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Abstract

The quark-gluon plasma (QGP) is conjectured to have existed in the early

stages of the Big Bang and it has been discovered in heavy ion collisions. The

internal properties of the medium are not well understood. Due to its large

mass and long thermalisation time, the charm quark is an excellent tool with

which to probe the plasma. In this thesis I study the dissociation of open and

hidden charm mesons.

Lattice QCD provides a non-perturbative means of studying the spectral

quantities of charmed mesons. The suppression of J/ψ in medium is widely

considered to be a signal for deconfinement. I will use J/ψ to study the heavy

quark diffusion through the QGP. Jet-quenching observed in heavy ion collision

experiments may be studied through the D mesons, increasing experimental

interest in open charm. I will present the first study of the spectral functions

of these mesons.

The finite resolution in the time direction is one of the main limiting factors

in obtaining reliable spectral functions from lattice QCD. In order to reduce

the ensuing uncertainties we are currently producing a set of highly anisotropic

lattices which will greatly improve the accuracy of our results. I will outline the

method employed in the generation of these ensembles and present preliminary

results.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 The Big Bang

The leading theory on the formation of the universe is that it began approxi-

mately 13.8 billion years ago as a singularity in space filled with a medium with

a very high energy density and enormous temperatures. A phase transition

kick-started cosmic inflation and the universe began to rapidly expand and cool.

At 10−11 s and at a temperature T ∼ 1015 K (∼ 100 GeV) the electroweak phase

transition occured and gave the fundamental particles their mass through the

Higgs mechanism [1, 2]. What remained after the inflation period (at ∼ 10−6s)

was a jumble of hot, dense matter known as the quark gluon plasma (QGP),

and other elementary particles known as leptons. At these temperatures the

particles were incredibly energetic and were thus continuously colliding caus-

ing the creation and annihilation of particle-antiparticle pairs. Baryogenesis

resulted in an excess of quarks and leptons over antiquarks and antileptons.

Little is yet understood about this reaction. It is conjectured to be the main

reason for the predominance of matter over antimatter in the universe.

At 10−5 s and at T ∼ 1012 K (∼ 200 MeV), the strong phase transition took

place and combined the free quarks into hadrons [3]. At these temperatures,

fewer collisions occured which could result in the creation of new particle pairs

and so pair annihilation vastly reduced the number of antiparticles. This

all occured within the first few minutes, after which the temperature and

density were low enough to allow for nucleosynthesis — the formation of

nuclei (mostly hydrogen and helium). These atoms further combined into

molecules and eventually formed the stars, planets and every other tangible

component of this universe. Modern particle physics experiments can reproduce

the temperatures at which this nucleosynthesis occurs and so from this point

the theories surrounding expansion of the universe and subsequent particle
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formation are robust.

Only in the last few decades have the collider experiments managed to

obtain the temperatures at which a quark-gluon plasma may be formed. As

such its internal properties are yet uncertain. As it is thought to be the earliest

stage of matter to exist in the universe, it has been a hot topic for research for

many decades.

1.1.2 Phase Diagram of Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the study of the strong nuclear force. It

assigns a colour charge (of red, green or blue) to quarks and gluons. When

combining to form a hadron, only quarks and gluons of the correct colour

combination may be united. In nature, quarks are bound in colour-neutral

hadronic states and are never found alone. However, if enough energy is applied

to a hadron, the binding force becomes weaker and they can break apart into a

QGP state. This phenomenon is known as deconfinement and it occurs at a

temperature of Tc ∼ 155MeV [4].

Quarks carry an inherently quantum mechanical property known as chirality

in which a quark may be considered to be right-handed or left-handed. When

rotating a right- or left-handed fermion, chirality imposes a particular way in

which the quantum wavefunction is shifted. For massless particles, rotating

the right- and left-handed components independently has no overall effect on

the theory. This is known as chiral symmetry. In the chiral limit of massless

quarks (mq → 0), the QCD Lagrangian is chirally symmetric. However, at low

temperatures the massless quarks obtain an effective mass by dressing with

gluons. Thus in the hadronic phase this symmetry is spontaneously broken.

The quarks ψ and antiquarks ψ̄ combine to form chiral condensates 〈ψ̄ψ〉 in

the QCD vacuum. The presence of these condensates spontaneously breaks

chiral symmetry and they act as the order parameter for the transition. The

left and right SU(2) rotations are locked into an isospin symmetry and this

results in the creation of three Goldstone bosons — the pions.

It is the spontaneous breaking of chiral symmetry that accounts for the

majority of the mass of bound hadronic states. At high temperatures thermal

motion removes the quark dressing and chiral symmetry is restored. For

massless quarks there is a first order chiral phase transition between the plasma

of free quarks and gluons and the tightly bound hadronic phase. However, in

nature it is simply a crossover and is parallelled by a deconfinement crossover.

[5, 6]. A sketch of the QCD phase diagram is presented in Figure 1.1. The quark

condensates do not survive in the QGP and chiral symmetry is restored. The

temperature at which chiral symmetry restoration occurs happens to coincide

with the deconfinement crossover. Therefore, chiral symmetry restoration is

2



also a signal for deconfinement.

Figure 1.1: QCD phase diagram as a function of temperature T and baryon
chemical potential µ. Taken from [arXiv:nucl-th/1404.3294]

1.1.3 Probing the Quark Gluon Plasma

The high energy heavy ion collision experiments undertaken at the Large

Hadron Collider (LHC) in the European Organisation for Nuclear Research

(CERN) and at the Relativistic Heavy Ion Collider (RHIC) in Brookhaven

National Laboratory (BNL) have achieved a QGP state. In these experiments

the nuclei of heavy atoms (e.g. lead and gold) are accelerated to speeds close to

the speed of light and made to collide with one another. The nuclei are blasted

apart into partons. A significant amount of the kinetic energy of the incoming

nuclei collects in the central region, culminating in a high energy-density fireball.

The partons in this fireball subsequently collide with one another and lead to

a thermalised state, the QGP. The plasma then cools and expands, leading

to hadronisation. Eventually, the hadrons stop colliding and travel towards

the detector. Measurements of the final particles in the detector are taken and

in this way one may establish whether the QGP phase was achieved. Ultra

relativistic heavy ion collision (URHIC) experiments can give great insight into

phases of matter, particle decays and even the discovery of new particles.

The STAR collaboration at RHIC has defined the QGP as a (locally)

thermally equilibrated state of matter in which quarks and gluons are deconfined

from hadrons so that the colour degrees of freedom become manifest over nuclear,

rather than merely nucleonic, volumes [7]. Very little is yet known about its

internal structure. Experimental results so far characterise the QGP as a

strongly coupled, colour-opaque liquid with temperatures far exceeding the
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critical temperature for deconfinement. As the QGP cools it experiences a

collective expansion known as flow. Flow is an experimental observable which

can provide information on the equation of state and transport properties of

the medium [8, 9]. In heavy ion collisions the azimuthal anisotropy in particle

production is the clearest indicator of the flow. Non-central collisions cause

asymmetries in the geometry of the system characterised by the anisotropic

flow. At high energies the longitudinal and transverse components of the flow

can be treated independently and as such the plane transverse to the beam can

be used to study the flow pattern. The distribution of the final state particles

is generally written as a Fourier expansion as follows

E
d3N

d3p
=

1

2π

d2N

pTdpTdy

[
1 +

∞∑
n=1

2vn cos(n(φ− ΦR))

]
, (1.1)

where E is the energy of the particle, pT is the transverse momentum, y is the

rapidity, φ is the azimuthal angle of the outgoing particle’s momentum, and ΦR

is the angle of the reaction plane. The leading term is the radial transverse flow

and the second term represents the anisotropic transverse flow. The anisotropic

flow corresponding to the first two coefficients v1, v2 plays an important role

in collision experiments. v1 is known as the directed flow, which provides

information about the direction of the flow itself, and v2 is the elliptic flow.

Elliptic flow is named from the fact that when two particles collide indirectly

the cross-sectional area is shaped like an ellipse. The coefficients are computed

as follows

vn = 〈cos(n(φ− ΦR))〉. (1.2)

Since ΦR is not directly observable, the elliptic flow cannot be measured in

experiment. It is estimated using azimuthal correlations between the particles.

Elliptic flow has been studied extensively at RHIC [10, 7, 11] and the LHC

[12, 13]. The QGP was found to display properties similar to ideal hydrodynamic

predictions and this led to the idea that it is an almost ideal liquid. Its ratio of

shear viscosity to entropy density is very close to the conjectured lower bound

on any quantum mechanical system η/s ≥ 1/4π [14] and its observed elliptic

flow is almost as large as that of an ideal fluid [15].

Collision experiments at RHIC and the LHC can directly measure ther-

modynamic and transport properties of the QGP by comparing results from

heavy ion collisions which include the QCD medium to those of proton-proton

collisions which represent the QCD vacuum. The first major discovery at

RHIC was that energetic hadrons are strongly suppressed in central Au +

Au collisions [16, 17]. They discovered that energetic partons could influence

production of new particles in hot nuclear matter [18, 19]. Partons with a high

transverse momentum pT can radiate gluons and split into quark-antiquark
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pairs. After this parton branching, the resulting particles fragment into the

final state hadrons. The directed spray of hadrons from one of these parton

fragmentations is known as a jet. Alongside elliptic flow, jet quenching is one

of the most important observables in URHICs.

There is a measurable energy loss in partons scattering in a QGP state due

to jet quenching [20]. In order to conserve momentum, jets should be observed

travelling in opposite directions. However, only one spray of hadrons from a

highly energetic parton is detected [21, 22, 23, 24]. The energy loss is composed

of collisional and radiative terms. Loss of collisional energy occurs through

elastic scatterings and dominates when the particles have a low momentum.

At high momentum, the energy losses are radiative and derive from inelastic

scatterings. Radiative energy losses can be determined by the photon or gluon

Bremsstrahlung spectra. However, jet quenching is not sufficient to explain the

large suppression of non-photonic electrons which was also observed at RHIC.

These electrons are predominately produced in the semi-leptonic decays of D

and B mesons, which are usually considered to be formed from heavy quark

fragmentation outside the medium. It is possible that these mesons may be

produced and subsequently dissociate in the QGP [25]. The existence of the

heavy D and B mesons above the deconfinement temperature may explain the

energy loss and flow of heavy quarks observed in heavy ion collisions [26]. It is

therefore essential to have a theoretical understanding of the dissolution of the

heavy mesons in medium.

1.1.4 Heavy Quarks in the Quark Gluon Plasma

The heavy quarks, charm (c) and bottom (b), make excellent probes into the

QGP. Their masses (1.3GeV and 4.5GeV respectively) are significantly larger

than the temperatures reached in the collider experiments. This indicates that

they are produced only in the primordial nucleon-nucleon collisions [27] as

the production threshold is much higher than the temperature of the medium.

Their thermal relaxation times are comparable to the the lifetime of the QGP

phase in URHICs [28], although charm quarks may thermalise more quickly. As

such, heavy quarks are not expected to reach thermal equilibrium in the QGP

and their in-medium interactions will have a noticeable effect on the momentum

spectrum. An analysis of heavy quark spectra can therefore produce a timeline

of the evolution of the QGP and it can be probed over the full range of its

transverse momentum, leading to a complete picture of the medium at all scales

[29]. Heavy quarks are used as a standard hard probe of the QGP at high

transverse momentum and their interactions with the medium at low transverse

momentum are approximated by Brownian motion. Heavy quarks are arguably

the most direct probes of the entire QCD medium.
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In a vacuum, the free energy of a heavy quark-antiquark pair QQ̄ is assumed

to have the string form [30], given in the usual units (~ = c = 1) as

F (r) ∼ σr, (1.3)

where σ ' 0.16 GeV2 is the string tension and r is the separation between the

constituent quarks. The free energy increases as the quarks are pulled away

from one another. When it reaches the value of a pair of dressed light quarks,

a qq̄ pair is produced from the vacuum, the string breaks and two new hadrons

Qq̄, qQ̄ are formed.

At finite temperature, where T < Tc, chiral symmetry is broken and there

are dynamical light quarks in the medium. An effective screening of the colour

force occurs. The light hadrons can interact with the QQ̄ pair and recouple their

contituents at a lower energy value [31]. Beyond the deconfinement threshold,

chiral symmetry is restored and there is a significant increase in the density

of constituents. Light quarks and gluons become deconfined resulting in a

genuine colour screening. The screening radius rD is inversely proportional to

the density of colour charges. It follows that as the temperature is increased,

the screening radius decreases and counteracts the binding force in hadrons

causing them to dissociate.

Colour screening induces the suppression of heavy quarkonia in nucleus-

nucleus collisions in comparison with proton-proton yields and this suppression

is predicted to be a signal for deconfinement [32]. A sequential pattern is

anticipated, with the excited states dissociating before the more tightly-bound

ground states. The strongly bound J/ψ meson is the ideal candidate for studying

this prediction. Identifying a suppression pattern in collider experiments is

not an easy task. The overall charmonium yield also contains J/ψ mesons

appearing as decay products of higher mass resonances and b-hadrons.

Experimentally, J/ψ production has been studied at the Super Proton

Synchrotron (SPS), RHIC and the LHC at a large range of energies. The J/ψ

yield was found to be suppressed in nucleus-nucleus collisions with respect to

proton-proton collisons. Cold nuclear matter (CNM) effects such as shadowing

and nuclear absorption can cause J/ψ to dissociate. However the overall

suppression far exceeded that expected from CNMs at both SPS [33, 34]

and RHIC [35]. SPS ran at a lower centre of mass energy per nucleon pair
√
sNN = 158 GeV. They observed that that J/ψ suppression was consistent

with the melting of excited states. RHIC employed a higher energy
√
sNN = 200

GeV and concluded there is an element of suppression for the direct J/ψ [36, 37].

In recent years the LHC has reached energies of
√
sNN = 2.76 TeV and the

CMS experiment has also observed a sequential suppression pattern for Υ = bb̄

[38].
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At this high energy, the ALICE experiment measured a greater J/ψ yield

than the
√
sNN = 200 GeV experiment at RHIC [39]. This large centre of mass

energy allows for a much higher charm quark density in the QGP [40]. Charm

and anticharm pairs can coalesce, leading to the regeneration of J/ψ mesons in

the medium [41, 42]. If J/ψ can survive in the medium, production due to the

recombination of cc̄ pairs may occur during the lifespan of the QGP [43, 44].

However, if they are fully suppressed, recombination will occur at the phase

boundary [45, 46]. Charm quarks are mostly produced at low momentum,

so the regeneration of J/ψ at low transverse momentum is anticipated, and

has been confirmed experimentally [47]. J/ψ suppression, on the other hand,

is a high-pT process. It is therefore essential that the transverse momentum

and rapidity behaviour of J/ψ is understood to establish the balance between

suppression and recombination.

The in-medium modification of heavy quarkonium production in nucleus-

nucleus collisions is quantified by the nuclear modification factor

RAA =
NQQ̄
AA

〈TAA〉 × σQQ̄pp
, (1.4)

where NQQ̄
AA is the quarkonium yield in nucleus-nucleus collisions, σQQ̄pp is the

cross section in proton-proton collisions and the ratio is scaled by the average

nuclear overlap 〈TAA〉. A non-unity value for RAA implies that QQ̄ production

in heavy ion collisions is modified with respect to a binary nucleon-nucleon

scaling. Further insight into the medium effects on the QQ̄ yield is gained

by studying the transverse momentum and rapidity dependence of RAA. At

forward-rapidity, the J/ψ RAA shows a clear suppression of the J/ψ yield at

an energy
√
sNN = 2.76 TeV and it was found to have a strong dependence

on its transverse momentum [48, 49]. The results differ radically from the

RHIC results at
√
sNN = 200 GeV, suggesting that a portion of the yield is

due to charmonium recombination in medium. At
√
sNN = 5.02 TeV, the

ALICE experiment also measured J/ψ suppression at high pT and considerable

regeneration at low pT [50]. The overall yield was much larger than observed at
√
sNN = 2.76 TeV suggesting a far greater recombination in the hotter medium.

Theoretically, the suppression of the J/ψ particle can be studied at finite

temperature by considering the spectral functions of the vector meson current.

A description of spectral functions can be found in Section (2.2). A mass

peak is evident in the spectrum if the particle survives the medium. Spectral

functions can be calculated at a number of temperatures and a qualitative

estimate for the temperature at which the meson melts can be evaluated. The

low frequency region of these spectra is related to the quantitative properties

of the QGP, for example the heavy quark diffusion and electrical conductivity.
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1.2 The Path Integral Formulation of QCD

The fundamental equation governing the mechanics of the strong nuclear force

is the QCD Lagrangian. Quarks interact through the exchange of gluons, the

gauge bosons for the theory. Due to the non-abelian nature of QCD the gluons

are also subject to self-interactions. The Lagrangian describes these interactions

and is given by

L = ψ̄ (iγµDµ −m)ψ − 1

4
Ga
µνG

µν
a , (1.5)

where ψ is the quark field, Dµ is the covariant derivative

Dµ = ∂µ + igAaµ(x), (1.6)

and Ga
µν is the gauge invariant gluon field strength tensor with colour index a

given by

Ga
µν = ∂µA

a
ν − ∂νAaµ + gfabcA

b
µA

c
ν . (1.7)

Here, Aaµ is the gluon field, g is the strong running coupling and fabc is the

structure constant. In practice, one calculates the action which is related to

the Lagrangian via

S =

∫
C

L d4x. (1.8)

For quantum physical systems, the action may have an infinite number of

configurations over which to integrate. The behaviour of the system is dependent

on all possible trajectories and their relative probability amplitudes. In order

to calculate this, Feynman introduced the path integral formalism, which is

closely linked with statistical field theory. The basic tool required to quantise

quark and gluon fields is the partition function

Z =

∫
D[Φ] eiS[Φ]. (1.9)

Here, S[Φ] is the action which is dependent on the fields Φ = ψ, ψ̄, Aµ and we

neglect a possible chemical potential dependence. In order to solve this integral

for our system, we employ the use of the Wick rotation t→ −it ≡ τ and work

in imaginary time. This yields a Euclidean action SE = iS and allows us to

work in Euclidean spacetime. Our partition function then becomes

ZE =

∫
D[Φ] e−SE [Φ]. (1.10)

The expectation value of an operator O in the Euclidean representation is

〈O〉 =
1

ZE

∫
D[Φ] O[Φ] e−SE [Φ]. (1.11)
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Finite temperature field theory is formulated using the Matsubara formal-

ism for statistical systems. At zero baryon chemical potential, the quantum

mechanical partition function is given by

Z(T ) = tr
[
e−Ĥ/(kBT )

]
, (1.12)

where Ĥ is the Hamiltonian operator and kB is the Boltzmann constant. The

path integral formulation of this partition function gives the temperature as

the reciprocal of the imaginary time period, yielding the action

S(φ, ψ) =

∫ β

0

dτ

∫
d3x L(φ, ψ), (1.13)

where φ is a boson field with periodic boundary conditions, ψ is a fermion

field with antiperiodic boundary conditions and β = 1/kBT is the inverse

temperature. As is usual, we set kB = 1 so β = 1/T and the temperature is

given in units of energy.

1.3 QCD on the Lattice

1.3.1 Discretising Spacetime

The path integral formalism which is described in equation (1.10) is not well-

defined. A regularisation scheme must be implemented to solve it. In order

to regularise the theory non-perturbatively, we introduce a four dimensional

hypercubic lattice of finite size N3
s × Nτ with a finite lattice spacing a and

periodic boundary conditions. The continuum may be recovered by taking

a→ 0 while keeping the volume constant.

The fermion fields are found on the lattice sites and the gluons on the links

connecting them. Infinite integrals may now be calculated as finite sums and

continuous derivatives are replaced by their discrete counterparts. In order to

ensure the action remains invariant under a local rotation of the colour indices

of the quark fields, a link variable Uµ ∈ SU(3) in the direction µ̂ is introduced,

where

Uµ(x) = exp

[
ig

∫ x+µ̂a

x

dyµAµ(y)

]
(1.14)

connects the neighbouring lattice sites x and x+ µ̂. Thus we can define

ψ′(x) = Ω(x)ψ(x); (1.15)

U ′µ(x) = Ω(x)Uµ(x)Ω†(x+ µ̂). (1.16)
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such that

ψ̄(x)Uµ(x)ψ(x+ µ̂)→ ψ̄′(x)U ′µ(x)ψ′(x+ µ̂)

is a gauge transformation where Ω(x) is an element of SU(3) at each lattice

site x. The link variables are oriented and thus we can define a link variable

connecting the site x to x− µ̂ as

U−µ(x) ≡ U †µ(x− µ̂) (1.17)

As the gluons live on the links between the fermion sites, these link variables

represent the gluon fields in QCD. In the absence of quark fields, the link

variables must form closed loops in order to retain their gauge invariance. They

are known as Wilson loops. The simplest of these is a plaquette Uµν , which is

a square comprised of four link variables as follows.

Uµν(x) = Uµ(x)Uν(x+ µ̂)U †µ(x+ ν̂)U †ν(x). (1.18)

1.3.2 Lattice Actions

In the continuum, the Yang-Mills action represents the gluons and the Dirac

action represents the fermions. On the lattice, discretised versions of these

actions must be implemented. The plaquette is the simplest object on the

lattice. The gluon action can be built as a sum over all plaquettes. This is the

Wilson gauge action, as formulated in [51]

SG[U ] =
2

g2

∑
x∈Λ

∑
µ<ν

Re tr[11− Uµν(x)], (1.19)

where g is the strong coupling. In the limit a→ 0 the Yang-Mills action should

be reproduced. However, the lattice only reproduces the continuum action

correct to O(a2). Symanzik proposed a solution to these large discretisation

errors by introducing improved lattice actions. To implement Symanzik Im-

provement, one adds terms with the appropriate symmetries to the action.

Their coefficients may then be tuned to become functions of the bare couplings.

The simplest example of Symanzik Improvement is the action containing the

plaquette Uµν and the rectangular 1× 2 Wilson loop Rµν as follows

SIG[U ] =
2

g2

∑
x∈Λ

∑
µ<ν

{
5

3
Re tr [11− Uµν(x)]− 1

6
Re tr

[
11− 1

2
Rµν(x)

]}
. (1.20)

Näıvely, one expects to discretise the Dirac action in order to obtain a
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lattice action for fermions as follows

SNF [ψ, ψ̄, U ] =

Nf∑
f=1

a4
∑
x,y∈Λ

ψ̄(f)(x)M (f)(x|y)ψ(f)(y), (1.21)

where a is the lattice spacing and M is the fermion matrix given by

M (f)(x|y)αβ,ab = m(f)aδαβδabδx,y −
1

2

±4∑
µ=±1

(γµ)αβUµ(x)abδx+µ̂,y. (1.22)

However, this introduces a complication. This näıve discretisation of the

fermion action leads to 2d flavours for each fermion field in the continuum limit.

This doubling problem is easily demonstrated by considering the free quark

propagator in momentum space. The Fourier transform of the action (with

Uµ = 1) is

S−1
F (p) = m+

i

a

∑
µ

γµ sin(pµa), (1.23)

leading to a free quark propagator

〈ψ̄(p)ψ(q)〉 =

(
m+

i

a

∑
µ

γµ sin(pµa)

)−1

δ(p− q). (1.24)

In the continuum limit a→ 0 this propagator has poles not only at zero but at

the corners of the first Brillouin zone, usually defined to be at [−π/a, π/a]. If

any component of the momentum is equal to ±π/a, then the same continuum

is formed. In four dimensions this yields an additional 15 unwanted fermions.

Nielsen and Ninomiya proved in their No-Go Theorem that these doublers

cannot be removed if the theory is to be kept chirally symmetric, local and

hermitian [52].

A number of options have been formulated for the fermion action which

break one of these conditions. However, it is essential that they are restored in

the continuum limit. The most commonly used methods by lattice theorists

are the staggered fermion approach pioneered by Kogut and Susskind [53]

which violates locality, the Wilson fermion formulation [54] which breaks chiral

symmetry, and the Ginsparg-Wilson approach [55] in which chiral symmetry

survives if the Dirac operator obeys the equation Mγ5 +γ5M = aMγ5M , where

a is the lattice spacing. We will focus on Wilson’s approach. Wilson proposed

that a second derivative term (now known as the Wilson term) may be added

to the action in order to cancel out the fermion doublers. The Wilson fermion
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action is then

SWF [ψ, ψ̄, U ] =

Nf∑
f=1

a4
∑
x,y∈Λ

ψ̄(f)(x)
[(

m(f) +
4

a

)
δαβδabδx,y

− 1

2a

±4∑
µ=±1

(11− γµ)αβUµ(x)abδx+µ̂,y

]
ψ(f)(y).

(1.25)

The addition of the Wilson term in the action introduces O(a) errors.

Further terms may be added in order to cancel these O(a) errors. The simplest

improved fermion action is the Sheikholeslami-Wohlert action [56] which is an

O(a2) improvement of the Wilson action.

1.3.3 Anisotropic Lattices

In utilising discrete lattices to calculate continuum results there will always

be some errors involved. There are many methods in use which balance

computational cost with reducing these errors. One such method removes any

dynamical quark flavours from the system. This is known as the quenched

approximation of QCD. From equation (1.11) we can compute the quark

propagator

〈ψ̄(x)ψ(y)〉 =
1

Z

∫
DAµDψ̄Dψ ψ̄(x)ψ(y) e−(SF+SG)

=
1

Z

∫
DAµ Tr

(
M−1(x, y)

)
detM e−SG . (1.26)

The effects of the sea quarks are contained in the determinant of the fermion

matrix. In the quenched approximation this is set to detM = 1. This yields

a medium which is made purely from gluons. The assumption that there are

no dynamical quarks in the QGP allows for a larger temporal extent on the

lattice, and as such more viable data points.

However, the inclusion of dynamical sea quarks is desirable. With each

flavour of quark, there is a new mass to take into account and the level of

computational difficulty rises as each new flavour is introduced. The masses of

the up and down quarks are usually taken to be degenerate. Our results have

been calculated on two sets of ensembles – one with 2 flavours of dynamical

sea quarks (up, down) and one with 2 + 1 flavours (up, down, and strange)

corresponding to the FASTSUM Collaboration’s first and second generations.

We will use anisotropic lattices with a spatial lattice spacing as different

than the temporal lattice spacing aτ . The anisotropy is given by ξ = as/aτ .

There are many benefits to using anisotropic lattices. They make it possible to

do relativistic simulations with heavy quarks [57] which would otherwise have

been too computationally expensive. Employing a smaller temporal lattice
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spacing ensures there are more timeslices in the Monte Carlo data with an

accurate signal. This is because the signal-to-noise ratio of the correlators

decays exponentially with time. Thus, P-wave states [58] and glueballs [59] have

become accessible despite their bad signal-to-noise ratio. Another big advantage

is that thermodynamic quantities become much easier to calculate. It is a much

simpler task to take derivatives with respect to volume and temperature if as

and aτ can be varied independently.

There are, however, added complications in the use of anisotropic lattices

which are not present in the quenched or isotropic cases. Two new param-

eters appear in the anisotropic actions — the bare gauge and bare fermion

anisotropies, γg and γf respectively. These parameters must be tuned so that

the physical anisotropies of the quarks and gluons are the same.

A two-plaquette anisotropic Symanzik-Improved gauge action was developed

for the the study of the glueball spectrum [60]. It includes a term composed of

two parallel plaquettes on adjacent timeslices and was found to have reduced

the finite cut-off effects in glueball studies. This gauge action was employed in

the first generation. It is given by

S ′G[U ] =
β

γg

[
20

3u4
s

Pss −
15

3u8
s

P ′ss −
1

12u6
s

Rss

]
+ βγg

[
4

3u2
su

2
t

Pst −
1

12u4
su

2
t

Rst

]
,

(1.27)

where P and R are the usual 1 × 1 plaquette and 2 × 1 rectangular Wilson

loops, P ′ss is constructed from two spatial plaquettes separated by a temporal

link, us and ut are the spatial and temporal tadpole factors of the bare links,

γg is the bare gauge anisotropy, β = 2Nc/g
2 is the lattice coupling and Nc = 3

is the number of colours.

The fermion action for this generation is a fine-Wilson, coarse Hamber-

Wu action [61] with stout-link smearing [62]. The temporal component is a

fine-Wilson action given by

SWF [ψ, ψ̄, U ] = a4
∑
x,y∈Λ

ψ̄(x)
[(

m+
4

a

)
δαβδabδx,y

− 1

2a
(11− γ4)αβU±4(x)abδx+µ̂,y

]
ψ(y).

(1.28)
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The spatial component uses the coarse Hamber-Wu action given by

SHWF [U, ψ̄, ψ] =
1

as

{∑
x

ψ̄(x)ψ(x)

− 4κ

3

∑
x,i

[
ψ̄(x)(r − γi)Ui(x)ψ(x+ ı̂)

− ψ̄(x)(r + γi)U
†
i (x− ı̂)ψ(x− ı̂)

]
+

κ

6us

∑
x,i

[
ψ̄(x)(2r − γi)Ui(x)Ui(x+ ı̂)ψ(x+ 2ı̂)

− ψ̄(x)(2r + γi)U
†
i (x− ı̂)U †i (x− 2ı̂)ψ(x− 2ı̂)

]}
,

(1.29)

where us is the mean spatial link, r is the Wilson parameter, and κ is the

hopping parameter. Putting these two components together yields the complete

fermion action

SF = SHWF + SWF (1.30)

Our second generation of lattices utilised an anisotropic Symanzik-Improved

gauge action with tree-level tadpole coefficients as follows

SG[U ] =
β

γg

{∑
x,s>s′

[
5

3u4
s

Pss′ −
1

12u6
s

Rss′

]
+
∑
x,s

[
4

3u2
su

2
t

Pst −
1

12u4
su

2
t

Rst

]}
,

(1.31)

where all parameters are the same as in the two-plaquette case in equation

(1.27).

The fermion action for the second generation is an anisotropic clover action

with tree-level tadpole coefficients and stout-link smearing [63], using the same

parameters as the Hadron Spectrum Collaboration [64].

SCF [U, ψ̄, ψ] =
∑
x

ψ̄(x)
1

ũt

{
ũtm̂0 + Ŵt +

1

γf

∑
s

Ŵs

− 1

2

[
cs
γg

∑
s<s′

σss′F̂ss′ + ct
∑
s

σtsF̂ts

]}
ψ(x),

(1.32)

where γf is the bare fermion anisotropy, F̂µν = aµaνFµν and m̂0 = atm0 are

dimensionless and Ŵµ = a2
µ∇µ− 1

2
γµaµ∆µ is the dimensionless Wilson operator.

To distinguish the tadpole factors associated with the smeared gauge fields, we

denote them by ũs and ũt. The parameters cs and ct are known as the clover

coefficients.
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The physical extent of the lattice in the temporal direction given by

β ≡ aτNτ =
1

T
. (1.33)

Here we must be careful not to confuse the inverse temperature with the lattice

coupling β. We can clearly see that since the temporal extent is inversely

proportional to the temperature, if we wish to use a high temperature lattice,

the extent in the time direction must be small (and thus have a small number

of data points). A lattice representing zero temperature has a large temporal

extent in comparison to the length of the lattice in each spatial direction. This

large number of data points allows for much more reliable results as T → 0.

1.3.4 Scale Setting

There is only one dimensionful parameter in QCD. It is a mass scale ΛQCD

which satisfies the equation

g2 b0

8π2
ln

(
M

ΛQCD

)
= 1 (1.34)

to leading order, where g is the strong coupling constant, M is the renor-

malisation scale, and b0 = 11 − (2/3)Nf for Nf quark flavours. The scale is

dependent on the renormalisation scheme, and the MS scheme measures it

to be ΛQCD ∼ 200MeV. The strong interactions become strong for distances

larger than ∼ 1/Λ. This is approximately the size of a light hadron.

Calculating meaningful values for physical quantities on the lattice is only

possible if the scale ΛQCD is correctly set. To set the scale, the distance between

two adjacent lattice sites, the lattice spacing a, must be fixed. All observables

in the action are dimensionless. After a simulation is completed, a physical

quantity may be compared to experimental results and the lattice spacing is

then fixed.

The choice of observable is important as different physical quantities probe

different energy scales. There are many options available to set the scale. It is

required that the observable is computable to a reasonable precision, that it is

not heavily dependent on the quark mass and that it is experimentally verifiable.

The string tension is one choice whose benefit is that it is computable in pure

gauge theory, although it can be noisy. The Sommer scale r0 is a popular

choice, though not directly observable in experiments (but it can be related to

the Υ spectrum and the heavy quark potential).

Hadron masses are also used to set the scale. The pion is usually used

to set the quark mass and is therefore a poor choice to set the scale. The ρ

mass depends too heavily on the quark mass. The Ω− = sss baryon makes an
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excellent choice. While it does depend on the strange quark mass, this can

be tuned to a physical value and it has only a weak dependence on the up

and down quark masses. Decay constants such as fπ and fK may also be used,

but they require renormalisation. The splittings 1S − 1P for charmonium and

2S − 1S for bottomonium are also valid choices. The heavy quarks are not

dynamical in the simulations and the splittings do not depend strongly on the

light and strange quark masses.

Two different generations of lattices are used in this work. To set the scale,

the first generation of ensembles used the 1S− 1P fine splitting in charmonium.

The static quark potential was first used, but after calculations with heavy

quarkonia the scale setting was redone. The second generation of ensembles was

created by the Hadron Spectrum Collaboration whose work involved calculating

the mass of the Ω− baryon. It was a logical choice for setting the scale.

1.4 Thesis Outline

The aim of this work is to explore the properties of the quark gluon plasma using

the charm quark to probe its internal structure. We compute the correlation

functions for charmonium and D mesons on a range of finite temperature

lattices. The dynamical coefficients of the QGP are encoded in the spectral

functions. They are a crucial factor in studying the medium modification of

hadrons. Calculating the spectrum is an ill-posed problem and requires the use

of the Maximum Entropy Method [65]. Details of the methods used are given

in Chapter 2.

Chapter 3 presents the spectral functions for the J/ψ meson obtained on

anisotropic lattices with an anisotropy of ξ = 6.0 and two dynamical fermion

flavours. I analyse the spectral functions of the conserved vector current at

finite temperature and non-zero momentum. The vector meson correlator

is decomposed into its transverse and longitudinal polarisations. The low

frequency range of the spectral functions of the conserved vector current is

considered. This provides a limit for the diffusion coefficient of the QGP.

The second generation of lattices has an anisotropy of ξ = 3.5 and 2 + 1

flavours of dynamical quarks. On this set of ensembles I calculate the spectral

functions for the S-waves and P-waves for charmonium and the S-waves of the D

and Ds mesons at finite temperature. I present the results in Chapter 4. I also

present the reconstructed correlators and effective masses for these particles. A

comparison to the original correlators shows that there are in-medium thermal

modifications. A mass shift is noticable in the spectral functions of both

the pseudoscalars and the vectors at temperatures below the deconfinement

temperature Tc.
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The first results for charmonium have been calculated on a set of anisotropic

lattices with an anisotropy of ξ = 6 and two dynamical flavours of light quarks

with degenerate masses. The next generation then introduced the strange

quark at a different mass. In addition to charmonium this allowed me to

calculate the spectral functions for the D mesons, which could not have been

accurately produced on the first generation. The anisotropy was lowered to

ξ = 3.5, increasing the temporal lattice spacing aτ from 0.0268 fm to 0.03506

fm. We aim to create a new generation with 2 + 1 flavours of dynamical quarks

with ξ = 7. With each new generation of lattices we are a step closer to more

accurately approximating the real world. The results obtained from this new

generation of lattices will have smaller discretisation errors and it may be

possible to obtain some new results which until now could not be accurately

calculated, e.g. the first excited states of charmed mesons. Increasing ξ involves

tuning a number of parameters in order to get the lattices we desire. This

method is outlined in Chapter 5. This is an ongoing project and when the

production of this new generation is complete there will be an opportunity to

unveil some new results which were previously unattainable.
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Chapter 2

Methodology

2.1 Correlation Functions

The fundamental object describing the properties of a particle is the correlation

function (or correlator). For a meson it is defined as the vacuum expectation

value of the time ordered product of two meson operators M

G(x) = 〈0|M(x)M(0)|0〉, (2.1)

M = ψ̄i(x)Γijψj(x), (2.2)

where ψ(x) is the fermion field and Γij determines the particle channel as per

Table 2.1. The meson correlator is composed of the quark propagator and the

antiquark propagator connecting the same two points. It is thus known as the

point-to-point correlator.

Correlation functions are particularly important in finite temperature studies.

Our interest is in the deconfinement crossover and hadron melting. The degrees

of freedom and properties of a hadron are expected to change drastically

as the system crosses the transition line. Since correlators are temperature

independent, they are the ideal candidate to provide information about the

melting of mesons. The energy spectrum of a hadron can be extracted from

Particle Γ JP

Pseudoscalar γ5 0−

Scalar 11 0+

Vector γµ 1−

Axial Vector γ5γµ 1+

Table 2.1: The different channels for each particle and their corresponding
operators, angular momentum and parity.
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the correlator at finite temperature as follows:

G(x) =
∑
m

〈m|A(x)A†(0)e−βH |m〉

=
∑
n

∑
m

〈m|A(x)|n〉〈n|A†(0)e−βH |m〉

=
∑
n

∑
m

〈m|eiHtA(~x, 0)e−iHt|n〉〈n|A†(0)e−βH |m〉

=
∑
n

∑
m

〈m|eHτA(~x, 0)e−Hτ |n〉〈n|A†(0)e−βH |m〉

=
∑
n

∑
m

eEmτe−Enτ 〈m|A(~x, 0)|n〉〈n|A†(0)|m〉e−βEm

=
∑
n

∑
m

eEm(τ−β)e−Enτ 〈m|A(~x, 0)|n〉〈n|A†(0)|m〉

=
∑
n

∑
m

eEm(τ−β)−EnτGn. (2.3)

Here A(x) is the hadron operator in question and β = 1/T is the inverse

temperature. The ground state energy gives the mass of the hadron. As

the temperature increases and the particle dissociates the mass is no longer

distinguishable. Calculating the energy spectrum from the correlators can

therefore give an indication of the temperature at which the hadron melts.

In the first lattice studies of finite temperature correlators by DeGrand and

DeTar it was suggested that hadronic modes could exist at temperatures above

Tc [66]. The exponential decay at large distances gives rise to screening masses.

Spatial correlators are particularly useful here as they are not restricted by

the inverse temperature and can be studied at large separation. The spatial

correlator is given by

G(z, T ) =

∫ 1/T

0

dτ

∫
dxdy〈M(x, y, z, τ)M(0, 0, 0, 0)〉, (2.4)

where M is the meson operator defined in equation (2.2). They have been

used to determine the screening masses of vector mesons at high temperature.

Comparing these large-distance weak coupling calculations with lattice QCD

studies can provide an understanding of the dissociation of the mesons in

medium [67]. In recent years spatial correlation functions have also been used

to study the in-medium modifications of the open charm mesons [68]. The

screening masses calculated from spatial correlators have theoretically been
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connected to the jet quenching observed in URHICs [69].

It has also been shown that at T > Tc there are parity-doubled modes

present, i.e. the pseudoscalar and scalar correlators become identical, as do

the vector and axial vector [70]. This parity-doubling is a consequence of the

fluctuation of the chiral condensate 〈ψ̄ ψ〉 [71] and is therefore an indicator

of the restoration of chiral symmetry. Since this occurs at temperatures ∼ Tc,

correlators can be used to study the behaviour of hadrons at the deconfinement

crossover.

Analysing the temporal correlators defined in equation (2.1) is more difficult

as they are limited by the inverse temperature. However, since spatial and

temporal correlators can give a different picture for physical quantities, it is

important to have an understanding of the full space-time structure. Lattice

QCD provides a means to study the temporal correlation functions. The

properties of hadrons and thermal effects of the medium can be extracted by

studying their corresponding spectral functions. A discussion of these objects

follows in the next section.

2.2 Spectral Functions

Spectral functions ρ(ω) of hadronic operators are important in understanding

the properties of hadrons in the QGP. They can be used to calculate many

physical observables. A well-known example is the cross section of the e+ + e−

annihilation into hadrons, which is represented by the spectral function in the

vector channel. It is expected that the medium effects will cause a spectral shift

[72] and a parity duality in hadrons consistent with chiral symmetry restoration

[73].

The spectral function is defined to be the imaginary part of the retarded

correlator

ρ(ω) ≡ Im(DR(ω)) = D>(ω)−D<(ω), (2.5)

where D>(ω), D<(ω) are the Fourier transforms of the forward and back-

ward correlators respectively. These correlators are defined by D>(t, t′) ≡
〈 ~M(t) ~M(t′)〉 ≡ D<(t′, t) for a meson operator M. The spectral function of a

propagating physical particle is positive definite, i.e. ρ(ω) ≥ 0.

In finite temperature calculations, analysing the correlation functions close

to the critical temperature for deconfinement shows a noticable difference in

the properties of the hadronic states between the confined phase and the QGP

[74, 75, 76]. In order to discover if these changes are related to the dissociation

of the hadrons one needs to study the structure of their corresponding spectral

functions. Calculating the spectral functions of interacting particles is a difficult

task. One must consider the imaginary time correlator. The Kubo-Martin-

20



Schwinger (KMS) condition states

D<(ω) = e−βωD>(ω), (2.6)

where β = 1/T is the inverse temperature. Applying this condition to equation

(2.5), we obtain

ρ(ω) = D>(ω)− e−ωβD>(ω) (2.7)

= (1− e−ωβ)D>(ω)

⇒ D>(ω) =
ρ(ω)

(1− e−ωβ)
. (2.8)

Taking an inverse Fourier transform, we get

D>(t) =

∫ ∞
−∞

dω

2π

ρ(ω)e−iωt

1− e−ωβ
. (2.9)

Now, rotating into imaginary time and using the fact that ρ(ω) is an odd

function, we have that for τ ∈ [0, β],

G(τ) = D>(−it) =

∫ ∞
−∞

dω

2π

e−ωτ

1− e−ωβ
ρ(ω)

=

∫ 0

−∞

dω

2π

e−ωτ

1− e−ωβ
ρ(ω) +

∫ ∞
0

dω

2π

e−ωτ

1− e−ωβ
ρ(ω)

=

∫ ∞
0

dω

2π

[
eωτ

eωβ − 1
+

e−ωτ

1− e−ωβ

]
ρ(ω)

=

∫ ∞
0

dω

2π

eωτ + e−ωτeωβ

eωβ − 1
ρ(ω)

=

∫ ∞
0

dω

2π

eωτ + e−ωτeωβ

eωβ − 1
ρ(ω)

=

∫ ∞
0

dω

2π

eωτe−ωβ/2 + e−ωτeωβ/2

eωβ/2 − e−ωβ/2
ρ(ω)

=

∫ ∞
0

dω

2π

cosh[ω(τ − β/2)]

sinh(ωβ/2)
ρ(ω)

=

∫ ∞
0

dω

2π
K(ω, τ)ρ(ω). (2.10)
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The function K(ω, τ) is the standard finite temperature kernel, given explicitly

in terms of the temperature T as

K(ω, τ) =
cosh[ω(τ − 1/2T )]

sinh(ω/2T )
. (2.11)

In the T → 0 limit, this kernel reduces to K(ω, τ)→ e−ωτ and the correlator

is of the form of a standard Laplace transform. Solving for the spectral function

ρ(ω) requires the use of an inverse Laplace transform. This problem is ill-defined

and thus requires methods such as the Maximum Entropy Method to solve it.

This is described in the next section.

2.3 The Maximum Entropy Method

While Monte Carlo methods on the lattice are sufficient to study static hadronic

properties (e.g. correlators), it is more challenging to simulate dynamical

quantities such as the spectral functions. This is due to difficulties in calculating

the inverse Laplace transform, the statistical noise in the Monte Carlo data,

and having a finite number of data points available in imaginary time on a

lattice. In the next section we will discuss how to obtain the spectral function

given the imaginary time correlator in equation (2.10). For this we employ the

Maximum Entropy Method (MEM) as set forward by Asakawa et al [65]. The

discussion of this method follows.

2.3.1 Construction of the Maximum Entropy Method

MEM is based upon Bayes’ theorem from probability theory [77], which states

P [X|Y ] =
P [Y |X]P [X]

P [Y ]
, (2.12)

where P [X|Y ] is the conditional probability of X given Y . In applying this

to lattice QCD, we let D be the Monte Carlo data with errors and H be the

accumulation of all prior knowledge of the spectral function ρ. Thus, Bayes’

theorem tells us that the conditional probability of having the correct spectral

function given the data is

P [ρ|DH] =
P [D|ρH]P [ρ|H]

P [D|H]
. (2.13)

Here, P [D|ρH] is known as the likelihood function and P [ρ|H] is the prior

probability. P [D|H] is independent of ρ and is therefore simply a normalisation

factor.
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For a large number of Monte Carlo measurements (as is used in lattice

QCD), the likelihood function obeys a Gaussian distribution and is given by

P [D|ρH] =
1

ZL
e−L, (2.14)

where L =
1

2

∑
i,j

(Di −Gi)C
−1
ij (Dj −Gj) . (2.15)

Here, i, j are the lattice data points, Di =
1

Ncfg

Ncfg∑
m=1

Dm
i is the lattice data at

the timeslice τi averaged over the gauge configurations, Gi is the usual imaginary

time correlator defined in equation (2.10) at τi and Cij is the covariance matrix

defined by

Cij =
1

Ncfg(Ncfg − 1)

Ncfg∑
m=1

(Dm
i −Di)

(
Dm
j −Dj

)
. (2.16)

Cij is an N × N matrix, where N = τmax/a − τmin/a + 1 is the number of

lattice data points for a lattice spacing a.

Now we’ll look at the prior probability which is defined to be

P [ρ|Hαm] =
1

ZS
eαS, (2.17)

where we write the known information α and m(ω) explicitly, though they’re

contained within H. S is the Shannon-Jaynes entropy

S =

∫ ∞
0

[
ρ(ω)−m(ω)− ρ(ω) ln

(
ρ(ω)

m(ω)

)]
dω. (2.18)

The parameter α is introduced in order to regulate the weight of the entropy

against the likelihood function in a self-consistent manner. It is a real and

positive parameter which is integrated out in the MEM process. The function

m(ω) is real-valued and positive-definite. It is known as the default model and is

used to encode certain knowledge of the spectral shape. Since we are interested

in the propagation of physical particles, we require ρ(ω) ≥ 0. Introducing

m(ω) ≥ 0 ensures this. However, the resulting spectral function should not be

dependent upon the default model.

Once the likelihood function and prior probability have been obtained, the

probability of producing the spectral function can be calculated using equation

(2.13). Given this conditional probability P [ρ|DHαm], the most probable
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spectral function is the one that satisfies the condition

δP [ρ|DHαm]

δρ
= 0, (2.19)

and the reliabilty of the spectral function can be estimated using the second

derivative,
δ2P [ρ|DHαm]

δρ2
. (2.20)

2.3.2 Procedure for Using MEM

The most robust algorithm for MEM is Bryan’s method [78]. The procedure

begins with finding the most probable spectral function for a given α. Combining

equations (2.14) and (2.17) with the conditional probability formula in equation

(2.13), we note that

P [ρ|DHαm] ∝ 1

ZLZS
eQ(ρ), Q(ρ) ≡ αS − L. (2.21)

The most probable spectral function ρα is achieved by finding the maximum

value for Q(ρ). The method for this is laid out in more detail in Section 2.3.3.

It can be shown [65] that this solution is unique.

Next, a weighted average over ρ and α is taken in order to obtain the final

result for ρ. It is assumed that P [ρ|DHαm] is sharply peaked around ρα which

should be the case for data with small errors. Thus, the final result is achieved

by calculating the integral

ρ(ω) =

∫
[dρ]

∫
dα ρ(ω) P [ρ|DHαm] P [α|DHm]

'
∫

dα ρα(ω) P [α|DHm], (2.22)

where the measure is given by [dρ] =
Nω∏
i=1

dρi√
ρi

and P [α|DHm] can be calculated

using Bayes’ Theorem as

P [α|DHm] =

∫
[dρ]

P [D|ρHαm] P [ρ|Hαm] P [α|Hm]

P [D|Hm]

∝ P [α|Hm]

∫
[dρ]

1

ZLZS
eQ(ρ). (2.23)

There are two standard options for the prior probability of α — Laplace’s rule

(P [α|Hm] = constant) or Jeffrey’s rule (P [α|Hm] = 1/α). The output should

be insensitive to the choice, assuming that the probability is concentrated

around its maximum. As the simpler of the two, Laplace’s rule is usually

adopted for lattice QCD.
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In averaging over α, P [α|DHm] is renormalised such that∫ αmax

αmin

dα P [α|DHm] = 1 (2.24)

is satisfied in the region α ∈ [αmin, αmax]. This region is determined by insisting

that P [α|DHm] ≥ 0.1P [α0|DHm] where α0 is the maximum.

Once the spectral function ρ(ω) has been obtained, it is prudent to do an

error analysis as there are correlations between ρ(ω) at neighbouring values

of ω. A study of the sensitivity of the result on the default model m(ω) is

also required. One simply varies the input function m(ω) and compares the

resulting spectral functions. There should be no dependence on m(ω). In the

absence of data, the default model is reproduced as the spectral function.

2.3.3 Maximising Q(ρ)

The main difficulty in applying MEM is finding a global maximum for the

parameter Q(ρ), defined in equation (2.21), which typically has O(103) degrees

of freedom. Bryan showed that the singular value decomposition (SVD) of the

kernel K reduces the search to a subspace of the order of the number of data

points (∼ O(10))[78]. This has been the main method of maximising Q since

MEM was adopted by lattice theorists.

To determine the spectrum from Monte Carlo data, we must first discretise

ω into Nω points, and consider ρl ≡ ρ(ωl). Assuming the most probable spectral

function is sharply peaked around ρα and imposing the extremum condition

δQ

δρ

∣∣∣∣
ρ=ρα

= 0, (2.25)

with the imaginary time correlator in equation (2.10), we obtain the implicit

expression for the spectral function ρl,

−α ln

(
ρl
ml

)
=

N∑
i=1

K(ωl, τi)
∂L

∂Dρ(τi)
, (2.26)

where τi = i · a is the ith lattice data point. As we are interested in the

propagation of physical particles, we can assume that ρl is positive definite.

This allows us to parametrise it as ρl = mle
al , and thus we obtain

−α ln

(
mle

ai

ml

)
=

N∑
i=1

K(ωl, τi)
∂L

∂Dρ(τi)

⇒ −αai =
N∑
i=1

K(ωl, τi)
∂L

∂Dρ(τi)
. (2.27)
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This leads to the vector equation

−α~a = Kt
~∂L

∂Dρ

, (2.28)

where Kt is the transposed kernel, which is an Nω×N matrix and
~∂L

∂Dρ

is an N

dimensional column vector. The singular value decomposition is then applied

to Kt = UΞV t, where U is an Nω ×N matrix satisfying U tU = 1 and contains

a full orthonormal basis, V is an N × N matrix satisfying V V t = V tV = 1

and Ξ is an N ×N diagonal matrix with positive semi-definite entries. These

entries are the singular values of the transposed kernel matrix Kt. The first

Ns columns of the matrix U define an Ns dimensional singular space spanned

by the columns { ~u1, ..., ~uNs}, where Ns is the number of non-zero entries in Ξ.

From this we find that ~a is in the singular space, and thus can be parametrised

by a set of parameters {b1, ..., bNs} as

~a =
Ns∑
i=1

bi~ui; i.e. al =
Ns∑
i=1

biUli. (2.29)

This, in turn, leads to the parametrisation of the spectral function which is

now determined by the parameters bi,

ρl = ml exp

(
Ns∑
i=1

biUli

)
. (2.30)

2.4 Improving on Bryan’s Algorithm

2.4.1 Modifications to the Finite Temperature Kernel

In finite temperature lattice calculations with MEM, it is a common issue that

the spectral function reconstruction at the smallest non-zero ω is inconsistent

with that of higher energies [79]. As ω → 0, the kernel in equation (2.11) may

diverge, the basis functions become degenerate and MEM is unsuccessful in

finding a valid spectral function. This affects the transport coefficients as they

are calculated in this low frequency range. The behaviour of ω as it approaches

zero depends on its discretisation, which indicates that the problem is in the

method.

A solution to this was presented by Aarts et al in [80]. The divergence of

the kernel can be counteracted by a simple modification:

K̃(ω, τ) =
ω

2T
K(ω, τ). (2.31)
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We also get that

ρ̃(ω) =
2T

ω
ρ(ω), (2.32)

so that K̃(ω, τ)ρ̃(ω) = K(ω, τ)ρ(ω). This modified kernel is used in place of

K(ω, τ) throughout the MEM process.

Alternatively, the hyperbolic sine in the denominator of the kernel presented

in equation (2.11) can be replaced with the hyperbolic cosine to give

K̂(ω, τ) =
cosh[ω(τ − 1/2T )]

cosh(ω/2T )
= tanh(ω/2T )K(ω, τ), (2.33)

ρ̂(ω) =
1

tanh(ω/2T )
ρ(ω). (2.34)

While there is no overall difference in the spectral shape, the use of cosh(ω/2T )

instead of sinh(ω/2T ) forces the kernel to be regular. In this thesis, we employ

the use of the modification given in equation (2.31). In our first generation

results presented in Chapter 3, we also modified the denominator of the kernel

to the hyperbolic cosine, while in our second generation results (presented in

Chapter 4) we used the hyperbolic sine.

2.4.2 Employing an Extended Search Space for the SVD

Method

The accuracy of the resulting spectral function using the SVD method laid

out by Bryan has recently been called into question [81]. It has been argued

that the basis functions spanning the SVD subspace may not be enough to

contain all the data. Choosing an initial value for ω, ωmin, which is both large

and negative ensures that the singular value decomposition of the kernel in the

MEM procedure fails. An extension of this subspace was proposed by Rothkopf

in [81]. More columns of the matrix U are included in the parametrisation of

ρl, so that equation (2.30) now reads

ρl = ml exp

(
Next∑
i=1

Ulibi

)
, (2.35)

with Ns < Next < Nω. The number of basis vectors one needs to add is

determined by increasing Next until Q(ρ) reaches an absolute maximum.

The reconstruction of the spectral function peak positions and their widths

shows improved accuracy when using Next > Ns. Choosing Next too small

induces errors as the reconstruction overestimates the peak position due to

an insufficient number of degrees of freedom. Mock analysis of this method

has shown that the features of the spectral function are readily available, but
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the added basis functions introduce extra wiggly patterns. The extra artifacts

are identifiable by a study of the dependence of ρ(ω) on the prior information

m(ω). Employing this extended search space has had a positive effect for MEM

calculations for non-relativistic QCD and the static quark potential.

2.4.3 Applying Bryan’s Algorithm with a Fourier Basis

In our study of finite temperature QCD with charmed mesons, we discovered

that even with the extension of the search space, the basis functions were not

correctly reproduced. We then abandoned the SVD method and chose a Fourier

basis parametrisation for ρl instead [82]. This parametrisation is given by

ρl = ml exp

a1 +

Next/2∑
i=1

a2i sin[(ωl − ωmin)i] +

Next/2∑
i=1

a2i+1 cos[(ωl − ωmin)i]

 .
(2.36)

The advantage to using a Fourier basis is that there is an analytic formula we

can employ to calculate the basis functions, as they are now in terms of sines

and cosines, and therefore the SVD is not necessary. We also note that the

choice of ωmin has no effect on the resulting spectral function. This choice of

basis yields a more robust determination of ρ(ω). In our application of this

method for the charmonium and D meson correlators, ωmin = 0 by construction.

2.5 Alternative Methods

While the results in this thesis have been calculated using MEM, it is worth

noting that there are a number of other methods available for the calculation

of spectral functions. Most recently, a novel Bayesian Reconstruction (BR)

approach to reconstructing spectral functions has been devised by Burnier

and Rothkopf [83]. It addresses several issues affecting MEM, namely its slow

convergence for large search spaces, scale dependence in the default model and

the Gaussian approximation in the estimation of α. It also aims to be far less

computationally expensive. One of the main features of this new method is an

updated entropy term. The Shannon-Jaynes entropy in MEM is replaced with

S = α

∫
dω

(
1− ρ(ω)

m(ω)
+ ln

(
ρ(ω)

m(ω)

))
, (2.37)

where α is a positive parameter introduced in order to give a dimensional

meaning to the integral, ρ(ω) is the spectral function and m(ω) is the prior

information. While MEM averages over its α parameter, this BR method

integrates it out from the joint probability distribution P [ρ,D, α,m]. Tests on

mock data have been carried out and a number of early results for bottomonium
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and the static quark potential in lattice QCD have emerged [84, 85, 86].

Before the introduction of MEM, the most widely used method for the

calculation of spectral functions involved assuming certain ansätz about its

shape, and fitting the data to this image. This method is still in use, though

not as commonplace as it once was. To implement it, it is assumed that the

spectral function is composed of (for example) a delta peak, a Breit-Wigner

peak, a Lorentzian peak, or a combination of all three. A continuum component

is added and the correlator data are fitted to this function. In recent times it

has been used to evaluate finite temperature correlators in 2 flavour QCD [87]

and electrical conductivity in quenched QCD [88].

Other options include the Backus-Gilbert method, a regularisation method

which imposes stability constraints in order to ensure the variation in the

spectral function is minimal. This has been applied in [89, 90]. There is also

the Tikhonov method with Morozov discrepancy principle, which is a linear

regularisation method enforcing smoothness on the spectral function. Its main

advantage over MEM is its ability to calculate non-physical spectral densities

like those of confined gluons. This method is in use in [91, 92]. Alternatively,

there is the method proposed by Cuniberti et al in [93] which analyses the

analytic continuation from imaginary time correlators to real time correlators

within a certain limit. This is employed in lattice studies in [94, 95].
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Chapter 3

Charmonium Spectral Functions

at Finite Temperature and

Momentum

3.1 Introduction

3.1.1 The Importance of Momentum

In studying the properties of the QGP one expects to observe a significant

suppression of J/ψ particles which signals deconfinement [32]. This pattern is

thought to originate from the colour screening of the binding force of charmo-

nium states. As such, a sequential suppression pattern is anticipated with the

most loosely bound quarkonia states melting before their more tightly bound

counterparts. Higher excitations of J/ψ will dissociate before the ground state.

The decay products of these higher excitations contribute to the observed yield

of quarkonia in the QGP [96]. The range of the colour screening radius is

inversely proportional to the temperature. As such, the dissociation of J/ψ

provides a gauge with which to measure the temperature of the medium.

The leakage effect on J/ψ production may also affect the suppression pattern.

During the time taken for the quarkonium particles to dissociate in the QGP,

the J/ψ particles with high transverse momentum leak out of the source of

suppression and survive in the medium. The particles with low transverse

momentum are absorbed [97].

In collider experiments, charm quarks are only produced in the initial

collison. The creation of charmonium mesons from uncorrelated cc̄ pairs can

enhance the yield of J/ψ particles and hence affect its transverse momentum

spectrum [98]. It is sensible to examine the momentum effects of cc̄ hadrons in

the QGP.

We present a lattice study of the J/ψ spectral functions. The lattices are
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isotropic in space and momentum is treated equally in all spatial dimensions.

However, in a collider, the particles move in one dimension along the beam axis.

The momentum of a particle in a collider can be considered in the forms of its

transverse momentum pT which is directed towards the plane perpendicular to

its motion, and rapidity y which follows the beam axis and is defined to be

y =
1

2
ln
E + pzc

E − pzc
, (3.1)

where E is the energy, pz is the momentum along the beam axis and c is the

speed of light. A first study of the momentum dependence of the survival of

charmonium may be found in reference [99].

3.1.2 Transport Coefficients

A study of charmonium particles at non-zero momentum may give insight

into the behaviour of their spectral functions as ω → 0. This low frequency

region is important in the study of the transport coefficients of the QGP as

they are related to the low frequency behaviour of real time correlators using

Kubo formulae [100]. The transport coefficients of the medium, namely the

heavy quark diffusion and electrical conductivity, may be derived from the

low frequency limit of the vector meson spectral functions. Other transport

coefficients may be calculated from the correlators of gluonic operators, for

example the shear and bulk viscosities [101]. A transport coefficient k may be

calculated using the Green-Kubo formula

k = π lim
ω→0

ρ(ω, ~p = ~0)

ω
, (3.2)

where ρ(ω, ~p = ~0) is the spectral function for the given operator at zero

momentum.

The electrical conductivity is the most studied transport coefficient as its

Euclidean correlator can be computed to a high precision. Previous lattice

studies of the conductivity may be found in references [102, 103, 87, 104, 105].

However, the heavy quark diffusion coefficient is more difficult to ascertain. For

sufficiently heavy quarks, the transport peak obtained in the spectral function

is too narrow to apply the same tactics as with the conductivity.

The heavy quark diffusion coefficient D is defined using equation (3.2) as

follows

D =
1

6χs
lim
ω→0

3∑
i=1

ρVii (ω, ~p = 0, T )

ω
, (3.3)

where χs is the quark number susceptibility which is defined through the zeroth

component of the temporal correlator in the vector channel [106]. When this
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coefficient is small, D ' 1/(2πT ), the low energy portion of the vector correlator

shows a very small τ -dependence. Linear response theory can be used to connect

Langevin dynamics and the diffusion equations to the current-current correlator

[107].

In order to calculate the heavy quark diffusion coefficient, the current-current

correlator is decomposed into its transverse and longitudinal components as

follows

Cij
JJ(ω, ~p) =

(
pipj
p2
− δij

)
CT
JJ(ω, ~p) +

pipj
p2

CL
JJ(ω, ~p). (3.4)

Due to conservation of current, the density-density correlator can be related

to the longitudinal component of CJJ

ω2

p2
CNN(ω, ~p) =

pipj
p2

Cij
JJ(ω, ~p) = CL

JJ(ω, ~p). (3.5)

The heavy quark diffusion coefficient is related to this density-density correlator.

For timescales much larger than 1/η where η is the momentum drag coefficient,

the heavy quark number N obeys the diffusion equation

∂tN +D∇2N = 0. (3.6)

The drag coefficient can be related to the diffusion coefficient using the Einstein

relation

D =
T

mQη
, (3.7)

where T is the temperature and mQ is the heavy quark mass. Since the time

scale for heavy quark transport mQ/T
2 is larger than that of the light quarks

the Langevin formalism may be used to describe the thermalisation of charm

quarks [28]. This method is utilised by Petreczky and Teaney in [107] to provide

a density-density correlator of the form

CNN(ω, ~p) = χs(~p)

∫ ∞
0

dt eiωtp2D(1− e−ηt) e−p
2Dt+(p2D/η)(1−e−ηt) , (3.8)

where χs(~p) is the static susceptibility. From this we may deduce that for small

momenta ~p such that Dp2 � η the integrand reduces to p2D(e−p
2Dt − e−ηt)

and performing the integration reveals

CNN(ω, ~p) =
χs(~p)Dp

2

−iω +Dp2
− χs(~p)Dp

2

−iω + η
. (3.9)

The transport information is encoded in the low frequency region of the spectral

function. Thus we are particularly interested in frequencies ω ∼ Dp2. In this

range the first term dominates and resembles the diffusion operator (∂t+D∇2)−1.

At zero momentum the current-current spectral function in this region may be
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computed to be

ρJJ(ω,~0)

ω
≡ 1

π

ImCJJ(ω,~0)

ω
= χs

T

mQ

1

π

η

ω2 + η2
. (3.10)

Previous studies have calculated the heavy quark diffusion coefficient using

a number of methods – lattice gauge theory [108, 109], perturbative calculations

[110] and N = 4 Yang-Mills theory [111]. A range for the value of the heavy

quark diffusion coefficient was concluded to be

D = (0.5− 1.0)/T. (3.11)

This value is much smaller than that which was predicted by the perturbative

estimate [28]. However, it is in accordance with the range used in phenomeno-

logical models [29].

3.1.3 Outline

In this chapter I present the results for the spectral functions of the J/ψ particle

at both zero and non-zero momentum. The vector current was decomposed

into its transverse and longitudinal polarisations as in equation (3.4) and the

two components were analysed independently. A study of the low frequency

region of these spectral functions is presented with a view towards calculating

the heavy quark diffusion coefficient.

The spectral functions were computed using Bryan’s algorithm in the

Maximum Entropy Method detailed in Section 2.3 with the modified kernel

presented in equation (2.31). These results were computed on a set of anisotropic

lattices with 2 dynamical flavours of fermions. Full details of the ensembles are

presented in the next section.

3.2 Formulation

I have simulated charmonium spectral functions on a set of ensembles with two

degenerate flavours of dynamical quarks with mπ/mρ = 0.54 which corresponds

approximately to the strange quark mass. This is a highly anisotropic set of

lattices with spatial lattice spacing as = 0.162 fm and an anisotropy of ξ = 6.

The full set of lattice parameters are given in Table 3.1.

A Two-plaquette Symanzik Improved gauge action as defined in equation

(1.27) and a fine-Wilson, coarse Hamber-Wu fermion action with stout-link

smearing as in equations (1.28), (1.29) were employed. Both the light sea

quarks and the heavy valence quarks are computed using the same fermion

action although the charm quark anisotropy was tuned separately [112]. The
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Param Gen 1

Nf 2

as (fm) 0.162

aτ (fm) 0.0268

a−1
τ (GeV) 7.35

ξ 6.03

Tc (MeV) 219

mπ/mρ 0.54

Table 3.1: Lattice parameters for the first generation of lattices.

critical temperature was estimated to be Tc = 219MeV for this set of en-

sembles. The lattice volumes and their relationship to Tc are given in Table

3.2. This corresponds to the “first generation” of ensembles of the FASTSUM

Collaboration.

Ns ×Nτ T (MeV) T/Tc Ncfg

123× 16 459 2.09 1000

18 408 1.86 700

20 368 1.68 1000

24 306 1.39 500

28 263 1.20 1000

32 230 1.05 875

80 92 0.42 250

Table 3.2: Lattice size, temperature and number of configurations for the 1st
generation of lattices.

The momentum values are given by

p2 =

(
2π

asNs

)2

n2, (3.12)

where n2 = n2
x + n2

y + n2
z = 0, 1, 2, 3, 4, which corresponds to momentum values

of p = 0, 0.66, 0.93, 1.14, 1.32 GeV respectively. Due to discretisation effects,

the local current is not conserved and must be renormalised by a factor ZV (g2)

which depends on the square of the strong coupling [113]. However, since

the masses of our quarks are degenerate, there is an exact vector symmetry

which produces a conserved Noether current. A conserved current requires no

renormalisation.

The spatial component of the conserved current for the Hamber-Wu action

is given in equation (3.13). Here rA = 6s = 6/8, where s = 1/8 is the spatial
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Wilson parameter. The temporal component is the usual conserved Wilson

current, which is described in equation (3.14), where r is the usual Wilson

parameter and we set r = 1 by construction.

V A
i (x) =− 2

3
ψ̄(x)(rA − γi)Ui(x)ψ(x+ ı̂) +

2

3
ψ̄(x+ ı̂)(rA + γi)U

†
i (x)ψ(x)

+
1

12us

[
ψ̄(x)(2rA − γi)Ui(x)Ui(x+ ı̂)ψ(x+ 2ı̂) + (x→ x− ı̂)

]
− 1

12us

[
ψ̄(x+ ı̂)(2rA + γi)U

†
i (x)U †i (x− ı̂)ψ(x− ı̂) + (x→ x+ ı̂)

]
.

(3.13)

Vt(x) =
1

2
[ψ̄(x+ t̂)(r + γ0)U †t (x)ψ(x)− ψ̄(x)(r − γ0)Ut(x)ψ(x+ t̂)]. (3.14)

3.3 Spectral Functions at Zero Momentum

Using the Maximum Entropy Method, I determined the spectral functions for

both the longitudinal and transverse components of the conserved vector current

at different temperatures and momenta with the following default models,

m(ω) = m0, (3.15)

m(ω) = m0ω
2, (3.16)

m(ω) = m0ω(m1 + ω). (3.17)

In each case, m0 is an overall normalisation parameter. In calculating the

integral to obtain the imaginary time correlator in equation (2.10) with the

kernel given in equation (2.11), the result is fitted to the correlator and the

best approximation for m0 is produced.

Our interest lies in the low frequency region of the spectral function as

we are aiming to calculate the diffusion coefficient. Thus, the default model

presented in equation (3.17) is the most useful. It provides insight into the

ω → 0 region without the spectral shape being dominated by systematic errors.

It has the benefit of matching the ω-dependence at large ω due to perturbative

effects in continuum theory. It also yields a non-zero intercept at ρ(ω)/ω as

ω → 0 and thus provides a transport peak. The constant default model in

equation (3.15) is divergent at ω → 0 and the quadratic default model in

equation (3.16) converges to 0. As ω → 0, τ is large and there are very few data

points. As such, MEM struggles to overcome the default model in this region.
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Figure 3.1: Analysis of the variation of m1 in the default model m(ω) =
m0ω(m1 + ω) for J/ψ at temperature T/Tc = 1.05 and zero momentum. The
left panel shows the full spectral function obtained and the right panel focuses
on the low frequency range. The dashed lines represent the default model in
the absence of data.

These two default models are not good candidates for obtaining a transport

peak at low frequency. We will therefore concentrate on m(ω) given in equation

(3.17). The first two timeslices were discarded in the analysis since these will

be dominated by lattice artifacts.

In equation (3.17), the parameter m1 is chosen to be m1 = 1. An inves-

tigation into the best choice of parameter was carried out. Figure 3.1 shows

the results obtained when m1 is varied for the vector current correlator at

temperature T/Tc = 1.05 and zero momentum. The parameter m0 = 1.09375

was kept constant throughout. The left panel shows the full spectral function.

The overall shape is unaffected by the choice of m1. However, when focusing

on the low frequency region of the spectral function we see a difference in the

transport peak. Setting m1 = T = 0.03125 produces a transport peak which

is significantly lower than the other three values. The peak becomes much

more stable with the larger values of m1. This finding is reflected in the results

obtained by Aarts et al in [105].

Figure 3.2 shows the spectral functions obtained for momentum p = 0 for

each temperature. A peak structure is evident for the lowest two temperatures

(T/Tc = 1.05, 1.20) indicating the ground state energy of the J/ψ particle is

at that value. The peaks lie at a slightly higher value than the J/ψ mass,

which is represented by the dashed vertical line in the plot. However, taking

into consideration the width of the peaks, we can say that the J/ψ meson

appears to be present in the medium at these temperatures. For the higher

temperatures we see no evidence of a peak, suggesting that the J/ψ particle

melts at approximately 1.2− 1.4Tc, in agreement with previous charmonium

studies [106, 114]. J/ψ was found to melt at a slightly higher temperature of

T = 1.6−1.9Tc in [115] which is reasonably consistent with our result. The local

vector current for the same set of ensembles yielded a dissociation temperature
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Figure 3.2: Spectral functions for each temperature with p2 = 0. The vertical
line represents the experimental value for the J/ψ mass.

of T = 1.7Tc [99]. Aarts et al calculated that J/ψ would also dissociate at

T = 1.7Tc on the forerunner to our first generation ensembles with lattice

size 83 × Nτ using the local current [112]. Although the exact temperature

at which the J/ψ melts is unclear, it seems certain that the particle survives

at temperatures exceeding the critical temperature for deconfinement. The

secondary peak can be attributed to lattice artifacts.

It should be noted that the uncertainty in the MEM procedure increases as

the temperature increases, and it is therefore not possible to say with certainty

that the pattern observed at the higher temperatures is genuine or merely

reflects the inability of the MEM algorithm to determine the spectral function

given the available data. The systematic errors appear to be too large to give

conclusive evidence of a melting J/ψ bound state. This remains the case for

all momenta.

The spectral functions obtained with each default model for the highest

temperature T/Tc = 2.09 at zero momentum are presented in Figure 3.3. A

stable peak at the correct value for the ground state is apparent for m(ω) =

m0ω
2. However, the other two default models provide different peak structures,

rendering the results unreliable. Only 6 temporal data points are available for

this temperature, allowing the systematic uncertainties to dominate.

I also carried out a study of the dependence of the spectral shape on the

default model for the higher temperatures. The results are very encouraging.

Figure 3.4 shows the spectral functions calculated with each of the default

models given in equations (3.15)–(3.17) for the J/ψ particle at temperature

T/Tc = 1.05 and zero momentum. The free parameters were set tom0 = 1.09375
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Figure 3.3: Spectral functions for J/ψ at T/Tc = 2.09 with zero momentum
obtained using three different default models.

and m1 = 1. The spectral functions have no discernible differences and as such

we can be confident that our choice of m(ω) has no affect on our results.

I also conducted a study of the dependence of the spectral shape on the

parameter m0. Figure 3.5 shows the results of varying m0 in the default model

m(ω) = m0ω(m1 + ω) for T/Tc = 1.05 with zero momentum. The parameter

m1 = 1 was fixed. The optimum choice m0 = 1.09375 was increased and

decreased by a factor of 10. There is no overall change in the spectral shape.

The ground state peak is in the same position with a similar width for each

value of m0. We can be confident that our results for p = 0 are not reliant on

the parameter m0.

3.4 Spectral Functions at Finite Momentum

At nonzero momentum, the vector meson correlator is decomposed into its

transverse and longitudunal polarisations as in equation (3.4). The transversely

and longitudinally polarised J/ψ may in principle behave differently in a QGP

medium. I have therefore analysed the two separately.

The spectral functions for the lowest two temperatures are presented here.

Figure 3.6 shows the spectral functions for the longitudinal component of the

current for a range of momenta at T/Tc = 1.20, 1.05. The J/ψ mass is given by

the dashed vertical line. Although the highest momentum value p = 1.32 GeV

appears to give a peak structure at the J/ψ mass, it is unreliable. The inability

of MEM to reconstuct this peak at lower momentum is an indication of the

uncertainty of these results. At T/Tc = 1.20 there is a stable peak structure

evident for p = 0.66 GeV. It appears as though this peak melts with increasing
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Figure 3.4: Variation of m(ω) for the J/ψ particle on the T/Tc = 1.05 lattice
at zero momentum.

Figure 3.5: Variation of the normalisation parameter m0 in m(ω) = m0ω(m1+ω)
for T/Tc = 1.05 with p = 0.
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Figure 3.6: Spectral functions for the longitudinal polarisation of the conserved
vector current at the lowest two temperatures with finite momentum (in GeV).
T/Tc = 1.20 is the panel on the left and T/Tc = 1.05 is on the right. The
dashed vertical lines indicate the mass of J/ψ at each given momentum.

Figure 3.7: Spectral functions for the transverse polarisation of the conserved
vector current at the lowest two temperatures with finite momentum (in GeV).
T/Tc = 1.20 is the panel on the left and T/Tc = 1.05 is on the right. The
dashed vertical lines indicate the mass of J/ψ at each given momentum.

momentum. A similar picture is presented for T/Tc = 1.05. The peak structure

survives to p = 0.93 GeV. Unfortunately the uncertainty in the correlators and

the systematic errors are too large to make a claim on the survival of the J/ψ

meson with any level of certainty.

The longitudinal component of the current is expected to produce a peak

structure in the low frequency region. This is discussed in more detail in Section

3.5. This structure is not apparent in Figure 3.6. As seen in Figure 3.1, m(ω)

itself provides a small intercept with the ρ(ω)/ω axis. The intercept of the

spectral functions from the longitudinal component is on a much larger scale

and it is therefore difficult to directly compare them. However, the shape of the

intercept is consistent with the default model. This suggests that in this region,

the MEM is not sufficiently capable of reproducing the correct transport peak

due to the small number of data points.

In Figure 3.7 the transverse component is presented for the same tempera-

tures. A peak structure is visible across all momenta for both temperatures.

These peaks appear to be more stable than their longitudinal counterparts,

with the exception of p = 1.14 GeV. For T/Tc = 1.20 this momentum gives a
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Figure 3.8: Spectral functions for the conserved vector current at T/Tc = 1.20
for the longitundinal (left) and transverse (right) polarisations at momentum
p = 0.66 GeV calculated with different default models.

very different picture than what is expected and for T/Tc = 1.05 we simply

could not get a sensible result. Again, the uncertainties appear to be too large

to give any accurate insights into the melting of bound charmed states, or

how momentum affects it. However, in both the transverse and longitudinal

polarisations a transport peak is evident as ω → 0. While the exact location of

the peak may not be trustworthy, it may provide a bound on the value of the

transport coefficients. This low frequency region is explored in Section 3.5.

As with the p = 0 results, it is prudent to check the systematic errors

involved in the MEM process. Figure 3.8 shows the results of varying the default

model for each of the longitudinal (left) and transverse (right) polarisations of

momentum p = 0.66 GeV at temperature T/Tc = 1.20. The spectral function

was calculated using MEM with each of the prior functions listed in equations

(3.15) – (3.17). The longitudinal component of the current appears to have

a great dependence on the choice of default model. This is not a desirable

outcome and could explain the difficulties in extracting a reasonable result

from these correlators. The spectral shape is inconsistent across each m(ω).

While the constant default model does not find any peak structure, the other

two models at least have the peak in the same position.

The spectral functions for the transverse component of the correlator, in

the right panel of Figure 3.8, are much more consistent. The peaks are in

approximately the same position with the same height. As such the transverse

component’s results are more reliable. The peak is not sharp and thus could

be an indication of the early stages of J/ψ melting.

For the higher temperature lattices I was not able to gain stable results. In

the previous section we saw that the T/Tc = 2.09 results are not reliable at

p = 0. Here, we consider the same temperature at finite momentum. Figure

3.9 shows the spectral functions for T/Tc = 2.09. The longitudinal polarisation

of the vector current is presented in the left panel. There is no clear peak

structure of any kind in the region of the J/ψ mass. While this could indicate
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Figure 3.9: Spectral functions for J/ψ at T/Tc = 2.09 with finite momentum.
The longitudinal polarisation of the current is on the left and the transverse
polarisation is on the right. The dashed vertical lines indicate the mass of J/ψ
at each given momentum.

that the particle has melted, it is probable that the uncertainties involved are

affecting the results. The longitudinal polarisation has not provided stable

results in general. The transverse component of the current (in the right panel)

appears to have a peak structure at all momenta. In general, the transverse

results are more reliable but in this case it is likely that the peak is an effect of

the MEM procedure.

Again, the default model of most interest to us is m(ω) = m0ω(m1 + ω). A

finite momentum study in the variation of the parameter m0 was conducted.

Figure 3.10 shows these results for T/Tc = 1.05 at p = 0.66 GeV, again

separating the longitudinal (left) and transverse (right) components. The

longitudinal polarisation reproduces a stable peak in the same position for each

value of m0. The width of the peak suggests that the position is accurate, but

we can clearly see that its location is ∼ 1 GeV higher than expected. Also,

the height of each peak is significantly different. This suggests that m0 has a

considerable effect on the overall normalisation of the spectral function, which

is not desirable. Again, the transverse polarisation yields far more reliable

results. A stable peak is obtained with a roughly equal height from each default

model. The width of each peak allows for their position to be a little higher

than expected.

3.5 Low Frequency

Our objective is to calculate the diffusion transport coefficient, and thus we

are interested in the low frequency region of the spectral functions. Previous

results in this sector show a stable transport peak shifted away from ω = 0

at finite momentum [107]. Figure 3.11 shows this region for a temperature of

230 MeV (1.05 Tc) and a mometum p = 0. Each of the three default models

presented in Section 3.3 are represented here, with m0 = 1.09375 and m1 = 1.
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Figure 3.10: Testing the variation of m0 in the default model m(ω) = m0ω(m1 +
ω) using spectral functions for the conserved vector current at T/Tc = 1.05
for the longitundinal (left) and transverse (right) polarisations at momentum
p = 0.66 GeV.

Figure 3.11: Low frequency region of spectral function from the T/Tc = 1.05
at zero momentum calculated with Nω = 5000.

The first of these, m(ω) = m0, yields an intercept with a large value for ρ(ω)/ω,

while the second, m(ω) = m0ω
2, appears to converge to zero. This behaviour is

expected as these default models dominate over the data in the spectral shape

at low frequency. They will give extreme upper and lower bounds on the value

of a transport peak in this region. The default model we are most interested

in, m(ω) = m0ω(m1 + ω), will yield the diffusion coefficient.

The value of the transport peak at ω → 0 is decidedly between the upper

and lower bounds set by the constant and quadratic default models. The

mass peak positions of each spectral function presented in Sections 3.3 and 3.4

alluded to an uncertainty in our results. The same uncertainty will be prevalent

in the low frequency range. Although we cannot predict a precise value for the

transport peak, it is encouraging to see that it falls between the values given

by the other two default models.
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Figure 3.12: Low frequency region of spectral function from the T/Tc = 1.05
at momentum p = 0.66. The longitudinal polarisation is to the left and the
transverse to the right.

Figure 3.12 shows the low frequency zone for the longitudinal (left) and

transverse (right) polarisations of the vector current correlator with momentum

p = 0.66 GeV and temperature T/Tc = 1.05. The transverse polarisation is as

expected where the default models given in equations (3.15), (3.16) provide

upper and lower bounds on the transport peak and the remaining m(ω) falls

between them. However, the longitudinal component gives a different picture.

The transport peak appears to diverge to infinity and m(ω) = m0ω
2 does not

converge to zero. As seen in Section 3.4 the longitudinal polarisation is not

well behaved. We therefore cannot make any reasonable assumptions about

the upper and lower bounds of the transport peak at finite momentum.

A direct comparison of these spectral functions to the default models in

the absence of data is difficult as the scale of their respective intercepts is very

different. Figure 3.13 shows the graphs of the default models. The constant

default model diverges much more quickly than the spectral function of the

transverse polarisation as ω → 0. This suggests that the data has some influence

on the peak position. The green curves representing m(ω) = m0ω(m1 + ω) in

Figures 3.12, 3.13 have a similar shape but a different intercept value. Again,

this may indicate a contribution from the data in the transport peak.

The form of the transport peak at finite momentum is the same as in the

zero momentum case, where the spectral function has a non-zero intercept with

the vertical axis. In their studies of finite momentum spectral functions using

the Langevin equations, Petreczky and Teaney found that the transport has a

stable peak structure shifted slightly away from ω = 0 [107]. We are uncertain

as to why our results are in conflict with their findings. The momentum values

we used are larger and this may be a consideration. Our momenta may not

be small enough to yield an accurate representation of this peak. The finite

resolution in ω may also cause some difficulties in reconstructing the transport

peak. It is also possible that the MEM was unable to correctly reproduce the

transport peak at finite momentum due to systematic errors.
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Figure 3.13: Low frequency region of the default models in the absence of data.

3.6 Conclusions and Outlook

I obtained spectral functions for the J/ψ meson from the conserved vector

current on a set of highly anisotropic lattices. At zero momentum, the results

indicate that the J/ψ particle melts in the QGP within a temperature range

of 1.2− 1.4Tc. We consider the results to be accurate within this temperature

range, suggesting that the J/ψ meson survives beyond the critical temperature

for deconfinement. The results are less stable for higher temperatures due

to the systematic uncertainties in the MEM process. It is possible that J/ψ

survives beyond 1.4Tc. Further analysis of the higher temperatures is required.

However, this may not be possible with this generation of lattices.

I conducted a study of J/ψ at non-zero momentum but it is yet unclear if the

melting of the J/ψ is dependent upon its momentum as the data are dominated

by systematic errors. The transverse polarisation of the vector current correlator

was found to be better behaved than the longitudinal component. The J/ψ

meson appears to survive in the medium at non-zero momentum within the

same temperature range of 1.2− 1.4Tc. Again, further analysis of the higher

temperatures is required to draw meaningful conclusions.

Focusing on the low frequency region of the spectral functions, I obtained a

transport peak from which we may calculate the heavy quark diffusion coefficient

using the Green-Kubo formula in equation (3.3). An approximate range for the

height of the transport peak has been found for J/ψ with zero momentum and

for the transverse component of the current with finite momentum. This can

provide a preliminary range for the value of the diffusion coefficient. However,

the quark number susceptibility must first be calculated as it provides an overall

normalisation scale. This is left for future work.
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The results from this particular set of data are not completely reliable.

Calculations from more accurate spectral reconstructions are required to com-

plete this project. A new generation of lattices is currently in production (see

Chapter 5) in the FASTSUM collaboration. This generation aims to increase

the anisotropy to ξ = as/aτ = 7 with as ' 0.125 fm and will allow for smaller

statistical uncertainties in the correlators. There have also been advances in the

implementation of MEM. The use of Fourier basis vectors in the calculation of

ρ(ω) can improve the accuracy of the results (See Section 2.4.3). Combining this

amendment to the MEM procedure with the new correlation functions should

yield spectral functions with smaller statistical and systematic uncertainties.

It may then be possible to construct a transport peak with a more reliable

height and thus compute a good approximation for the heavy quark diffusion

coefficient.
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Chapter 4

A Study of Open Charm Mesons

4.1 Motivation

Suppression of high transverse momentum hadrons is one of the principal

signatures for the formation of the quark-gluon plasma. Jet quenching for

light mesons in heavy ion collisions can be explained by radiative energy losses

[116]. However, early RHIC measurements observed a suppression of non-

photonic electrons for heavy mesons at high pT , indicating a substantial heavy

quark energy loss [117] which radiative energy loss alone could not sufficiently

describe [118]. Considering corrections from collisional energy loss accounted

for this discrepancy [20]. Since the electrons are predominately produced in

the decays of D and B mesons, it was predicted that these heavy mesons

would be formed and subsequently dissociate in-medium [25]. The time scale

at which this diffusion occurs is comparable to the lifetime of the fireball in

the URHICs. Thus the heavy quark spectrum contains information about

the modifications imposed by the medium. In order to gain a theoretical

understanding of this process, we must consider the spectral functions of the

D mesons. In general, theoretical models of the D mesons’ behaviour in the

QGP are challenged by simultaneously considering the elliptic flow and the

nuclear modification factor RAA. However, it has been shown that comparing

the D meson’s elliptic flow and RAA to that of the Ds meson can provide

valuable insight into the recombination of hadrons in medium and the transport

properties of the hadronic phase [119].

Experimentally, it can be difficult to extract information about the D

mesons from their leptonic decay products. The kinematics for charm hadrons

and electrons are only weakly correlated and the electrons measured in the

yield contain contributions from a number of D and B decays. Measuring the

charm hadrons from their hadronic decays leads to a better understanding

of the properties of the medium [120]. Recent measurements by the ALICE

Collaboration of the nuclear modification factor RpPb for D mesons in proton-
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lead collisions at the LHC found that the strong suppression of heavy quarks

they observed is not due to cold nuclear matter effects, but to the strong

coupling of the charm quarks to the QGP medium [121, 122].

D mesons can also be used to probe chiral symmetry restoration at finite

density. Modifications to the chiral condensate are directly related to a mass

shift in the D meson at high densities [123, 124, 125]. In a hot pion medium,

D meson modifications were found to strongly influence J/ψ production during

the expansion of the fireball in URHICs [126].

Previous lattice studies of D mesons can be found in references [68, 127, 128].

They employed the use of cumulants and spatial correlators to determine the

survival of open charm bound states in the QGP. I present an analysis of the

spectral functions of the S-wave D and Ds mesons at finite temperature. I also

show the correlators and effective masses for these particles. This work has

been presented at a conference and the proceedings can be found in reference

[129]. For completeness, S-wave charmonium results from the same set of gauge

configurations and a preliminary study of the charmonium P-waves have been

included.

4.2 Formulation

I have computed charmonium and D meson correlators on FASTSUM’s second

generation of lattices. This ensemble employs 2+1 flavours of dynamical quarks

where the light quark masses are degenerate and a strange quark is included in

the medium. The light quarks correspond to a pion mass of mπ ' 380 MeV and

the strange quark mass is tuned to its physical value so that aτms = −0.0743.

A full set of lattice parameters is given in Table 4.1.

Param Gen 2

Nf 2 + 1

as (fm) 0.1227

aτ (fm) 0.03506

a−1
τ (GeV) 5.63

ξ 3.5

Tc (MeV) 185

mπ/mρ 0.446

Table 4.1: Lattice parameters for the second generation of lattices.

This set of ensembles employs a Symanzik-Improved gauge action with

tree-level tadpole coefficients as seen in equation (1.31). The fermion action is

the anisotropic clover action with tree-level tadpole coefficients and stout-link
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smearing given in equation(1.32). The clover action requires a choice of clover

coefficients cs and ct. We follow the Hadron Spectrum Collaboration in their

choice and set them to be

cs =
ν

ũ3
s

and ct =
1

2

(
ν +

1

ξ

)
1

ũ2
sũt

, (4.1)

where ν = γg/γf is the ratio of the bare gauge anisotropy to the bare fermion

anisotropy, ξ is the desired renormalised anisotropy, and ũs and ũt are the

smeared spatial and temporal mean links.

The charm quark action is the same as for the light and strange quarks with

a minor adjustment in the bare fermion anisotropy. This was tuned separately

by the Hadron Spectrum Collaboration [130]. The dispersion relation

(aτEηc)
2 = (aτmηc)

2 +

(
1

ξηc

)2

(asp)
2 (4.2)

determine was calculated for the ηc meson with the same parameters as the

dynamical quarks (γf = γl = 3.4), resulting in a slight deviation from the pion

dispersion relation. The fermion anisotropy was tuned to γf = 3.988, yielding

the desired ξηc = 3.5.

The critical temperature for deconfinement is determined from the renor-

malised Polyakov loop using the renormalisation prescription in [131]. The

Polyakov loop 〈L〉 is related to the free energy Fq of a static quark via

L = e−Fq(T )/T . (4.3)

The free energy has an additive renormalisation which provides a multiplicative

renormalisation for the Polyakov loop. The renormalised Polyakov loop at

T = 355MeV is set to be equal to 1 such that the free energy is zero at

this temperature. For any temperature, it is then possible to calculate the

renormalised Polyakov loop from the bare Polyakov loop [132]. The critical

temperature for this set of lattices was calculated to be Tc = 185MeV. The

lattice volumes and corresponding temperatures for the second generation are

given in Table 4.2.

4.3 Correlator Analysis

As we have seen in Section 2.1, the imaginary time correlation function is

the basic tool to study propagation of a particle on the lattice. The finite

temperature correlators for the D = l̄c meson are presented on a logarithmic

scale in Figure 4.1. The pseudoscalar D is shown in the left panel and the

vector D∗ is on the right. The correlators were computed using point-to-point
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Ns ×Nτ T (MeV) T/Tc Ncfg

243 × 16 352 1.9 1001

20 282 1.52 567

24 235 1.27 1002

28 201 1.09 1001

32 176 0.95 1000

36 156 0.84 501

40 141 0.76 502

163 × 128 44 0.24 499

Table 4.2: Lattice size, temperature and number of configurations for the 2nd
generation of lattices.

propagators as defined in equation (2.1).

Figure 4.1: Correlator plots for the D meson in the pseudoscalar (left) and
vector (right) channels.

Figure 4.2 shows the correlators for the Ds = s̄c meson. As before, the

pseudoscalar Ds meson is presented on the left, and the vector D∗s is on the

right.

It is difficult to discern any physical results by looking at the correlators in

this form. A better picture is provided by the effective mass of the mesons and

by reconstructing the correlators using a reference temperature and comparing

these reconstructions to the original correlator data.

4.3.1 Effective Masses

The correlation functions of a hadron may be used to calculate its effective

mass. This is the mass of the particle according to the lattice parameters in

use. As it is a lattice calculation, we define it in lattice units as follows.

aτmτ = ln

(
G(τ)

G(τ + aτ )

)
(4.4)
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Figure 4.2: Correlator plots for the Ds meson in the pseudoscalar (left) and
vector (right) channels.

Figure 4.3: Effective mass plots for the D meson in the pseudoscalar channel
(left) and the vector channel (right) at zero temperature. The black dashed
horizontal lines represent the calculated masses, and the red represent the
physical masses.

For small time separations τ , contributions from excited states are present in

the effective mass. These give way to a plateau at the ground state mass at

higher τ .

I have calculated the effective masses for the D meson at the lowest available

temperature, T = 0.24Tc = 44 MeV and they are shown in Figure 4.3. The

pseudoscalar meson is shown in the left panel, and the vector on the right.

The black dashed horizontal lines represent the values of the ground state

masses as determined by Moir et al in [133] and the red are the physical masses.

Variational analysis was used to calculate these masses and the values obtained

for the light quarks are larger than their physical masses. Hence, the D meson

mass is also larger than its physical value. A clear plateau can be seen in each

plot where my calculations correctly reproduce the masses.

A similar case is presented for my work on the Ds meson at T = 0.24Tc = 44

MeV in Figure 4.4. Again, the pseudoscalar is presented on the left and the

vector on the right. A stable plateau is achieved at the expected value for Ds

in each channel.

I have also calculated the effective masses for the pseudoscalar and vector

D mesons at finite temperature, and these are presented in Figure 4.5. The
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Figure 4.4: Effective mass plots for the Ds meson in the pseudoscalar channel
(left) and the vector channel (right) at zero temperature. The black dashed
horizontal lines represent the calculated masses, and the red represent the
physical masses.

Figure 4.5: Effective mass plots for the D meson in the pseudoscalar (left) and
vector (right) channels. The dashed horizontal lines represent the calculated
masses.

D meson is expected to survive in the medium until temperatures reach ∼ Tc

[127, 68]. A plateau is therefore expected at the mass value for temperatures

below Tc. This expectation is not fulfilled for either the pseudoscalar or the

vector. However, we cannot draw conclusions about the melting of either

particle from the effective mass alone. In Figure 4.3 we notice that the plateau

is not attained until ∼ τ/aτ = 25. Thus it is unlikely that the number of data

points is sufficient in any high temperature calculation. The 243 × 40 lattice is

our coldest (non-zero temperature) lattice, which provides 20 temporal data

points due to the symmetry of the correlators. Nonetheless, there is a clear

trend towards the calculated mass value visible in both D and D∗. There are

temperature dependent deviations at a number of timeslices in both channels,

particularly the vector. This may be due to the zero modes present in the

vector channel. Further analysis of the transport coefficients could shed some

light on this effect.

Turning now to the Ds and D∗s , we see a very similar picture. The high

temperature effective masses are trending towards a plateau. Again, in the

zero temperature results, the plateau is achieved at ∼ τ/aτ = 25 (see Figure
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Figure 4.6: Effective mass plots for the Ds meson in the pseudoscalar (left) and
vector (right) channels. The dashed horizontal lines represent the calculated
masses.

4.4). We can again ascertain that the number of data points is insufficient to

draw conclusions about the exact mass of the particles at high temperature.

As with the D meson, there are small deviations at certain timeslices visible.

Again, we cannot be certain from the effective mass alone if they are an effect

of the medium or of the correlator itself.

4.3.2 Reconstructed Correlators

Thermal effects of the medium can impact the correlators and subsequently,

the spectral functions. In order to distinguish these effects from the trivial tem-

perature dependence of the kernel K(ω, τ, T ), the correlator can be compared

to a reconstructed correlator at a given temperature [134]. The reconstructed

correlator is defined as

Grec(τ, T ;T ′) =

∫ ∞
0

dω ρ(ω;T ′)K(ω, τ, T ), (4.5)

where T ′ is a reference temperature at which the spectral function can be

reliably constructed. Since the temperature is inversely proportional to the

number of temporal data points, T ∝ 1/Nτ , the coldest lattices yield the most

accurate results. As such, T ′ is usually taken to be the lowest temperature in

the data set.

The ratio of the measured correlator to the reconstructed correlator

G(τ, T )/Grec(τ, T ;T ′) is considered in order to gain insight into the temperature

dependence of the spectral function. Without any in-medium modifications,

this ratio is expected to be unity. It is possible to reconstruct the correlator

without first computing the spectral function at the reference temperature T ′

[106]. From the definition of the finite temperature kernel and using the fact
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that Nτ = 1/T we have that

K(ω, τ, T ) ≡ cosh[ω(τ − 1/2T )]

sinh(ω/2T )
=

cosh[ω̃(τ̃ −Nτ/2)]

sinh(ω̃Nτ/2)
, (4.6)

where ω̃ = aτω and τ̃ = τ/aτ are in lattice units. Applying the following

relation

cosh[ω̃(τ̃ −Nτ/2)]

sinh(ω̃Nτ/2)
=

m−1∑
n=0

cosh[ω̃(τ̃ + nNτ −mNτ/2)]

sinh(ω̃mNτ/2)
, (4.7)

where

m =
N ′τ
Nτ

∈ Z, (4.8)

for T = 1/Nτ and T ′ = 1/N ′τ , we obtain a formula for the reconstructed

correlator,

Grec(τ̃ , T ;T ′) =
m−1∑
n=0

G(τ̃ + nNτ , T
′). (4.9)

To ensure m ∈ Z, some additional zeros were introduced in the middle of

G(τ, T ′) where necessary. As this method does not rely on the reconstruction of

the spectral function, it is clear that any deviation from G/Grec = 1 indicates

thermal effects of the QGP. In this work I chose the lowest temperature

T ′ = 0.24Tc = 44 MeV to be the reference temperature.

The results for the D meson are presented in Figure 4.7. At the lowest

temperature T/Tc = 0.76 they are consistent with G/Grec = 1, indicating no

medium effects at this temperature in both the pseudoscalar and the vector

channels. There are significant thermal modifications visible at temperatures

above Tc, indicating a strong thermal effect from the QGP. Interestingly, at

T/Tc = 0.84 a significant deviation from unity is also apparent, suggesting that

there are thermal modifications below Tc.

Figure 4.7: Ratio of correlator to reconstructed correlator for the D meson
using a reference temperature of T = 44 MeV in the pseudoscalar (left) and
vector (right) channels.

A very similar picture is evident in the Ds meson results, which are pre-
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sented in Figure 4.8. In both the pseudoscalar and vector channels, the lowest

temperature indicates no modifications. At high temperature and in particular

at T/Tc = 0.84 we again see a deviation from G/Grec = 1, indicating thermal

modifications in the QGP, but also in the hadronic phase. With the exception

of the highest temperature T/Tc = 1.9, the modifications in the Ds sector

are smaller than D sector, supporting the prediction of an increased Ds yield

relative to D in heavy ion collisions [119, 135].

Figure 4.8: Ratio of correlator to reconstructed correlator for the Ds meson
using a reference temperature of T = 44 MeV in the pseudoscalar (left) and
vector (right) channels.

From these results we may deduce that the temperature of the medium

plays an important role in the lifespan of the D and Ds mesons. There is a

clear contribution from thermal effects of the QGP. In order to understand this

contribution, we must consider the finite temperature spectral functions for

these particles, which are presented in Section 4.5.

4.4 Spectral Functions at Zero Temperature

Spectral functions for the D and Ds mesons have been computed in the

pseudoscalar and vector channels using Bryan’s algorithm in the MEM process

with the modified kernel in equation (2.31) and the Fourier basis vectors

discussed in Section 2.4.3. I employed the use of two of the default model

functions we saw in the last chapter

m(ω) = m0, (4.10)

m(ω) = m0ω(m1 + ω). (4.11)

At large ω, m(ω) = m0w
2 is consistent with the default model in equation

(4.11). Details of these functions can be found in Section 3.3. As there is no

transport peak to consider, the parameter m1 does not play an important role.

We have shown in Section 3.3 that it is influential only for ω → 0. For this
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Figure 4.9: Spectral functions for the D and D∗ mesons at zero temperature.
The dashed vertical lines represent the ground state M0 and first excited state
M1 as calculated by [133].

work, I set m1 = 1. I present the results for the D, D∗, Ds, and D∗s mesons at

zero temperature.

Figure 4.9 shows the spectral functions for the D meson in the pseudoscalar

and vector channels. I have included dashed vertical lines to indicate the masses

of the ground state M0 and the first excited state M1 from [133]. A stable

peak structure at the ground state masses for each of the D and D∗ mesons is

evident. The respective heights of the peaks are very different, but since the

correlators have not been normalised we can attach no physical significance to

this.

While the spectral function rises to another peak in the vicinity of the first

excited state for the pseudoscalar D meson, we cannot say with any certainty

that the MEM has correctly reproduced it. The peak sits at a much higher

value than the calculated first excited state and is quite broad. It likely contains

contributions from a number of higher excited states and is subject to finite

volume effects. The vector D∗ does not achieve a stable peak at its first excited

state. The spectral function rises in a very broad structure but the MEM fails

to reproduce a reliable reconstruction of this state. Lattice artifacts and the

systematic errors involved in MEM dominate in this region and we cannot

conclusively say that we see evidence of the first excited state for either particle.

The spectral functions for the Ds meson are presented in Figure 4.10. We

can see the spectral function again produces a stable peak at the calculated

ground state of both the Ds and D∗s mesons. The first excited state has no
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Figure 4.10: Spectral functions for the Ds and D∗s mesons at zero temperature.
The dashed vertical lines represent the ground state M0 and first excited state
M1 as calculated by [133].

clearly defined feature for either the pseudoscalar or vector particles. The MEM

appears to form another peak structure around this value but it has a large

width. We cannot with any certainty identify the first excited states. This can

be attributed to lattice artifacts and limited statistics in this region.

I tested the dependence of MEM on the number of data points available.

An unconvincing ground state peak is visible in Figure 4.11 when the number

of temporal data points is significantly reduced. Reducing the number of

timeslices available from 126 to 15 has a big impact on the construction of the

spectral function. The data is not correctly reproduced and even the ground

state has not been pinpointed.

It seems that a small number of temporal data points on the lattice presents

a big problem for the MEM reconstruction. This unfortunately means that

for the high temperature data the MEM may not be correctly reproducing

their spectral functions. This may also be due to the statistical errors in the

correlator data. I used the spectral functions to reconstruct the correlator

data and as can be seen in Figure 4.12 they are not all consistent. At finite

temperature the reconstructed correlators appear to be the same as the original

correlators, within errors. However, these errors are larger than expected and

thus the results may not be trustworthy. It gives a very different picture

than the reconstructions in Figure 4.7 which did not rely on ρ(ω). The zero

temperature reconstruction deviates significantly from the original data which

is a cause for concern. The large deviations may be related to the resolution of

the spectral functions. An investigation into these errors is underway and we
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Figure 4.11: Effect of varying the number of timeslices used for the zero
temperature pseudoscalar D meson.

Figure 4.12: Ratio of the original correlator to the correlator reconstructed
from the spectral functions for the pseudoscalar D meson.
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Figure 4.13: Spectral functions for the D meson in the pseudoscalar (left) and
vector (right) channels. The dashed vertical lines represent the ground state
M0 and first excited state M1 as calculated by [133].

are currently producing correlators with more point sources which may improve

their accuracy.

4.5 Spectral Functions at Finite Temperature

In this section I present the spectral functions for the D,D∗, Ds, D
∗
s mesons at

finite temperature. I present the results at zero temperature along with those

of higher temperatures for a more complete picture.

First, consider the D meson spectral functions which are presented in Figure

4.13. The pseudoscalar D meson is in the left panel and the vector D∗ is on the

right. A well-defined peak structure is reproduced for T/Tc = 0.76, 0.84. This

indicates that these particles survive up to the critical temperature. In the

higher temperature lattices this peak loses its definition and we may conclude

that the D and D∗ mesons do not survive beyond Tc. The vector channel does

not give a convincing peak even at T/Tc = 0.84, suggesting that the D∗ meson

melts below Tc.

Now we will turn to the Ds meson. As before, the lowest two temperatures

give a well defined peak around the ground state mass in both the pseudoscalar

and vector channels, as can be seen in Figure 4.14. Above these temperatures

(∼ T/Tc = 0.84), in both cases, the particles do not appear to survive in the

medium. The D∗s meson appears to melt even sooner than the Ds meson.

The peak structure at T/Tc = 0.84 is very broad. It appears as though the

Ds meson melts at ∼ Tc, which supports previous calculations using spatial

correlation functions [68]. We may draw the conclusion that none of the D

mesons survive at temperatures exceeding the critical temperature. However,

the high temperature data are subject to uncertainties in the MEM.

I conducted a study of the systematic uncertainties in MEM using the D

meson data. Figure 4.15 shows the variance of the spectral function under the
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Figure 4.14: Spectral functions for the Ds meson in the pseudoscalar (left) and
vector (right) channels. The dashed vertical lines represent the ground state
M0 and first excited state M1 as calculated by [133].

change in the prior function m(ω) for the pseudoscalar D meson at temperature

T/Tc = 0.84. A variation in the normalisation parameter m0 with the quadratic

default model is presented alongside the constant default model. The peak

positions at the ground state mass are consistent and even the secondary peak

structures visible at ω ∼ 3.4 GeV are similar. These secondary peaks are

known to contain lattice artifacts and are not at the correct position for the

first excited state. However, their agreement with one another is a promising

indication that our results do not depend strongly on the default model.

I also tested the MEM using only half of the timeslices available on the

243 × 36 lattice. This is the blue line in Figure 4.15. It presents a much weaker

structure than the other graphs, suggesting that the number of temporal data

points is an important factor in the ability of MEM to reproduce a reliable

spectral function. The spectral function rises in the region of the ground state

mass but does not reproduce a stable peak. It indicates that MEM does not

work well for Nτ . 20.

An interesting effect has arisen in these results. There appears to be

a thermal mass shift below Tc. The position of the ground state peak in

the spectral functions at the lowest temperature T/Tc = 0.76 is higher than

expected, and higher indeed than the mass given by the T/Tc = 0.84 peak.

This can be seen in the pseudoscalar and vector channels for each of the D

and Ds mesons. We have seen in Figure 4.15 that the spectral reconstruction

at T/Tc = 0.84 has no dependence on the default model. In Figure 4.16 I

present the spectral functions for the D meson at the lowest two temperatures

calculated with our two different default models. These preliminary plots

suggest that this feature is robust and does not arise from an abnormality in

the method used to extract the spectral functions. Further study is required to

fully understand the true nature of this thermal effect.
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Figure 4.15: A study of default model dependence of the MEM process on the
pseudoscalar D meson at temperature T/Tc = 0.84. The dashed vertical line
represents its calculated mass.

Figure 4.16: Spectral functions of the D meson in the pseudoscalar (left) and
vector (right) channels at temperatures T/Tc = 0.76, 0.84 with two different
default models.
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Figure 4.17: Correlator plots for ηc (left) and J/ψ (right) at finite temperature
on a logarithmic scale.

4.6 Charmonium Results

The second generation of ensembles gave us access to temperatures below Tc. In

the charmonium studies presented in the previous chapter, each temperature was

above Tc. These lower temperatures can give more insight into the interactions of

charmonium with the medium and provide more information on their behaviour

as they cross the deconfinement threshold. Here I present results for the S-wave

ηc and J/ψ and some preliminary work on P-wave charmonium.

4.6.1 Correlators and Effective Masses for S-Wave Char-

monium

We begin with the correlators for the ηc and J/ψ mesons, presented in Figure

4.17 with the pseudoscalar on the left and the vector on the right. The

correlators have the shape we expect at each temperature. However, the errors

in these functions are approximately 3% which limits our ability to make precise

determinations of their effective masses and spectral functions. I have computed

the effective masses and they are presented in Figure 4.18 with the ηc on the

left and J/ψ on the right. As we can see, a stable plateau is visible for both

mesons at their respective masses as determined by Liu et al in [130]. It is

clear that the number of temporal data points plays a significant role in the

determination of spectral quantities. As with the D mesons, the plateau is only

attained at τ/aτ ∼ 25.

A very similar picture emerges for charmonium at finite temperature as

for the D mesons. The effective masses are presented in Figure 4.19. From

the results presented in the previous chapter, J/ψ survives to temperatures

T ∼ 1.4Tc. The effective mass of the mesons below this temperature should be

detectable in the form of a plateau. However, the small number of data points

available for these temperatures limits their ability to achieve a plateau. For

both ηc and J/ψ we see a trend towards the calculated mass of the mesons,
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Figure 4.18: Effective mass plots for ηc (left) and J/ψ (right) at zero tempera-
ture. The dashed horizontal lines represented the calculated masses.

Figure 4.19: Effective mass plots for ηc (left) and J/ψ (right) at finite tempera-
ture. The dashed horizontal lines represented the calculated masses.

but even for T < Tc a plateau is not attained.

The reconstructed correlators were calculated as per Section 4.3.2 using

a reference temperature of T ′ = 0.24Tc = 44 MeV. The ratios of the original

correlator data to their reconstructions are presented for the S-waves in Figure

4.20 with the ηc on the left and J/ψ on the right. For the ηc there is a significant

thermal effect apparent in the correlators. As with the D mesons, it is unclear

exactly what effect these medium modifications will have on the particle.

A similar situation is seen for the J/ψ vector meson. The effect is far

Figure 4.20: Ratio of correlator to reconstructed correlator for ηc (left) and
J/ψ (right) at finite temperature.
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Figure 4.21: Spectral functions for the ηc and J/ψ mesons at zero temperature.
The dashed vertical lines represent the ground state M0 and first excited state
M1 as calculated by [130].

more pronounced at higher temperatures than in the pseudoscalar case. This

suggests that the properties of the QGP heavily influence the movement of the

J/ψ particle through it. This is consistent with the results of the last chapter.

The survival of J/ψ in-medium allows for a transport peak to be detected

in the spectral function at low frequency. A thermal effect was seen in the

results from the first generation. An analysis of the transport peaks of high

temperature vector charmonium in the second generation will provide insight

into the characteristics of the QGP.

4.6.2 Spectral Functions for S-Wave Charmonium

We turn now to the spectral functions of S-wave charmonium. They are

presented at zero temperature in Figure 4.21. The MEM procedure used to

evaluate these functions is Bryan’s method with the modified kernel and Fourier

basis vectors as before. There is a sharp stable peak at the ground state masses

for both the ηc and J/ψ mesons as calculated by Liu et al in [130]. The spectral

function rises in a broad secondary peak for each meson. However, it is not at

the correct position for the first excited state and likely includes contributions

from higher excitations and lattice artifacts.

I also conducted a study of the spectral functions at finite temperature,

which are presented in Figure 4.22 with the ηc meson on the left and the J/ψ

meson on the right. The zero temperature results are included and the dashed

vertical lines represent the ground state and first excited state energies. There

is a peak structure evident at the ground state mass in the pseudoscalar at
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Figure 4.22: Spectral functions for ηc (left) and J/ψ (right) at finite temperature.
The dashed vertical lines represent the ground state M0 and first excited state
M1 as calculated by [130].

temperatures T < Tc. However, at T/Tc = 0.95 the peak is much broader

and is shifted slightly from M0. The ηc meson does not appear to survive

beyond this point. However, the statistical uncertainties in the correlators

and the systematic uncertainties in MEM may play a role in this. Previous

analysis of these configurations with a different MEM code showed ηc melting

at a temperature T ∼ 1.6Tc [136]. A similar picture is presented in the vector

channel. The peak structure at T/Tc = 0.95 is even broader than it is in the

pseudoscalar channel. We see no evidence of the survival of J/ψ at temperatures

above Tc. This is in conflict with our results from Section 3.3 which showed

a J/ψ dissociating at temperatures T ∼ 1.4Tc. The systematic uncertainties

may dominate in the high temperature data.

4.6.3 Reconstructed Correlators for P-Wave Charmo-

nium

I have done preliminary work on the scalar χc0 and axial vector χc1 charmonium

correlation functions. The correlator plots themselves do not give us much

insight into the in-medium propagation of these mesons. We consider instead

the ratio of the correlators to the reconstructed correlators, which can provide

more information on the effect of the medium. They are presented in Figure

4.23 with the scalar on the left and the axial vector on the right. As with the

D mesons and S-wave charmonium, the correlators were reconstructed with

reference temperature T ′ = 0.24Tc = 44 MeV. There appears to be a very

significant thermal effect present for both the scalar and the axial vector. The

high temperature correlators show a dramatic difference in this ratio. This

supports previous results using anisotropic lattices by Aarts et al in [112]. Since

the signal-to-noise ratio is high for P-wave states and they have a known zero

mode, we cannot say for certain how strong the thermal effect is. Similar results

were found for the P-wave states by Ding et al [106].
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Figure 4.23: Ratio of correlator to reconstructed correlator for the scalar (left)
and axial vector (right) at finite temperature.

Figure 4.24: Spectral functions for scalar (left) and axial vector (right) at zero
momentum. The dashed vertical lines represent the ground state M0 and the
first excited state M1 as calculated by [130].

4.6.4 Spectral Functions for P-Wave Charmonium

The spectral functions at finite temperature are presented in Figure 4.24. The

zero temperature results are work in progress and are therefore not shown here.

In the scalar channel, there is a peak structure for temperatures below Tc, but

no evidence of a peak above Tc. This indicates that χc0 survives up to the

critical temperature for deconfinement but perhaps not beyond it. Even at the

lowest temperature T/Tc = 0.76, the peak is broad and is not centred on the

calculated value for the ground state mass. Although there appears to be a well-

defined peak at T/Tc = 1.09 the instability in the lower temperature spectra

suggests that MEM is not correctly reproducing the ground state. Systematic

uncertainties in MEM and a poor signal-to-noise ratio may dominate in these

results. We are currently working to improve upon this.

The spectral function for χc1 shows only a small peak at the lowest temper-

ature. For temperatures T/Tc ≥ 0.84 there is no evidence of a peak. Umeda

et al found that the axial vector dissociates at temperatures T ∼ Tc [137].

This may indicate that the axial vector does not survive at these temperatures.

Comparing these results to the spectral functions obtained in [112], I suggest
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that the systematic uncertainties dominate over the data and with our current

data, MEM cannot accurately reconstruct the spectral functions for P-wave

charmonium.

4.7 Conclusions and Outlook

The first lattice results for S-wave open charm mesons from temporal correlation

functions have been presented. In comparing reconstructions of the correlators

to the original functions I have shown there are significant medium modifications

for both the D and Ds mesons above and below Tc. I have also presented the

spectral functions for these mesons at finite temperature. Neither the D nor the

Ds appear to survive beyond the critical temperature for deconfinement. An

apparent thermal mass shift was detected in the spectral functions at the lowest

temperatures. The position of the ground state peak at T/Tc = 0.84 agrees

with the T/Tc = 0.24 result. However, a slightly larger mass was measured

at T/Tc = 0.76. This feature appears to be robust, though further analysis is

required to determine its nature.

I have also presented results for S-wave and P-wave charmonium. A sig-

nificant thermal effect is apparent from the ratio G/Grec for both the S- and

P-waves. In the spectral analysis of the S-waves with our current data, we

see no evidence of survival above Tc for ηc or J/ψ. This is in conflict with my

previous results in Chapter 3. The correlators for this generation of ensembles

were calculated using point-to-all propagators. The first generation used all-

to-all propagators and hence had much smaller statistical uncertainties. This

may account for the discrepancy in the results. The statistical uncertainties in

the correlator data for the second generation may prohibit an accurate recon-

struction of the spectral functions. At present, we are producing additional

correlators with extra point sources to improve the statistics of the data. In

the near future, new spectral functions will be produced for these mesons.

My analysis of the P-wave spectral functions suggests that the scalar and

axial vector dissociate at temperatures T ∼ Tc. However, these spectral

reconstructions may be dominated by statistical and systematic uncertainties.

Further analysis of P-wave charmonium will be completed with the additional

sources. We are currently also producing a new generation of highly anisotropic

ensembles which may allow the spectral quantities of P-waves to become more

accessible.
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Chapter 5

A New Generation of Lattices

5.1 Motivation

For the results presented in this thesis thus far, I have used two generations

of lattices to calculate the spectral functions of charmonium and D mesons.

The defining parameters for each generation are quite different (see Tables

3.1, 4.1). Our aim is to create a new generation of lattices which doubles

the anisotropy ξ = as/aτ from the second generation by halving the temporal

lattice spacing aτ , keeping all other parameters constant. This allows us to

double Nτ at constant temperature. As this is one of the main limiting factors

for MEM, it will dramatically improve the ability of MEM to reconstruct the

spectral functions for charmed mesons. It will also be possible to reach higher

temperatures while reducing the O(a2
τ ) errors.

With the improved resolution on these new ensembles, we hope to gain

new insights, for example analysing some excited-state physics for the charmed

mesons which we could not reliably discern from either of the previous two

generations. The P-wave states should also become more accessible. In this

chapter, I outline the process by which we are creating this new generation of

ensembles.

5.2 Set Up

I followed a method previously established by Edwards et al [138] for tuning

parameters for three flavour anisotropic clover fermions with stout link smearing.

Using the lattice coupling β, the bare gauge anisotropy γg, the bare fermion

anisotropy γf and the quark mass (in lattice units) aτm0 as input parameters I

found results for the spatial lattice spacing as, the ratio of the pion mass to

the rho mass mπ/mρ, the gauge anisotropy ξg and the fermion anisotropy ξf .

The target spatial lattice spacing is of the order as = 0.125 fm with a target

anisotropy of ξg = ξf = 7.0. This would give a very fine temporal lattice spacing
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Target Parameters

ξg 7.0

ξf 7.0

as 0.125fm

mπ/mρ 0.545

Table 5.1: The target output parameters for the tuning of the third generation
of lattices.

aτ = 0.018 fm. The target parameters for this new generation of lattices is

given in Table 5.1.

Tuning to the 3-flavour symmetric point reduces the number of tuned

parameters as we use only a single quark mass. The strange quark mass can

be set to its physical value after the tuning is completed. It is useful to use

dimensionless quantities so we utilise the parameter mπ/mρ. To get this value,

consider the Gell-Mann–Oakes–Renner (GMOR) relation

m2
π = (mu +md)〈ψ̄ ψ〉

1

f 2
π

, (5.1)

where mu and md are the masses of the up and down quarks respectively and

fπ is the pion decay constant. This relation can be generalised for pseudoscalar

consisting of any two quarks with masses m1, m2 as follows

m2
PS = (m1 +m2)〈ψ̄ ψ〉 1

f 2
PS

. (5.2)

Adhering to the QCDSF Collaboration’s philosophy, we consider the plane in

which the average quark mass is constant. On this plane a number of physical

quantities are invariant. This reduces the number of parameters which need to

be tuned. We need mu +md +ms = constant and so we apply the generalised

GMOR relation to the kaon.

m2
K = (ml +ms)〈ψ̄ ψ〉

1

f 2
π

, (5.3)

where ml is the mass of the up or down quark. Now we consider the quantity

m2
π + 2m2

k.

m2
π + 2m2

k = 2ml〈ψ̄ ψ〉
1

fπ2
+ 2(ml +ms)〈ψ̄ ψ〉

1

f 2
π

=
2〈ψ̄ ψ〉
f 2
π

(2ml +ms)
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=
2〈ψ̄ ψ〉
f 2
π

(mu +md +ms). (5.4)

We can see that m2
π + 2m2

K is a good choice of parameter, but we would like to

have a dimensionless quantity. The vector meson mass is linear in the quark

mass, and we can use this to obtain the dimensionless quantity

m2
π + 2m2

K

(mρ + 2mK∗)2
. (5.5)

As we are tuning to the 3 flavour symmetric point, the masses of the up, down

and strange quarks are degenerate, i.e. mu = md = ms. Thus we also have

mπ = mK and mρ = mK∗ , yielding

m2
π + 2m2

K

(mρ + 2mK∗)2
=

m2
π + 2m2

π

(mρ + 2mρ)2

=
3m2

π

(3mρ)2

=
1

3

(
mπ

mρ

)2

. (5.6)

Now, to find the value of mπ/mρ, I used the meson masses in lattice units

provided by Lin et al in reference [64]. This results in a mass ratio of mπ/mρ =

0.545, corresponding to a pseudoscalar pion mass of 496MeV.

Using equation (4.1), the clover coefficients cs and ct were calculated. Here,

the anisotropy is set to the target value of ξ = 7.0. The smeared mean links

ũs and ũt were recalculated after the system had thermalised to keep the

parameters self-consistent. The Rational Hybrid Monte Carlo (RHMC) method

was used to generate the gauge configurations [139]. This was done using the

Chroma software package [140] with computational facilities provided by the

Irish Centre for High End Computing (ICHEC) and the Distributed Research

utilising Advanced Computing (DiRAC). I then computed the Wilson flow for

these configurations which enabled me to calculate ξg and as. This method is

detailed in Section 5.3.2. I also calculated the dispersion relations for the pion

and rho meson, giving results for ξf and mπ/mρ. Details of this can be found

in Section 5.3.6.

Tuning four parameters simultaneously requires a number of iterations of

the process. For an initial estimate of the input parameter γg, linear equations

were built using an isotropic system which gives γg = γf = ξ = 1 and the

second generation parameters for which γg = 4.3 and ξ = 3.5 yielding

γg = A+Bξ
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⇒ 1 = A+B(1);

4.3 = A+B(3.5), (5.7)

where A and B are constants. Solving this system of equations results in

γg = 8.412. A similar process was used to estimate ν = γg/γf = 1.636. The

strange quark mass in lattice units is aτms = −0.073 from the second generation

ensembles. In the third generation the aim is to halve aτ , so a rough estimate

for the mass is aτms = −0.03. As a conservative guess, I began by using

aτm0 = 0. The lattice coupling β = 1.5 was left unchanged from the second

generation. Once the results for the output parameters were obtained, minor

adjustments were made for the next iteration. Examining the results obtained

by slight variations in one or two parameters in each iteration gave insight

into the dependence of the output parameters on the input and allowed us to

perform an improved interpolation to the desired values. A detailed account of

the analysis is provided in Sections 5.3.5 and 5.3.7.

The input parameters for each run are shown in Table 5.2 and the results

are given in Tables 5.3, 5.4. Runs 1 - 9 have been omitted as an error was made

in the calculation of the clover coefficients. As the resulting parameters depend

on these coefficients we cannot have any confidence in their accuracy. Run 13

has also been omitted as it contained a non-degenerate strange quark mass.

5.3 Method

In calculating the target parameters the Wilson flow and the meson dispersion

relation are used. These methods are detailed in this section. I also studied

the effect of smearing on the parameters and included it in many of the later

runs. First, a brief account of smearing.

5.3.1 Smearing

Quark and gluon fields may be smeared in order to improve the measurements

made using their correlation functions. Smearing is introduced in order to

reduce the unphysical fluctuations at short distances on the lattice and to

account for the finite size of a hadron. While this results in a stronger signal,

there is also a stronger distortion close to the source. The quarks and gluons

are smeared independently using different methods.

For the gluons, stout link smearing is employed which is detailed in reference

[62]. A weighted average of neighbouring plaquettes is added to the links on

the lattice and this is iterated a number of times to obtain the final smeared

link variables. A Hermitian, traceless matrix Qµ(x) is introduced in order to
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Run no. β γg γf aτm0

10 1.65 9.0 5.5 -0.01

11 1.65 9.0 6.4 -0.01

12 1.65 9.0 6.9 -0.02

14 1.68 9.0 6.9 -0.01

15 1.68 7.5 5.8 -0.01

16 1.68 9.0 7.5 -0.01

17 1.68 7.5 6.25 -0.01

18 1.75 9.0 7.5 -0.01

19 1.68 9.0 6.9 -0.02

20 1.68 9.0 6.9 -0.022

21 1.68 9.0 7.5 -0.025

22 1.7 9.0 6.9 -0.022

23 1.7 9.0 7.5 -0.025

24 1.7 8.0 6.7 -0.025

25 1.75 8.0 6.7 -0.01

26 1.75 8.0 6.7 -0.02

27 1.75 8.0 6.7 -0.025

28 1.75 8.0 6.7 -0.028

29 1.75 8.0 7.3 -0.025

30 1.7 8.3 8.3 -0.03

31 1.6 9.5 7.5 -0.025

32 1.6 10.0 8.0 -0.01

33 1.7 8.3 8.3 -0.038

34 1.6 9.5 7.5 -0.03

35 1.6 9.5 8.0 -0.025

36 1.6 9.5 7.0 -0.023

37 1.6 9.0 7.5 -0.025

38 1.6 10.0 7.5 -0.025

39 1.58 9.5 7.5 -0.025

40 1.62 9.5 7.5 -0.025

Table 5.2: Input parameters for each tuning run. Note that runs 1-9 have been
omitted as an error was made in calculating the clover coefficients. Run 13 is
omitted as it had 2 + 1 denegerate quark flavours.
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Run no. ξg ξf (π) ξf (ρ) as mπ/mρ

10 7.8(2) 4.9(1) 0.1141(19) 0.76(4)

11 7.2(2) 6.1(3) 0.1395(12) 0.805(18)

12 7.19(7) 6.8(1) 6.71(7) 0.1633(9) 0.716(6)

14 7.05(4) 5.9(1) 6.3(1) 0.1677(6) 0.819(5)

15 5.83(3) 6.6(1) 6.29(8) 0.2090(8) 0.679(7)

16 7.05(12) 7.1(1) 0.1889(8) 0.831(8)

17 6.03(2) 5.99(8) 6.1(1) 0.2273(3) 0.862(3)

18 7.75(18) 7.2(1) 0.183(1) 0.824(5)

19 6.80(6) 5.6(1) 4.64(4) 0.1273(7) 0.804(8)

20 7.72(7) 6.3(2) 6.9(1) 0.1263(6) 0.605(9)

21 8.1(1) 6.9(1) 7.32(9) 0.146(1) 0.613(6)

22 7.6(1) 5.7(1) 0.1167(7) 0.64(1)

23 6.99(9) 6.0(1) 6.89(7) 0.140(2) 0.661(5)

24 6.83(22) 6.34 0.1601(14) 0.759(9)

25 6.6(1) 6.3(1) 0.1917(9) 0.846(5)

26 7.02(19) 7.0(1) 0.169(2) 0.75(2)

27 6.61(19) 6.14(5) 0.144(1) 0.73(1)

28 7.49(27) 6.3(2) 5.80(4) 0.139(1) 0.67(1)

29 7.0(3) 6.10(13) 6.05(9) 0.175(2) 0.747(8)

31 7.41(9) 5.79(5) 6.05(2) 0.1292(5) 0.556(7)

Table 5.3: Output parameters for each tuning run calculated with point quark
sources. Note that runs 1-9 have been omitted as an error was made in
calculating the clover coefficients. Run 13 is omitted as it had 2 + 1 denegerate
quark flavours.
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Run no. ξg ξf (π) ξf (ρ) as mπ/mρ

24 (s) 6.8(2) 6.6(1) 6.34(7) 0.160(1) 0.727(7)

25 (s) 6.6(1) 7.1(3) 7.3(2) 0.1917(9) 0.611(9)

26 (s) 7.0(2) 6.77(7) 6.45(7) 0.170(2) 0.775(5)

27 (s) 6.6(2) 5.77(8) 6.05(2) 0.144(2) 0.698(4)

28 (s) 7.5(3) 6.3(1) 5.89(9) 0.139(1) 0.623(7)

29 (s) 7.0(3) 6.1(2) 6.26(9) 0.175(2) 0.755(5)

30 (s) 7.5(1) 7.94(7) 8.16(6) 0.1993(5) 0.728(2)

31 (s) 7.41(9) 5.50(5) 6.50(4) 0.1292(5) 0.563(6)

32 (s) 7.71(4) 7.6(1) 7.7(1) 0.1972(5) 0.819(3)

33 (s) 7.8(2) 6.4(2) 6.68(5) 0.1638(6) 0.37(2)

34 (s) 7.56(5) 6.01(7) 6.99(4) 0.1457(6) 0.550(4)

35 (s) 7.9(4) 6.74(5) 6.80(4) 0.1636(9) 0.564(6)

36 (s) 6.6(3) 5.5(2) 6.07(9) 0.1275(9) 0.483(12)

37 (s) 6.6(1) 7.27(3) 7.29(3) 0.366(4) 0.843(1)

38 (s) 8.35(5) 5.4(5) 6.24(3) 0.1465(5) 0.506(9)

39 (s) 7.4(1) 5.11(3) 6.85(6) 0.139(1) 0.52(1)

40 (s) 7.5(1) 6.9(1) 6.71(5) 0.125(1) 0.507(9)

Table 5.4: Output parameters for each tuning run calculated with smeared (s)
quark sources and sinks. Note that runs 1-9 have been omitted as an error was
made in calculating the clover coefficients. Run 13 is omitted as it had 2 + 1
denegerate quark flavours.
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ensure the resulting smeared link is an element of SU(3). This matrix is given

by

Qµ(x) =
i

2

[
Ω†µ(x)− Ωµ(x)

]
− i

2N
tr
[
Ω†µ(x)− Ωµ(x)

]
, (5.8)

where

Ωµ(x) =
∑
±ν 6=µ

ρµνUν(x)Uµ(x+ ν̂)U †ν(x+ µ̂)U †µ, (5.9)

is the generator of the stout smearing transformation and ρµν are the smearing

parameters. Thus the smeared link variable is defined to be

U (n+1)
µ (x) = eiQ

(n)
µ (x)U (n)

µ (x). (5.10)

Since Qµ(x) is Hermitian and traceless, the exponential term is an element of

SU(3). Thus the smeared link variable must also be in SU(3).

Quarks are smeared by replacing the point sources with sources which have

a finite size. This is a more realistic interpretation of the quark source. Smeared

operators are constructed from these finite-size sources and give an increased

overlap in the lower energy states. This is advantageous in the calculation of

ground state masses. A gauge-covariant scheme in which the smeared quark

fields are substituted by a Gaussian weighted average of the surrounding sites

on the same timeslice is implemented [141]. On the lattice, the smeared quark

fields are then approximated by

ψ̃(x) =

(
1 +

σ2
s

4nσ
∆

)nσ
ψ(x), (5.11)

where ∆ is the 3-dimensional gauge covariant Laplacian

∆ψ(x) =
±3∑

n=±1

(Un(x)ψ(x+ n̂)− ψ(x)) , (5.12)

σs is the smearing radius, and nσ is the number of iterations for the smearing

procedure.

For tuning these lattices, both gluon and quark smearing are used. The

smearing parameters are kept consistent across all tuning runs. The weight

parameter in equation (5.9) for link smearing is ρµν = 0.14 and the gauge-

invariant Gaussian weight parameter is σs = 1.2 for the quark field smearing in

equation (5.11).

5.3.2 Wilson Flow

The most popular method to determine the anisotropy in the gauge sector

is by comparing the spatial-spatial to the spatial-temporal Wilson loops. In
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dynamical simulations the statistical uncertainties are larger in the tuning

process than in the quenched approximation. A more robust method to

correctly tune the gauge anisotropy is required. A new method to achieve

this was proposed by Borsányi et al in [142] which concentrates on the Wilson

flow. This method is beneficial as it does not require the evaluation of large

Wilson loops (which have a poor signal to noise ratio) nor does it rely on the

interpolation of lattice data between the lattice sites.

The Wilson flow in the continuum is defined to be the solution of the

differential equation
dAµ
dτ

= DνFνµ, (5.13)

where Aµ(x, τ) is a gauge field with an initial condition at τ = 0. The flow is

parametrised by τ , which has dimensions of length squared. Lüscher showed

that the gauge field defined by the flow is renormalised and no ultraviolet

divergences appear to any order in perturbation theory for any time τ > 0

[143]. In order to study the Wilson flow on the lattice, equation (5.13) must be

discretised. The discrete flow equation has been studied in detail by Lüscher in

[144] and is given by
dUµ
dτ

= Qµ(U)Uµ, (5.14)

where Qµ is the generator of the stout smearing transformation given in equation

(5.8). It is required that the smearing parameters obey ρi4 = ξ2
g and ρij = ρ4i = 1

for the discrete flow equation to correctly reproduce the continuum equation

(5.13). ξg = as/aτ is the gauge anisotropy which describes the theory on the

scale of the lattice spacing. Since for any time τ > 0 the gauge field along

the Wilson flow is already renormalised, we can conclude that the anisotropy

parameter appearing in the Wilson flow is the renormalised gauge anisotropy

ξg. In implementing the Wilson flow, successive stout smearing steps are taken

on a gauge field configuration with a small smearing parameter.

5.3.3 Scale Setting with the Wilson Flow

In Section 1.3.4 I introduced the idea of scale setting for lattice calculations. A

parameter is chosen to set the scale in order to attach a physical meaning to

the results. As we are using the Wilson flow in this new generation of lattices,

we set the scale with a parameter provided by the flow itself. One option is to

use the
√
t0 as presented by Lüscher in [145]. The Wilson flow is calculated up

to a scale τ when a dimensionless observable reaches a preset value. The flow

time taken to achieve this is τ = t0. To obtain t0, the flow is integrated and

the following equation solved.

[
τ 2〈E(τ)〉

]
τ=t0

= 0.3, (5.15)
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where 〈E(τ)〉 is the quantum expectation value of the Yang-Mills action density

given by

E(τ) =
1

4

∑
x

F 2
µν(x, τ). (5.16)

However, τ 2〈E(τ)〉 contains information about gauge configurations at scales

larger than O(1/
√
τ). This is undesirable as it can include scales around the

cut-off. Borsányi et al proposed a new scale which depends only on scales

around O(1/
√
τ) and is called the w0 scale [146]. It is particularly advantageous

as the behaviour of the flow at small flow times
√
τ ∼ a is subject to lattice

discretisation effects. Also, it only has a minor quark mass dependence and its

definition does not depend on any extrapolation. The w0 scale is defined to be[
τ

d

dτ
τ 2〈E(τ)〉

]
τ=w2

0

= 0.3, (5.17)

where 〈E(τ)〉 is the same action density as in equation (5.16). It is not possible

to directly measure the w0 scale in experiment, but its physical value was

calculated in [146] to be w0 = 0.1755(18)(04) fm. Neither the
√
t0 nor the w0

scales require renormalisation. This was shown by perturbative calculation in

[145]. The w0 scale was calculated at various pion and kaon masses and was

found to depend weakly on the quark mass. In this work we take w0 = 0.1755

and do not consider the quark mass dependence. To calculate the Wilson flow

coefficients we adopted the public code by Borsányi [146].

5.3.4 Obtaining ξg from the Wilson Flow

The parameter ξg can be determined from the Wilson flow calculations. We

saw the Yang-Mills action density in equation (5.16). Now we consider the

spatial and temporal components separately.

Ess(τ) =
1

4

∑
x,i 6=j

F 2
ij(x, τ), (5.18)

Est(τ) =
1

2

∑
x.i

F 2
i4(x, τ). (5.19)

The expectation values of Ess and Est in physical units are equal. Since for any

τ > 0 these operators are renormalised, we can use them to provide a definition

for the renormalised gauge anisotropy. The ratio of the field strength tensors

at a given point τ along the flow is given by

〈a4
sEss(τ)〉

〈a2
sa

2
tEst(τ)〉

=
a4
s〈Ess(τ)〉

a2
sa

2
t 〈Est(τ)〉

=
a4
s

a2
sa

2
t

=
a2
s

a2
t

= ξ2
g . (5.20)

For convenience, we will work in lattice units from this point forward. In
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these units, the parameters become

a4Ess(τ)→ Ess(τ)

a2
sa

2
tEst(τ)→ Est(τ)

τ/a2
s → τ

w0/as → w0. (5.21)

We will also adjust the definition of ξg to aid the calculations. For convenience,

the ratio of derivatives of the action densities is used instead of using the field

tensors directly. This yields the ratio

RE ≡ ξ2
g =

[
τ d

dτ
τ 2〈Ess(τ)〉

]
τ=w2

0[
τ d

dτ
τ 2〈Est(τ)〉

]
τ=w2

0

. (5.22)

Note that the spatial component of this ratio is the w0 scale as in equation

(5.17).

For our calculations we made a minor adjustment to this scheme. We define

two parameters ws and wt and treat space and time differently.[
τ

d

dτ
τ 2〈Ess(τ)〉

]
τ=w2

s

= 0.15, (5.23)

[
τ

d

dτ
τ 2〈Est(τ)〉

]
τ=w2

t

=
0.15

ξ2
w

, (5.24)

where ξw is an estimate for the gauge anisotropy parameter used in the flow

equation.

In order to solve the equations for ξg, ws and wt, the Wilson flow is evaluated

at a number of anisotropy parameters ρi4 = ξ2
w and ρij = ρ4i = 1 in equation

(5.9). We choose five values of ξw (ξw = 6.0, 6.5, 7.0, 7.5, 8.0) for which we

obtain the gauge anisotropy ξg and we are then able to interpolate a result

ξg = ξw. Thus the gauge anisotropy is determined by

ξg = ξw

∣∣∣∣
ws/wt=1

. (5.25)

For each ξw the flow time τ for which the equations (5.23), (5.24) hold is

calculated and this is then input into equation (5.25)

It is a simple matter to extend this calculation to compute the spatial lattice
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Input Parameters

β 1.6

γg 9.5

γf 7.5

aτmτ -0.025

Table 5.5: Input parameters for tuning run 31.

ξw ws wt

6.0 1.349(18) 1.486(19)

6.5 1.353(17) 1.434(18)

7.0 1.353(17) 1.385(18)

7.5 1.352(16) 1.341(17)

8.0 1.350(16) 1.301(17)

Table 5.6: Wilson flow coefficients ws and wt with errors for different values of ξw
calculated for run 31 parameters on a 123× 128 lattice with 166 configurations.

spacing as follows

as =
w0

ws
. (5.26)

This is shown in detail in Section 5.3.5.

5.3.5 Results for ξg and as from the Wilson Flow

I will use tuning run 31 to illustrate how the Wilson flow achieves the desired

results. The input parameters for this run are given in Table 5.5. Table 5.6

shows the Wilson flow output ws and wt with errors for 5 different values of ξw.

This was calculated on a N3
s ×Nt = 123 × 128 lattice with 166 configurations.

The Wilson flow produces values for ws and wt. The ratio of these numbers

then provides the gauge anisotropy ξg = ws/wt. The resulting values for ξg

are plotted along with a linear fit. This is shown in Figure 5.1. The dashed

horizontal line ws/wt = 1 is included and the interpolated gauge anisotropy

ξg = 7.41(9) is then given by its point of intersection with the linear fit.

The statistical uncertainties are calculated using the bootstrap method.

Bootstrap sets are generated from the data set by choosing a data point at

random, replacing it, and repeating this process. I used 100 bootstrap samples

as standard for every data set.

The spatial lattice spacing as is determined by equation (5.26). as is

calculated for each value of ξw and the results are plotted with a linear fit as

shown in Figure 5.2. Included in this plot is a dashed vertical line representing

the calculated value for the renormalised gauge anisotropy ξg. The intersection
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Figure 5.1: Ratio of Wilson coefficients against the chosen anisotropy values ξw
for run 31. The intersection of the dashed horizontal line at ws/wt = 1 and the
linear fit gives the gauge anisotropy ξg, which is respresented by the dashed
vertical line.

of this line with the linear regression gives the spatial lattice spacing for this set

of parameters. There is a very weak dependence on ξw for this set of parameters.

In general, I have found this dependence may be stronger.

5.3.6 Meson Dispersion

The meson dispersion relation can be used to calculate the mass ratio mπ/mρ

at zero momentum and the fermion anisotropy ξf at small momentum. On an

anisotropic lattice, this dispersion relation is given by

a2
τE

2 = a2
τm

2
0 +

a2
sp

2

ξ2
f

, (5.27)

where E is the energy and p is the momentum on the lattice given by

p2 =
4

a2
s

[
sin2

(aspx
2

)
+ sin2

(aspy
2

)
+ sin2

(aspz
2

)]
. (5.28)

The effective mass (in lattice units) aτmeff(τ) for the π and ρ mesons can be

calculated from the correlator using the definition in equation (4.4). At large τ

a plateau should be visible in the effective mass plots at each momentum value.

This plateau provides the fitting range for the final mass value. The mass ratio
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Figure 5.2: as values for each ξw fitted to a linear regression the the run 31
parameters. The dashed vertical line is the calculated gauge anisotropy ξg for
this set of data.

mπ/mρ is then determined from these fits.

For small momentum we can see in equation (5.27) that the fermion

anisotropy can be determined by the slope of the dispersion relation. Once the

linear fit at each momentum value is complete, its slope is given by 1/ξ2
f .

5.3.7 Results for ξf and mπ/mρ from the Dispersion Re-

lation

The dispersion relation is calculated for the pion and rho meson for each tuning

run. This yields the results for the fermion anisotropy ξf , the pion mass (in

lattice units) aτmπ, the ratio of the pion mass to the ρ meson mass mπ/mρ

and the effective energies at different momenta. The fermion anisotropy should

equal the gauge anisotropy, and the target value is ξf = 7.0. Again, tuning run

31 is used to describe the method.

The dispersion relation at zero momentum yields the effective mass. I

present the effective masses for both the pion and the ρ meson in Figure 5.3.

A plateau is achieved at the value of the mass for each meson, giving a ratio of

mπ/mρ = 0.556(7). At non-zero momentum, the dispersion relation produces

the effective energies of the π and ρ mesons. In Figure 5.4 the effective energies
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Figure 5.3: The effective mass for the pion and rho meson calculated using the
parameters given in tuning run 31.

Fit Ranges

n2 0 1 2 3 4 5 6

π 34–63 34–56 23–35 28–47 26–36 25–38 22–34

ρ 39–63 39–63 23–45 32–63 26–43 25–47 25–40

Table 5.7: The values of τ/aτ used for each momentum value a2
sp

2
n =

(
2π

Ns

)2

n2

to calculate the fermion anisotropy ξf of the π and ρ mesons.

for each meson are presented for each momentum value given by

a2
sp

2
n =

(
2π

Ns

)2

n2, (5.29)

where n2 = n2
x + n2

y + n2
z = 0, 1, 2, 3, 4, 5, 6. The statistical uncertainties at high

momentum are very large. Beyond asp
2
1, a plateau is difficult to discern. As the

plateaux are used to determine the fitting ranges for the fermion anisotropy,

this can affect the output value ξf . The fitting ranges chosen for run 31 are

given in Table 5.7. At high momentum , the dispersion relation for the ρ meson

is less noisy than for the pion. Thus ρ gives a better determination of the

fermion anisotropy.

Figure 5.5 shows the dispersion relation for the pion and the rho meson

with both smeared and unsmeared sources. We see a significant difference in

the energies calculated with smeared sources compared to the calculation with

point sources. This affects the fermion anisotropy as it is inversely related
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Figure 5.4: The effective energies at each momentum value for the parameters

given in tuning run 31 calculated using a2
sp

2
n =

(
2π

Ns

)2

n2.
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Figure 5.5: The dispersion relation for the pion (left) and rho meson (right)
calculated with point sources and smeared sources for the parameters given in
tuning run 31.

to the slope of the line. The fermion anisotropy for the pion increases from

5.50(5) to 5.79(5) and for the ρ meson increases from 6.05(2) to 6.50(4) for

run 31. The mass ratio is also affected. Including smeared sources and sinks

mπ/mρ = 0.563(6), and with point sources we obtain mπ/mρ = 0.556(7).

5.4 Tuning Results

Tuning an anisotropic lattice is not an easy task. The inclusion of the bare

gauge and fermion anisotropies gives two additional parameters on which the

output parameters may depend. The use of the clover action also complicates

matters as the clover coefficients must be considered in the tuning process.

We have found that the output parameters are indeed heavily dependent on

the clover coefficients. We attempted to reduce the difficulties in this area by

detemining cs and ct self-consistently using equation (4.1).

For tuning runs 10–30 small adjustments were made to the input parameters

to test the dependence of the output parameters on them. After analysing each

run we made an estimate of a reasonable value for β, γg, γf , and aτm0 in order

to reach the target results, which are given in Table 5.1. β was increased in

runs 18, 22–29 in an effort to reduce the lattice spacing. A preliminary analysis

of these runs was carried out in which we assumed a linear ansatz across the

parameters from each run. This fit provided us with a sensible set of input

parameters which became run 31. Minor adjustments were made to this in

runs 34-40 to test the variance of the output parameters and the strength of

their dependence on each input parameter.

The quark mass dependence may be studied by focusing on runs 25–28.

Figure 5.6 shows the dispersion relations for these runs calculated with smeared

sources. The dispersion relations of the ρ meson are more consistent with one

another than those of the π meson. This is mirrored in the effective energies

of the π and ρ mesons. The fermion anisotropy is therefore more consistent
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Figure 5.6: The dispersion relations for the pion (left) and ρ meson (right)
calculated with smeared sources for tuning runs 25, 26, 27, 28.

when calculated from the ρ meson data. The results for all output parameters

are provided in Table 5.4. As the quark mass is decreased, the spatial lattice

spacing as decreases. However there is a non-trivial effect apparent in the gauge

anisotropy ξg. It neither increases nor decreases monotonically. This is also

true of the mass ratio mπ/mρ, making it difficult to ascertain the true nature

of the quark mass dependence.

Runs 19, 20, 21 also display the effect of changing the quark mass. We

present the results for the dispersion relation, ξg, and as for these runs in Figure

5.7. The bare fermion anisotropy γf was also increased in run 21. There is a

notable difference in the dispersion relations of the pion and ρ meson in run 19.

The fermion anisotropy ξf calculated from the ρ dispersion relation is much

smaller than that of the pion. The data points do not fit well onto a line and

this may explain the disparity. The fermion and gauge anisotropies for runs 20

and 21 are in good agreement, suggesting that increasing γf while decreasing

aτm0 provides a stable set of output parameters. The mass ratio for run 20 is

mπ/mρ = 0.605(9) and for run 21 is mπ/mρ = 0.613(6). While these results

are considerably higher than the target ratio, their agreement supports the

argument for simultaneously increasing γf . However, in the bottom right plot,

the spatial lattice spacing vastly differs for these two runs. Further ajustments

must be made to accommodate as.

We further test the relationship between the quark mass and bare fermion

anisotropy with runs 31, 35, 36. The lattice coupling β and the bare gauge

anisotropy γg are again kept constant and we vary γf and aτm0. The results

are presented in Figure 5.8. The dispersion relations for the pion and the ρ

meson are in good agreement. However, in the calculation of ξg we see a much

larger difference between the three runs. It is difficult to distinguish exactly

how ξg depends on the quark mass and bare fermion anisotropy. In run 36, the

quark mass from run 31 was increased very slightly (−0.025→ −0.023) while

γf was decreased from 7.5 to 7.0. The results for the spatial lattice spacing
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Figure 5.7: Top row: Dispersion relations for the π (left) and ρ (right) mesons
for runs 19, 20, 21. Bottom row: Gauge anisotropy (left) and spatial lattice
spacing (right) for runs 19, 20, 21. The intersection of the dashed horizontal
line at ws/wt = 1 with the linear fits in the plot for ξg yields ξg for each run.
These values are represented by the dashed vertical lines.

are consistent. An increase in γf without a corresponding adjustment in the

mass has a huge effect on as which can be seen by comparing run 31 to run

35. From run 35 to run 36 both γf and aτm0 were decreased and this gives a

desirable result for as.

The dependence of the output parameters on the lattice coupling β can

be studied using runs 31, 39, 40. These results are presented in Figure 5.9.

The dispersion relations for the π and ρ mesons agree quite well. The value

for the gauge anisotropy ξg is very similar for each run. Looking at runs 31

and 39, decreasing β from 1.6 to 1.58 has had no effect on ξg. Comparing runs

31 and 40 we see that increasing β from 1.6 to 1.62 has a marginal effect on

ξg, increasing it from 7.4 to 7.5. The spatial lattice spacing shows a strong

dependence on β. Even for such minor adjustments, as is significantly changed.

Decreasing β causes as to increase away from its target value.

Overall, runs 31 and 40 are the closest to the target parameters. These

runs have been extended to test the finite volume effects on the parameters.

New sets of gauge configurations with the input parameters for runs 31 and 40

are currently in production on a N3
s ×Nτ = 243 × 256 lattice. The increased

number of temporal data points will reduce the statistical uncertainties and the

difficulties in the calculation of γf . We hope that a repetition of our analysis
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Figure 5.8: Top row: Dispersion relations for the π (left) and ρ (right) mesons
for runs 31, 35, 36. Bottom row: Gauge anisotropy (left) and spatial lattice
spacing (right) for runs 31, 35, 36. The intersection of the dashed horizontal
line at ws/wt = 1 with the linear fits in the plot for ξg yields ξg for each run.
These values are represented by the dashed vertical lines.

on these configurations will provide the target tuning parameters.

5.5 Conclusion

The aim of this chapter is to outline the method by which we tune the defining

parameters of a third generation of lattices. These new ensembles will be

an improvement on the second generation of anisotropic lattices which has

anisotropy ξ = 3.5 and 2 + 1 dynamical flavours of fermions. The objective is

to double the anisotropy by halving the temporal lattice spacing and keeping

all other parameters constant. I have presented the preliminary tuning of

the lattice coupling β, the bare gauge and fermion anisotropies γg, γf , and

the quark mass in lattice units aτm0. The results for the gauge and fermion

anisotropies ξg and ξf , the spatial lattice spacing as and the mass ratio of

the π and ρ mesons mπ/mρ are presented. I have found there are strong,

non-trivial dependencies of the output parameters on the input and on the

clover coefficients, which depend on γf .

The results for the output parameters in each run have been approximated

by a linear fit and interpolated to an exact result. By comparing these results

across a number of tuning runs we have identified two likely sets of parameters
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Figure 5.9: Top row: Dispersion relations for the π (left) and ρ (right) mesons
for runs 31, 39, 40. Bottom row: Gauge anisotropy (left) and spatial lattice
spacing (right) for runs 31, 39, 40. The intersection of the dashed horizontal
line at ws/wt = 1 with the linear fits in the plot for ξg yields ξg for each run.
These values are represented by the dashed vertical lines.

that give results close to the target value in runs 31 and 40. New configurations

for these parameters are currently being generated on a larger volume to analyse

the finite volume effects. The larger number of temporal data points will also

enable us to calculate γf more accurately.

A preliminary analysis of the spectral function of Upsilon at high tempera-

ture with non-relativistic QCD (NRQCD) data has been done with the run 31

parameters. The results have been presented in [147] and are shown in Figure

5.10 alongside the second generation result. There is clear agreement between

the two spectral functions suggesting that the run 31 parameters are close to

the target values.

The next step is to fit the measured output parameters from every tuning

run and interpolate an ideal set of parameters. Taking run 31 as a central

parameter set to which we relate the parameters of the remaining tuning runs,

the following system of linear equations can be set up

∆as = c11∆β + c12∆γg + c13∆γf + c14∆m0

∆ξg = c21∆β + c22∆γg + c23∆γf + c24∆m0
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Figure 5.10: Comparison of the Upsilon spectral function using the third
generation’s run 31 parameters and the second generation parameters [147].

∆ξq = c31∆β + c32∆γg + c33∆γf + c34∆m0

∆m2
π = c41∆β + c42∆γg + c43∆γf + c44∆m0, (5.30)

where

∆A =
A− A(0)

A(0)
(5.31)

for some parameter A, and the parameters superscripted by (0) take their values

from run 31. The coefficients cij for i, j ∈ {1, 2, 3, 4} can then be calculated

and we solve the matrix equation
∆β

∆γg

∆γq

∆m0


=

(
Cij

)−1


∆as

∆ξg

∆ξq

∆m2
π


(5.32)

resulting in an interpolated set of tuned input parameters.

Once the parameters have been tuned to their target values, the strange

quark mass will be separated from the light quarks and set to its physical

value. We can then begin production. Imaginary time correlators and spectral

functions for hadrons at finite temperature may be calculated to a higher

precision on this new set of ensembles. The accuracy of the spectral functions
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in the charm sector will be improved and the P-wave states may become

accessible. These ensembles will also provide the foundation for the future

studies of hadrons and transport properties in the medium with improved

accuracy such as the electrical conductivity and heavy quark diffusion, baryons,

and NRQCD dynamics in the bottom sector.
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Conclusions and Outlook

The quark-gluon plasma is predicted to have existed in the early stages of

the universe. It exists at very high temperatures and densities. Little is yet

known about its internal properties. In this thesis I utilised the charm quark

to probe the QGP at high temperatures. Chapter 2 gives a detailed account

of the methods employed to study the dynamical properties of the QGP. As

J/ψ suppression is conjectured to be a signal for deconfinement, it is vital to

understand the interactions of this meson with the medium.

In Chapter 3 I focus on the J/ψ meson. I presented the spectral functions

obtained for charmonium from the conserved vector current at zero and finite

momentum. At p = 0, the J/ψ appears to survive at temperatures above the

deconfinement crossover, and subsequently melts at temperatures of 1.2− 1.4Tc.

The systematic uncertainties in the method make it difficult to ascertain the

exact temperature at which J/ψ dissociates and as such it is possible that the

meson survives beyond these temperatures.

For the finite momentum studies, the vector current correlator was decom-

posed into its transverse and longitudinal components. These were analysed

separately and the longitudinal polarisation was found to be less stable than

the transverse polarisation. At p > 0, J/ψ again appears to dissociate at

temperatures of 1.2− 1.4Tc. It is unclear if the melting of J/ψ depends on the

momentum as the results are dominated by systematic uncertainties.

The heavy quark diffusion coefficient may be calculated by examining the

low frequency region of the J/ψ spectral functions. My analysis has revealed

an approximate range for the height of the transport peak. The quark number

susceptibility acts as a normalisation factor for this calculation, which has

not yet been determined. I leave this for future work. The transport peak is

expected to have a finite width at non-zero momentum and this was not the

case. While this may be due to our high momentum values, we cannot be

certain of this. Further analysis is required to understand this discrepancy.

In Chapter 4 we consider the correlators and spectral functions of open

charm mesons. I have found significant medium modifactions, not only at

high temperature but also at T = 0.84Tc. This is evident in the reconstructed

correlators of both the D and Ds meson in the pseudoscalar and vector channels.

91



It is worth noting that these modifications are weaker for Ds. The spectral

functions at finite temperature have also been examined. There is no evidence

of survival for either the D or Ds meson beyond Tc. A thermal mass shift has

been detected at a temperature of T = 0.76Tc. At present we are not certain

of the true nature of this feature, and further analysis of the spectral functions

for D mesons is required.

A first-look analysis of charmonium spectral functions for the S- and P-waves

is also presented. A significant thermal effect appears in the reconstructed

correlators for each meson. The P-waves have a zero mode which may contribute

to this, and as such we are uncertain how strong this effect is for these states.

Analysis of the spectral functions indicates that the S- and P-waves dissociate

at temperatures T ∼ Tc. My analysis of the J/ψ meson in the previous chapter

gave a slightly different result, indicating the need for further study to ascertain

the temperature at which these mesons dissociate.

One of the main sources of the systematic uncertainties I encountered is

the small number of temporal data points available on the high temperature

lattices. I have found that MEM has difficulties reconstructing the spectral

functions with fewer than Nτ ∼ 25 points. In Chapter 5 I describe the method

for generating a new set of ensembles which will double Nτ by halving the

temporal lattice spacing aτ . For these highly anisotropic lattices with a clover

fermion action, there are four parameters which must be tuned — the lattice

coupling β, the bare gauge anisotropy γg, the bare fermion anisotropy γf , and

the quark mass (in lattice units) aτm0. Preliminary results for the gauge and

fermion anisotropies ξg and ξf , the spatial lattice spacing as and the mass

ratio of the π and ρ mesons mπ/mρ were presented. I have found that these

parameters have a strong, non-trivial dependence on the input parameters and

on the clover coefficients.

The preliminary estimates for the tuned values were approximated by a

linear fit, yielding two likely sets of parameters. The finite volume effects of

the lattice are currently being tested on these parameters by producing new

configurations on a lattice with a much larger volume. Once complete, we hope

to have our output parameters tuned to their target values. In the initial tuning

process we consider three flavours of dynamical quarks. Once this procedure

has been completed, the strange quark mass may be separated from the mass

of the light quarks, giving 2 + 1 dynamical flavours. The production of this new

generation of ensembles will enable the calculation of excited state physics. The

systematic uncertainties in MEM will be reduced, giving us the opportunity

to fine-tune our results for S-wave charmonium and D mesons. The P-wave

states may also become accessible.
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