the gaps between

e regions, then it cannot be achieved. The true maximum

Fig. 9 shows a comparison of the theoretical bounds,
tained from (11) and (27), with the maximum values obtaineéﬁ
through simulation. The method used in the simulations w. - .
to randomly select initial conditions for the integrators. Thgalue Of (Ua, V) could b_e found by (jetermmlng this internal
values of the outputs of the integrators for the first 106_trugt_ure, but the equations pred_|ct|ng thes_e bognds become
cycles were ignored to avoid transient effects, although tfﬁ’sgn'f'c_antly more .complex with Iftl? benefit. This problem
is unnecessary if the initial conditions are within the trapping Particularly noticeable whenV™ increases by one, for
region. The system was then iterated another 5000 times, &x@MPIe, at an input value of 0.1667 in Fig. 9. The problem
the largest value obtained by each integrator was retain&ymere visible for larger input values due to the increasingly
This process was repeated 500 times, with a different set &S€ changes in the maximum number of positive iterations.
initial conditions each time, and the greatest maximum wag\€Se rapid changes in the value/éf" increase the difficulty
kept. This method of repeatedly restarting the simulation is fAr Simulations in obtaining the maximum possible values.
order to prevent limit-cycles or limit-cycle-like behavior from Another feature discernible from the graph is the step-like
developing, which may prevent the largest possible valuBgture of the bounds. This is due to the variation in the number
from occurring. of iterations in the negative half-plane. Also visible is the

There is a good match between the simulated maxima Jheficeable change in slope as the value of the input increases,
the theoretical bounds, with the percentage difference varyiggtticularly at an input value of 0.42. This is one of the input
between parts of 1% for the lower input values, and up to 5%glues at which the value 6¥ ... changes by one. This results
for the higher values of input. The reason for the relativelp @ change of slope in (27).
poor results toward the higher end of the input spectrum isIn summary, the equations developed in Sections Il and
due to the internal structure of the and 8 sectors. From IV produce tight bounds for the maximum values that the
Fig. 3, it is possible to see distinct regions containing theutput of the integrators can reach. The analysis also gives
entry conditions that the trajectory may take, and the ga@eod insight into how the trajectories spend different numbers
between them representing values which the entry conditiopfdterations in each half-plane depending upon the input value,
do not take. This structure is due to the discrete nature of thed how this affects the maximum values that can be reached
trajectories. The entry conditiof#/,,, V,,) are mapped acrossby the outputs of the integrators.
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V. CHAOTIC AND LEAKY SYSTEMS Varn =p" Vo = f(N = 1) + Uap™ f,,(N)
Discrete-time integrators can be modeled by a unit delay and Nlz—=1]r1,. N © (N
a feedback loop, where the gain of the feedback loop represents + 1—gq [fl/p( )= Fasnl )}7
the pole of the integrator. In an ideal system, the gain of the whereq#£1,p#1,p+#q (33)

feedback loop is unity, but in real systems, the gain is slightly

less than one, and such an integrator is said to be leaky [Mp_ere '

If the feedback gain is greater than one, the system is chaotic. ' . |:q:|3+1
p

A leaky system is stable, but is prone to limit cycle behavior, ‘ ‘Tq]"

which reduces the accuracy of the output. A chaotic system  fa/p(i) = Y {—} =—G (34)
has no stable limit cycles, which is beneficial in terms of i=o LV 1 p

tone removal, but suffers from reduced noise performance and j i

dynamic range [12]. Most real modulators have poles which ;k/p(j) - Z [2} = fup(i) — 1 (35)
are slightly less than one. When the poles deviate from unity, S Lp

the analysis of these systems becomes much more complex. It . ; 14
. : : .l i jli—p—dp+p

is possible to use the same approach as was used for the ideal  g*(j) = ipt=p 5 . (36)
case to determine the maximum values that the outputs of the i=1 -1

integrators may reach for any combination of pole positiongyom the above equations and (28), it is possible to repeat
Once the closed-form equations for the trajectories within Qery step used in the analysis of the ideal system (Section I11).
half-plane are determined, the rest of the analysis is as befoxg. pefore, the maximum number of consecutive iterations the
In order to get these closed-form equations, it is necessaryiQectories can undergo in the negative half-plane is a major
consider four cases: 1) only the first pole is not equal to 0N tor jn the maximum value that the outputs of the integrators
2) only the second pole is not equal to one, 3) both poles gtgy reach. It is possible to use this approach to determine
not equal to one, but are equal in value, and finally, 4) bofly results, but it is cumbersome due to the presence of
poles are not equal to one, and are not equal to each OtheI’mplicit equations. For practical purposes, the approach used
can be converted into a simple test to check for the maximum
number of iterations in the negative half-plane.

The state equations for a system with nonideal integratorsit is possible to develop a closed-form expression bound
can be expressed in the following manner, where the polesasf the maximum value that the output of the first integrator
the integrators are represented fynd ¢: may reach, as given in (37) and (38), shown at the bottom of
the page. These bounds were developed in the same manner
as those in Section lll, although the nonunity pole values

Vatr =pVa + Unyr — sgu(Va). (28) complicate the expression. These bounds are valid for any
From this, it is possible to develop closed-form equations f§@mbination of pole positions. With each pole at unity, the
the trajectories of the two integrators in the positive halgxpressions will simplify to those for the ideal case (11).
plane. For the first integrator, a single equation will cover Due to the complexity of the equations for the second inte-

M-

A. Detailing the Approach to Determining the Bounds

Unt1 =qU, +x —sgn(V,,)

all combinations of the two poles: grator output (30)—(36), it has not been possible to determine a
N closed-form expression for the bound on the maximum value
Usgn = ¢ U+ [z = 1]fe(N - 1) (29)  of this quantity. Only for the case when the second pole
whereas for the second integrator, four separate equationsigréqual to one can a closed-form expression be developed
required: for Naax. For the other cases, numerical solutions will be
o1 necessary, but a4, must be an integer, this is relatively
Vayn =Va =N+ U f7(N) + [1 } [N — f;(N)], simple. The correct value fdr,, - may be obtained by using
—4q (37) and (38) to determine the maximum valueldf. The
whereg # 1, p = 1 (30)  same bound o, may be used as in the ideal case (8).
Varn =p™Va = (N = 1) + Uap™ f1/,(N) With the relevant expression (30)—(33) am¥y.., the
+p1\f($ — D)g(N), whereqg =1, p £ 1 (31) maximum output of the second integrator may be determined.

Unlike the ideal case, the largest absolute value of the integra-

_ N N
Varn =p" Vo = fp(N = 1) + Np~ U, tor outputs may arise in the negative half-plane for a positive

+pV [95 - 1} [f* (N) - N} input. This may be checked by comparitig, - and the mod-
1—p Lp ’ ified form of I;-. The maximum value o¥ can then be easily
whereq#A1,p#1, p=gq (32) obtained [13]. An example of the results that can be obtained
2 —2)— 1
Uva:(]3|:(p+q 3 $(Q+p+ )}—i-x[qQ—l—q—l—l]—i-[l—i—q—qQ] (37)
(¢* + gp)

(P—q—2-2p+@p+2p*)—2(F+w+r*+q+p+1)
¢+ ¢*p +p’q

Umg:(ﬁ{ +z[® + @ +a+ 1]+ [L+a+¢* —¢*] (39)
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Fig. 10. Graph of the theoretical results from Section V compared with the maxima obtained from simulations for the chaotic modulator with the first
pole at 1.023 and the second pole at 1.035.

from these equations is shown in Fig. 10 for the case wheaad provides some insight into the development of instability.
both poles are greater than one and different from each oth@nce these two restrictions on the usability of this approach

are considered, the results for the range of acceptable pole
B. Comments on Results positions are tight enough for design purposes.

The simulated results were obtained in the same manner
as that used for the ideal system in Section IV. The
predicted bounds closely match the maxima obtainedA new method has been presented for developing upper
from the simulations, and compare favorably with thbounds on the maximum values that the outputs of the in-
bounds developed by Hein [14] for chaotic modulators. Biegrators of the standard second-order sigma—delta modulator
examining the equations and comparing them to the graphay obtain. This has been achieved through an analysis of
it is possible to explain all of the major features, especialthe behavior of the system, and by identifying the external
the step-like nature of the curve, in the same manner as fmundaries of the trapping region of the trajectories. This
the ideal system. Other features noted in the ideal system approach to analyzing the second-order modulator has been
also valid here, in particular, the comments on the effect ehown to be flexible, and can be used to determine bounds
assuming that the maximum value is always obtained. Ofag not only the standard second-order modulator, but also
new feature is the sudden increase in bounds at about 0.@8. chaotic and leaky systems. This approach can also be
This is due to the bounds arising in the negative half-planeused to develop bounds for other modulator architectures once

There are some limitations to the use of this method in delosed-form equations for the trajectories of the modulators
termining the bounds of the system. For a leaky system, strotan be obtained. Further developments of this work include
limit cycle behavior will develop. Once these limit cycles havéhe extension of this analysis to consider time-varying inputs
developed, they will restrict the outputs of the integrators tand the analysis of higher order systems.

a set of values, and the maximum values of this set may be

substantially lower than that predicted by the bounds. This APPENDIX A

becomes more pronounced as the two poles become smaller. THE MAXIMUM  VALUE OF Upny

There is also the problem of instability as the values of the According to the analysis in Section Ill, the maximum value
poles increase. The dynamic range of the system is reducéddhe first integrator after only one negative iteratién,1,

as the poles increase in value. The approach presented wdlh exceed the maximum possible valud/gfafter either two

fail once instability develops, as it will be impossible toor three negative iterations. In practice, this is not the case as
determine a value oV~ that does not increase after everyhere are additional constraints on the maximum valu&’ of
cycle. This failure can be used as a test for instability [15fhat were not considered in Section Ill. In Fig. 5, the maximum

VI. CONCLUSIONS
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value thatl/g can obtain within thes sector is one. It was not negative iteration may still exceed the maxima that can occur
considered if this maximum value &fs is permissible. after a higher number of negative iterations if there is only
The maximum value of/,,; is dependent on the maximumone intervening positive iteration, e.gl/,,1 3 1. This will
possible number of iterations that the trajectory may undergenceforth be referred to as,,; n-. This does not arise
on its previous passage through the negative half-plane, befasethere is a further constraint on the minimum number of
entering the positive half-plane and then experiencing onbpsitive iterations that may occdiﬂin, after undergoingV—
one negative iteration. To show this, it will be necessamegative iterations. If this minimum number is greater than
to determine the maximum value th&% may reach given one, then from (A5), the maximum value 6f,; will never
a certain number of consecutive iterations in the negatiegceed the maxima that may occur after a higher number of
half-plane on the previous cycle. This can be determined bhggative iterations. This constraint on the minimum value of
examining the range of values 6F/,, V,,) which forms the N;qin means that, for example, a single positive iteration may
« sector. Thex sector is bounded by (7), (8), and (10). Thaot follow three negative iterations during stable operation.
third boundary (10) is dependent on the maximum numbkris possible to check if such a combination is possible by
of consecutive iterations that the system may undergo in treverse mappingv — times the upper boundary of the region
negative half-plane during steady-state behavior, and whigpresentingV".  positive iterations (A2) from ther sector
defines the upper limit on the maximum valueléf. Given to the 8 sector. This will produce a boundary in tifesector
the maximum number of consecutive negative iterations, itughich, if it is inside the trapping region defined in Section
be possible to identify the range of valuesigf and V. lI, will mean that N\, positive iterations may followV—
Given this set of permissible entry conditions, it is possibleegative iterations. To show that,; y- will never exceed
to subdivide thev sector into regions representing the numbév,,, - for all values of N —, we must prove that for the larger
of iterations that the trajectory will spend in the positive halfvalues of input, for example, whefé,,, » exceedd/,,» (12),
plane. As we are in search of the maximum valud/gf it is the trajectories must spend more than one iteration in the
only necessary to consider the maximum valud/gfwithin  positive half-plane. If this can be shown, then by (A5), it can
each of these regions. This value can then be mapped forwhedeasily shown that the resulting valueslof; - will not
into the negative half-plane, resulting ;. The regions in exceedl,,y- for N™ > 1.
the « sector representing a given number of positive iterationsTo check if one iteration in the positive half-plane may
can be bounded by the same technique as was used fgr thiellow N~ negative iterations, it is necessary to reverse map
sector in Section lll, resulting in the boundaries N~ times the upper boundary (A2) of the region representing
NN+ — 1]z — 1] only one positive iteration. This will result in the following

(A1) boundary in the3 sector:

V>INT-11-U] -

2
N+ _
v <ntp— )= MY J;l][”“" 4 (A2) V < [N~ 41U — 2N~ — 1] — [N~ +1]
N[N +1][z + 1]
The maximum value of/, for a given number of positive - 5 : (A6)

and negative iteration&’+ and N~ can be obtained from the

solution of (10) and (A2). If this point is now mapped forwardt is possible to test this boundary in the same manner as
Nt iterations, the maximum value fd¥; will be obtained. was used to test if a region in thé sector, representing
The relationship betweeti, andUj is given by N~ negative iterations, was within the trapping region. This
will produce several inequalities which can be obtained by
examining the intersection point of (A6) with (4), and that of
the trapping region (17) with (4). This will give an inequality
v+ and the input.

Us=Uy+ Nt(z—1). (A3)

Using this, an expression for the maximum value (&4, _ X
after a given number of iterations in both the positive arfiefined in terms o
negative half-planes, can be obtained, as shown in (A4) at the

bottom of the page. If this value éf; is mapped forward one . _ Nt —3N*+4 for one positive i_tera_ltion f[o
iteration, the maximum value @f,,,; can be obtained in terms Nt(Nt+4) follow two negative iterations
of the previous number of negativéV(") and positive (V1) (A7)

iterations, as shown in (A5) at the bottom of the page. N+ @NJF 44 o _

This result suggests that, in certain cases, where more tf}ca 5 for one positive iteration to
one consecutive iteration in the negative half-plane may occur, N+(N++5) 7 follow three negative iterations
the maximum value ofU/, that can occur after only one (A8)

[Nt = N~ 4+ 1] 4+ L[NV + Nt 42Nt Nz — 1]+ LN + Nz + 1]
Nt+N-+1

Us < (A4)

[Nt — N~ 4+ 1]+ LN* 4 Nt 42N+ Nz — 1]+ S[N=" 4+ 3N~ + 2N+ 4 2][z + 1]
Nt+N-+1

Urnl, N—-,Nt < (A5)
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where N is the maximum number of iterations in the positivesector (A1), (A2), giving the ranges below:
half-plane. The value ofVt can be determined from (21)
given the maximum value of’,, as given by the greatest of B v 2 2!
Upi, 2y Uni. 30 Una, OF Upns. T YT 7

If the condition given in (A8) and the condition required to 3<V, < %7 for ¢ = 1 (B6)
obtain Nt iterations (21) are compared, one can see that three N 8 4

'nega.tive iter.ations can never be fOIIOW?d t.)y only one poSiti\ﬁnce bothV and V' must return to their starting points after
iteration during stable operation. Exa.mmauonp()glz? ShOWS one cycle, the trajectory is a periodic orbit. Equations (B5) and
that for the range of values where it can exist, it will neve B6) define very strict conditions on the set of entry conditions
exceedl/,,2, and that for higher values of input, two negativ U, V..) that are necessary for these periodic sequences to
iterations will qot be followed by only one positive iterationfor‘lir;, gnd any slight deviation from them will result in an
Thus, at no point does_the maximum valuelgf, exceed the eventual collapse of the periodic sequences into the trapping
value of Up,y-, for N= > 1. region defined in Section IIl. The periodic orbits described in
this section are the only such cycles that can exist for the given
conditions and, due to their fragile nature and very specific
entry conditions, may be ignored in the general analysis of the
DETERMINING THE MAXIMUM system. In a leaky modulator where there is significant limit
NUMBER OF NEGATIVE ITERATIONS cycle behavior, increased ranges of input values could satisfy

In Section IIl, it was shown that there were some inpdf'® above requirements. These ranges can be determined,
ranges where three consecutive negative iterations could @ they may be tested to see if any limit cycles, outside
sustained indefinitely within an infinite sequence consistirfg® trapping region, will persist. In the chaotic modulator,
of three negative iterations and either four or five positivefable periodic orbits do not form, although when close to
iterations, depending on the input value. After one cycle, i.4Instable orbits, it may require a larger number of iterations
one pass through the positive half-plamé¥( iterations) and tha_n normal before the trajectories collapse to the trapping
one pass through the negative half-plang(iterations),U/,  "€9!0n.
is incremented by the amount

APPENDIX B

[Nt + N7Jz+ [N~ = N*]|. (B1) ACKNOWLEDGMENT

The authors wish to thank D. McCartney for his advice and
Since U, can never leave the region of the sector corre- comments.
sponding toN*t positive iterations, this increment must be
zero; hence
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