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ABSTRACT 

A least squares technique for the on-line 
identification of the input/output 
characteristics of a Sendzimir rolling cluster 
is presented. Based on this technique, 
explicit and implicit self-tuning shape 
control schemes, using existing control 
algorithms, are derived. Two control 
structures, utilising different numbers of 
plant control inputs, are considered. While a 
simplistic approach to the problem is taken 
(resulting in easily implementable self-tunlng 
schemes), the parameter estimates and 
subsequent control achieved are shown to be 
adequate for the application. A variety of 
simulation results are given. 

1. INTRODUCTION 

In the last decade, a substantial amount 
of work has been undertaken in the development 
of an automatic shape control system for a 
Sendzimir mill (1-5). By shape control is 
meant the control of internal stresses in the 
strip such that it does not buckle when cut 
into small sections (not to be confused with 
gauge control). Much of the work carried out 
in this area has been concerned with modelling 
the mill in both its static (involving the 
rolling cluster) and dynamic (involving the 
actuators, strip dynamics and shapemeter) 
parts. Rolling cluster models have been 
developed independently by Gunawardene (1) and 
Dutton (2) and are assumed to be independent 
of frequency i.e. a step change in the 
position of the actuators produces an 
instantaneous change in roll-gap shape 
profile. However, the linearised gain 
matrices produced by each model, for similar 
mill conditions, do not agree (though they are 
of the same order of magnitude) and neither 
model has been conclusively validated by plant 
tests (due to the large expense involved). 
Furthermore, the gains relating shape profile 
changes to changes in actuator positin are 
nonlinear , the gains varying with actuator 
position. 

The control schemes developed utilise the 
As-U-Rolls (AUR's) only (3-5) (currently being 
commissioned) or both AUR's and first inter
mediate rolls (FIR's) (6). The location of 
these shape control devices is shown in Fig.2. 
All of the control algorithms rely heavily on 
the AUR or both AUR and FIR mill matrices, and 
while a good degree of robustness for these 
controllers has been demonstrated (5),(6), 
performance degradation will occur for an in
accurate controller. Another source of in
accuracy is the plant/controller mismatch res
ulting from the use of a controller for a 

schedule (or pass) other than the one for 
which it was designed. This mismatch arises 
from the need to economise in the number of 
controllers required to be stored to cover all 
schedules and passes (over 3000 different sch-
edules exist). Each schedule demands partic-
ular mill conditions (roll diameters, etc.) 
resulting in different gain matrices for each 
schedule. Due to the heavy computational eff .. 
art involved in the gain calculations, eval
uation of the mill matrices must be performed 
off-line and the results stored for subsequent 
use. The problems of plant/controller 
mismatch for this variety of reasons may be 
alleviated by the use of a self~tuning control 
algorithm incorporating identification of the 
relevant mill matrices. Such a scheme would 
produce the correct controller for each pass 
of each schedule, and furthermore track the 
mill gains which change with actuator 
positions. 

2. SENDZIMIR MILL MODEL 

A view of the physical layout of the mill, 
showing its relevant component parts, is given 
in Fig.2. A block diagram of the mill model 
(and associated controllers) is shown in 
Fig.1. All the interaction between paths takes 
place in the rolling cluster' represented b~ 
the mill gain matrices Ga £ R X2 and Gt e R8 2 

for the AUR's and FIR's respectively. The 
dynamic actuator blocks consist of position 
control loops (shown in Fig.3), the parameter 
values differing slightly between the AUR and 
FIR cases, given as: 

AURI1.3I 0.5 0.05 8.0 0.3 

FIRI0.71 0.5 0.1 3.13 0.5 

g(s) accounts for the strip and shapemeter 
dynamics and has the form: 

g(s) = 
(1 + 72S)(1 + 73S) 

the values of r 1 , r 2 and r 3 for different 
strip speeds given from the following table~ 
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v(m/s) I 2 5 l5 

7 1 (secsJI1.455I0.5B2IO.l94 

7 2 (secsll2.66 11.06410.354 

7 3 (secslll.43 10.74 I 0.3 



The shape profile is modelled as an eight 
point profile, the input and output shape 
profiles therefore being represented by eight 
variables. The input shape profile is 
considered as a disturbance to the system and 
is assumed to consist of a constant profile 
with small amplitude sinusoidal variations in 
each profile point. The other disturbance to 
the system is the measurement noise on the 
shapemeter. It consists of two sinusoidal 
components, one dependent on strip speed and 
the other independent. A fu~l description of 
these disturbances is given in (6). 

addition of the transformations and equalising 
compensators, becomes: 

W(a) = [PGaPT PG1J g(a)h(a) (5) 

N may now be chosen so that 

(6) 

and k 2 (s) chosen to compensate g(s)h(s). For a 
medium (5 m/s) speed plant, k 2 (s) is chosen as 

200 (2.0a + 1) 
k 2 (a) = (7) 

3. CONTROL STRATEGIES ( 1000s + 1) (0. 9a + 1) 

Control algorithms have been developed to 
control the AUR's only (scheme currently being 
commissioned)(3) and, more recently, to 
control both AUR's and FIR's (6). The 
structure of each of these control systems is 
shown in Fig. 1. 

3. 1 As-·U-Roll Control System 

In this control system, the position of 
the FIR's are set manually, automatic shape 
control being provided only via the AUR's. 
Since all the interaction in the relevant pert 
of the model occurs in the AUR mill matrix, it 
is reasonable to attempt to diagonalise the 
system by the inclusion of an inverse of Ga in 
K and designing the resulting single loops via 
k 1 (a). However, due to certain symmetry pro·
perties (1), Ga is singular and cannot be 
inverted directly. Application of the 
transformation matrices 

p € R4X8 and pT € R8X4 

yield a reduced mill matrix Gx € R4
X

4 which is 
invertible, where: 

Gx = PGaPT ( 1) 

K may now be chosen as Gx-1, that is: 

(2) 

P contains the 1st _, 4th order Gram polynom
ials, so control is applied only to the first 
to fourth order components in the shape 
profile. This, however, is adequate for the 
application. For a medium speed plant (5 m/s) 
k 1 (s) is chosen as: 

k 1 (a) = 
300(1 + 1.4288) 

(1 + 1000a) 

3.2 Combined AUR/FIR Control System 

(3) 

In this scheme, both AUR's and FIR's are 
utilised to provide automatic shape control 
giving greater range of, and more powerful 
control of, strip shape. A similar approach to 
that taken in 3.1 is used, in that control is 
exerted on a "parameterised" shape profile and 
an attempt is made to diagonalise the system 
using a constant precompensator, in this case 
N £ R6X4 For this configuration, however, it 
is first necessary to "equalise" the AUR and 
FIR actuators using ca and ci so that 

(4) 

where h(s) is a constant transfer function. 
(7) describes a method for the calculation of 
ca(s) and ci(a). The plant, with the 

Note that N, defined in (6) is, in general, 
not unique. It may, however, be chosen 
uniquely via the Moore-Penrose inverse (8), 
(denoted by N•) as: 

(8) 

where 

(9) 

4. PARAMETER ESTIMATION 

It is seen from (2) and (6) that K and N 
are highly dependent on Ga and Gi. It ia th · 
erefore desireable that good estimates of Ga 
and Gi are available over the complete range 
of .mill operation. If the mill matrices can be 
estimated on-line, then the controller 
matrices K and N may be calculated, resulting 
in explicit self·-tuning schemes. Alternatively 
it may be possible to estimate K and N 
directly, resulting in implicit schemes. Since 
it is required to estimate the mill matrices, 
measurements of output and input signals as 
close as possible to the rolling cluster are 
desireable. The rolling cluster positions are 
measureable directly, being the actuator 
positions (shown as ua" and u1" in Fig.l). The 
nearest available outputs, however, are the 
shapemeter measurements (shown as yin Fig.l). 
Since it is only required to estimate the 
reduced mill matrices (see equations (1) and 
(9)), the transformed output Yp may be uaed 
for estimation purposes. 

4.1 As-U-Roll Scheme 

The equation relating Yp to ua" is given by: 

Yp - PGa g(a) Ua" ( 10.) 

ignoring incoming strip shape and measurement 
disturbances. Define: 

giving 
ua' "" P ua" 

Ua" "" pT Ua' 

(11) 

since pTp - I (orthonormal polynomials), and 
define: 

ua- g(s) ua' (12) 

(obtained by passing Ua' through a simulated 
transfer function g(a)). Equation (10) may now 
be rewritten as: 

(13) 

which is in a form ~suitable for the identif-
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!cation of PGaPT. Writing out ( 13) in elemen--
tal form gives: 

• 
Yi =l:gi·U· 

j=1 J J ' 1:!51:1!54 (14) 

where 9ij are the elements of Gx, and 

Yp = (Yl Y2 y, y ,)T ' ua = (ul u2 u, u,)T 

or Yi = 9iTua (15) 
where 

9iT - (gil 9i2 9i3 9i4l 

Assuming a series of observations Yi(l),yi(2) 
... and ua(1), Ua(2), ... are available, the 
least squares estimate of row i of Gx which 
minimises the cost criterion 

J(gi) = (Yi 
is given as: 

( 1&) 

9 T = Y.uTcuuT)-1 (17) 
l l 

where Yi = (yi(1) yi(2) .... ) 

and U - (ua(1) ua(2) .... ) 

Note that at least four corresponding measure 
menta of Yi and ua are required before the 
matrix (UUT) in (17) is rendered invertible. 
The calculation in (17) must be performed four 
times (i = 1,4) to get estimates for all the 
rows of Gx. The estimation of Gx using (17) 
requires a relatively large amount of data to 
be stored. In addition, a continuous updating 
of the estimates is difficult to perform. A 
recursive set of equations, more suitable for 
the on-line identification of Gx are given 
(&), (9) as: 

4.2 Combined AUR/FIR Scheme 

As in the AUR identification, it is 
required only to estimate a parameterised mill 
matrix A (given in (9)) for an explicit scheme 
or for an implicit scheme, a controller matrix 
N (given from (6)). Since it is required to 
estimate a larger matrix, extra measurements 
are required, and are the FIR actuator 
positions. The equation upon which identifi·-· 
cation is to be performed is given as: 

(23) 

where u = g(s)u' and u' = (P~~] 

A recursive estimate for the rows of A is 
easily obtained by following the procedure in 
4.1. N may then be calculated via (8) giving 
explicit self--tuning control. Equation (23) 
may be rearranged to give: 

u s N Yp (24) 

wherepon the rows of N may be identified 
recursively, giving implicit self--tuning 
control. However, a matrix N calculated by 
this means will not be unique, since (24) 
describes a set of six equations, only four of 
which are linearly independent. If a right 
inverse matrix of a specific form is required, 
(e.g. in (8)), then an explicit scheme must be 
used. 

5. NONLINEAR ACTUATOR EFFECTS 

R(k+1)=R(k)-R(k)Ua(k+1)[1+ui(k+1)R(k)Ua(k+1)]-1 

Two effects, due to the nonlinear nature 
of the actuators, are considered~ The first 
concerns the identity of the estimated matrix 
and the second examines the beneficial effect 
of corrupting the sinusoidal shapemeter noise 
which propagates around the loop~ .ui(k+l)R(k) (18) 

and 
g'£(k+1)mg'£(k)+{Yi{k+1) -g'£(k)Ua(k+1)} 

.ui(k+l)R(k+l) (19) 

where R £ R4 X 4 is the error covariance matrix. 
Note that the 4x4 matrix inversion in (17) has 
been reduced to the scalar inversion in (18). 
Using the estimate of Gx from (18) and (19), K 
may be evaluated via (2) giving explicit self-
tuning control. However, (13) may be 
rearranged to give: 

(20) 

and a recursive least squares estimate for the 
rows of Gx-1 obtained via: 

R(k+1)mR(k)-R(k)Yp(k+1)[1+yp(k+1)R(k)y(k+1)]-1 

.yp(k+l)R(k) (21) 
and 

~t(k+1)•~t(k)+{Ui(k+1)-kt(k)Yp(k+1)} 

·Yp(k+1)R(k+1) (22) 

where ki=<ki 1 k1 2 ki 3 k1 4 ) are the rows of K. 
Equations (21) and (22) may be used in an 
implicit self-tuning scheme, where the 
rows of K are estimated directly from the 
measurements ua and Yp· 

5.1 Identity of Estimated Matrix 

In this section, it will be demonstrated 
that the matrix identified in the AUR case is 
not, in fact, PGaPT. The discrepancy is due to 
the nonlinear nature of the. actuators since, 
for a linear actuator set, exact 
identification is achieved. A similar problem 
exists with the combined AUR/FIR scheme, but 
since no quantitative results are presented, 
the AUR case will be taken as the simplest 
example. Due to the dead-zone and backlash 
contained in the actuator loops (see Fig.3), 
the output vector will never equal the input, 
even in steady-state. The offset or difference 
will depend not only on the input but also the 
input history, since backlash contains memory. 
From Fig.1 it is seen that P contains only up 
to fourth order components, since a is of dim
ension 4. However, due to the actuator offset, 
the same cannot be said of ua"· Components are 
therefore produced in ~ (and hence in Yp) that 
are not represented in Ua'r since u'•Pua"· 
The relationship between~ and ua' is not due 
only to Ga and P (Y•GaPTua' for lineat: actu·
ators), hence estimation of Gx using measure
mente of Yp and ua' is impossible. The estima
tion error due to this phenomenon is not great 
and adequate control will be shown to be 
achieved with that matrix which is estimated. 
A more complete study of this effect, along 
with some numerical results, is given in (6). 
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S.2 Signal Corruption 

Since the actuator outputs and inputs are 
rarely (if ever) equal, any signal passed 
through the actuators will be corrupted. This 
corruption becomes more pronounces for signals 
with an amplitude comparable to the magnitude 
of the actuator backlash and dead--zone. This, 
while in general an undesireable effect, 
prevents correlation between the shapemeter 
noise on the output and that which has propa-
gated around the loop providing the 
identification signal. The amplitude of the 
shapemeter noise is about 1.2 n/mm 2 (shape 
units). 

6. LOW FREQUENCY DISTURBANCE REMOVAL 

The incoming strip shape disturbance 
profile enters the mill between the input and 
output measurement points which are used for 
identification. Since this disturbance is 
essentially low frequency or d.c. in nature, 
biased estimates will result if its effect is 
not removed from Yp· An averag1ng process may 
be used on Yp to calculate (and remove) the 
low frequency disturbance signal. However,~. 
since that signal which is removed from Yp may 
contain components due to uan, an identical 
averaging process and subtraction must be 
applied to ua"- A moving average S0 for the 
sequence Xn may be calculated as: 

~ 

Sn ~ (1 - p) t prx 
r-o n-r 

or recursively as: 

Sn+1 ... pSn + (1 - p)Xn+1 (25) 

where p is a weighting factor < 1 and gives 
exponential weighting over the sequence x0 • N 
is the number of points over which the 
averaging is performed, where N = 1/(1- p). 
It may be noted that (25) is equivalent in 
form to a discrete-time low pass filter, where 

6t being the discretisation interval 
the corner frequency. An appropriate 
p for the current application is 
giving a cut-off of 25.26 Hz. 

7 . PERFORMANCE 

(26) 

and 1/T 
choice of 
0. 0091, 

Results are presented for both AUR and 
combined AUR/PIR schemes for the implicit case 
(controller matrices identified directly). 

7.1 As--U -~Roll Control 

To assess the quality of the controller 
estimates, a simulation run was performed for 
a medium speed plant where the most recent 
controller parameters were transferred 
directly to the controller. The identity 
matrix was used as an initial estimate for K 
and the error covariance matrix initialised at 
10 5 1 4 . The target shape profile was chosen to 
be flat. The output shape profile variations 
with time for this run are shown in Fig.4 and 
the variation in parameter estimates for row 1 
of K shown in Fig.S. The estimated values 
after 5 seconds are: 

[0. 0633 ·0.0176 0.0408 -0. ~044] 
A 0.0325 0.1750 0.0624 0. 5~44 
K - 0.0132 0.0465 0. 2231 O.U27 (27) 

0.0601 0.1259 0.1446 0. 9~37 

(PGaPT) -1 for this run is given as: 

[0. 06 70 ·-0. 0129 0.0599 - 0. 0799] 
Gx -1 = 

0.0345 0.1773 0. 0971 0. 5730 
(28) 0.0205 0.0540 0.26~5 0.18~6 

0.0616 0.1265 0.1826 0. 98~3 

7.2 AUR/FIR Control 

As in the previous case, a simulation run 
was done to assess the performance of the 
implicit self~tuning controller. The starting 
value for each of the parameter estimates for 
this case was set at 0.5, with the error cov
ariance matrix remaining at 10 5 I 4 • The output 
shape profile variations with time for this 
run are shown in Fig.6 with the variation in 
parameter estimates for row 6 of N (as an 
example) given in Fig.?. A measure of the 
quality of the right inverse obtainRd may be 
had by calculating the product AN (which 
shOuld equal I 4 ). Using the steady--state par-· 
ameter values, this product has the values: 

[ 

1. 052 
0.045 

- ·0.059 
·-0.012 

--0.202 
0.828 
0.225 
0.052 

-·0.~53 
-0.12~ 

1.118 
0.039 

0.20~ 
0.~94 (29) 

·-0. H5 
0.95 

B. EFFECT OF AN INACCURATE DYNAMIC MODEL 

In the analysis presented so far, it has 
been assumed that the dynamic transfer 
function between roll-gap and measured shape 
profile (g(s)) is known to a reasonable degree 
of accuracy. However, since no conclusive 
tests regarding the validation (or otherwise) 
of the dynamic model have been performed (2), 
it is important to examine the effect of an 
inaccurate dynamic model on the identification 
scheme. To this end, a simulation run was 
performed where it was assumed (for estimation 
purposes) that g(s) consisted of: 

g(s) - (30) 
(1 + r 3 s) 

The g(s) used in the mill simulation was as 
given in section 2. An error, therefore, in 
the order of g(s) is introduced. The simul
ation run was performed for a medium speed 
plant utilising both AUR' s and FIR ,-s as 
control devices. The output shape profile var-· 
lations with time, for an implicit scheme, are 
shown in Pig.S. The parameter estimate 
variations fo~ row 6 of N are given in Fig.9. 
The product AN for this case is calculated as: 

[ 0. 971 0.009 -0.067 -0. 77~ 
" -0.760 0.612 0.891 -1. ~52 

AN- -0.065 --0.166 0.835 ··-0.399 ( 31) 

0.2~9 0.140 ·-0. 222 1.20 

9. DISCUSSION OF RESULTS 

From Figs.S and B it is seen that the 
estimates converge within about 4 seconds (the 
period of inactivity at the start is due to 
the time delay in the system). This is consis
tant with the shape profile variations of Figs 
5 and 7, since good control is achieved after 
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the initial convergence period. The final 
values of the estimates for the AUR case are 
seen to be quite close to the values in Gx ·1. 
However, they cannot equal these values 
exactly due to the nonlinear effects of the 
actuators. For the same reason, the final 
values of the estimates for the AUR/FIR case 
cannot form an exact right inverse of A. 
However, a close approximation (as seen from 
(30)) is obtained. It may be noted that poor 
initial estimates were used for both K and N 
were used. In practice, better initial 
estimates will be available through the use of 
the static model, which~ will reduce 
convergence time and provide better initial 
control. The shape control for the case of 
g(s) mismatched (shown in Fig.8) is seen to be 
poor for a large portion of the simulation, 
but when the parameter estimates do converge, 
(after about 12 seconds) adequate control is 
achieved. The quality of the right inverse for 
this case is not as good as that for the 
matched case, since large ....., off-·diagonal 
elements appear in the product AN in (31). The 
poor initial control may be attributed partly 
to the poor initial estimates and may be 
improved by limiting the control inputs during 
the initial convergence period. Alternatively, 
a cost could be imposed on actuator movements 
from known 'safe' positions during the 
initial convergence period. 

10. CONCLUSIONS 

In the AUR/FIR scheme, some design freedom 
exists (in the choice of N), but exploitation 
of this freedom requires an explicit control 
law. The propagation of the shapemeter noise 
around the loop provides the identification 
signal, but may cause excessive wear on the 
actuator hydraulics. If this is found to be a 
problem, the shapemeter noise could be 
eliminated by the addition of some dead-zone 
or extra filtering on the shapemeter output. A 
PRBS could then be injected on the actuator 
inputs during startup (for initial parameter 
estimation) and at intervals triggered by 
large actuator movements (indicating a change 
in operating point). The duration of this PRBS 
need only be about 4 sees., since the paramet
ers, in general, converge quite quickley. It 
has been shown that even when the model of 
g(s) is in error, reasonable parameter 
estimates are achieved (though convergence is 
slow). If it is found that the model is 
grossly in error, some identification teats 

may be performed on the strip and shapemeter 
dynamics. Since g(s) is schedule independent, 
only one identification test for each mill 
speed may be performed. 
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Figure 1: System block diagram showing AURand AUR/FIR control structures 
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