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ABSTRACT 

Boiler combustion systems represent highly nonlinear systems with associated lags and delays 
which depend on operating point. Such systems represent a significant challenge to the control 
engineer. In this paper, we present a model typical of a medium-size industrial boiler, which 
highlights the difficulties associated with such .\ystems. As a starting point for nonlinear control 
design, we demonstrate how a neural neMork may be used to obtain a concise functional 
description of the system, initially for fixed operating points and then for variation over the full 
range of operation. 

1. INTRODUCTION 

Boilers generate steam through the interaction of two processes:- combustion and evaporation. It 
is a complex, volatile operation which can present significant control problems. These problems 
are intensified by the high standards of safety and efficiency which are demanded of modern 
industrial boilers. Producing a comprehensive model for this process is often the first obstacle 
encountered in developing a reliable control strategy. This paper concentrates on one aspect of the 
combustion process - determination of the percentage 02 emitted from the furnace stack from fuel 
and air valve signals. The combustion process is non-linear with vru·ying dynrunics (including pure 
delay) which depends on the system operating point. The plant is simulated using SIMULJNK, a 
software package for simulating dynamical systems [1]. 

Neural networks offer an interesting alternative to conventional modelling and control methods. 
There ru·e no restrictions on what can be modelled or controlled as it has been shown that neural 
networks are capable of approximating arbitrary nonlinear functions [2]. Process models can be 
quickly generated, as neural networks "learn" to model the system using past data. It is not 
necessary to study the system in order to construct a model from first principles and no 
programming is necessary. Neural networks have a parallel structure, which promises speed and 
fault tolerance. They can be adapted on-line to cater for time-variant processes. Neural networks 
ru·e MIMO systems. They can accept a variety of inputs simultaneously e.g. qualitative and 



quantitative inputs. Finally, they have ability to generalise and cope with situations not presented 
in the training data [3]. 

2. BOILER COMBUSTION MODEL 

The combustion section of a boiler may be represented schematically by Fig.l. This diagram 
describes the relationship between the %0z produced in the stack gasses and the air and fuel 
inputs to the system. 
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Fig. I :Boiler model structure 

The air and fuel supply subsystems contain valves, the inputs to which are detennined by servo. 
loops as shown in Fig.2. These subsystems contain the dynamics described as "air valve dynamics" 
and "fuel valve dynamics" in Fig. I, consisting of servomotors which accept "raise" or "lower" type 
signals enclosed within a feedback loop for positional accuracy. 
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Fig.2 : Fuel and air supply servo. loops 
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The actual amount of fuel flow and air flow is determined by a combination of the valve positions 
and the pressure under which fuel and air are supplied. This is further compounded by the 
combustion chamber pressure, but this effect is not documented for brevity. Overall, the fuel 
demand is detennined by load index, which is a measure of the required firing rate of the boiler, in 



turn detennined by the required boiler heat output. The primmy air/fuel characteristic, which is 
nonnally implemented using a series of mechanical cams, determines the desired air valve position 
in order to produce a given %02 in the stack gasses. This value is detennined from a combination 
of environmental and efficiency considerations. However, due to mechanical wear in the cam 
arrangement and inaccuracies in the initial setup, combined with a requirement for tighter dynamic 
control of %02, an extra control input, termed "trim air input" in Fig .I, is included. 

For the control engineer, therefore, the important input/output relationship is that between trim air 
input and measured %02. This relationship is complex, due to a significant number of 
nonlinearities (valve characteristics, combustion equations, etc.) and the dynamics due to the 
combustion chamber and probe, which depend on operating point. The values for the lags and 
delays in the dynamical blocks generally decrease with load index (throughput). Note that the 
"combustion calculations" are non-dynamical [ 4], since instantaneous mixing of air and fuel is 
assumed. In summary, three factors present a significant challenge to the control engineer: 

• The system contains a number of static nonlineru·ities 
• Measurements are subject to pure time delay 
• The dynamics of the system vary with operating point. 
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Fig.3 : Response of %02 to a step in trim air input for different load indices 

Fig.3 above shows the response in %02 to a 3% step in u·im air input for load indices of 1%, 
10%, 30%. 60% and 90%, indicating the variation in dynamics and d.c. gain with operating point. 

3. BOILER MODELLING USING NEURAL NETWORKS 

This problem was approached in two stages. The first stage was to produce a neural network 
model of the plant, with load index maintained at a constant level. The second stage was to 
produce a neural network model of the plant with varying load index. For the first stage, the plant 
contains static nonlinearities and fixed dynamics. In the second stage, the plant has nonlineru·ities 
plus dynrunics which are dependant on load index. The neural networks were built and u·ained 



using algorithms from the "Neural Network Toolbox" [5]. This is a neural network development 
tool which offers a variety of network structures and training algorithms. 

A recuiTent multilayer perceptron structure was used for both models. The first model required a 
two layer network with six tan-sigmoid neurons in the hidden layer and one linear neruon in the 
output layer. Using tan-sigmoid neurons in the hidden layer, gives the neural network it's required 
nonlinear characteristics. The linear neuron, used in the output layer, allows the network output to 
exceed the range [-1,+1]. The actual number of layers and neurons required was detennined on a 
trial and error basis. Increasing the number of neurons beyond the required number, does not 
improve the network's accuracy significantly and may reduce the network's ability to generalise. 
Using a recunent structure increases the network's power and reduces the number of neurons 
required to approximate a function. 

Dynamics are incorporated in the network by passing the trim air demand signal and the previous 
network output through a tapped delay line. Each stage of the tapped delay line is then used as a 
network input. The size of each tapped delay line is determined by the order of the plant. The 
network structure is illustrated in Fig. 4. 
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Fig.4 : Structure of neural network for fixed load index 

An initial attempt was made to train the network using the basic backpropogation algorithm with a 
fixed adaptation rate [6]. This adaptation rate must be very carefully chosen. Too large an 
adaptation rate may cause instability in the weight update, while too small an adaptation rate 
results in extremely long training times. A more sophisticated version of the backpropogation 
algorithm, with an adaptive learning rate was then used very successfully. The adaptation gain is 
increased if weight adaptation has resulted in a decreased error. The adaptation gain is decreased if 
weight adaptation has resulted in an increased error and the new weights are discarded. In effect 



this produces a very small adaptation gain which ensures that the network consistently converges. 
Learning with momentum was also used to speed up training. Momentum allows the network to 
follow trends in the error smface and slide over small local minima. It is achieved by incorporating 
a percentage of the previous weight adaptation to the current weight adaptation. 

The weights are adapted as follows [7]: 

W;i(t+ I)= Wij(f)+ tlOiX; + a(wij(f)- Wij(f)- Wij(t)- Wij(t -I) 

where Wij(t) is the weight from hidden neuron i or from an input to neuron j. x~ is the output of 

neuron j or an input. 11 is the adaptation gain, a is the momentum tenn (0 <a< I) and Oi is an 
error term for neuron j. If neuron j is an output neuron, then 

where di is the desired neuron output and Yi is the actual neuron output. If neuron j is an internal 
hidden neuron, then 

Oi = x~(l-x~) ~OkWik, 
k 

where k is over all neurons in the layers above neuron j. All inputs were scaled to between [-I,+ 1]. 
This improves numerical conditioning and speeds up training. The training set was presented in 
batch to the network. Approximately I 00 data points were included in the training set per hidden 
layer neuron, based on a heuristic guideline [8]. The sum squared error over the complete training 
set dropped below the target of 0.01 after approximately 600 training iterations. 

A square-wave-type signal of varying amplitude and frequency was applied to the trim air demand 
input to generate the training set. A variable switching interval is employed to excite the plant over 
the complete frequency range. Varying the signal amplitude provides the neural network with 
infonnation about the plant static nonlinearities. A typical trim air input sequence is shown in 
Fig.5. 
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Fi&,5 Trim air input sequence 

A second neural network was then used to model the plant with varying load index. This time a 
three layer neural network was utilised. The first hidden layer contains 20 tan-sigmoid neurons. 



The second hidden layer contains 80 tan-sigmoid neurons. The output layer consists of one linear 
neuron. Load index is included as a network input. Load index is a static input, so it is not 
necessary to provide the network with previous values of this variable. A square-wave-like signal 
of vruying runplitude and frequency was applied as load index. The minimum switching intervals 
must always be longer than the maximum plant delay. This enables the network to observe plant 
dynrunics. A sample input sequence is shown in Fig. 6. 
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Fig.6 :Load index input sequences 
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A larger training set was used, for this larger network. Fig. 7 shows how the sum squared error 
reduces during training and the variation in the adaptation gain. 
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Fig.7 :Variation in sum squared error and adaptive learning rate during training 

Plots of network output versus plant output for both fixed and vruying load index are given in 
Figs. 8 and 9 respectively. In both cases, the network output closely follows the actual plant 
output. 
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Fig.8 :Plant yersus network output for fixed load index 
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Fig.9 : Plant yersus network output for varying load jndex 

4. CONCLUSIONS 

The results show that neural networks are capable of producing an excellent model of a nonlinear 
process with varying dynamics. In theory these models can be generated quickly (within a matter 
of hours) and do not require detailed knowledge of the system processes. However a certain 
amount of system knowledge is necessary to construct a neural network; e.g. which inputs are 
dynamical, an approximate estimate of the order of the system and the maximum system delay. A 
good understanding of the system is also vital in order to generate a training set which adequately 
covers the complete operating range of the plant. The negative aspect of not requiring extensive 
plant knowledge is that neural networks provide very little infonnation about the underlying plant 
processes. It is a black-box technique with the associated disadvantages. 



Neural networks do not always train consistently. There are a large number of factors affecting 
network convergence e.g. initial weights used, size of adaptation gain, scaling of inputs, etc. 

Training neural networks as controllers presents a further difficulty. Unlike boiler modelling where 
the actual plant output is available as a desired reference output for network training, no such 
desired reference output is available at the controller output. A number of methods have been 
proposed to overcome this problem. Most of these methods employ a model reference adaptive 
control strategy. One method involves backpropagating the error (between the output of the 
reference model and the plant output) through a neural network model of the plant [9]. This 
backpropogated error is then used as the error at the controller output. A second method uses a 
neural network inverse plant model to detemune the error at the controller output [1 0]. A third 
method involves placing a model of the plant before the controller during training and using the 
output of the reference model as the desired controller output [11]. Using these methods, attempts 
have been made to U'ain a neural-network conU'oller in the current application, so far with limited 
success. 

Despite these problems, neural networks have much potential in the area of nonlinear modelling 
and control. 
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