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An LQG approach to self-tuning control with
applications to robotics
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1. INTRODUCTION

Self-tuning control has been recognised as an effective approach
for mechanical manipulator control design due to its ability to cope
with the presence of nonlinearities and uncertainties in robot dymamic
models. The vast majority of existiung self-tuning controllers are based
or a linear plant description, the fact that most industrial processes
are nonlinear is taken into account by regarding the plant as a sequence
of pseudolinear descriprioms. Therefore, as the plant operating point
changes, the nonlinear plant dynamics are reflected as time varying
parameters in the linear plant description. The applicability of this
approach has been demonstrated by Koivo and Guo [1] where manipulator
joint angular position is the controlled varizble. This work is
extended in Koivo et zl [2] to the case in which the manipulator is
controlled direcrly inm the cartesian coordinate system. It is found
that convergence of the parameter estimates may not be achieved during
the finite time over which the motion takes place. Therefore this
approach is particularly suited to repetitive tasks where the last
estimates from the previous rum cam be used as the ipitial estimates.
Lelic and Wellstead [3] have successfully applied genmeralised pole
placement to the control of a 5 axis electrically actuated robot
_manipulator.

This paper comnsiders coutrol of the joiprt angular position of =z
Puma 500 robot arm using a Linear Quadratic:Gaussian self-tuning
controlier. LQG based ceontrollers are widely used since they offer a
guarantee of stability (when the plant is known) for open loop unstable
and noominimum phase plants for all values of the cost funeriom
parameters. In addition LQG controllers. are extremely flexible in the
control. objectives. which may- be achieved by appropriate choice of these
parameters (for example, integral actiou for offset removal may easily
be introduced wia the control weighting function). An ARMAX system
model (Section 3) is assmed in the optimal controller design. It can
be: shown that if the contiunuocus: time, nonlinear robot model is
linearised and discrerised at various: operating. points, the resulting
simplified models. are indeed: oF¥ARMAX. form where: the C{z ) “palynomial
{coloured disturbance) models the: constaat term.resulting from gravity
loading.

The: aim of thig paper is- to. introduce- the reader to the field of
self-tuning control and to demounstrate its applicability to robot
control by the- use of some illustrative examples. Sectlon Z describes

the noulinear, continucus time model of the PUMA 500 which is used for
simulation and analysis. For those unfamiliar with the area, Section 3
introduces the coamcept of self-tuning control, placing particular
emphasis on the process model and parameter estimation scheme employed
in this paper. In section 4 the optimal LOC controller is presented in
both its explicit and implicit forms. Only the single input/single
output solution is presseunted here but the results may be extended to the
multivariable case, Grimble [4]. Saction 5 provides examples
demonstrating the performance of the self-tuning controller for step
changes in the reference angle, Section 6 considers the tracking
situation where the reference angle varies sinusoidally. In both cases
issues such as closed loop stability, control weighting and conditions
for good parameter couvergence are cousidered and these are discussed in
greater detail in Section 7. Section 8 concludes the paper with a
summary of the ideas which have been presented.

2. ROBOT MODEL

The PUMA 500 industrial robot has six degrees of freedom as shown
in Figure 1. The waist, shoulder and eslbow joints dictate the end
effector position while the wrist determines oriemtation. The following
secoud order dynamic model of the PUMA 500 (Paul [5]) deseribes joint
angular position in terms of joint torque:
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where
(1) T, is the teorque at joint i.

(ii) 4 is the angular position of jeoint i. Likewise éi znd Ei
represent the joiut angular velocity and acceleration
respectively.

(iii) The D;; terms are multiplied by the angular acceleratiom of
the ith jeint and as such they are a measute of its
effective inerctia, the Di‘ terms represent coupling inertias
between the joints. The germs Dii are often overshadowed by
the effect of the reflected motor imertia Ia;, which is
frequently large in comparisoen.

(iv) Termg of the form Di" and Di'k represent the centripetal
and coriolis torques Tespectively acting om joint i. A
centripetal torque is a torque which acts inwards on any
body which rotates or moves aloag a curved path and Dj.. is
the centripetal forece at joint i due to wvelocity at joidt j.

Di‘k represents coriolis foreces at jeint i due to
veldcities at joints j and k. Corielis forces arise in
cases of motion relative to a2 moving axis where the motion

- - - of the axis produces a change in the direction of the
velocity of the mass.

{v) Finally, D; represents the gravity leoading at joinc i.

The corioclis and centripetal torques are important only when the



manipulator is moving at high speed. Both the imertial and gravity
terms are important in manipulator coatrol as they affect the servo
stability and positioning accuracy.

The robot actuator dynamics are now incorporated into the model.
Each joint is driven by a permanent magnet D.C. motor, the dynamics of
which are described by:

di. o dmi

V:::Riii"'Li‘E':tL‘ + kS T (2)

7, = &y 3

ws = Nyqg (4)
where

Ri = Armature resistance

Li = Armatrure inductaace

Ni = Gear ratio

ii = Armature current

k? = Electrical time comstant

kg = Torque time cons:gnt

w. = Armature position.

The following third order model may be derived by substituting for Ti in
equation 2 using equatiomns [, 3 and 4.
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This equation may be written in the general nonlinear state space form
as

u

x = £(x) + g(x).u (6)

having defined the state vector for the first three joints as
X = (xl Xy X3 X, X5  Xg Ky Xg X9)T
where
¥ -9 Xz T PR3 T a3
x =4 5 %5743 5 Fg =43
x7=dy 3 Xg=dp; x5 =3
and u is the system input.

Using a ¢lassical fourth order Runge Kutta numerical integration of
equation 6 a solution for the state vector may be found once the
actuator input voltage is specified. For simulation of the control
scheme the motor volrage is calculated from joint position error using
an LGG criterion.

3. SELF-TUNING

An adaptive control system is one in which the controller is
automatically adjusted to compensate for unanticipated changes im the
process or environment. Adaptive control systems therefore provide a
systematic approach for dealing with nomlinearities such as these
encountered in robotic systems.

Self-tuners, which estimate model parameters on~line and adjust
controller settings accordingly fall inte this category.

A typical self-tuning scheme is shown in Fig. 2. It consists of
four main bloecks.

(i) The Process/Process Model

(ii) The Parameter Estimator

(iii) Controller Design

{iv) The Controller

Each block will now be considered in greater detail.

3.1 The Process Model

The ARMAX (AutoRegressive Moving Average with eXogeneocus inputs)
linear process model is used in this paper to approximate the robot
dynamics at the operating point for controller design purposes. This
model describes the plant output in terms of a linear combination of

previcus plant outputs and delayed control inputs and a coloured noise
disturbance {Eqm. 7)



y(t) = —ay(t-1) — apy(t-2) -...= ayy(t-a)
b u(t-k) + byult-k-1) +...+ b_u(e~k~m)
H(E) + egf(e-l) 4ot o f(e-) (73
where
y{t} = process output at time t
u{t) = contrel signal at time t
z{t)} = white Gaussian noise disturbance
k = process delay.
This can be written more cowpactly as

az"Dy(t) = 38z Dule) + cz"Hige)

where
azly =1+ a4 a2
Bz = z"k(boﬂ-mlz‘l +oot bz ™)
cz7ly =1+ clz“1 RO c/,;z"Q ) (8}

and z~! is the backward shift operator.

3.2 The Parameter Estimator

Identification is the process of comstructing a mathematical model
(in this case an ARMAX structure is used) of a system from observations
and prior knowledge. Identification and parameter estimation have found
applications in areas as diverse as engineering, science, economics,
medicine, ecology and agriculture.

For the purposes of parameter estimation the ARMAX system
description is rewrittea in the form

y¢8) = aT(e-1).8 + (1) (9)
where
F(t-1) = (-y(t-1) =...= y(t—a)su(t=k) ... u(t-k-m)
Cle=1) ... T(t2))
T - e
8% = (=a; «.. -2, ;-By e Bt ey ees ci)
and

e(t) = E(r)

@T(t-l) is the data vector which conrains_ information about the process
up- to and including sample time (t-1}. 9 Is the systew parameter vector
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which is to be estimated and £(t)} represents the estimation error which
is assumed to be statistically independant of the inputs and outputs.

A recursive parameter estimation algorithm will, for a specified
gystem output y{t) and data vector ${c-1), find the estimates, §, of the
unknown parameters which minimise a specified loss fumeticn V(8).

For a quadratic criterion (where the objective is to minimise the
squared difference between actual and estimated plant outputs):

v(e) = 1/2. E[y(t) - 8T(t-1).8]?
where E[.] denotes the expectation operator.
Minimisation of the loss functiom, V(8), in conjunction with an

ARMAY, plant description yields the following Extended Least Squares
algorithm.-

3.2.1 Extended Least Squares Algorithm (ELS).
9(t) = 8(t=1) + L(t)[y(t) - a(e-1).&(¢-1)] (10)
L(t) = Pgt—l)w(t-l) (11)
L+ g (e=1) . P{e~1) .= 1)
T
P(t) = P(t-l) - P(t—l).]‘:‘q-’(tl)‘b (t-1)P(t=1) (12)
1+ ¢ (t—}).P(t—1)¢(t—l)
where
P(t) = Covariance matrix

L(t) = Gain vector

The gradient vector

(e}

_dy(e,8)T _ doTo
TR

= @T(t—l) under the assumption that @T(t—l) is independant of g+

3.3 Controller Design - -

Once the model parameters have been estimated they are used to
‘design the controller. This c¢zn be dene in two ways.

(ED)] Explicit Algorithms
The aestimated process parameters. are manipulated
mathematically to produce the updated set of controller
" parameCers. T

(ii) Impliclit Algorithms
The process model is parameterised in terms of the
controller parameters in such a way as to update them
directly at the identification stage.



The implicit approach gives scme advantages with respect to
computational speed while the explicit zlgorithms are more
flexible in the different control ohjectives which can be
achieved.

3.4 Tha Controller

The contreller used is a fixed structure coantroller, the parameters
of which are varied by the design stage. The choice of contrel law
depends upon many factors, including,

(i) Is the process open loop unstable?

(ii) Is it nonm—minimum phase?

(idi) Is there a significant dead time?

{iv) Is the measured output corrupted by noise?

(v) Are there comnstraints on available computationzl power?

(vi) Is excessive actuator movement undesirable?

Therefore the choice of control law is highly application
dependent. Ultimately a trade-off must be made between improved quality

of control and contreller simplicity.

For this paper, the control law under comsideration is based on an
LQG criterion and is digcussed in the next section.

4. LINEAR QUADRATIC GAUSSIAN CONTRCL

The fundamental difference hetween LQG control laws and those which
are based on a minimum variance type solution is that LQG ceontrollers
are based on the minimisation of a cost function containing an
unconditional expectation operator while the expectation is conditional
for minimuwr variance solutions. Therefore minimum variance control
laws are suboptimal with respect te LOG controel laws.

The closed loop diserste time system decription used (Fig. 3) is
given by the following set of equations:

(1 System output equations - e -
y(£) = A—l(z_l)(B(z_.}')uCt) I C(Z.-l)g(t)) '“:_-

This is the ARMA% plant model which is descrtbed inm Section
3.1. -

(ii) Obsarvation- process -
zo(t) = y(t) + v(t)
where v{t) is an output disturbance of variance R.
(iii) ContTroller input

ey (t) = o{t) ~ z, ()
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The controller is fed by the difference between the desired
output and observed output.

{(iv) Reference Generation Process
r(t) = A HzThEGE D w(
Provision is made for a stochastic reference which is
generated by the above subsystem. A deterministic set poiant
may also be included.
{(v) Tracking error
e(t) = r{t) ~ y(t).

Tracking error is the difference between the desired output
and the uncorrupted plant output.

In future discussions the arguments of the polynomials and
variables will be omitted for notatienal simpliciity.

It is assumed that none of these subsystems includes unstable
hidden modes {(thus unstable and uncontrollable modes are not present).

The following uncouditionmal cost function is to be minimised.

5 = E[Qze?(t) + Ryud(t)) (13)
where

e(t) = Error signal (difference between reference and output)

a{t) = Control signal

Q = Error weighting

Ry = Control weighting

The signals ¥, z and w are assumed to be stationary, zero mean sequences
of uncorrelated random variables which have variances given by R, Q; and

Qq respectively. The generalised spectral factors satisfy:

¥Y = (EQqE + CQ,T + ARA)/(4%) (14)

Tt = (BQyB + AR, A)/(AA) (15)
where

e hH = ™2

is called the adjoint of X(z 1).

The strictly Hurwitz (stzble inverse) polynomials im z—l, D and Dy may
be defined as



¥Y =-DD/(aR) => Y = D/A (18)

1Y =00 /(Ra) = ¥y = D /A (17)

4.1 Explicit LQG : {

The solution for the optimal explicit LQG controller nay uow be
preseated, a more detailed derivation may be found in Grimble [6]. The
optimal econtroller transfer fumction is: b

Cy = G /E, (18}

w?ere Go_and H, are polynomials in 27k, The following coupled
diophantine egquations in terms of the unknown. polynomials G, # and F,

provide the unique particular solution G,, H, with minimal degree with
respect to F:

D;278G + Fa = Ez‘gqln (19)

D;27%H - FB Az‘galb (203

where g A max(ndl, oy, na). These equations can be combined to obtain
the implied equation:

AB+ BG = DD ) (21)

The selution of the implied diophantine equation (21) with np < oy, and

ng < n, and A,B coprime is unique, 2s may be verified from Theorem 4,
Jezek f?}.

It can be seen that equation (21} is in fact the closed loop
characteristic polynomial and as DDy can be shown to be strictly Hurwitz
the stability of the system is guaranteed, regardless of the control
weighting even for open loop uastable or noaminimum phase plants.

4.2 Implicit LQG

Tmplicit self-tuning controllers sometimes have advantages for
implementation due to their direct means of caleulating the controller
parameters. An Implicit LQG control law may be derived assuming that a
uwnique solution to (21) exists (A and B are coprime). The following
ienovations plant deseription is used: -

azhe, = dtz™he - Bz Ha : (22}
. where A(z_l), D(z—l},e and ¢ are as previously defined and ¢ is a
unit variance white noise signal. This closed loop. model can be shown
to be equivalent to that of Fig: 3. Combining. equations (ZT} and (22)

yields
ey = (AH, + BG,)e/D, - Bu : -

After some manipulation this can be showa to be' equivalent to

-
=

$(t) = Hoe + B/D(GoeI - Hou) (23)
where ¢{t) = Dyey

Thig represents the desired implicit model from which G, and H, may be
estimated. However if n o * kfl then the residual Hoe(t) is correlated
with the regressors el(t—k), el(t—k-l),..u(t—k),u(t~k—l) in (23). Thus
write By = 301 + Hoz where Hol includes all the terus with powers of z

up to 27 (571) 1y obtain the lsast squares predictor:

PCEIE-K) = Hoe(t) + B/D(Gyeq(£) = Hyu(t)) (24)
and the predictionm error

Flrit=k) = B, =(t) : (25)

wvhere S(t;t—k) denotes that the wvalue of 3 at time t is based only cn
data up to time t-k. As the optimal control signal u®(f) is chosen to
set the final term in (24) to zers, the prediction equation can be
simplified as:

A -

plert=k) = Hype(t) + B(Ge,(t) - B u(r)) (28)
using the argument employed by Clarke and Gawthrop [8].

If the polynomials A,B and D and the innovations signal £ are
estimated using ELS parameter estimation and equation (22) and the
stable spectral factor Dy is calculated using (17) then by defining
ey = BeL and u, = Bu the contreller polynomials G,and Ho can be
identified using

~

dp{ele-k) = Gay ~ Houy + Hooe

and Exrended Least Sgquares Identification

5. SET POINT CONTROL

This section evaluates the regulatory performance of the
self-tuning controller. The response of the robot arm to the motor
actuation voltage (controller osutput) is simulated using the third order
nonlinear state space model of equarion 6. The Runge—-Kutta integration
time used is 1 millisecond. The controller sampling time was chosen,
based on open loop step response curves, to be 0.1 seconds. At each
control sampling interval the data vector for parameter estimaticn
(Section 3.2) is updated, the coefficients of the 4,3 and C polymomials
are re—evaluated using the new data vector, the expiicit LQG controller
is designed based on the updated estimates and the new actuation signal
is applied to the robot model. All simulations comnsider control of the
angular position of joint three, with joints ome 2nd two locked at zero
radians. Linearisation and discretisation of the robos model of
equation 5 at various operating peints shows that_fhe linearifed system
is best desecribed by an ARMAX model where the A(z ~) and B(z ™)
polynomials are third order and the C(z™ =) polynomial which



characterises the gravity loading term is second order. The
polynomials G(z_l),F{z_l and H(z ") are chosen to be second order to
balance the powers of z~
(19) and (20).

on both sides of the diophantine gquations

Example 1

Figure 42 shows the angular position of joint three when the
reference angle is zero radisuns (vertical joimt). The initial Alz™H)
B(z *) and C(z™H) parameter estimates (Figures 4b — d) were chosen
based ou the fipal estimztes from previous trials. The initial values
of the diagonal elements of the covariznce wmatrix, P(t), where chosen ro
be 1000 to promote rapid convergence since the magnitude of step
increments/decrements in the parzmeter estimates at each iteration is
directly dependent on the zagnitude of the elements of P£t).

The open loop system tramsfer fuaction, B(z L1)/Af{z , Comverges

>

to

_ 0.02(z + 1.025)(2~0.975)
¥2)/A(2) = e e T (T

which is both unstable 2nd nomminimum phase. The closed loop transfer
function, G(z), is:

o(zy = 0.642(=+1.025)(2-0.975)[ (2-0.662) 250184227
(z+0.97)[(z~0.59)2+o.2722jcz—o.442)(z—o.974)

(27)

Therefore it can be seen that the LQG self-tuming controller has
stabilised the system.

) The joint angle is initially disturbed from the reference position
while the parameters tune in, reaching a maximum angle of ~1.565
radians.

Example 2

The initial output disturbance in the previous example is clearly
undesirable. This example shows that a dramatic Improvement in
performance may be obtained by using 2 fixed LQG countroller during the
initial tuning-in period (Figure 5). The fixed controller is designed
based on the: estimates of the polymomials A(z™ ")}, B(z ® ) and C{z”l) of
Figure 4. The maximum deviation of the cutput from the reference is

reduced\to approximately 0.1 radians, less than 1¥ of that ig the
previous example.

Example 3~ .

Figure 6 presents tha alosed loop respouse of the sgstem for. -
different step inputs. The converged values of the A(z™Y), B(z™Y) and
C{z *) polynomials. at varigus operating. peints, including those of
figurer §, are givem in Table L. Analysis of the A(z 1) and B(z l)
polynomials shows that at each-operating point the open loop system is
unstable and nonminimum phase, whilst the: closed loop system is stable.

L
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Each response is characterised by a time constant of approximately
L.5 secounds, an initial overshoot of between 10% and 20% of the set
peint reference and a settling time of approximately 3 seconds. In
each case there is a small steady state offset {less than 0.0l radizns)
due to the fact that the nonlinear system is represented, for controller
design, by 2 linear model.

5. PATH TRACKING

This example considers the more rezlistic situation where the
required joint angular position is not statiomary but varies with time.

- Example 4

For this simulation a sinusoidal reference angle with a pericd of
10 seconds, a peak to pezk amplitude of 1.6 radiams and a mean value of
1.0 radians was applied to the system. Figure 72 shows that after an
initial overshoot during the tuning im period {of approximately 3
seconds) the actual angle of joint three tracks the specified angle
closely. As the link moves through its nonlinear regiom of operation
the parameter estimator revises, at every sample instant, the linear
plant deseription which is used for control}er desi%n. Figurgf 75 to
7d show the variation with time of the A(z , B{z ") and C{z™*)
parameters respectively. As expected from analysis of the robot model,
the A parameters remain constant during the simulation. There is a
small variation in the B parameters, particularly in the by, coefficient.
However, as expected, the most noticeable variationm occurs in the
coefficients of the C{z ") polynomial, which models the gravitational
disturbance term. This is because, under the operating conditions of
this example the nonlinear gravitational torque predeminates.

7. DISCUSSION

The following factors have been considered in the implementation of
the self-tuning control scheme presented in this paper.

7.1 Parameter Tracking

The covariance m;trix, P(t), is a positive definite measure of the
estimation error — therefore the magnitude of it elements tends to
decrease with time. The magnitude of the step change in §, the
parameter vector, at each iteration is directly dependent onm the
magnitude of the elements of P{t). To maintain the sensitivity of the
algorithm and allow for parameter tracking some modifications must be
made to the algorithm of equatioms (10) to (12) in order that the

" elements of P(t) are prevented from becoming too small. One technique

which is commonly used is to include an exponential weighting factor in
the performance index as follows:

: 3 .
ve) = & ATy (1-1).8¢0) 12
i=1

where



0.0 <X < 1.0 (28)
?or A= 1.0 211 data are-weighted equally. For 0 < ) < 1.0 more weight
is placed on recent measurements than on older measurements. This

revised performance index results ip the following least squares

algorithm.
8(t) = 6(z-1) + L(e)[y(t) -6™(e~1)a(t)] (29)
L(t) = P(g-l) -4(t) (303
At g ey POE-1) op(E)
T
B(t) = L/a[p(e-1)- 22D -e(8) ¢ 7{e) -P(e-1) G0

A+ G(E)PCe=1) ()

7.2 Initial Parameter Estimates

Estimates of the data vector, 8, must be supplied to initiate the
algorithm of equations (29) to (31). If no prior knowledge of the
system is available then these are chosen arbitrarily. If the elements
of the covariance matrix, P(t), are large (of the order of 197) and the
forgetting factor, A, is less than 1.0 (a value of 0.95 gives good
results) then the elements of the gain vector, L{t}, are large and rapid
convergence is achieved. In order to enmsure excitatioa of all of the
modes of the system a stochastic, persistently exciting reference
(Norton [9]) may be applied to the coutroller initially. It is
advisable to use a fixed controller in parallel with process
identification during the tuniag in period, after which control is
transferred to the self-tumer. After the first trial improved parameter
éstimates are available. These should be used as the initial estimates
for the next task. For set point control the initial elements of the
covarianee matrix should be reduced (to of the order of 10) and the
forgetting factor should be increased {a value of .98 was used in :
examples 1 to 3) to decrease the sensitivity of the algorithm..

However, if, as-“in the vast majority of robotics applicatiouns,
parameter tracking is required (example-4), these valuyes should be
approximately 100 and 0.97 raspectively to maintain sensitivity to

parameter changes while at the same time rejecting measurement
disturbances.

7.3 Offset Removal

From classical control theory it cam be shown that offset removal'

may be achieved, for linear systems, by
(i)~ 'increaéiné—controller gain

(i1}  including integral action in the contréfler. -

The open loop process transfer function of example ! shows that the
numerator is multiplied by a2 factor of 0.02 relative to the desnominator.
Therefore a fixed gain of 50 was included in the controller transfer
function. This had the effect of signficantly decreasing the steady
state offset, since it 1s known that steady state offset is inversaly
proportional to coutroller gain for a step reference input. However, if
the gain is increased further, oscillations are iotroduced in the output
as the closed loop poles move along the root locus towards the zeros
near the unit circie of (27).

Integral action removes steady state offset for linear systems.
However, the system under consideration is highly noulinear and the
inclusion of an integrator is equivalent to placing a comtroller pole on
the unit circle. It was found that this results in an oseillatory
respense, &ven when the controller gain is reduced.

The steady state offset of examples 1 to 3 is a result of
represanting a highly nounlinear system by an approximate linear model.
However the magnitude of this offset may be reduced, using a high gain
controller, to within tolerable limits for many applications. The use
of a virtual reference is also suggested.

7.4 Control Weighting

aeviarcung el YT A s e po it 30

The control weighting parameter, Ry, determines the relative
importance which is to be placed on the pemalisation of the control
signal by the cost fumetion. It follows that a high vzlue of Ry leads
to less control variatiom and a more highly 'damped' output while a low
relative value of By leads to 2 lower variance of tracking error and
smaller offset. For this reason the ratioc of Qp : Ry was chosen to be
quite high at 1:0.01. It is also possible to use dynamic {frequency
dependent) weights in the solutiom of the optimal controller to allow
the error and control signals to be penalised differently in different
frequency ranges.

8. CONCLUSIONS

1t has been shown with the aid of some illustrative examples that
LQG self-tuning control can successfully be used to stabllise and
econtrol a mechanical manipulator. For simulation purposes the robot
dynamics are described by a set of third order, cross—coupled, nonlinear
equations. The self-tuning controller represents these by a linear
ARMAX model which is updated at every sample interval. The single
jolnt control examples presented in this paper are simple but
demonstrative. They may easily be extended to consider multiple joiant
control and end effector position control in cartesian coordinates: '~

9. REFERENCES

1. Xoivo, A.J. and Guo; T., 1983, IEEE Trans. Aut. Countrol,
Yol AC-28. 162-171.

2. Koivo, A.J., Kumkel, R., and Guo, T., 1983, '"Adaptive Manlpulator
Coutrol in Cartesian Coordinate System', Proceeding of the 7th
International Computer Software and Applications Coaference of the
IEEE Cowputer Society, Chicage, Illinois.

3. Lelic, M.A., and Wellstead, P.E., 1986, 'A Generalised Pole
Placement Self~Tuning Coutroller — An Applicatiocn to Robot

Manipulator Control’, Report Ne. 658, Control Systems Centre,
ITTAT Oy



4. Grimble, M.J., 1986, Int. J. Systems Sei., Vol. 17, No. 4, 543-557.

i process
5. Paul, R.P., 1981, 'Robot Manipulators : Mathemarics, Programming and i paraneters
Control', The MIT Press, Cambridge, Massachusetts. E
Crimble, M.J., 1984, Automatica, Vol. 20, 5, 661-659.
7. Jezek, J., 1982, Kyberpetika, Vol. 18, 505-316. controller parameter
design estimator [
8. Clarke, D.W., and Gawthrop, P.J., 1975, Proc. IEE, Vol. 122,
929-934. controller
parameters
9. Worton, J.P., 1986, '"An Introduction to Identification', academic ref
Press, London, England. - u ¥
' - controller process
|

Table 1 The estimazed plant parameters at various operating points

Angle a a, aq b, by bs <y <5
(Radians) Fig.2 A typical self-tuning control scheme
-3.5¢ -2.8 2.5 -0.8 0.0205 0.003 -0.0185 0.95 0.153
0.00 -2.9 2.7 -0.9 0.0200 0.001 =0.0200 0.%4 0.12 :
0.30 -3.0 2.6 =-1.0 ¢.0200  §.002 -0.0190 0.61 0.39 E
1.57 -2.9 2.9 -0.9 0.0200  0.001 ~-0.0190 0.40 0.47
2.00 =-3.0 2.9 ~-1.0 0.0235 0.002 -0.0210 0.50 G.56 1
3.00 -2.8 2.4 -0.8 0.0280 0.001 -0.0180 0.20 0.40 1 disturbance
c
— measuremnaent
A noise

o
)

|
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Fig.3 The closed loop system

Fig. 1 The PUMA: 500 manipulator.
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Chapter §

Adaptive control algorithms for
intelligent robot manipulators

M. Farsi, K. J. Zachariah and K, Warwick

i. INTROBUCTION

The aim of this paper i1s to describe adaptive
controllers suitable for use in the control of robotic
manipulators. Upper Diagonal Factorization (UDF) or a

simplified parameter estimator is employed within the self-

tuning algorithms to estimate the parameters contained in
CARMA models of the joints. The simplified estimator used
reduces the computational effort considerably.

The robot under investigation is made by Kuka
{Fig. 1) and consists of six 'links' attached serially te
each other at revolute joints. The coordinate frames
attached to the manipulator are alsc indicated in the
figure. Joint information is obtained via an optical
encoder measuring relative angular displacement and a
tachometer measuring relative angular speed between
adjacent links.

The manipulator is intended to interact with
objects in the three dimensjional space surrounding it,
therefore, it is necessary to obtain the position and
orientation of the end e¢ffecteor in cartesian space. This
information, in this case, in the form of binary data is
made available to a transformation module of the rochot
via the vision sensor machine.

2. DYNAMIC MODEI, OF THE KUKaA ROBOT

In order to-be able-to test a variety of control
schemes and alsce the behaviour of the controlled rokbot
under different load and speed conditions it is nhecessary

to operate on a comprehensive dynamic model. The dynanic
model ¢an be derived in-a variety of ways such as the
Newton-Euler or the Lagrange—-Euler methods, Ranky and Ho
{1) . The approach.used here is based on the use of
Lagrangian mechanics, Where expressions for the kinetic
and potential energy of -the robot structure are used to
obtain relationship between the input (torque) and ocutput
variables. The equations for the first three links of the
Kuka robot are as feollows:



