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Abstract

Ocean waves represent an important resource of renewable energy, which can provide a significant
support to the development of more sustainable energy solutions and to the reduction of CO2 emis-
sions. The amount of extracted energy from the ocean waves can be increased by optimizing the
geometry and the control strategy of the wave energy converter (WEC), which both require math-
ematical hydrodynamic models, able to correctly describe the WEC-fluid interaction. In general,
the construction of a model is based on physical laws describing the system under investigation.
The hydrodynamic laws are the foundation for a complete description of the WEC-fluid interac-
tion, but their solution represents a very complex and challenging problem. Different approaches
to hydrodynamic WEC-fluid interaction modelling, such as computational fluid dynamics (CFD)
and linear potential theory (LPT), lead to different mathematical models, each one characterised
by different accuracy and computational speed. Fully nonlinear CFD models are able to describe
the full range of hydrodynamic effects, but are very computationally expensive. On the other hand,
LPT is based on the strong assumptions of inviscid fluid, irrotational flow, small waves and small
body motion, which completely remove the hydrodynamic nonlinearity of the WEC-fluid interac-
tion. Linear models have good computational speed, but are not able to properly describe nonlin-
ear hydrodynamic effects, which are relevant in some WEC power production conditions, since
WECs are designed to operate over a wide range of wave amplitudes, experience large motions,
and generate viscous drag and vortex shedding. The main objective of this thesis is to propose
and investigate an alternative pragmatic framework, for hydrodynamic model construction, based
on system identification methodologies. The goal is to obtain models which are between the CFD
and LPT extremes, a good compromise able to describe the most important nonlinearities of the
physical system, without requiring excessively computational time. The identified models remain
sufficiently fast and simple to run in real-time. System identification techniques can ‘inject’ into
the model only the information contained in the identification data; therefore, the models obtained
from LPT data are not able to describe nonlinear hydrodynamic effects. In this thesis, instead
of traditional LPT data, experimental wave tank data (both numerical wave tank (NWT), imple-
mented with a CFD software package, and real wave tank (RWT)) are proposed for hydrodynamic
model identification, since CFD-NWT and RWT data can contain the full range of nonlinear hy-
drodynamic effects. In this thesis, different typologies of wave tank experiments and excitation
signals are investigated in order to generate informative data and reduce the experiment duration.
Indeed, the reduction of the experiment duration represents an important advantage since, in the
case of a CFD-NWT, the amount of computation time can become unsustainable whereas, in the
case of a RWT, a set of long tank experiments corresponds to an increase of the facility renting
costs.

v



Declaration of authorship

I, Simone Giorgi, declare that this thesis titled ‘Linear and nonlinear parametric hydrodynamic
models for wave energy converters identified from recorded data’ and the work presented in it are
my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at this
University.

• Where any part of this thesis has previously been submitted for a degree or any other quali-
fication at this University or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the exception
of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made clear
exactly what was done by others and what I have contributed myself.

.

Date:

Signature:

vi



Acknowledgement

First of all, I would like to thank my supervisor Professor John Ringwood for the advices he gave
me on any matter relating not only my research work, but also my technical English writing and
presentation skills.

I would like to thank Josh Davidson for the closed collaboration we had over the course of this
research, and for providing me the CFD-NWT data utilised in this thesis.

Thanks to Morten Jakobsen and the Aalborg University for providing me access to their data,
recorded at the Coastal Ocean And Sediment Transport Laboratory of Plymouth University, and
utilised in this thesis.

I would like to thank the present and past members of COER, who have provided stimulating
conversations and enjoyable collaborations, over the course of this research: Francesco Paparella,
Markel Penalba Retes, Giuseppe Giorgi, Thomas Kelly, Alexis Mérigaud, Giorgio Bacelli, Trong
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Chapter 1
Introduction

In the last two hundred years, the energy demand of the industrialised world has constantly grown,
in order to cater for numerous human activities. The majority of the current energy consumption
level is based on fossil fuels, which creates environmental problems (related to CO2 emissions,
climate change and pollution) and imposes the dependency of nations on fuel supply from other
countries, in order to guarantee their political and economical stability [1] [2]. Renewable energy
sources, such as wind, hydro, solar, ocean energy and biomass, represents a growing alternative
to fossil fuels, since these resources will be available as long as the sun is shining. The Roadmap
2050 of the European Union states that EU nations should cut greenhouse gas emissions to 80%
below 1990 levels, by 2050 [3].

The energy transported by ocean waves represents an important contribution to potentially
provide a sustainable and endless renewable energy mix. Winds, blowing over the surface of the
sea, create waves with an amplitude depending upon the wind speed, the distance of water over
which it blows (the fetch) and the seafloor bathymetry. Therefore, wave energy resources are not
uniformly spread around the globe, and are mainly concentrated between 40◦ and 60◦ latitude, in
both hemispheres (i.e. Western coasts of Europe, North-America and Australia) [4]. Wave energy
converters (WECs) are a new and rapidly growing technology, able to harness the energy from
ocean waves and to convert it into electricity. Over the last 25 years, more than one thousand WEC
prototypes have been developed but, despite this, WEC technology is not commercially viable yet,
since development costs are particularly high, and is not technically reliable and economically
attractive yet [4] [5]. However, research to improve and optimise WEC structures and control
strategies, together with economics of scale, are expected to reduce the wave energy cost per kw,
bringing it to a level which is comparable with other more mature renewable energy technologies,
such as offshore wind. In the near future, the development of reliable WEC technology is expected
to make countries more energetically self-sufficient and to contribute to the creation of innovation
and employment.

The large number of WECs developed can be grouped depending on different properties and
characteristics. A first criterion of classification is based on the size and direction of the device,
with respect to the incoming wave [1] [4] [6].
• Attenuator. This type of WEC is a long structure, with the dominant horizontal dimension com-
parable with the wavelength of the incident wave field. The structure is located parallel to the
wave direction and the wave, moving along the WEC, is attenuated.
• Point-absorber. The dimension of this type of WEC is significantly smaller than the incident
wavelength; therefore, the scattered wave field can be neglected and the hydrodynamic force, on
the body, is well approximated by the incident wave field only. A useful characteristic of point-
absorbers is that they are able to harness energy, regardless of wave direction.
• Terminator. This type of WEC is a long structure, with a horizontal dimension comparable with
the wavelength (similar to attenuators), with the predominant dimension oriented perpendicular to
wave propagation direction.
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A second criterion of classification is based on the distance of the WEC location from the coast
[1] [4].
• Onshore devices. These WECs are located on shore and are integrated in breakwaters, dams or
cliffs, providing easy installation and convenient maintenance access. Furthermore, these WECs
do not need mooring systems nor long electric cables, with a consequent capital investment reduc-
tion. These WECs, by their nature, are terminators.
• Nearshore devices. These WECs are deployed in moderate water depths (10-25 m), in the prox-
imity of the coast. They are often bottom mounted, but floating structures are not uncommon.
• Offshore devices. These WECs are floating or submerged devices (moored to the seafloor), de-
ployed far from the shore in deep waters (more than 40 m depth). The significant distance from the
coast increases maintenance and electric cable costs. Furthermore, the large wave amplitudes in
the open sea create a problem for the survivability of the structure, which has to be able to sustain
very high loads.
A third classification of WECs is based on their working principle.
• Floating structures. The fundamental component of this WEC is a floating body, moved by the
waves. Usually, the float oscillates in heave, in pitch or in a combination of them.
• Oscillating wave surge converters (or impact devices). These converters are articulated struc-
tures, located perpendicular to the wave direction (i.e. terminators), oscillating back and forth in
surge, due to the wave impact.
• Overtopping devices. The basic idea of these kind of WECs is the conversion of the wave kinetic
energy into potential energy. The water, running up over a ramp, is captured in a storage reservoir
(located above the sea level) and then released to pass through a turbine, connected to a generator,
to return into the sea.
•Oscillating water column (OWC). These WECs are partially submerged hollow structures, where
a large volume of water oscillates vertically in response to incident waves, working as a piston in a
cylinder. The air, contained in the chamber, is compressed and decompressed by the water column
and flows through a turbine, which is used to generate electricity.

1.1 Motivation

The use of mathematical models is crucial in many areas of science and engineering. Virtually, ev-
ery system can be described by a mathematical model, which quantifies the relationship between
input and output variables. Mathematical models are the foundation for the analysis, simulation,
and design of systems. Once an accurate model of the system under investigation is developed, a
computer can be programmed in order to emulate the system, by solving the mathematical model
equations. Mathematical modelling of WECs has many uses, including simulation of device mo-
tion, power production assessment and as a basis for model based control design. In all these
cases, it is important to describe how the body moves in the water, interacting with the waves
propagating on the fluid surface. In general, the construction of a model is based on physical
laws, which describe the system under investigation. The hydrodynamic laws are the foundation
for a complete description of the WEC-fluid interaction, but their solution represents a very com-
plex and challenging problem. Different approaches to WEC-fluid interaction modelling, such
as computational fluid dynamics (CFD) and linear potential theory (LPT), lead to different math-
ematical models, each one characterised by different accuracy and computational speed. Fully
nonlinear CFD models are able to describe the full range of hydrodynamic effects, but are very
computationally expensive. On the other hand, LPT is based on the strong assumptions of in-
viscid fluid, irrotational flow, small waves and small body motion, which completely remove the
hydrodynamic nonlinearity of the WEC-fluid interaction. Linear models have good computational
speed, but are not able to properly describe nonlinear hydrodynamic effects, which are relevant in
some WEC power production conditions, since WECs are designed to operate over a wide range
of wave amplitudes, experience large motions, and generate viscous drag and vortex shedding. It
is strongly desirable to develop hydrodynamic models with characteristics between the CFD and
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LPT extremes; ideally, a good compromise able to describe the most important nonlinearities of
the real system, without requiring excessive computational time.

1.2 Main objectives and contributions

The main objectives and novel contributions of this thesis are summarised as follows:

1. Objective. It is important to provide a review of the complexity of the hydrodynamic WEC-
fluid interaction and of the different mathematical approaches already available to resolve
it. The understanding of advantages and disadvantages of each methodology (such as accu-
racy and computational speed) is crucial in order to define the characteristics of a new and
alternative strategy to resolve the problem. The review represents the first foundations layer
of this thesis.
Contribution. Chapter 2 presents a detailed review of the hydrodynamic WEC-fluid inter-
action problem and of the state-of-the-art methodologies to solve it. The main characteristics
of models, based on Cummins’ equation (and its extensions), CFD, LPT and fully nonlinear
potential theory (FNPT), are reviewed.

2. Objective. The main objective of this thesis is to propose and test an alternative pragmatic
framework for hydrodynamic model construction, based on system identification (SI) tech-
niques, where models are determined from wave tank (WT) recorded data. The goal is to
obtain models which are between CFD and LPT extremes, a good compromise able to de-
scribe the most important nonlinearities of the physical system, without requiring excessive
computational time.
Contribution. Chapters 3 and 4 propose a framework for hydrodynamic model identifica-
tion, characterised by an iterative sequence of four steps (i.e. experiment design and data
gathering, model order and structure selection, fitting criterion and identification algorithm
selection, and model validation). At the end of the SI procedure, a hydrodynamic parametric
model is provided. Work published in [7] [8] [9] [10].

3. Objective. In the context of wave energy modelling, SI is generally utilised for finding suit-
able low-order approximations to nonparametric impulse response or frequency response
data, generated by LPT boundary element method (BEM) solvers. SI techniques can ‘in-
ject’ into the model only the information contained in the identification data; therefore,
since LPT is based on strong assumptions of inviscid fluid, irrotational flow, small waves
and small body motion, the models obtained from LPT-BEM data are not able to describe
nonlinear hydrodynamic effects. An important objective, for model identification, is the use
of data containing information regarding the nonlinear hydrodynamic effects.
Contribution. This thesis proposes the use of identification data, generated in a CFD nu-
merical wave tank (NWT), or measured in a real wave tank (RWT), since NWT and RWT
data can contain the full range of nonlinear hydrodynamic effects, described by the Navier-
Stokes equations. In this thesis, the utilised CFD-NWT data are provided by Josh David-
son from COER, Maynooth University, and the utilised RWT data are provided by Morten
Jakobsen from Aalborg University. Work published in [7] [8] [9] [10] [11] [12] [13] [14].

4. Objective. The identification of an accurate model requires the use of informative data,
which are strongly dependent on the excitation signals utilised to influence the process dur-
ing the experiment. Furthermore, by extending the duration of an experiment, usually, the
amount of information contained in the data increases. On the other hand, the reduction of
the experiment duration represents an important aspect since, in the case of a CFD-NWT,
the amount of computation time can become unsustainable whereas, in the case of a RWT,
a set of long tank experiments corresponds to an increase of the facility renting costs. An
important objective is the development of WT experiment design criteria, in order to provide
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informative identification data in a reduced experiment duration.
Contribution. Chapter 4 proposes different WT experiment typologies (i.e. preliminary,
identification, free decay, input wave, input force and prescribed motion experiments) and
describes the signal characteristics (i.e. the spectral content, amplitude range and ampli-
tude distribution), in order to evaluate and improve the quality of an excitation signal. In
particular, Chapter 4 proposes WT experiments, characterised by the use of an input power
take off (PTO) force (applied directly to the WEC by an actuator), which provides a large
freedom over the choice of the input signal and, at the same time, a shorter experiment du-
ration. Chapter 4 proposes a variety of ‘time-shrunk’ input signals (characterised by a high
concentration of information) which contain the wide range of frequencies and amplitudes,
necessary to excite the system over the whole range of operation, in a more compacted time
frame (i.e. random amplitude random period (RARP), multisine and chirp signals). Work
published in [7] [8] [9] [10] [13].

5. Objective. Continuous time (CT) hydrodynamic model structures provide a good insight
into system understanding since, usually, CT models are derived from physical laws and the
identified model parameters are strongly related to the physical system properties. An im-
portant aspect of any identification problem is the use of prior available information regard-
ing the system under study, which is, in this thesis, a body floating on water, characterised by
the properties of stability and passivity. Therefore, an objective is that the identified model
inherits these properties, in order to ensure compatibility with the real system. In the wave
energy literature, passivity and stability are not enforced as constraints during the model
identification with LPT data, and only post identification methodologies are proposed, thus
obtaining suboptimal solutions.
Contribution. In Chapter 5, new a-priori constraints on the parameters are introduced in
the optimisation, in order to guarantee the stability and passivity of the identified CT linear
models. Work published in [9] [11].

6. Objective. One of the main drawbacks of the use of CT model structures is the consequent
requirement of nonconvex optimization strategies, which are necessary in order to identify
the model parameter vector, since the loss function, associated with the CT model structure,
is characterised by the presence of multiple local minima and, therefore, a strong sensitivity
to the initial optimization seed. An important objective of this thesis is the presentation of
hydrodynamic model structures, which are linear in the parameters, with the consequent
employment of convex optimization strategies, in order to identify the parameter vector.
Contribution. Chapter 3 proposes the use of discrete time (DT) model structures, which
have the advantage of providing greater flexibility (compared to CT models) in the construc-
tion of nonlinear input/output model structures, which are linear in the parameters (i.e. the
Hammerstein, feedback block-oriented (FBO) and Kolmogorov-Gorov polynomial (KGP)
model structures). Work published in [8] [9] [10] [12] [13].

7. Objective. The comparison between data generated by a WT (in the case of small wave
and body displacements) and a LPT-BEM software package can be useful in order to ver-
ify the presence of nonlinearity in the WT experiments. In the case of a two-dimensional
(2D) NWT, the comparison with three-dimensional (3D) BEM data is not straightforward;
indeed, in a 2D NWT, the body geometry is an infinitely long horizontal bar, having a con-
stant vertical cross-sectional area. An objective of this thesis is to propose a methodology
to compare 2D NWT data with 3D BEM data.
Contribution. Chapter 4 proposes a methodology based on the transformation of the origi-
nal 3D body geometry into a new 3D horizontal bar geometry (having an appropriate length),
in order to compare 2D NWT data with 3D BEM.
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8. Objective. An important aspect of nonlinear systems is that they have dynamics that are
amplitude dependent, which means that, by changing the excitation signal, the system can
show different characteristics and properties. Therefore, the WEC can show different at-
tributes, depending on the sea state environment. In the case where experimental data sets
are available from different sea states, an objective is to understand how to utilise the iden-
tification data. In order to obtain an accurate identified model on a particular sea state, it is
useful to analyse if it is better to train the models only on the same sea state (to specialise
the models only for the specific sea condition), or if it is always better to train the models
by using all the information available, even if the extra information are from different sea
states.
Contribution. In Chapter 7, two different strategies are compared in the case of RWT data
(collected by Morten Jakobsen, from Aalborg University, at the Coastal Ocean And Sed-
iment Transport Laboratory of Plymouth University), in order to obtain accurate models,
able to generalize on fresh validation data. With single training, for each model structure,
a different parameter vector is identified for each available sea state; with mixed training,
for each model structure, a unique parameter vector is identified and utilised to describe the
behaviour of the WEC in any sea condition.

1.2.1 List of publications

• S. Giorgi, J. Davidson, J. V. Ringwood, ‘Identification of wave energy device models from
numerical wave tank data - Part 2: Data-based model determination’, IEEE Transactions on Sus-
tainable Energy, 2016 [8].

• J. Davidson, S. Giorgi, and J. V. Ringwood, ‘Identification of wave energy device models from
numerical wave tank data - Part 1: Numerical wave tank identification tests’, IEEE Transactions
on Sustainable Energy, 2016 [7].

• J. V. Ringwood, J. Davidson, S. Giorgi, ‘System identification’, Book chapter of ‘Numerical
Modelling of Wave Energy Converters: State-of-the-Art Techniques for Single Devices and Ar-
rays’, Elsevier Science & Technology Books, 2016 [9].

• J. Davidson, S. Giorgi, and J. V. Ringwood, ‘Linear parametric hydrodynamic models for ocean
wave energy converters identified from numerical wave tank experiments’, Ocean Engineering,
2015 [11].

• S. Giorgi, J. Davidson, and J. V. Ringwood, ‘Identification of nonlinear excitation force ker-
nels using numerical wave tank experiments’, in Proceedings of the 9th European Wave and Tidal
Energy Conference, 2015 [12].

• J. V. Ringwood, J. Davidson, and S. Giorgi, ‘Optimising numerical wave tank tests for the
parametric identification of wave energy device models’, in Proceedings of the 34th International
Conference on Ocean, Offshore and Arctic Engineering, 2015 [10].

• J. Davidson, S. Giorgi, and J. V. Ringwood, ‘Numerical wave tank identification of nonlin-
ear discrete time hydrodynamic models’, in Proceedings of the 1st International Conference on
Renewable Energies Offshore, 2014 [13].

• J. Davidson, S. Giorgi, and J. Ringwood, ‘Linear parametric hydrodynamic models based on
numerical wave tank experiments’, in Proceedings of the 10th European Wave and Tidal Energy
Conference, 2013 [14].
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1.3 Organisation of the thesis

The thesis is composed of 8 chapters, the subjects of which are outlined in the following part of
this section. Each chapter is provided with a dedicated literature review, as the nature of the sub-
jects of the chapters is substantially different.

• Chapter 2 summarises the background theory regarding the WEC-fluid hydrodynamic inter-
action problem, showing the main methodologies to solve it (such as CFD, LPT-BEM, FNPT and
nonlinear Cummins’ equation extensions), and their main advantages and limitations.

• In Chapter 3, the fundamental aspects of SI are introduced, and utilised to create a framework
for WEC hydrodynamic model identification. The chapter proposes different CT and DT WEC
hydrodynamic models, together with convex and nonconvex optimization techniques, utilised for
the estimation of model parameter vectors.

• In Chapter 4, a framework for WT experiment design (in order to obtain informative data for
hydrodynamic model SI) is proposed. A set of different WT experiments is shown, together with
different typologies of input excitation signals.

• In Chapter 5, a new methodology for CT linear hydrodynamic parametric model identification
is presented, which is based on the use of free decay 3D CFD-NWT data, instead of traditional
LPT-BEM data. The methodology is applied to model the dynamics of a floating vertical cylinder.

• In Chapter 6, the developed SI framework is applied in four different case studies, in order
to identify DT hydrodynamic models. The utilised data are generated in 2D and 3D CFD-NWTs.
Details of the experimental data, model structures and model validation are shown.

• In Chapter 7, the SI framework, already applied to NWT data, is broadened to the context
of data generated in a RWT, analysing the performance of identified linear and nonlinear models.
The data utilised are generated in hydrodynamic tests, carried out on a scaled WEC point-absorber,
at the COAST Laboratory of Plymouth University.

• The thesis is concluded in Chapter 8 with a summary and a discussion on the contributions
and results, as well as a discussion on future work.
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Chapter 2
Current hydrodynamic WEC models
(background)

2.1 Introduction

The WECs deployed in water, interacting with the incoming waves, are subject to hydrodynamic
forces, which induce alternating motion of the WEC structures. The energy, transported by the
waves, is transferred to the WEC in the form of kinetic and potential energy, which are partially
extracted, by electrical or hydraulic power take off (PTO) systems. The amount of extracted
energy can be increased by optimizing the WEC shape and the WEC control strategy, both strongly
related to the complex interaction between the water and the WEC. Therefore, it is crucial to
construct mathematical hydrodynamic models, able to correctly describe the WEC as a rigid-body,
interacting with the forces applied by the water, gravity, the mooring and PTO systems. Consider
a rigid-body of mass, M, bounded by a surface, S, which encloses a volume Ω. The kinematic
body description needs two different coordinate system frames: a global (also called inertial or
absolute) frame, Oxyz, and a body-fixed local (also called relative) frame, O′x′y′z′. The body
position is described as the position of the local frame with respect to the global frame, using the
generalised position vector ξ= (x,y,z,ϕ,θ,ψ)T ∈ℜ6×1, where the first three coordinates represent
the body translations and the last three the body rotations (see Fig. 2.1). The minimal number of
independent coordinates, necessary to uniquely specify the position and orientation of the body,
is called the number of degrees of freedom (DoF) of the system (if the body is unconstrained, the
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Figure 2.1: The global frame, Oxyz, and the body-fixed local frame, O′x′y′z′, are used to describe
the kinematic of a rigid-body, bounded by a surface, S, which encloses a volume Ω.
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number of DoF is six) [15]. The center of mass of the body with respect to the global frame is
defined as:

rco =
1
M

∫

Ω
ρb(r)rdΩ (2.1)

where r is the position vector of the infinitesimal body volume dΩ and ρb is the body density (in
general ρb is a function of the position r). In the case where the origin of the local frame is located
at the center of mass of the body, the body dynamics are described by Newton-Euler equations,
which in matrix form are [15][16] [17] [18]:

Mξ̈(t) = Γ(tot)(t) (2.2)

where:

M =




M 0 0 0 0 0
0 M 0 0 0 0
0 0 M 0 0 0
0 0 0 Ixx −Ixy −Ixz

0 0 0 −Iyx Iyy −Iyz

0 0 0 −Izx −Izy Izz




(2.3)

is the body mass matrix, Ii j are the moments of inertia about the x ,y and z axes (with i = j), Ii j are
the products of inertia of the rigid-body, with respect to the center of mass (with i 6= j), Γ(tot) =

( f (tot)
x , f (tot)

y , f (tot)
z , τ(tot)

x ,τ(tot)
y , τ(tot)

z )T is a 6×1 generalised total force vector, where f (tot)
x , f (tot)

y

and f (tot)
z are the components of the total external force, f(tot), applied on the body and τ(tot)

x , τ(tot)
y

and τ(tot)
z are the components of the total external force moment (torque), τ (tot), acting on the

body, with respect to the origin of the global frame (see Fig. 2.2). The WEC can be seen as a
rigid-body, mainly subject to the following generalised forces: a fluid force applied from the water
to the body, Γ f l , a gravitational force, Γg, a PTO force, Γpto and a mooring force, Γm. Therefore,
equation (2.2) becomes:

Mξ̈(t) = Γ f l(t)+Γg(t)+Γpto(t)+Γm(t). (2.4)

Equation (2.4) represents the starting point of the modelling problem to be resolved. The gener-
alised force, Γ f l , applied from the water to the body, depends on the body motion and on the flow
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Figure 2.3: Given a portion of fluid bounded by the surface, S, containing the control volume Ω,
the surrounding environment interacts with the portion of fluid, applying two different kinds of
forces: the volume force, ρf̃Ω and the surface force f̃su.

of the fluid around the body; therefore, the calculation of Γ f l is particularly tedious and challeng-
ing. In this chapter, a hydrodynamic background is provided, together with the main modelling
tools to solve the problem (2.4).

The outline of the chapter is as follows: in Section 2.2, the fundamental hydrodynamic laws
are introduced, in order to formulate the general problem to be solved. In Section 2.3, the fully
nonlinear CFD model is introduced and its main advantages and limitations underlined. In Section
2.4, LPT and its resolution utilising boundary element methods (BEMs) is presented, analysing
the hypotheses that LPT is based on. The main advantages and limitations, in using LPT, are also
provided. Section 2.5 presents a brief introduction to fully nonlinear potential theory (FNPT) and
the use of BEMs to find a numerical solution. Furthermore, the hypotheses, the main advantages,
and limitations of FNPT are presented. In Section 2.6.1, the linear Cummins’ equation is provided,
introducing the main techniques to obtain the associated parametric forms. In Section 2.6.2, dif-
ferent strategies, to extend Cummins’ equation to more complex nonlinear models, are presented.
Finally, conclusions are drawn in Section 2.7.

2.2 Hydrodynamics background

In the simulation and prediction of the WEC motion, it is fundamental to calculate the force
applied from the water to the body (as seen is Section 2.1 with equation (2.4)). The description of
the behaviour of a fluid requires the knowledge, in space and time, of the fluid pressure p(x,y,z, t)
and fluid velocity components vx(x,y,z, t), vy(x,y,z, t) and vz(x,y,z, t). The characterization of
the fluid behaviour demands also the knowledge of fluid characteristics, like density, ρ(x,y,z, t)
and shear viscosity, µ(x,y,z, t). In the dynamic study of solid bodies, the momentum and energy
conservation laws can be obtained given a quantity of matter (control mass approach). On the other
hand, in the study of a fluid, it is not convenient to select a fraction of matter and describing the
motion and the interaction with the surrounding environment. Instead, it is preferable to describe
the fluid flow within a certain spatial region (control volume approach) [19] . The fundamental
governing equations of fluid dynamics are the conservation laws for mass, momentum and energy,
which are described, respectively, in Sections 2.2.2, 2.2.3 and 2.2.4.

2.2.1 External forces and moments applied on a region of fluid

Consider a global coordinate system frame, Oxyz, with the z-axis vertical and positive upwards
(see Fig. 2.3). Given a portion of fluid bounded by the surface, S, containing the control volume
Ω, the surrounding environment interacts with the portion of fluid, applying two different kinds of
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forces [20] [21] [22] [23]:
• A volume force, ρf̃Ω = ρ( f̃Ωx, f̃Ωy, f̃Ωz), which acts without a physical contact, directly on each
infinitesimal fluid volume dΩ, contained in the volume Ω (e.g. gravitational, electric and magnetic
forces). f̃Ω is a force per unit mass (or equivalently an acceleration) and ρf̃Ω is a force per unit
volume. If the only volume force present is the gravitational force, it follows that:

f̃Ω = (0,0,−g) (2.5)

where g is the gravitational acceleration.
•A surface force, f̃su, which acts on each infinitesimal surface element dS belonging to S. The unit
normal vector to the surface pointing outward is represented by n (see Fig. 2.3). f̃su is generated
by the normal pressure stresses and by the viscous stresses and it is a force per unit area. f̃su can
be expressed [24] as:

f̃su =Σ n (2.6)

with

Σ=




σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33


=−pI3 +Ξ (2.7)

where Σ is the total stress tensor, p is the total fluid pressure, I3 is a 3×3 identity matrix and Ξ is
the viscous stress tensor. The diagonal elements of Σ represent the normal stress components (or-
thogonal to the surface) and both pressure and viscosity provide a contribution. The off-diagonal
elements represent the shear stress components (tangential to the surface) and only the viscosity
provides a contribution. A Newtonian fluid, by definition, has a linear relationship between vis-
cous forces and the partial derivatives of the fluid velocity (the shear viscosity µ is constant) [23].
For an incompressible and Newtonian fluid (like water) [22] [23] [25]:

Ξ=




δ11 δ12 δ13
δ21 δ22 δ23
δ31 δ32 δ33


= 2µ




∂vx
∂x

1
2(

∂vx
∂y +

∂vy
∂x )

1
2(

∂vx
∂z + ∂vz

∂x )
1
2(

∂vy
∂x + ∂vx

∂y )
∂vy
∂y

1
2(

∂vy
∂z + ∂vz

∂y )
1
2(

∂vz
∂x + ∂vx

∂z )
1
2(

∂vz
∂y +

∂vy
∂z )

∂vz
∂z


 (2.8)

It is possible to see in (2.8) that both shear (the off-diagonal elements) and normal (the diagonal
elements) viscous stresses depend on velocity gradients in the flow. The total surface force and
moment, applied from the surrounding environment on the fluid bounded by the surface S, are
obtained by integrating the contribution from each infinitesimal surface element dS [20] :

fsu =
∫

S
f̃su dS =

∫

S
Σ n dS (2.9)

τsu =
∫

S
r× f̃su dS =

∫

S
r× (Σ n) dS (2.10)

In the case of a motionless fluid (all the velocity components and their partial derivatives are zero)
or for an inviscid fluid (µ = 0), the viscous stress tensor is zero and the only contribution to the
surface force is provided by the pressure, therefore, equations (2.9) and (2.10) become [26] [27] :

fsu(t) =−
∫

S
p(x,y,z, t) n dS (2.11)

τsu(t) =−
∫

S
p(x,y,z, t) (r×n) dS (2.12)

It is important to underline that equations (2.9) and (2.10) can be also used to calculate the
force and moment applied from the fluid to a rigid-body, bounded by the surface S [24]. Therefore,
in equation (2.4), it is possible to introduce:

Γ f l(t) = (fsu(t),τsu(t)) (2.13)
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2.2.2 Conservation of mass

The first conservation law introduced is the conservation of mass (also called the continuity equa-
tion): the net mass flow out of the control volume, through the surface, is equal to the time rate of
decrease of mass inside the control volume. Mathematically, the law of conservation of mass can
be expressed [24] as:

∂ρ
∂t

+∇ · (ρv) = 0 (2.14)

where v = (vx,vy,vz) is the water velocity vector.

2.2.3 Conservation of momentum (Navier-Stoke equations)

The Navier-Stoke equations are a consequence of Newton’s 2nd law (force is equal to mass times
acceleration) [23] :

∂(ρvx)

∂t
+∇ · (ρvxv) =−∂p

∂x
+

∂δ11

∂x
+

∂δ21

∂y
+

∂δ31

∂z
+ρ f̃Ωx (2.15)

∂(ρvy)

∂t
+∇ · (ρvyv) =−∂p

∂y
+

∂δ12

∂x
+

∂δ22

∂y
+

∂δ32

∂z
+ρ f̃Ωy (2.16)

∂(ρvz)

∂t
+∇ · (ρvzv) =−

∂p
∂z

+
∂δ13

∂x
+

∂δ23

∂y
+

∂δ33

∂z
+ρ f̃Ωz (2.17)

where δi j are given by (2.8). If the only volume force acting is the gravitational force, f̃Ω =
( f̃Ωx, f̃Ωy, f̃Ωz) is given by (2.5).

2.2.4 Conservation of energy

The law of conservation of energy, e(x,y,z, t), states: the rate of change of energy, inside the fluid
element, is equal to the net flux of heat into the element, plus the rate of work done on the element
due to volume and surface forces. In mathematical form, the law of conservation of energy can be
expressed [23] as:

∂(ρe)
∂t

+∇ · (ρev) = ρq̇+
∂
∂z

(
kT

∂Tf l

∂z

)
+

∂
∂y

(
kT

∂Tf l

∂y

)
+

∂
∂z

(
kT

∂Tf l

∂z

)
−

p
(∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z

)
+λbv

(∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z

)2
+

µ
[
2
(∂vx

∂x

)2
+2
(∂vy

∂y

)2
+2
(∂vz

∂z

)2
+
(∂vx

∂y
+

∂vy

∂x

)2
+
(∂vx

∂z
+

∂vz

∂x

)2
+
(∂vy

∂z
+

∂vz

∂y

)2]
(2.18)

where q̇ is the rate of volumetric heat addition per unit mass, q̇x, q̇y and q̇z are the heat flows trans-
ferred in the x, y and z directions, respectively, per unit time per unit area by thermal conduction,
kT is the thermal conductivity, λbv is the bulk viscosity coefficient and Tf l is the fluid temperature.

2.2.5 The hydrodynamic problem to be solved

The continuity equation (2.14), the Navier-Stoke equations (2.15), (2.16) and (2.17) and the energy
equation (2.18) together represent a system of five partial differential equations in terms of seven
unknown flow-field variables, ρ, p, vx, vy, vx, Tf l and e. Therefore, the system requires two more
equations to be solved, the thermal and caloric equations of state [20] [23] :

p = p(ρ,Tf l) (2.19)

e = e(ρ,Tf l) (2.20)
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The most frequently used thermal and caloric equations are [23]:

p = ρRTf l (2.21)

e = cvTf l (2.22)

where R is the specific gas constant and cv is the specific heat at constant volume. Now the system
contains seven equations and seven unknown flow-field variables ρ, p, vx, vy, vx, e and Tf l . The
parameters λbv, µ and kT are assumed known from experimental data [20]. It is important to under-
line that, under the hypothesis of an incompressible fluid, the energy equation is mathematically
uncoupled from the continuity and Navier-Stoke equations [20]; therefore, the system of equations
can be reduced to the continuity equation (2.14) and the Navier-Stoke equations (2.15), (2.16) and
(2.17), obtaining a system of four differential equations and four unknown flow-field variables p,
vx, vy and vz [20]. No general closed-form solution exists, therefore, the use of numerical methods
is required.

2.2.6 Bernoulli’s equation

In the case where a fluid has an irrotational motion (the fluid elements do not rotate relative to their
own center of gravity), it is possible to write ∇×v = 0, which leads to the possibility of defining a
velocity potential φ(x,y,z, t), which can be used to derive the fluid velocity everywhere [26] [28]:

v = (vx,vy,vz) = ∇φ (2.23)

Adding the hypotheses of an inviscid (µ = 0) and incompressible fluid (ρ is constant and not a
function of time or space), from the Navier-Stoke equations (2.15), (2.16) and (2.17), it is possible
to obtain the Bernoulli’s equation for an unstationary flow, in which the velocity can be written in
terms of the velocity potential [26] [21]:

∂φ
∂t

+
1
2
(∇φ)2 +

p
ρ
+gz =C(t) (2.24)

where C(t) is the unsteady Bernoulli constant and (∇φ)2 = [
(

∂φ
∂x

)2
+
(

∂φ
∂y

)2
+
(

∂φ
∂z

)2
]. C(t) is a

function of time but not of space and its value is associated with a related constant in φ, which does
not affect the velocity vector (the gradient operator is insensitive to constant values). Therefore,
C(t) can be set to zero, and (2.24) becomes [22] [28] :

∂φ
∂t

+
1
2
(∇φ)2 +

p
ρ
+gz = 0 (2.25)

Equation (2.25) can be rearranged as:

p =−ρ
(∂φ

∂t
+

1
2
(∇φ)2 +gz

)
(2.26)

From (2.26), it is possible to define the dynamic pressure, pd , depending on the water velocity:

pd =−ρ
(∂φ

∂t
+

1
2
(∇φ)2

)
(2.27)

and the static pressure, ps:
ps =−ρgz (2.28)

Linearizing Bernoulli’s equation (2.26) leads to:

p =−ρ
∂φ
∂t
−ρgz (2.29)
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2.2.7 Buoyancy and restoring forces

Given a motionless floating body in still water, the hydrostatic force (also called the buoyancy
force), fb, applied from the water to the body, is provided by the integration of the static pressure,
ps, over the wetted body surface, S (see (2.11)). If z represents the vertical body displacement
from its equilibrium position, considering the motionless body in different vertical displacement,
the amount of submerged body volume is a function of the displacement [29]:

Vb(z) =V 0
b +∆Vb(z) (2.30)

where V 0
b is the submerged body volume at equilibrium (z = 0), and ∆Vb(z) is the submerged body

volume variation, obtained by moving the body from its equilibrium. Therefore,

fb(z) =−
∫

S(z)
ps n dS = ρgVb(z) = ρg

(
V 0

b +∆Vb(z)
)

(2.31)

At equilibrium, the buoyancy force and the gravitational force have the same intensity (but oppo-
site directions):

ρgV 0
b = Mg (2.32)

If the body has a constant horizontal cross-sectional area, Acr, it follows, under the hypothesis that
the body does not leave the water or that it is not completely submerged:

∆Vb(z) =−Acrz (2.33)

The negative sign takes into consideration the fact that, for positive (upward) body displacement,
the amount of submerged body decreases. From (2.31), (2.32) and (2.33), it follows that:

fb(z) = Mg−ρgAcrz (2.34)

For a body with a variable horizontal cross-sectional area, in the case of a small body displacement
(compared to the vertical size of the body), equation (2.31) can be approximated with the linear
equation (2.34), where, in this case, Acr is the horizontal cross-sectional area at the equilibrium
position.

The restoring force, fre, arises from the mismatch between the gravitational force, Mg, and fb:

fre(z) = fb(z)−Mg = ρg
(

V 0
b +∆Vb(z)

)
−Mg = ρg∆Vb(z) (2.35)

If the body has a constant horizontal cross-sectional area, Acr, from (2.33) and (2.35), it follows
that:

fre(z) = ρg∆Vb(z) =−ρgAcrz =−Kz (2.36)

where
K = ρgAcr (2.37)

is the restoring coefficient, with K > 0. For a body with a variable horizontal cross-sectional area,
if the body displacement is small compared to the vertical size of the body, the nonlinear restoring
force (2.35) can be approximated with the linear (2.36), where Acr, in this case, is the horizontal
cross-sectional area at the equilibrium position.

2.3 CFD: fully nonlinear computationl fluid dynamics

CFD is a branch of hydrodynamics that produces the simulation of fluid dynamic phenomena on
the basis of the conservation laws for mass (2.14), momentum (2.15), (2.16), (2.17), and energy
(2.18). In general, these equations have no known analytical solution; however, they may be solved
numerically, by discretizing the domains of space and time, in order to form a system of algebraic
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equations, which are computer implementable. The result concerns the value of variables such
as pressure, velocity, and temperature, at specific time instants and locations. In particular, CFD
can be utilised to simulate (at great computational expense) the hydrodynamic force acting on
an object floating in water, allowing fully nonlinear hydrodynamic calculations, including effects
neglected by traditional linear velocity potential methods, such as viscosity, large wave amplitude,
large body motion, green water and vortex shedding.

The main spatial discretization methods for CFD are mesh techniques such as the finite dif-
ference method (FDM), finite volume method (FVM) and finite element method (FEM) [30] [31].
The FDM is one of the first techniques developed to solve partial differential equations (PDEs).
In each node of the grid, the differential equation is approximated replacing the partial derivatives
with a truncated Taylor series expansion or a fitting polynomial. Therefore, each node of the grid is
associated with an algebraic equation, in which, the unknown variable value at a node is expressed
as a function of neighbouring nodes [19][31] [32]. The FDM is applied utilising a structured (or
regular) grid; furthermore, the FDM is usually restricted to simple body geometries [30]. The
advantages of FDM are simplicity and its easy implementation, on the other hand, the main dis-
advantage is that the conservation of the quantities, like mass and momentum, is not enforced. In
the case of the FVM, the solution domain is subdivided into a finite number of contiguous control
volumes. The conservation laws are applied at the centre of each control volume, obtaining an
algebraic equation for each control volume, in which the unknown variable value is expressed as
a function of neighbouring control volumes. The possibility of using any irregular mesh makes
the FVM suitable for complex geometries [33]. The FEM, originally introduced by Turner [34],
is similar to FVM, indeed, the domain is broken into a set of unstructured finite elements. In the
FEM, in contrast to the FVM, the equations are multiplied by a weight function before they are
integrated over the entire domain [19] [35] [36].

The study of floating objects involves the necessity of tracking, with good accuracy, the sep-
arating surface between water and air, η(x,y, t), called the free surface elevation (FSE). The sim-
ulation of a moving fluid interface is very challenging in CFD, because the position of the free
surface is not known in advance, but has to be calculated as part of the solution [19] [30]. In recent
years, numerical techniques have been developed in order to describe the motion of a fluid with
a moving free surface, like the volume of fluid (VOF) method, originally proposed by Hirt and
Nichols [37]. The VOF method is based on the fact that two different fluids cannot occupy the
same volume at the same time; therefore, each cell of the mesh contains a fraction α of water and
a fraction 1−α of air, where α ≤ 1. The non-dimensional fraction α is an additional unknown,
introduced in the system of equations to solve. If the cell is filled with water, α = 1, if the cell
is filled with air, α = 0 and if in the cell both fluids are present, 0 < α < 1 [30] [38]. The VOF
method, in addition to the conservation laws for mass and momentum, has to resolve an equation
for the volume fraction α of each cell [19] [39]. The density of the fluid in the cells with 0 < α < 1
(there is a mixture of water and air) is calculated as:

ρα = αρ+(1−α)ρa (2.38)

where ρα is the density of the mixture of water and air, ρ is the water density and ρa is the air
density [38]. The interface between air and water is represented by the cells with 0 < α < 1;
therefore, it is important to have a mesh with a fine vertical resolution in the region where the
free surface interface is likely to appear, to accurately locate the free surface. The VOF method
has been shown to be an efficient and performing technique, and it has been implemented in
OpenFOAM [30] and Ansys Fluent [40] CFD codes.

The CFD simulations are never completely exact (any model is an approximation of the real
world); indeed, different sources of error are involved in the simulations. The most common
sources of error in CFD are:
• The discretization methods, utilised to resolve the system of PDEs, replace a governing equation
with an approximated time and space discretized version. Increasing the number of points of the
grid, the discretization error reduces [24] [41].
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• Errors are introduced when the chosen governing equations are not sufficiently representative of
the studied system. The equations utilised to describe turbulence effects are a prime example [41].
• Another relevant source of error is the iteration (or convergence) error, which is the deviation of
the calculated but not fully converged solution from the fully converged solution (both calculated
on the same finite number of points on the grid). If the iterative calculation could continue indef-
initely, the convergence error would be zero but, for obvious time constraints, the calculation is
stopped once a preset level of tolerance is reached. The balance between the time constraint and
the required accuracy has to be the result of a pragmatic compromise [41] [42].

The use of CFD, in the simulation of wave energy converters, has been validated against
experimental data and shown to produce accurate results by many researchers. In [43] and [44],
OpenFOAM models, describing OWCs, have been validated against wave tank (WT) experiments,
exhibiting good agreement for air pressure and FSE measurements, in the case of monochromatic
waves. In [45], the Blow Jet WEC is implemented in OpenFOAM and good agreement is shown
for the pressure exerted on the WEC surface, between a model and experimental data. In [30], a
fixed truncated cylinder, a moored buoy, the Wavestar WEC prototype device, and the Seabased
WEC prototype device are studied in OpenFOAM. The simulations are validated against WT ex-
perimental data. In [46], a solver for wave generation and absorption is implemented. The simula-
tions are verified against published experimental data or numerical results. In [47], an oscillating
wave surge converter is implemented with the CFD package ANSYS FLUENT and simulations
are validated against experimental measurements, showing good agreement. In [48], an oscil-
lating wave surge converter is implemented in OpenFOAM and the simulations are compared
with experimental data, showing good agreement, in both regular and irregular waves. In [49],
a model for numerical prediction of the hydrodynamic forces on a point-absorber WEC (a point-
absorber WEC has geometrical dimensions much smaller than the wavelength) is implemented in
OpenFOAM. The radiation force, calculated in CFD, is validated against experimental results for
different heave oscillation test conditions.

2.3.1 OpenFOAM

The variety of CFD software packages capable of implementing a numerical wave tank (NWT)
are numerous, the choice of OpenFOAM [50], for the generation of data utilised for this the-
sis, is due to its flexibility, its open-source licensing, and its increasing popularity in the wave
energy research community [51]. Furthermore, OpenFOAM is developed to run on open-source
Unix/Linux systems, in this way entirely eliminating any software costs from the NWT implemen-
tation. OpenFOAM is basically a collection of C++ code managed by text-based commands, that
offers full control over the software, giving the user freedom to modify it to suit their needs. For
example: Jacobsen et al. [52] modified a fluid solver in order to generate and absorb waves, and
Palm et al. [53] modified a rigid-body solver in order to couple it to an external solver for mooring
loads. OpenFOAM is constantly improving and evolving, implementing libraries and toolboxes
for different applications. The open-source nature of OpenFOAM often leads to the free sharing
of useful toolboxes and libraries in the public domain.

OpenFOAM has been used in a wide range of science and engineering applications, such as
heat transfer and chemical reactions. In recent years, examples of use of OpenFOAM for the
implementation of NWTs for wave energy experiments are numerous; for example, Morgan et
al. [54] used OpenFOAM to reproduce experimental results for the propagation of monochro-
matic waves over a submerged bar; Chenari et al. [55] modelled the propagation and breaking
of regular waves; Li and Lin [56], using a two-dimensional NWT, finding good agreement with
experimental and numerical results of other researchers, simulating the interaction between a body
and monochromatic waves, in water of finite depth, with flat and sloping bottoms. A similar in-
vestigation, with irregular waves and varying water depth, was performed by Li and Lin [57].
Chen et al. [58] studied the performance of OpenFOAM, investigating nonlinear wave interac-
tions with offshore structures, for a range of wave conditions. Furthermore, the performance of
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a range of WECs, with different working principles, has been analysed with OpenFOAM: OWCs
have been simulated by Iturrioz et al. [59] and Souza et al. [60]. Schmitt et al. [61] and Henry et
al. [62] modelled, in OpenFOAM, the Oyster, the Aquamarine Power Ltd. oscillating wave surge
converter. Akimoto et al. [63] simulated a rotational WEC, based on a drag-type vertical axis
water turbine. A two-phase flow phenomena in horizontal pipelines was simulated by Thaker and
Banerjee [64], in order to investigate WECs, such as the Vigor. Two-dimensional (2D) simulations
of the Bombora, the membrane based WEC, has been performed by King [65]. The overtopping
behaviour of the Wave Dragon device was simulated by Eskilsson et al. [66]. In [67], a latching
control strategy is applied to a 0.125 m heave sphere in a three-dimensional (3D) OpenFOAM
NWT.

2.3.2 Advantages and limitations of CFD-NWT

The main advantages of CFD-NWT models in comparison to RWT are:
• The WECs can be studied at full scale, eliminating scaling effects of real tank tests.
• A wide variety of excitation signals, including incident waves and forces directly applied to the
device, can be implemented (as well as free response tests).
• The device can be constrained to different modes of motion without requiring mechanical re-
straints, which can add friction, alter the device dynamics and increase the costs.
• Signals can be passively measured without requiring physical sensor devices, which can alter
the device or fluid dynamics and are subject to measurement error. Furthermore, no additive costs
are necessary to acquire sensors and interface cards.
• Specialist equipment, including a prototype WEC device, is not required.
• In a NWT, the wave reflections can be effectively controlled by numerical absorption techniques.
• CFD produces detailed calculation of all relevant variables, such as pressure and fluid velocity,
throughout the domain of interest.
However, NWTs are not without their drawbacks [9]:
• The chief disadvantage, over a conventional wave tank, is the excessively long time to perform
the numerical computation of the response. Typical computation time can be up to 1000 times the
simulation time (i.e. 1 s of simulation time takes 1000 s to compute). Therefore, a NWT experi-
ment having a simulation time of 15 minutes, would require 10 days of computation time. Parallel
computation can be used to reduce the computation time, indeed, the fluid domain is divided in
regions and every region can be solved, almost independently, on separate computers [68].
• NWTs can take considerable experience to use well, in particular setting up a spatial mesh,
which offers a reasonable compromise between computation time and accuracy.
• The pressure peaks, due to the impact between waves and the WEC, occur over short time
scales; therefore, it is necessary to utilise small time steps, in order to accurately describe the
pressure peaks, which increases the simulation time.

2.4 Linear potential theory and BEMs

The system of nonlinear PDEs, composed of the continuity equation (2.14) and the Navier-Stoke
equations (2.15), (2.16), and (2.17), is difficult and time-consuming to solve numerically; there-
fore, some simplifying assumptions are introduced in order to obtain LPT. The present state of the
art, in order to model the wave-WEC interaction, uses LPT in conjunction with BEMs, obtaining a
solution with a satisfactory accuracy and a relatively low computation effort. In this section, LPT
is briefly explained, underlining the hypotheses which it is based on.

Consider a body with a generic shape, floating in water and a global three-dimensional system
of coordinates with the z-axis perpendicular to the free-surface, vertically upward and with its
origin on the mean FSE (see Fig. 2.4). The waves are propagating in the x-axis positive direction.
The FSE, η(x,y, t), represents the elevation of the water free surface from its equilibrium position,
being positive when the surface is above the x-y plane.

16



LPT is based upon the following assumptions regarding the fluid:

• The fluid is inviscid (µ = 0); (2.39)

therefore, there are no viscous stresses applied on fluid elements, only normal pressure stresses
are observed (see Section 2.2.1).

• The fluid motion is irrotational (∇×v = 0), (2.40)

which leads to v = (vx,vy,vz) = ∇φ (see Section 2.2.6). It is useful to underline that, if an inviscid
flow is initially irrotational, then it stays irrotational at all subsequent times [69].

• The fluid is incompressible (ρ is constant). (2.41)

Furthermore, LPT is based upon the following assumptions [24] [70]:
• The ratio of the wave amplitude, Aw, to the wavelength, λ, is small; therefore,

Aw

λ
<< 1 (2.42)

• The amplitude of the body motion is much smaller than the dimension of the body (2.43)

Under hypotheses (2.40) and (2.41), the continuity equation (2.14) becomes the Laplace equation,
in which the fluid velocity is described with the velocity potential [69] [71] :

∇2φ = 0 (2.44)

Together with the Laplace equation (2.44), the flow has to satisfy some boundary conditions,
defined at the water’s free surface, at the sea bottom and at the body surface. At the water’s free
surface z = η(x,y), the water pressure has to be equal to the atmospheric pressure; mathematically,
the velocity potential has to satisfy [9] [71]:

∂φ
∂t

+
1
2
(∇φ)2 +gη = 0 (at z = η(x,y)) (2.45)

The nonlinear equation (2.45) is called the nonlinear dynamic boundary condition. The second
physical condition, imposed at the FSE, is that the water particles can not escape from the sea
and, therefore, the component of the fluid velocity normal to the surface must equal the surface
velocity. Mathematically, at z = η(x,y), the velocity potential has to satisfy [9] [71]:

∂φ
∂z

=
∂η
∂t

+
∂φ
∂x

∂η
∂x

+
∂φ
∂y

∂η
∂y

(at z = η(x,y)) (2.46)

The nonlinear equation (2.46) is called the kinematic boundary condition. The physical boundary
condition for the wetted body surface imposes the impermeability of the body. Therefore, the
component of the fluid velocity normal to the body surface, ∂φ

∂n , has to be equal to the body velocity
normal to the body surface, un [9] [72] :

∂φ
∂n

= un (on the wetted body surface S) (2.47)

The impermeable and flat seafloor conditions, at a depth equal to h, impose a vertical component
of the fluid velocity, ∂φ

∂z , equal to zero, at z =−h [9] [71] :

∂φ
∂z

= 0 (at z =−h) (2.48)
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Figure 2.4: Graphical representation of the LPT-BVP in the time domain, described by the system
of equations (2.44), (2.47), (2.48), (2.49) and (2.52).

The last physical condition imposes a decaying amplitude of the wave field, as the distance from
the body increases [9] [71]:

∇φ→ 0 (at
√

x2 + y2→ ∞) (2.49)

The system of equations (2.44), (2.45), (2.46), (2.47), (2.48) and (2.49) represents the FNPT
boundary value problem (BVP) in the time domain.

In LPT, the nonlinear equations (2.45) and (2.46) are linearised under hypotheses (2.42) and
(2.43) [24] [70]. Furthermore, in LPT, on the water’s free surface, the boundary conditions are
considered on the undisturbed FSE (η(x,y, t) = 0 everywhere), instead of on the instantaneous
FSE. Consequently, equations (2.45) and (2.46), at z = 0, become [9]:

∂φ
∂t

+gη = 0 (at z = 0) (2.50)

∂η
∂t

=
∂φ
∂z

(at z = 0) (2.51)

Equations (2.50) and (2.51) can be combined obtaining [72] [73]:

∂2φ
∂t2 +g

∂φ
∂z

= 0 (at z = 0) (2.52)

The system of equations (2.44), (2.47), (2.48), (2.49) and (2.52) represents the LPT-BVP in the
time domain [28] and it is represented in Fig. 2.4. Once φ is known, the FSE can be obtained by
rearranging equation (2.50) [73]:

η =−1
g

∂φ
∂t

(2.53)
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2.4.1 Hydrodynamic problem decomposition

Under the hypotheses of LPT, the wave field surrounding a floating body can be described as a
superposition of an incident, a diffracted and a radiated wave field [26] [74]. The incident wave
field, φi, is defined as the wave propagating in the absence of the floating body. The diffracted
wave field, φd , is a consequence of the interaction between the incident wave and the floating
body, when the body is kept fixed at its equilibrium position. For the generation of the radiation
wave field, φra, the floating body is forced to oscillate due to an external force, in the absence of
an incident wave field. Therefore, the total velocity potential, φ, can be obtained as:

φ(x,y,z, t) = φi(x,y,z, t)+φd(x,y,z, t)+φra(x,y,z, t) (2.54)

As explained in Section 2.2.1, in absence of viscous stress components, the force and moment
applied from the fluid to the body are given by the integration of the total pressure over the wetted
body surface, as described in (2.11) and (2.12). In LPT, the surface S corresponds to the motionless
wetted body surface in calm water. Introducing equations (2.29) and (2.54) into (2.11), it follows
[26] that:

f f l(t) = ρ
∫

S

(∂φi(x,y,z, t)
∂t

+
∂φd(x,y,z, t)

∂t
+

∂φra(x,y,z, t)
∂t

+gz
)

n ·dS (2.55)

= f f k(t)+ fd(t)+ fra(t)+ fb(t) (2.56)

where

f f k(t) = ρ
∫

S

∂φi(x,y,z, t)
∂t

n dS (2.57)

is the Froude-Krylov force,

fd(t) = ρ
∫

S

∂φd(x,y,z, t)
∂t

n dS (2.58)

is the diffraction force,

fra(t) = ρ
∫

S

∂φra(x,y,z, t)
∂t

n dS (2.59)

is the radiation force and fb is the linearised buoyancy force given by (2.34). It is important to
underline that, in (2.57), (2.58) and (2.59), S is the wetted surface of the fixed body, considered
below the undisturbed mean FSE, as shown in Fig. 2.4 [9]. Similarly, introducing equations (2.29)
and (2.54) into (2.12), it follows [26] that:

τ f l(t) = ρ
∫

S

(∂φi(x,y,z, t)
∂t

+
∂φd(x,y,z, t)

∂t
+

∂φra(x,y,z, t)
∂t

+gz
)
(r×n) dS (2.60)

= τ f k(t)+τd(t)+ τra(t)+ τb(t) (2.61)

where

τ f k(t) = ρ
∫

S

∂φi(x,y,z, t)
∂t

(r×n) dS (2.62)

is the Froude-Krylov moment,

τd(t) = ρ
∫

S

∂φd(x,y,z, t)
∂t

(r×n) dS (2.63)

is the diffraction moment,

τra(t) = ρ
∫

S

∂φra(x,y,z, t)
∂t

(r×n) dS (2.64)

is the radiation moment.
The summation of Froude-Krylov and diffraction forces is called the excitation force:

fe(t) = f f k(t)+ fd(t); (2.65)
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therefore, the total force applied from the fluid to the body is given by:

f f l(t) = fe(t)+ fra(t)+ fb(t). (2.66)

Similarly, the summation of Froude-Krylov and diffraction moments is called the excitation mo-
ment:

τe(t) = τ f k(t)+τd(t) (2.67)

and the total moment applied from the fluid to the body is given by:

τ f l(t) = τe(t)+τra(t)+τb(t) (2.68)

In the following Sections 2.4.1.1 and 2.4.1.2, more details regarding the excitation, radiation
and buoyancy forces are provided where, for simplicity, the general 6 DoF problem has been
reduced to a heave single DoF.

2.4.1.1 Excitation force

The excitation force is the force acting on the body, when it is held fixed in the presence of waves
[75] [69]. In the context of LPT, the excitation force is the superposition of the Froude-Krylov
force (2.57) and of the diffraction force (2.58) [9], where the Froude-Krylov force is obtained by
integrating the pressure, due to the undisturbed incident wave field, over the mean wetted surface
of the fixed body, as explained in Section 2.4.1. Therefore, the Froude-Krylov force can be con-
sidered as the force interaction between the waves and a ‘ghost’ body, which feels and reacts to the
incident wave field, but does not alter it [9]. In the case of a body, having dimensions significantly
smaller than the wavelength, the diffraction force is not significant compared to the Froude-Krylov
force [9], indicating that the Froude-Krylov force is a reasonable approximation of the excitation
force, with the computational advantage of avoiding the resolution of the diffraction problem. In
the literature, the definition of the Froude-Krylov force is not unique, it can be calculated consid-
ering only the dynamic pressure, due to the incident field [69] [76] or it can be calculated utilising
the total pressure (static plus dynamic pressure) [77] [78] [79]. In the present work, the excitation
force counts only the dynamic part of the pressure; in this way, the excitation force is zero if there
are no incident waves (otherwise, the excitation force would be equal to the buoyancy force, in
the absence of incident waves). This definition will be useful in Section 6.2, where the excitation
force represents the output of the system under investigation. In the case of a single DoF body,
moving in heave, the excitation force is given by [74]:

fe(t) =
∫ ∞

−∞
he(t−ζ)η(ζ)dζ (2.69)

where he(t) is the excitation impulse response function. It is important to note that, in (2.69), the
upper limit of the convolution integral is +∞, indicating that it is necessary to know the future
values of η, in order to calculate fe at the present instant t. The fact that the relationship between
η and fe is noncausal can be intuitively understood in the case where η is defined with respect to
a point placed in the centre of the body; indeed, the body will experience a force before the wave
crest has arrived to the body centre [80] [81]. Moreover, the causality is not guaranteed even if η is
considered in a location on the upstream side and outside the body [82]. The noncausal relationship
between η and fe becomes particularly important for real-time WEC control strategies, where
wave forecasting is required [83] [84]. Taking the Fourier transform of (2.69), it follows that:

Fe(ω) = He(ω)η(ω) (2.70)

where He(ω) is the Fourier transform of he(t) and η(ω) is the Fourier transform of η(t) [74].
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2.4.1.2 Radiation force

In the case of a body oscillating in the absence of incident waves, the hydrodynamic force, applied
from the fluid to the body, is called the radiation force. It is important to underline that, in LTP, the
calculation of the radiation force has an inconsistency, since the body is supposed to be moving to
generate radiated waves but, at the same time, the wetted body surface is supposed to be unaltered
in (2.59). In LPT, the body motion generates a time-changing fluid pressure, which is integrated
on a constant surface, S, creating a time-changing radiation force. In the case of a single DoF body
moving in heave, the radiation force is given by [85]:

fra(t) =−m∞z̈(t)−
∫ t

−∞
hra(t−ζ)ż(ζ)dζ (2.71)

where z(t) is the position of the body, m∞ the high-frequency asymptote of the added-mass and
hra(t) the reduced radiation impulse response function. The shape of the wetted body surface
determines the hydrodynamic radiation force felt by the body, when it moves in the fluid. The
convolution integral, in (2.71), describes the water memory effect and it is evaluated from minus
infinity to the present time instant t, indicating that the relationship between the body velocity,
ż, and the radiation force, fra, is causal. In the frequency domain, the relationship between the
body’s velocity and the radiation force is given by the radiation impedance, Zra(ω) [69]:

Fra(ω) =−Zra(ω)iωZ(ω) (2.72)

where Fra(ω) and iωZ(ω) are the Fourier transform of fra(t) and ż(t) respectively and

Zra(ω) = N(ω)+ iωma(ω) (2.73)

The real part of the radiation impedance, N(ω), is the radiation resistance, also called the hydrody-
namic damping coefficient, which describes the dissipative effect of the energy, transmitted from
the oscillating body to the waves (the waves propagate away from the body). The imaginary part
of the radiation impedance is the radiation reactance, given by the product of the frequency, ω,
and the added mass, ma(ω). The radiation reactance refers to the alternate exchange of kinetic
energy, associated with the velocity of the water, and the gravitational potential energy related to
the lifted water [9]. The added mass represents the additional inertial effect due to the acceleration
of the water, which moves together with the body. At infinite frequency, the added mass tends to
the finite constant, m∞, which is utilised to form the reduced radiation impedance, Hra:

Hra(ω) = Zra(ω)− iωm∞ = N(ω)+ iω
[
ma(ω)−m∞

]
. (2.74)

The inverse Fourier transform of Hra(ω) is the reduced radiation impulse response function, hra(t).
Hra(ω) and hra(t) satisfy the following properties [86]:

lim
ω→0

Hra(ω) = 0 (2.75)

lim
ω→∞

Hra(ω) = 0 (2.76)

hra(t) =
2
π

∫ ∞

0
N(ω)cos(ωt)dω (2.77)

N(ω)≥ 0 ∀ ω (2.78)

lim
t→0+

hra(t) 6= 0 (2.79)

lim
t→∞

hra(t) = 0 (2.80)

Equation (2.77) derives from the causality of hra(t) [69] [74]. Equation (2.78) is a consequence of
the system passivity (passivity describes an intrinsic characteristic of systems that can store and
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dissipate energy, but not create it). For linear time-invariant systems, a necessary and sufficient
condition for passivity is that the real part of the system transfer function is positive for all fre-
quencies [86] [87]. Equation (2.79) is a consequence of equations (2.77) and (2.78) [88]. In the
frequency domain, equation (2.71) becomes:

Fra(ω) = m∞ω2Z(ω)−Hra(ω)iωZ(ω). (2.81)

2.4.2 Solving the LPT-BVP utilising BEMs

The separation of the total potential flow, φ, into the incident potential φi, diffraction potential
φd and radiation potential φra, introduced in Section 2.4.1, allows breaking the LPT-BVP, rep-
resented by the system of equations (2.44), (2.47), (2.48), (2.49) and (2.52), into three simpler
sub-problems: the incident, radiation and diffraction problems. The velocity potential of the orig-
inal entire problem is then obtained by superimposing the individual velocity potentials of the
sub-problems (see Fig. 2.5) [27].

Body
geometry

Incident
sub-problem

Radiation
sub-problem

Diffraction
sub-problem

Σ

φi

φra

φd

φ

Figure 2.5: The LPT-BVP is divided into the incident, radiation and diffraction sub-problems. The
velocity potential of the original entire problem is then obtained by superimposing the velocity
potentials of the sub-problems.

.
• The incident sub-problem. The velocity potential, φi, has to satisfy the Laplace equation (2.44),
the boundary condition at the seabed (2.48) and the linearised boundary condition at the free sur-
face elevation (2.52). In the incident sub-problem, the body is not present; therefore, the boundary
condition equation (2.47) is not taken into account. The solution is found under the hypothesis
of time-harmonic motion with a specified frequency, ω, and, given the linearity of the problem,
a more general case, such as the response to a random sea, can be obtained as superposition of
harmonics utilising Fourier analysis [72][73]. The analytical solution of the incident potential
problem, for a finite water depth, h, is given by [26] [27] [73]:

φi =
Awg
ω

cosh[k(h+ z)]
cosh(kh)

sin(kx−ωt) (2.82)

where Aw is the wave amplitude (2Aw is the wave height), k = 2π/λ is the wave number, λ is the
wavelength and ω is the wave frequency. The connection between ω and k is provided by the
dispersion relationship:

ω2

g
= k tanh(kh) (2.83)
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Using (2.53) and (2.82), and imposing z = 0, it is possible to obtain the FSE expression:

η = Awcos(kx−ωt) (2.84)

Equation (2.84) represents a harmonic plane wave moving in the x direction. Introducing (2.82)
into the linearised Bernoulli’s equation (2.29), it follows [26] that:

pi =−ρgz+ρgAw
cosh[k(h+ z)]

cosh(kh)
cos(kx−ωt) (2.85)

• The radiation sub-problem. The velocity potential, φra, has to satisfy the LPT-BVP, represented
by the system of equations (2.44), (2.47), (2.48), (2.49) and (2.52), The radiation problem is
analytically resolvable only for very simple geometries and, therefore, the application of numerical
methods is necessary.
• The diffraction sub-problem. The velocity potential, φd , has to satisfy the LPT-BVP, represented
by the system of equations (2.44), (2.47), (2.48), (2.49) and (2.52), with the particularity that, in
(2.47) the body velocity is zero [27]. Like the radiation problem, the diffraction problem needs
the application of numerical methods.

Different possibilities are available for the numerical resolution of a system of PDEs, such
as BEMs (also called boundary integral equation methods (BIEMs)), FEMs and FDMs [27] [89]
[90] [91]. As explained in Section 2.3, in both FEM and FDM, the whole spatial domain is
divided utilising a mesh, in contrast to BEMs, in which the spatial discretization is performed
only at the bounding surface. Therefore, BEMs, compared to FEM and FDM, lead to a more
efficient computation and less required computer memory, thanks to a reduction of the linear
system dimension [89]. Furthermore, in numerical modelling, the mesh preparation is one of the
most demanding processes [68]; since BEMs require the mesh of the only bounding surface, the
mesh preparation is more cost effective [89] [90]. Furthermore, the adjustment of the mesh is more
efficient with BEMs, in the case of problems involving moving boundaries [89].

The generic solution of a linear system can be written as a superposition of harmonic solutions
at different frequencies ω, leading to the LPT-BVP in the frequency domain, whose unknowns are
the frequency domain hydrodynamic coefficients Fe(ω), introduced in (2.70), N(ω) and ma(ω),
presented in (2.73) [28]. BEMs are based on a form of Green’s theorem, which describes velocity
potential as a distributions of singularities (sources or dipoles) over the wetted body (discretized)
surface. For more details see [72] [92] [93] [94]. Numerically solving the resulting system of linear
equations, the potential flow field is obtained, which can be used to calculate the fluid pressure, by
using Bernoulli’s equation (2.29) [9].

In recent years, many BEM codes have been developed to resolve the LPT-BVP in the time
or frequency domain. The most common codes working in the frequency domain are WAMIT
[95], ANSYS Aqwa [35] [96] [97], Aquaplus and Nemoh [98]. A code, working in the time
domain, is Achil3D [99] [100]. LPT and BEMs have been utilised in order to model a wide range
of WECs since the 1980s: in [101], the submerged pitching WEC Duck is modelled to predict
the power absorption efficiency. In [102], the pitching Salter’s Duck is numerically modelled.
In [103] and [104], tha Pelamis WEC is modelled. In [105], the effect of water depth on the
performance of a small surging WEC is studied. In [106], the dynamic behaviour of OWCs is
studied, utilising an adaptation of the BEM code AQUADYN [107]. In [108] and [109], the
SEAREV, the floating oscillating WEC containing an internal moving mass, is investigated. In
[110], a bottom-hinged flap WEC is modelled. In [111], the Anaconda WEC (a submerged flooded
rubber tube) is investigated. Different studies show good agreement between linear theory and
experiments, in small and moderate sea states [112] [113] [114] [115].

2.4.3 Advantages and limitations of LPT

The main advantages of LPT are:
• Since the model is linear, superposition can be used to decompose the fluid-body hydrodynamic
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force into Froude-Krylov, diffraction and radiation forces, in order to simplify the problem (see
Sections 2.4.1 and 2.4.2).
• Since the model is linear, all time-varying variables (such as pressure, fluid velocity and body
displacement) can be represented as a superposition of harmonics, in this way leading to a fre-
quency domain description of the system.
The main limitations of LPT are:
• LPT has an applicability restricted to waves which have small amplitudes with respect to their
wavelengths.
• LPT has an applicability restricted to body oscillations which are small with respect to the body
dimensions.
• The model accuracy reduces particularly around resonance, where body oscillations typically
increase considerably.
• The hypothesis of inviscid fluid removes any viscous effects from the models, reducing the ac-
curacy where flow separation and vortex shedding are present.
• LPT does not account for wave breaking (the wave steepness is assumed to be well below the
point of wave collapse).

2.5 Fully nonlinear potential theory and BEMs

In Section 2.4, the FNPT-BVP in the time domain has been introduced, which is represented by the
system of equations (2.44), (2.45), (2.46), (2.47), (2.48) and (2.49). FNPT is based on some of the
hypotheses utilised for LPT: an inviscid (2.39) and incompressible (2.41) fluid and an irrotational
flow (2.40). Therefore, also in FNPT, it is possible to define a velocity potential φ (2.23). In
contrast to LPT, hypotheses (2.42) and (2.43) are not utilised in FNPT. Furthermore, in contrast
to LPT, the boundary conditions are not linearised and the boundary conditions are applied at the
instantaneous water FSE, η(t), and at the instantaneous wetted body surface, S(t), as shown in
Fig. 2.6. The fact that the boundaries themselves vary in time makes the analytical solution of the
problem very difficult and rare, necessitating the use of numerical methods.
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Figure 2.6: Graphical representation of the LPT-BVP in the time domain, described by the system
of equations: (2.44), (2.45), (2.46), (2.47), (2.48) and (2.49).
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It is important to underline that the nonlinear nature of the problem does not allow the separa-
tion of the total potential flow into an incident, a diffraction and a radiation potential, in contrast
to equation (2.54), for LPT. Consequently, in FNPT, the superposition of hydrodynamic forces is
lost [9]. Therefore, the FNPT-BVP can not be separated in sub-problems, like in LPT, but has
to be solved by directly finding the total potential velocity φ [116] [117]. However, there is still
the possibility of defining an excitation problem (when the body is fixed and subject to incident
waves) or a radiation problem (when the body oscillates without the presence of incident waves),
but the superposition of the two separated excitation and radiation problems does not provide the
correct solution for the problem with both incident waves and body oscillations [9]. The change
in time of the boundary (the FSE and the body position) leads to the formulation of a new BVP
at each time step, increasing considerably the problem complexity [9]. For more details regarding
FNPT, see [9] [71] [118].

In recent years, a considerable number of FNPT solvers have been implemented in order to
simulate the interaction between waves and floating structures, the generation of radiating waves
by large oscillating bodies, and the propagation of nonlinear waves. The study of the propagation
of nonlinear free surface waves was presented in [119] for a two dimensional case, and generalised
to three dimensions by [120] [121] [122]. Guerber et al. [117] [123] modelled, in two dimensions,
the interaction between an inviscid fluid and a submerged cylinder undergoing large motions.
The wave generation, propagation, and breaking have been studied in a two-dimensional NWT,
implemented utilising FNPT in [124] [125]. The investigation of large amplitude oscillations of
a submerged body is reported in [126]. In [127], a vertical cylinder is forced to oscillate in a
NWT, in order to generate nonlinear waves. The nonlinear hydrodynamic responses of an OWC
are investigated in two dimensions in [128]. In [118], a study is reported of propagation, breaking
and runup on slopes of waves; furthermore, the wave interaction with submerged and emerged
structures is investigated. In [129], the nonlinear time domain simulation of a land-based OWC is
presented. The numerical analysis of the Backward Bent Duct Buoy (BBDB) WEC is reported in
[130] and [131]. In [116], the nonlinear interactions between large waves and freely floating bodies
are simulated in a two-dimensional NWT. In [127], [132] and [133], the interaction of a single
floating structure with the surrounding fluid is investigated in 6 DoF. Siddorn, in [134], reduces
the size of the simulation domain, developing numerical methods, capable of effectively damping
an outgoing wave and generating steep incident waves in short distances. A two-dimensional
wave-induced motion (sway, heave and roll) of a floating body is computed and compared with
corresponding real experiments in [135].

2.5.1 Advantages and limitations of FNPF

The main advantages of FNPT are:
• There are no limitations in the wave amplitude and steepness (as long as wave breaking does not
occur), in contrast to LPT.
• Large finite body displacements are permitted, in contrast to LPT.
• FNPT models can simulate wave propagation with significant less numerical dissipation and
higher accuracy than CFD models [9].
• FNPT models are less computationally intensive than CFD models [9].
The main limitations of FNPT are:
• FNPT is not able to model turbulence and viscous effects.
• The superposition of Froude-Krylov, diffraction and radiation forces is not applicable.
• It is not possible to model situations involving wave breaking, slamming, green water and air
entrainment. Therefore, FNPT is not adequate for a WEC survivability study [28].
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2.6 Models based on Cummins’ equation and associated nonlinear
extensions

2.6.1 Cummins’ equation and associated parametric forms

A large number of models, employed in the simulation and analysis of WECs, are based on the
time domain integro-differential Cummins’ equation [136], initially developed for the offshore
and ship industry. Cummins’ equation is based on Newton’s second law, describing the motion of
a body of mass, M, floating in water, with zero forward speed, subject to fluid, gravity and other
external forces (such as a mooring force, fm, and a PTO force, fpto). The fluid force is derived
under the simplifying hypotheses of LPT. For simplicity, consider a single DoF body moving in
heave, and a global y-axis vertical and positive upwards, having its origin at the mean FSE. From
equations (2.4), (2.36) and (2.71), it follows that:

(M+m∞)ÿ(t)+
∫ t

−∞
hra(t−ζ)ẏ(ζ)dζ+Ky(t) = fin(t) (2.86)

where y is the body displacement from its equilibrium position, K is the restoring coefficient given
by (2.37), and

fin(t) = fe(t)+ fpto(t)+ fm(t) (2.87)

with fe(t) provided by (2.69):

fe(t) =
∫ ∞

−∞
he(t−ζ)η(ζ)dζ (2.88)

The fluid-body interaction in (2.86) is modelled linearly, but the external forces, represented by
fin, could be nonlinear [9] [28]. Taking the Fourier transform of (2.86), it follows [88] [137] that:

{−ω2[M+ma(ω)]+ iωN(ω)+K}Y (ω) = Fin(ω) (2.89)

where N(ω) and ma(ω) were introduced in (2.73) and

Fin(ω) = Fe(ω)+Fpto(ω)+Fm(ω) (2.90)

with Fe(ω) expressed by (2.70):
Fe(ω) = He(ω)η(ω) (2.91)

The hydrodynamic coefficients hra(t), he(t), m∞, ma(ω), N(ω) and He(ω), provided by BEM
software packages, can be introduced into equations (2.86) and (2.89), in order to obtain nonpara-
metric models. The use of the nonparametric Cummins’ equation, in particular for the presence of
the radiation convolution, is time consuming in simulations and may require significant amounts
of computer memory [85] [88]. Therefore, the integro-differential Cummins’ equation (2.86) is
often approximated with a finite-order constant-coefficient differential equation, in order to obtain
a parametric model.

A generic linear time-invariant (LTI) system, having u(t) and v(t) as input and output, re-
spectively, has the following four equivalent parametric mathematical descriptions (as shown in
Fig.2.7) [138] [139] [140] [141] [142]:
• Constant-coefficient differential equation. Consider a LTI system defined by the following ordi-
nary differential equation (ODE):

n

∑
i=0

aiv(i)(t) =
m

∑
i=0

biu(i)(t) (2.92)

where an = 1 and v(i) indicates the i-th derivative of v(t). In this representation, a0, ...,an−1,b0, ...,bm

are the parameters.
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ẋ(t) = Ax(t)+Bu(t)

n

∑
i=0

aiv(i)(t) =
m

∑
i=0

biu(i)(t)

v(t) = Cx(t)

v(t) =
∫ ∞

−∞
h(t −ζ)u(ζ)dζ

h(t) =
n

∑
j=1

k jepit
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Figure 2.7: The four equivalent mathematical descriptions of a generic LTI system are represented
inside the dashed line. The most common methods, used to approximate the original integro-
differential Cummins equation with one of the parametric representations, are also shown.

• Transfer function. Applying the Laplace transform to (2.92), under the assumption that all initial
conditions are zero [139], it follows that:

V (s) = H(s)U(s) (2.93)

where H(s) is a complex rational function given by:

H(s) =
bmsm +bm−1sm−1 + ...+b1s+b0

sn +an−1sn−1 + ...+a1s+a0
(2.94)

In this representation, a0, ...,an−1,b0, ...,bm are the real parameters. Applying the partial fraction
expansion (see Appendix Section A.4) to (2.94), it follows [139] that:

H(s) =
n

∑
j=1

k j

s− p j
(2.95)

where k j is the residue at the pole p j =α j+i β j. In this representation, k1, ...,kn,α1, ...,αn,β1, ...,βn

are the parameters. It is important to underline that, rational functions represent just a possible sub-
set of all possible transfer functions. A common example of a transfer function, which is not a
rational function, is one representing a pure delay block with delay time, td ; its transfer function
is H(s) = e−tds.
• Convolution integral. Applying the inverse Laplace transform to (2.93), it follows that:

v(t) =
∫ ∞

−∞
h(t−ζ)u(ζ)dζ, (2.96)

where, utilising (2.95), h(t) can be represented [143] as:

h(t) =
n

∑
j=1

k jep jt (2.97)
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Equation (2.97) means that the impulse response is exactly given by the summation of complex
exponentials. In this representation, k1, ...,kn,α1, ...,αn,β1, ...,βn are the parameters.
• State-space. The n-th-order ODE (2.92) can be transformed into a system of n first-order ODEs
(also called state-space) [144] as:

ẋ(t) = Ax(t)+Bu(t) (2.98)

v(t) = Cx(t)

where x(t) is the state vector. In (2.98), the parameters are the elements of the matrices A, B and
C. It is important to underline that, given a system of ODEs, there are many equivalent state-space
descriptions, and among them, there are different equivalent canonical forms [144]. Given the
matrices A, B and C, it is possible to obtain the impulse response function [138]:

h(t) = CeAtB (2.99)

and the transfer function:

H(s) = C(sI−A)−1B (2.100)

The output of the state-space system of (2.98) is the superposition of the zero-input component
and the zero initial state component, evaluated as [138] [145]:

y(t) = CeA(t−t0)x(t0)+
∫ t

t0
CeA(t−τ)Bu(τ)dτ (2.101)

There is a variety of methods to approximate the original integro-differential Cummins’ equa-
tion (2.86), with one of the parametric representations (2.92) (2.94) (2.97) (2.98). The parameters
can be identified either in the time or in the frequency domain; usually, the employed approxima-
tion method and the utilised BEM data share the same domain. For example, a frequency domain
BEM data often is used in conjunction with a frequency domain approximation method [146]. The
most common methods are:

� Prony’s method. A way to obtain the parametric representation (2.97) is Prony’s method, which
was developed in 1795 by Baron de Prony, during his studies regarding the expansion of different
gases. Prony’s method is utilised to approximate an impulse response function, as a summation
of damped complex exponentials [147] [148]. An example of application of Prony’s method in
ocean energy, can be found in [149], where the dynamics of a WEC point-absorber are simulated
in heave, roll and pitch and compared with experimental tests, performed in a small wave flume.
The radiation impulse response hra(t), obtained by a BEM package, is approximated by a sum of
exponential functions with Prony’s method. Successively, the approximated integro-differential
Cummins’ equation is transformed into a system of ODEs and solved with a fifth-order Runge-
Kutta scheme. In [150] and [151], a time domain numerical model of the SEAREV WEC is
provided. The hydrodynamic forces are derived by LPT, with Prony’s method utilised to replace
the radiation convolution term and obtain the equation of motion in ODE form.

� Frequency response curve fitting. From nonparametric data in the frequency domain He(ω),
N(ω) and ma(ω), provided by a BEM package, it is possible to use frequency domain regression
to obtain a least squares (LS) fitting of the parametric transfer function (2.94) [86] [88]. In [152],
the added mass and damping coefficient curves are approximated in the frequency domain. In
[153], the curves in the frequency domain, associated with radiation and excitation forces, are fit-
ted with rational approximations. The method is presented using a floating cylinder, a sphere, and
a Salter’s Duck WEC, for both 2-dimensional and 3-dimensional cases. In [154], a method, which
utilises only N(ω) in order to identify Hra(ω), is presented. Perez and Fossen, in [155], develop a
MATLAB toolbox for the radiation force identification, in the frequency domain, of marine struc-
tures. The toolbox estimates the fluid-memory transfer function and the infinite-frequency added
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mass. The toolbox is an independent component of the Marine Systems Simulator (MSS) and is
freely available [156]. In [85], the nonparametric curves of the added mass and damping are fitted
in the frequency domain, with polynomials having different orders. The body is an ellipsoidal hull
moving in pitch. An overview, regarding the frequency domain identification of marine structures,
can be found in [85] [86] [155] [157].

� State-space model identification through impulse response LS fitting. Given a nonparametric
impulse response of a system, it is possible to identify the parameters of the continuous-time
state-space model in (2.98), carrying out the time domain LS fitting, of the impulse response
(2.99). The problem is nonlinear in the parameters and can be solved by employing nonlinear
optimization techniques [86] [88].

� State-space model identification through realization theory. Realization theory identifies a state-
space model in the time domain, utilising the known nonparametric impulse response of the sys-
tem. Usually, the identification is carried out for a discrete-time state-space model, because the
realization problem is easier to pose in discrete-time. Once the discrete-time model is identified, it
is possible to convert it to a continuous-time model, if required, utilising different techniques [88].

The use of realization theory, in order to identify the radiation force model of marine structures,
was proposed in Kristiansen and Egeland [158] and Kristiansen et al. [159]. [86] and [88] provide
a good introduction to realization theory, for the identification of radiation force models of marine
structures.

The use of state-space models in hydrodynamics was proposed independently by Schmiechen
[160] and Booth [161]. Since then, it has been common to replace the computationally costly
nonparametric radiation convolution integral with a state-space model, the latter being more con-
venient for the analysis and design of control systems and very much in use in control engineering
[28] [162]. For more details, regarding the replacement of the radiation convolution integral of
Cummins’ equation with a state-space model, see [74] [155] [163]. In [164], a state-space model
is utilised in order to model a two-body WEC moving in heave. In [165], the piston-like move-
ment, of an OWC moving in heave, is described using state-space models. In [74], a floating
cylinder is studied and the convolution integrals of the excitation force and radiation force are
replaced with state-space models. In [166], an OWC is modelled with a state-space model, by
including in the model the hydrodynamic and hydrostatic forces, viscous loss in water, pressure
drop in the valves, air chamber compressibility with mass and volume change, and valve opening
and closing. In [167] and [162], a five-body WEC with 10 DoF is studied. The radiation force
model is described with a state-space model.

2.6.2 Nonlinear extensions of Cummins’ equation

As explained in Section 2.6.1, Cummins’ equation (2.86) is a consequence of LPT, which divides
the fluid-body force into an incident, a diffraction and a radiation force. When the wave am-
plitude and body displacement increase significantly, nonlinear hydrodynamic effects arise, the
fluid-body force separation loses fidelity and LPT models reduce in accuracy. CFD and FNPT
models, introduced in Sections 2.3 and 2.5, respectively, are consistent nonlinear models, in the
sense that they do not separate the fluid-body force into an incident, a diffraction and a radiation
force. Between linear models, on one side, and consistent nonlinear models, on the other side, a
no-man’s land exists , where the fluid-body force is separated into nonlinear incident, diffraction
and radiation forces. The resulting nonlinear models are clearly inconsistent, because the sepa-
ration of the fluid-body force would be possible only if the models were linear (which they are
not!). However, nonlinear models, constructed in this way, may have a better accuracy compared
to linear models. In short, the linear Cummins’ equation can be used as a good basis structure for
more complex nonlinear hydrodynamic models. In the following Sections 2.6.2.1, 2.6.2.2, 2.6.2.3
and 2.6.2.4, the restoring, Froude-Krylov, radiation and viscous drag terms are used in order to
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include some nonlinearities in the models. Depending on the shape of the WEC, the sea condition
and the control strategy utilised, not all the aforementioned nonlinear terms may be significant and
necessary in the model. Therefore, it is convenient to use caution in introducing nonlinearities,
since a significant increase of computational costs may be added to the control calculations and/or
simulation time [168]. In [169], the relevant nonlinear terms are reported for various types of
devices. Once a particular nonlinear Cummins’ equation extension is decided, the information,
necessary to complete the different parts of the model, can be provided by different sources (such
as LPT, FNPT, CFD and real tank experiments) and are represented in the modelling structure, as
shown in Fig. 2.8.

LPT FNPT

CFD

Nonlinear
Cummins’
equation

Real
experiments

Figure 2.8: The information, provided by LPT, FNPT, CFD and real tank experiments, can coexist
in a particular nonlinear Cummins’ equation extension.

2.6.2.1 Nonlinear restoring force

In Section 2.2.7, it was explained that the restoring force, fre, is the superposition of the gravita-
tional and buoyancy forces. In Cummins’ equation (2.86), the restoring force is represented by the
linearised (around the equilibrium position) term:

fre =−Ky (2.102)

where y is the body displacement from the equilibrium position, K = ρgAcr is the restoring coeffi-
cient and Acr is the horizontal cross-sectional area at equilibrium. By increasing the amplitude of
the body oscillations, the linearity of the restoring term could be lost. If the device has a constant
horizontal cross-sectional area, the restoring force is always linear with respect to the vertical body
displacement but, if the horizontal cross-sectional area changes with the body displacement, the
relation between fre and y is nonlinear:

fre =−g(y) (2.103)

where g(.) is a general nonlinear static function, which depends only on the geometric shape of
the device. Different researchers studied the problem of the introduction of the nonlinear restoring
force into hydrodynamic models. In [170], a method for the calculation of the nonlinear restoring
force, valid for any heaving axisymmetric point-absorber, is presented. In [76], a method is pre-
sented in order to calculate the nonlinear restoring force on a conical float, in the case of regular
and irregular waves. The nonlinear buoyancy force is calculated numerically, by integrating the
hydrostatic pressure, over the instantaneous wetted body surface. In [171], a 2 DoF heave-pitch
model is implemented for a conical shaped float, in order to simulate free decay experiments, with
different initial displacements; the nonlinear restoring force and momentum are calculated analyti-
cally. In [172], the nonlinear hydrostatic restoring force and moment, applied to vessels with three
different hull shapes, are calculated by integrating the hydrostatic pressure over the instantaneous
wetted body surface. Successively, the 6 DoF equation of motion is solved with the nonlinear
hydrostatic load. In [173], the nonlinear buoyancy force is calculated for a heave ellipsoid-shaped
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float by integrating the hydrostatic pressure over the instantaneous wetted body surface. In [75], a
nonlinear hydrostatic restoring moment is introduced into the numerical model by fitting a cubic
polynomial function to laboratory test results.

2.6.2.2 Nonlinear Froude-Krylov force

In LPT, the Froude-Krylov force is computed by integrating the incident pressure (2.85), (the inci-
dent pressure is obtained by the incident potential velocity and the linearised Bernoulli’s equation
(2.29)), over the constant wetted body surface (see Section 2.4.1.1). The accuracy of the Froude-
Krylov force may be improved by taking into consideration some nonlinearities:
• The incident pressure is obtained from the nonlinear Bernoulli’s equation (2.26),
• The incident pressure is integrated over the instantaneous wetted body surface, which leads to a
significant additional computational cost; indeed, the change of the surface of integration leads to
the use of either an automatic remeshing routine of the surface [174] or a very fine mesh [78].

In [76], a method is presented in order to calculate the nonlinear Froude-Krylov force on a con-
ical float, in the case of regular and irregular waves. The nonlinear Froude-Krylov force is calcu-
lated numerically, by integrating the hydrodynamic incident pressure over the instantaneous wetted
body surface. In [78], the nonlinear Froude-Krylov force is calculated over the instantaneous wet-
ted body surface of a SEAREV WEC, in order to predict the parametric roll phenomenon. In [175],
a nonlinear hydrodynamic model structure is developed for a single body device moving in heave
and utilised to simulate the motion under latching control. The same model structure is studied for
two different geometries (a sphere and a cylinder). The model structure is obtained by introducing
the Froude-Krylov force as an individual nonlinearity. In [77], a numerical model for a two body
WEC was developed in order to determine the large relative amplitude motion of the two bodies,
which are subject to incoming regular waves. The linear diffraction and linear radiation forces
are computed utilising ACHIL3D code, whereas the nonlinear Froude-Krylov force is calculated
by integrating the incident wave pressure over the instantaneous wetted body surface. In [170], a
method is presented for the computationally efficient calculation of the nonlinear Froude-Krylov
force, valid for any heaving axisymmetric point-absorber. In [173], the nonlinear Froude-Krylov
force is computed by integrating the hydrodynamic pressure over the instantaneous wetted body
surface, in the case of a heaving ellipsoid-shaped float. In [79], the nonlinear Froude-Krylov force
is calculated for a sphere, having a single DoF (moving in heave).

It is important to underline that the inclusion of the nonlinear FroudeKrylov force in the hydro-
dynamic model is particularly relevant when the wetted body surface changes significantly. The
presence of large incident waves and large body oscillations is not sufficient to cause a relevant
change in the wetted body surface, in the case where the device behaves like a wave follower.
Furthermore, the change of the wetted body surface depends significantly on the energy max-
imising control strategy, which exaggerates the amplitude of motion and prevents the device from
behaving as a wave follower [170] [176] [177]. The use of the nonlinear FroudeKrylov force is
particularly useful when the excitation force is dominated by the FroudeKrylov force; this is the
case for the heave force applied on point-absorber WECs, but it is less true for large bodies or
surge/pitch forces [169] [9].

2.6.2.3 Nonlinear radiation force

Linear radiation force models are usually reasonably adequate in the case of point-absorber WECs
[9] [169]. The use of a nonlinear radiation force has been studied in different works, showing the
limited improvement of the model performance, progressing from a linear to a nonlinear radiation
force [169]. In [178], Clement and Ferrant show that, in the case of floating bodies, the radiation
nonlinearities are negligible. In [79], linear and nonlinear radiation forces are implemented for
a heaving point-absorber, showing that progressing from a linear to a nonlinear radiation force
model has minor effects on body dynamic simulations.
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2.6.2.4 Nonlinear viscous drag force

The viscous force, generated by shear stress (see Section 2.2.1), is not present in Cummins’ equa-
tion 2.86 (the fluid is assumed to be inviscid). Neglecting the viscous effect may lead to an unre-
alistically large prediction of the device response and of the extracted power, especially near the
resonance and in particular for a point-absorber [69] [94] [179]. Usually, the additional viscous
damping term introduced into the hydrodynamic model is based on Morison’s equation [180],
which describes the force applied on a submerged body by an oscillatory flow. The viscous drag
damping force is given by [94]:

fv =
1
2

ρCdAc(v− vb)|v− vb| (2.104)

where ρ is the fluid density, Cd is the drag (viscous) coefficient, Ac is the body characteristic area,
v is the flow velocity, and vb is the body velocity; therefore, (v− vb) is the relative fluid velocity.
The experimental measure of the drag coefficient Cd is carried out mainly utilising two methods
[73]:
• Free body oscillations in an otherwise calm fluid.
• The body is held fixed inside a large U-tube structure, where the fluid is made to oscillate at a
certain fixed frequency.

Details, regarding the value of the empirical coefficient for different body shapes, can be found
in [181]. Different researchers investigated the introduction of the viscous effect into linear hydro-
dynamic models. For example, in [75] and [182], a nonlinear viscous drag moment is introduced
into the numerical model of a hemispherical WEC; the value of the drag coefficient is obtained
by real wave tank (RWT) experiments. In [183], the dynamics of small seabed-mounted bottom-
hinged WECs (which have the same physical principle of EB Frond, WaveRoller, Oyster and
BioWave WECs) are studied, by introducing a nonlinear viscous term into the linear Cummins’
equation. In [179], hydrodynamic models of WECs with different working principles have been
implemented, in order to estimate mean annual power absorption. A nonlinear viscous term is
introduced into the models. In [184], the linear model for a three-body WEC is extended with
the introduction of a nonlinear viscous term. In [185], a nonlinear state-space model, obtained by
introducing a viscous term into Cummins’ equation, is developed in order to simulate free decay
experiments for a point-absorber WEC. In [186], viscous effects and flow vorticity are studied at
solid body boundaries, in a NWT implemented with OpenFOAM. The device under investigation
is a vertically fixed submerged flap. Bhinder, in [187] [188] [189], introduces a viscous term into
Cummins’ equation, in order to describe the dynamics of floating and surging WECs; the drag
coefficient is identified by utilising CFD experiments. In [190], the drag coefficient of a floating
plate, moving in heave, is estimated by utilising CFD experiments. In [177], different identifica-
tion techniques, for drag coefficient estimation (in the case of a floating heaving point absorber),
are implemented, evaluated and compared, underlining the inconsistency in the literature, about
both the drag coefficient values themselves, and the identification methods utilised.

2.7 Summary and discussion

This chapter has introduced the complexity of the hydrodynamic problem which has to be resolved
to obtain an accurate description of the dynamics of a WEC interacting with waves. Sections 2.3,
2.4, 2.5 and 2.6 have shown that different problem approaches lead to different mathematical mod-
els, each one characterised by different accuracy and computational velocity. It is crucial to under-
line that a mathematical model is always an approximation of the natural world, but a model that
better describes the reality is not necessarily the best model; the assessment of a model depends
on its purpose and application [191] [192]. Indeed, the high accuracy performance of CFD mod-
els, introduced in Section 2.3, is not sufficient to justify their use in all WEC model applications,
such as simulation of device motion, power production assessment or WEC control. For example,
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the use of CFD models, in order to perform seasonal WEC power production calculations, would
require decades of computation. Furthermore, a WEC mathematical model, utilised for control,
has to be able to produce an output simulation in real-time, certainly beyond the CFD possibility.
On the other hand, linear models have a good computational speed, but are not able to properly
describe nonlinear hydrodynamic effects, which are relevant in some WEC power production con-
ditions. Therefore, the main objective of this thesis is to obtain models which are between these
two extremes, a good compromise able to describe the most important nonlinearities of the real
system, without requiring excessive computational speed.

The available margin in reducing the model complexity, without losing significantly in accu-
racy, is based on the fact that the continuity and Navier-Stoke equations intrinsically contain the
knowledge to predict velocity and pressure of the fluid, at any point of the spacial domain and in
any possible condition and situation. Many of these possible solutions are not relevant in the wave
energy production context, but may be relevant for WEC survival assessment. Furthermore, the fi-
nal objective of a WEC mathematical model is simulating the total force applied by the fluid to the
body and predicting the consequent body position, whereas the knowledge of the fluid velocity and
pressure, in the whole domain around the WEC, is not relevant for the final objective. Therefore,
a way to reduce the model complexity is to move from a mathematical description (represented
by (2.14), (2.15), (2.16) and (2.15)), which utilises ‘spatially distributed’ information in the fluid
domain, to a description that concentrates all the necessary information only on the body dynam-
ics. From a mathematical point of view, this model reduction process transforms the continuous
infinite-dimensional space and time PDEs into finite-order ODEs. This kind of approximation
is already utilised in a variety of engineering disciplines, such as electrical systems (including
electronics), magnetic circuits, heat transfer and acoustics, where a ‘spatially distributed’ model
is transformed into a lumped parameter model, representing the connection of discrete entities.
For example, under certain assumptions, the electromagnetic Maxwell’s equations are simplified
into Kirchhoff’s circuit laws. In this way, the ‘spatially distributed’ electric and magnetic fields
are converted into voltage and current variables and the system is transformed into a circuit com-
posed of resistances, capacitors, inductances and generators. Part of the original and unnecessary
complexity can be removed, in order to obtain simpler but sufficiently accurate models (under the
assumed working hypotheses). Similarly, in the WEC model, the velocity and pressure of the fluid
can be replaced with the body position (or velocity) and the total applied force.

The synthesis process of WEC models, shown in Sections 2.4 and 2.5 for LPT and FNPT
respectively, is based on the physical laws describing the fluid-body interaction and on some sim-
plifying hypotheses, these latter utilised to reduce the model complexity. An alternative modelling
approach, utilised in this thesis, is that of system identification, where models are determined from
recorded experimental data. The experimental data, utilised in this thesis for the identification of
hydrodynamic models, are generated either in a CFD-NWT (see the case studies in Chapters 5 and
6) or in a RWT (see the case study in Chapter 7). The problem of the excessive CFD computation
time, which impedes the use of highly accurate CFD codes for real-time applications, is bypassed
by utilising CFD-NWTs only for the generation of experimental data in an off-line modality (in
this way, the price of the highly demanding CFD-NWT computation time is paid only once). Suc-
cessively, with the use of system identification tools, the essential nonlinearities of the real system
are extracted from the recorded data and ‘injected’ into the nonlinear parametric models, which
remain sufficiently fast and simple to run in real-time, in on-line modality (see Fig. 2.9).

The use of CFD experimental data and of system identification, in order to obtain the reduction
of model complexity, has already been utilised in different engineering sectors [193]. For exam-
ple, in [194], a linear state-space model is identified from CFD experiments, in order to describe
the behaviour of supersonic and hypersonic vehicles. In [195], [196] and [197] a linear model is
identified from CFD experiments, in order to control the temperature of a ventilation chamber. In
[198], an on-line parametric model is developed in order to control a rotary kiln incinerator; the
model parameters are updated by utilising a CFD experiment database (the experiments have been
simulated in an off-line modality). In [199], CFD experiments are utilised in order to identify
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Figure 2.9: The nonlinear parametric models are able to capture the essential nonlinearities, si-
multaneously retaining a sufficient simplicity that allows the models to be run in real-time (on-line
modality). The price of the demanding CFD-NWT computation time is paid only once during the
simulation of the identification experiments (in an off-line modality).

models for controlling melt temperature in plastic injection molding. In [200], CFD simulations
are used to identify a model which describes the flow of an incompressible viscous fluid through a
two-dimensional channel. In [201], a grey-box parametric model is identified from CFD simula-
tions, in order to control the spatial temperature in a climate chamber. In [202], CFD simulations
are utilised to identify parametric models, in order to predict ship maneuverings in calm water.
In [203], a linear model is identified by CFD simulations, in order to predict instabilities in the
aeroelastic behaviour of aerospace structures.
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Chapter 3
System identification as a tool for
hydrodynamic modelling

3.1 System identification introduction

The use of mathematical models is crucial in science and engineering, as explained in Chapter 1. A
way to construct a mathematical model of a system under investigation (also called process [204]
[205]) involves breaking the system into subsystems and, by applying the physical laws to them,
building up a mathematical description between the significant variables. In the case of complex
systems, the procedure may take an unacceptable amount of time and would provide a very com-
plicated model, which could be difficult to utilise. A different approach is employed in system
identification (SI), where models are determined from data measured from the process [204]. SI,
which can be considered to be the dynamical equivalent of static function approximation, has its
origins in the methods developed by Legendre, Laplace, and Gauss in the 19th century, which were
used to fit functional forms to (typically) astronomical data [206]. However, since the 1960s, the
field of dynamical SI has been consolidated and many successful applications have been reported
using a wide variety of methods across a broad range of application areas [207]. SI finds particular
application in areas where:
• First principles models are too difficult to formulate,
• The dynamics of a system change with time and an on-line model updating is required (e.g. in
adaptive control).

Identification experiments collect data by exciting the process with an input signal (or impos-
ing some system initial conditions), in order to generate an output signal, which contains infor-
mation regarding the system dynamics. SI techniques, by analysing the collected input and output
data, provide the mathematical description of the process. Fig. 3.1 shows the basic principle of
SI. In many cases, SI is seen as a pragmatic and time-efficient method of obtaining dynamical
models, particularly in situations where system variables (inputs, outputs) are relatively straight-
forward to measure. In the context of wave energy modelling, SI is generally utilised for finding
suitable low-order approximations to nonparametric impulse response or frequency response data,
generated by LPT-BEM solvers. As introduced in Section 2.6.1, LPT is based on strong hypothe-
ses, which completely deny the nonlinear characteristics of the process, and so, generating data
already compromised; an important part of the information regarding the nonlinearity of the pro-
cess is already lost. The work developed in this thesis has a different approach. The models are
identified from experimental data, measured in CFD-NWT or RWT, with the intent of utilising
data rich information, not available in the data generated by LPT-BEM solvers. In the sector of
wave energy, examples of the combined use of SI methods and experimental data (from NWT or
RWT) can be found in the literature. For example, Bhinder, in [187] [188] [189], identifies a non-
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Figure 3.1: System identification basic principle.

linear viscous term to add to a linear hydrodynamic model, which is based on Cummins’ equation
and BEM (see Section 2.6.2.4), by utilising data generated in a CFD-NWT. In [208], numerical
simulations of an OWC are employed to identify a nonlinear thermodynamic model of the OWC.
In [75], a nonlinear hydrostatic restoring moment is introduced into a numerical model founded
on Cummins’ equation, by fitting a cubic polynomial function to laboratory test results. In [75]
and [182], measurements of a hemispherical WEC, carried out in a RWT, are utilised to identify
a nonlinear viscous term, which is introduced in a linear model based on Cummins’ equation and
BEM. In [209], measurements of a scaled OWC, installed in a 20 m length wave flume, are utilised
to identify an artificial neural network model. In [210] and [211], measurements carried out at the
Pico WEC plant (located on the Azores archipelago), consisting of time evolution of the FSE in-
side the chamber and around 60 m in front of the OWC chamber, are utilised for the identification
of linear and nonlinear models, able to forecast the FSE inside the chamber. In [212] and [213], by
developing, in a RWT, the concept utilised in [8] and [11] in CFD-NWTs, linear parametric and
nonparamtric models for a WEC moving in heave are identified, by utilising experimental data
collected at the maneuvering and sea-keeping (MASK) basin in Bethesda, US.

3.1.1 System identification requirements

The identification procedure is based on a sequence of four main steps [204] [214] [215] [216]:
1) Experiment design and data gathering. A suitable input signal is applied to excite the system,
and the response measured.
2) Model order and structure selection. A parametric structure of the model is chosen (linear or
nonlinear).
3) Fitting criterion and identification algorithm selection. Given the recorded input/output signals,
an identification algorithm is used to determine the optimal model parameters, which minimize
some error metric (also denoted fitting criterion) between the measured output and the output
predicted by the identified parametric model.
4) Model validation. Once the model is identified, it is necessary to check whether this model is
‘good enough’ according to a chosen criterion.

It is very important to underline that SI is based on an iterative sequence of the previously
mentioned four steps, which form a closed-loop block diagram (see Fig. 3.2); indeed, if the es-
timated model does not pass the model validation test, it is necessary to go back and review the
previous steps [216]. The (rejected) identified model may be deficient for different reasons [204]:
• The data set was not informative enough in order to provide sufficient knowledge regarding the
system characteristics.
• The selected model structure was not appropriate; therefore, the dynamical properties of the
model are not sufficiently good to describe the dynamics of the data.
• The identification algorithm failed to find the best model parameters, according to the chosen
criterion.
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The main ingredients of SI (excitation signals, models, identification algorithms, and valida-
tion) are introduced in Sections 3.1.1.1, 3.1.1.2, 3.1.1.3 and 3.1.1.4, respectively.
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Figure 3.2: Closed-loop block diagram to identify models from recorded data.

3.1.1.1 Experiment design and data gathering

One of the most important steps in SI is the design of the appropriate experiments and excitation
signals, utilised to generate identification data. The excitation signal is utilised to influence the
process and to obtain some information about the characteristics and behaviour of the process.
In most real-world applications, significant limitations and restrictions exist on the characteristics
of the employed excitation signals; for example, the measurement time is always limited and

37



the input signal must be bounded between a minimum and a maximum value. Besides these
constraints, there is still freedom for the user in the design of a variety of excitation signals.
Nonlinear dynamic systems are significantly more complex than linear ones; therefore, the data,
utilised for the identification of nonlinear systems, must contain considerably more information
than the data utilised for linear systems. Consequently, in the case of nonlinear SI, the choice of an
excitation signal becomes even more crucial. SI is the methodology which extracts the information
contained in the data, to construct an accurate mathematical model of the process. Therefore, if the
gathered data are not informative enough, the constructed model will not be sufficiently accurate;
aside from the selected model structure, the chosen excitation signal determines an upper bound
on the identified model performance.

In general, a good test signal should satisfy the following properties [204] [205] [217]:
• Good coverage of the full input and output amplitude signal ranges (if the system is nonlinear),
because model extrapolation is more inaccurate than model interpolation.
• Good coverage of the frequencies where the system has a significant non-zero frequency re-
sponse. For example, a purely sinusoidal input signal will only give information of the system’s
behaviour at a single frequency.
• The signal should excite the system over its whole range of operation, providing information of
the system’s behaviour for all the conditions which the identified model will be required to repli-
cate.
• The amplitude distribution of the input signal should be equally distributed, in order to excite
the system uniformly.
• Economic use of the test time, the experiment should show and record process behaviour in the
shortest possible time.

Details regarding an experiment design and the choice of an excitation signal in a wave tank,
in order to obtain data for WEC model system identification, are presented in Chapter 4.

3.1.1.2 Model structure and order selection

The choice of a model structure, in order to obtain a correct description of the relationship between
input and output, is an important and difficult step; engineering intuition and ‘a priori’ knowledge
of the studied system have to be combined, in order to help in choosing a candidate model struc-
ture [204]. Adopting a SI approach offers considerable flexibility, in both linear and nonlinear
model parametrisation, regarding the relationship to physical quantities and the desired complex-
ity/fidelity trade-off. As shown in Fig. 3.2, the selection of a model is based on two main steps: a
model structure selection and a model order selection.

MODEL STRUCTURE SELECTION
In the literature, a large variety of model structures are available, each one characterised by differ-
ent properties. The main properties to classify the model structures are:
Parametric or nonparametric model
• Parametric models provide the input/output relationship, through equations explicitly containing
a finite number of parameters [141] [192] [218]. An example of parametric model is the transfer
function of a filter described by a finite number of zeros and poles.
• Nonparametric models describe the input/output relationship utilising tables or sampled curves.
In principle, an infinite number of measurements are requested to represent the system; in prac-
tice, the system is described with a finite number of measurements. An example of nonparametric
model is a sampled impulse response.
Linear or nonlinear input/output relationship
• Given a mathematical model F , with input u(t) and output y(t), the model is said to be linear if
it satisfies [219]:

y(t) = F
(

k1u1(t)+ k2u2(t)
)
= k1F

(
u1(t)

)
+ k2F

(
u2(t)

)
(3.1)
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where k1, k1 are two general constants and u1(t), u2(t) are two general time evolutions of the input.
• If (3.1) is not satisfied for any k1, k2, u1(t) and u2(t), the system is said to be nonlinear.
Linear or nonlinear in the parameters
• A model is linear in the parameters when the relationship between the model output and the
parameters is linear [215] [218] [220] [221]. It is important not to confuse a model which is linear
in the parameters with a model having a linear input/output relationship. Indeed, a model can have
a nonlinear input/output relationship but be linear in the parameters. A model which is linear in the
parameters can drastically reduce the complexity of the parameter identification problem, leading
to LS estimation.
• If the relationship between the model output and the parameters is nonlinear, the model is said
to be nonlinear in the parameters. A model nonlinear in the parameters results in a nonconvex
optimization problem to determine the parameters and care must be taken in the choice of a search
algorithm, which has to be able to deal with the presence of multiple local minima.
Shades of grey
So called white and grey-box models present the significant benefit of a structure well related to
physical aspects of the system and the model variables usually represent physical quantities. As
the shade of grey gets darker, the connection with the physical world diminishes, until the only
connection of black-box models with the physical world is the representation of the overall model
input and output [207].
Continuous/discrete time
• In a continuous time (CT) model, the time variable assumes values over the entire real number
line, between any two time points, there are an infinite number of other points [214]. CT models
are described by utilising differential equations.
• In a discrete time (DT) model, the relation between inputs and outputs, is described at discrete
time points. Usually, it is assumed that the time points are equidistant. DT models are described
by using difference equations.
Causal or noncausal
• A model is causal if the output at any instant t∗ depends only on the input for t ≤ t∗; in other
words, the output of the system is influenced by the present and the past, but not by the future [69]
[222].
• A system is noncausal if the output at any instant t∗ depends on the input for some t > t∗ (i.e.
the present output depends on the future input).
Static or dynamic
• The output of a static model, at a specific time instant t∗, depends only on the input at the same
time instant t∗ and not on input values at previous (t < t∗) or later (t > t∗) time instants (i.e. there
is no memory effect) [142] [223] [224].
• The output of a dynamic model at a specific time instant depends also on input values at previous
or future time instants (i.e. there is memory effect).

Section 3.2 details WEC hydrodynamic models that are utilised together with SI techniques.
Different parametric model structures are presented, beginning with grey-box models, with struc-
tures derived from first principles, and moving onto discrete-time black-box model structures.

MODEL ORDER SELECTION
The model order of a parametric model is represented by the number of parameters utilised. By
increasing the order, the model becomes more flexible and able to show more complex dynami-
cal behaviours but, at the same time, unnecessarily high orders can make the model less able to
generalise on new data (i.e. overfitting) [225]. Indeed, a model is identified by maximizing its per-
formance on a training data set but, if the model begins to ‘memorize’ the training data rather than
‘learning’ to generalize, the model loses any utility. In general, it is necessary to determine a par-
simonious model order [214][225] [226], which will work well with the training data and, at the
same time, generalises well to other new data. A compatible requirement is that it is not desirable
to add complexity to the model for little gain. This idea is in line with the common sense: ‘Do not
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use extra parameters if you do not need them’. Soderstrom states the parsimony principle in [214]:
‘Given two or more possible models, which all explain the data well, the model with the smallest
order should be selected’. In the case of nonlinear dynamic systems, the problem of the model
order determination is still not satisfactorily solved. A widely applied approach is to identify dif-
ferent models having increasing orders and to select the best compromise between complexity and
accuracy [205], An indication that a correct model order has been selected is provided by the fact
that the model performance does not increase significantly by increasing the model order beyond
a certain order [141]. More details, regarding the model order selection, are reported in Section
3.2.4.

3.1.1.3 Fitting criterion and identification algorithm selection

Given the experimental data and a parametric model structure, characterised by the parameter
vector θ, it is necessary to identify some parameter values θ̂, in order to obtain the ‘best’ model
able to describe the data. A way to quantify the model performance is provided by the use of a
loss function (LF), J(θ), (also denoted fitting criterion or error metric), between the experimental
data and the model prediction. Therefore, given the experimental data, a model structure, and a
LF, each parameter vector value produces a singular scalar number, which represents the model
performance. Mathematically, it is possible to write that:

J : θ ∈ℜq→ℜ (3.2)

where q is the number of parameters. One of the most common and utilised LFs is the mean
squared error (MSE), as explained in Section 3.3.1. By changing all possible parameter values,
J describes a multi-dimensional surface (in general multimodal), having a global minimum and
multiple local minima. The objective of the identification algorithm is to find the parameter values
θ̂ which minimize J, in order to identify the best model able to fit the experimental data. Numer-
ous identification algorithms, available in the literature, are characterised by different performance
in residual fitting error, convergence speed and computational cost. The identification algorithms
can be classified, depending on the properties considered:
Linear/nonlinear optimization
• If the model output is a linear function of θ and the MSE is used as a fitting criteria, then J(θ)
is a quadratic function with an unique minimum and an analytical solution exists (linear optimiza-
tion) [205].
• If the model output is nonlinear in θ then, in general, J(θ) is a multimodal function, no analyti-
cal solution exists and a numerical analysis is required (nonlinear optimization).
Off-line/on-line
• In the case of off-line identification, the experimental data, obtained by process measurements,
are first stored and, only when the experiment is completed, are utilised for the identification. This
approach has the advantage that an identification experiment can be carefully designed, in order
to extract a large amount of information from the process [227].
• In many applications, especially if the process characteristics are time varying, it is important
to track the process in real-time and to adapt the model parameters as the process develops [220].
In the case of on-line identification, the model identification is performed concurrently with the
experiment [141] [228].
Non-recursive/recursive
• In the case when the analytical solution of the identification problem is available (e.g. linear op-
timization), the algorithm provides the solution with the use of an equation, without the necessity
for recursive search (i.e. a non-recursive algorithm is employed).
• In the case of nonlinear optimization, the presence of multiple local minima of the LF im-
poses the use of recursive algorithms, which require stopping criteria, based on minimum accuracy
achieved or on maximum computation time utilised.
See Section 3.3 for details regarding hydrodynamic WEC parameter estimation.
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3.1.1.4 Model validation

The last important step in SI is that of model validation, where the model is tested in order to verify
its accuracy, in describing the system under investigation. The comparison of model predictions
with the training data can always be improved by increasing the model complexity, but an unnec-
essarily model complexity can reduce the ability of the model in generalising on new data (i.e.
overfitting), making the model worthless. Therefore, it is very important to verify the performance
of the identified model on fresh data (validation data) and, in cases where the validation test is
not passed, it is necessary to return to the previous SI steps, as shown in Fig. 3.2. In Section 3.4,
details regarding hydrodynamic WEC model validation are provided.

3.2 Hydrodynamic WEC model structures

3.2.1 Introduction

Mathematical modelling of WECs has many uses, including the simulation of device motion,
power production assessment and as a basis for model-based control design. In all these cases,
it is important to describe how the body moves in the water, interacting with waves propagating
on the fluid surface. From a modelling point of view, this corresponds to the description of a
mathematical relationship between the FSE, η, (the model input) and the body displacement from
an equilibrium position, y, (the model output). In the present work, the family of all models
(linear/nonlinear and CT/DT), having η as input and y as output, is denoted η→ y. In Section
2.6.1, Newton’s 2nd law, under the hypotheses of LPT, was used to derive Cummins’ equation
(2.86), where fin(t) = fe(t)+ fpto(t)+ fm(t) represents the model input (where only fpto is directly
manipulable in the experiments) and y the model output. In this work, the family of all models
(linear/nonlinear and CT/DT), having fin as input and y as output, is denoted fin→ y.

3.2.2 Continuous-time model structures

The fundamental physical laws, such as Newton’s laws of dynamics or the Navier-Stokes equa-
tions, are expressed as differential equations in CT; therefore, models, derived from physical prin-
ciples, are inherently constructed in CT. An advantage of CT models is that they provide a good
insight into system understanding, because the model parameters are strongly related to the phys-
ical system properties. In contrast, the physical meaning of the parameters is usually lost in the
process of time discretization [229] [230] [231]. On the other hand, DT models have some im-
portant advantages over CT models, as explained in Section 3.2.3. In the case where the final
objective is the construction of a DT model, the strong link of CT models with the physical world
can be used as starting point to suggest DT model structures. A fundamental CT equation describ-
ing WEC dynamics is Cummins’ equation (2.86), whose block diagram is represented in Fig. 3.3,
where the dashed line bands together the dynamics of the WEC (the fin → y model). The block
diagram of Fig. 3.3 can be transformed into the block diagram of Fig. 3.4, where the excitation
force is completely separate from the other hydrodynamic forces. It is worthwhile underlining
that the blocks of Fig. 3.3 are all linear, whereas the blocks η→ fe and fin→ y, in Fig. 3.4, can
be linear or nonlinear. Note that, in both Figs. 3.3 and 3.4, the block fin → y takes as input the
summation of fe, fpto and fm; therefore, the block is not able to differentiate between these three
forces. This equivalence will be utilised in Section 4.3.2.3 for the identification of fin→ y models,
by applying a dynamically rich PTO force.

In Fig. 3.4, the η→ fe block describes the relationship between the undisturbed free surface
elevation η, measured in a position that corresponds to the centre of mass of the body, and the
excitation force, fe, that is the force experienced by the body when it is held fixed in the presence
of waves (see Section 2.4.1.1). If η is assumed to change very slowly, the relationship between
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Figure 3.3: Cummins’ equation block diagram; the dashed line bands together the dynamics of the
WEC (the fin→ y model).
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Figure 3.4: General block diagram of a WEC model, inspired by the CT Cummins’ equation. The
blocks η→ fe and fin→ y can be linear or nonlinear. The dashed line bands together the η→ y
model.
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η and fe is just a static curve, r , representing the restoring force acting on the body (see Section
2.2.7). The dynamic part of the relationship between η and fe can be introduced in the model with
a linear dynamic block, connected with a cascade configuration and following the static block (see
Fig. 3.5). The model structure, represented in Fig. 3.5, is denoted a Hammerstein model, and is
described in Section 3.2.3.3.

Nonlinear
static
r()

η Linear
dynamic

fe

η → fe

Figure 3.5: Block diagram of the Hammerstein model, describing the η and fe relationship. The
static block, r, models the restoring force acting on the body.

In Fig. 3.3, the linear fin → y model, bounded together by the dashed line, can be used as a
basis for a nonlinear WEC model structure. Indeed, it is possible to introduce a nonlinear restoring
term in the model, by replacing equation (2.102) with equation (2.103). The result is the substi-
tution of the linear restoring block K with a general nonlinear static restoring block g and the
gathering of all the other model blocks into a single linear block, as shown by the dash dotted line
in Fig. 3.6(a). Therefore, the overall result is a negative feedback scheme, as represented in Fig.
3.6(b).
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∫
dt

∫
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Nonlinear
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Figure 3.6: (a) Nonlinear fin → y model, obtained by the CT Cummins’ equation, by replacing
the linear restoring K block with a general nonlinear static restoring g block. The dash dotted line
gathers all the other linear blocks. (b) Compacted block diagram representation.
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3.2.3 Discrete-time model structures

The physical world is naturally described by utilising CT differential equations but, despite this,
SI is usually utilised to generate DT models for the following reasons:
• Typically, experimental data are available only at DT instants [221] [232] [233].
• The nature of DT data is particularly compatible with digital computer calculations.
• The majority of SI techniques are based on discrete time models [204]; however, identification
of continuous time models can also be performed [229] [230] [231].
• From the point of view of control applications, DT model descriptions are more suitable, since
model-based control algorithms (like model predictive control) are usually formulated in DT; fur-
thermore, signal measurement and control actions are usually taken at DT instances [232] [233]
[234], and implemented using digital computers.
• The estimation of nonlinear CT models can be computationally involved and it is not a trivial
task; indeed, it may imply the computing of integrals or time-derivatives of nonlinear functions of
the measured signals [229] [234].
• In the case where the estimation of physical system parameters is not needed, the use of DT
models may be an alternative [234].
• In DT, model structures which are linear in the parameters are easily constructed, providing the
possibility to use linear optimization methods for parameter estimation.

In the context of offshore engineering and wave energy, the majority of the implemented mod-
els are CT models, as shown in Chapter 2, but there are some DT examples, such as in [235],
where DT ARMA models, utilised for the simulation of random FSE at a spatial point, are identi-
fied utilising FSE historical data. In [210] and [236], DT AR models are identified and utilised for
FSE forecasting. In [237], a linear DT state space model, for a single DoF heave point absorber,
is developed, utilising hydrodynamic coefficients from WAMIT.

In contrast to CT models, DT modelling uses signals only specified at the discrete time instants
t = kTs, where Ts is the sampling period and k is an integer. For example, the values of η, fin

and y at the time instant kTs are represented by η(k), fin(k) and y(k), respectively. In general,
the relationship between η and y is noncausal [82]; therefore, the chosen model structure has
to provide the possibility of such noncausality in the identified model. In this work, nonlinear
autoregressive with exogenous input (NARX) models [205] are utilized. In Fig. 3.7(a), a general
linear or nonlinear DT block is represented, with input u(k) and output y(k); u(k) and y(k) can
represent any physical quantity, such as excitation force, wave elevation, body displacement, etc.,
as shown in Chapter 6. If a NARX model is utilised to describe the relationship between u(k)
and y(k), the present value of the output y(k) depends on the past values of the output y(k−
1), ...,y(k−na) and the input values u(k−nd),u(k−nd−1), ...,u(k−nd−nb). The NARX model
may be summarized [221] with:

y(k) = γ
[
y(k−1) ... y(k−na) u(k−nd) u(k−nd−1) ... u(k−nd−nb)

]
, (3.3)

where γ[.] is a linear or nonlinear function (see Fig. 3.7(b)). Equation (3.3) suggests that y(k) is
a function of na previous output and nb + 1 input values, taken at different time instants (in total
na + nb + 1 variables). Once na, nb and nd are selected, it is possible to obtain different model
structures by changing the function γ[.].

As introduced in Section 3.1.1.2, the linearity of the model in the parameters is an important
property, which can be mathematically expressed (regardless of whether the input/output relation-
ship is linear or nonlinear) as:

y(k) =
q

∑
i=1

ϕi(k)θi =ϕ(k)Tθ, (3.4)

where
ϕ(k) = [ϕ1(k) ... ϕq(k)]T (3.5)
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Figure 3.7: (a) General linear or nonlinear DT block, where u(k) and y(k) can represent any
physical quantity, such as excitation force, wave elevation, body displacement, etc. (b) Block
diagram for a general NARX discrete-time model.

is a regressor vector and

θ = [θ1 ... θq]
T (3.6)

is the unknown parameter vector. The regressors ϕi(k) are a linear or nonlinear transformation of
the vector [y(k− 1) ... y(k− na) u(k− nd) u(k− nd − 1) ... u(k− nd − nb)]. Fig. 3.8 shows
the block diagram of a model which is always linear in the parameters, regardless of whether the
input/output relationship is linear or nonlinear, where the regressors ϕi(k) are constructed by the
regressor generator (RG) block. Therefore, the nonlinearity, if present, between the output and the
input is contained in the regressors ϕi and is not reflected in the parameter vector θ [204] [205]
[238].

u(k−nd)

u(k−nd −1)

u(k−nd −nb)

y(k−1)

y(k−na)

Linear
or

nonlinear

ϕ1(k)

ϕ2(k)

ϕq(k)

θ1

θ2

θq

+
y(k)

γ[ ]

RG

+
+

Figure 3.8: Block diagram of a general NARX DT model, which is linear in the parameters, where
y(k) = ∑q

i=1 ϕi(k)θi. The regressors ϕi are constructed by the RG block.

45



u(k−nd)

u(k−nd −1)

u(k−nd −nb)

y(k−1)

y(k−na)

Linear
or

nonlinear

ϕ1(k)

ϕ2(k)

ϕq(k)

y(k)

γ[ ]

RG

Nonlinear

RP

θ1 θ2 θq

Figure 3.9: Block diagram for a general NARX discrete-time model, nonlinear in the parameters.

On the other hand, if the relationship between model output and parameters is not described
by equation (3.4), the model is nonlinear in the parameters. Fig. 3.9 shows the block diagram
of a model which is nonlinear in the parameters, where the regressors ϕi(k) are processed in a
nonlinear way by the regressor processing (RP) block.

The integer quantities na and nb represent the dynamical order of the model and, by increasing
na and nb, the model becomes more flexible but, at the same time, excessively high orders may
lead to overfitting, as seen in Section 3.1.1.2. The integer quantity nd is the input delay time and
represents (for nd ≥ 0) the number of samples before the output reacts to the input, as shown in
Figs. 3.10 and 3.11; if nd ≥ 0 the system is causal and the output does not depend on future values
of the input. If nd < 0, as shown in Fig. 3.12, the system is noncausal and nd represents the number
of future input values, which influence the present value of the output.

A number of different types of NARX models are described in this chapter, which can be ob-
tained by changing the function γ[.] in equation (3.3), namely: the autoregressive with exogenous
input (ARX) model, the Kolmogorov-Gorov polynomial (KGP) model, the artificial neural net-
work (ANN) model, the nonlinear static (NLS) model and the block-oriented nonlinear (BONL)
model. An overview of the different models’ properties is shown in Table 3.1. For more details
regarding these models see [205] [239].

PROPERTY ARX KGP ANN NLS BONL
Input/output relationship L NL NL NL NL

Parameters/output relationship (Optimization) L L NL L L
Shade of grey B B B G G

Memory D D D S D

Table 3.1: Properties overview of the ARX, KGP, ANN, NLS and BONL models (L=linear,
NL=nonlinear, B=black-box, G=grey-box, D=dynamic and S=static).

46



k
−

n a

k
−

2
k
−

11 2 k

k
+

1

N
−

1 N

na output data samples

k
−

n b

k
−

2
k
−

11 2 k
k
+

1

N
−

1 N

input data samples

PAST PRESENT FUTURE

Input u

Output y

u(
1)

u(
2)

u(
N
−

1)
u(

N
)

y(
1)

y(
2)

y(
N
−

1)
y(

N
)

(nb +1)

Figure 3.10: Causal system with no delay (nd = 0).
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Figure 3.11: Causal system with delay (nd > 0).
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Figure 3.12: Noncausal system (nd < 0).

3.2.3.1 Autoregressive with exogenous input model

The ARX model is a well-known black-box model which is linear in the parameters ai and bi,
characterised by a linear input/output relationship [204]. For an ARX model, equation (3.3) be-
comes:

y(k) =
na

∑
i=1

aiy(k− i)+
nb

∑
i=0

biu(k−nd− i) (3.7)

and the parameter vector is given by:

θarx =
[
a1 a2 ... ana b0 b1 ... bnb

]T
. (3.8)

Therefore, the number of parameters to be estimated is given by:

Npar = na +nb +1. (3.9)

Examples of ARX models are shown in the case studies of Sections 6.3.1, 6.3.2, 6.2, 6.4 and 7.4.

3.2.3.2 Nonlinear static model

A simple way to model a nonlinear relationship between the input, u(k), and the output, y(k), of a
model is to utilise a nonlinear static block r, obtaining:

y(k) = r
(

u(k)
)
. (3.10)

Equation (3.10) shows that, in the model, there is no memory effect, the output at the instant k
depends only on the input at the same instant k. The static function, r, can be approximated with
a linear combination of basis functions {ζ1,ζ2, ...,ζnc}; therefore equation 3.10 becomes:

y(k) =
nc

∑
i=1

ciζi

(
u(k)

)
. (3.11)

Examples of NLS models are shown in the case studies in Sections 6.3.1 and 6.2.
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3.2.3.3 Hammerstein model

Connecting linear dynamic ARX and NLS blocks, in various configurations, it is possible to obtain
a variety of BONL model structures [221] [239] [240]. A well known example of a BONL model
is the Hammerstein model (introduced in Section 3.2.2), which consists of a cascade connection
of a NLS block, followed by an ARX block, as shown in Fig. 3.13. In the case of an Hammerstein
model, equation (3.3) becomes [240]:

y(k) =
na

∑
i=1

aiy(k− i)+
nb

∑
i=0

bir
(

u(k−nd− i)
)

(3.12)

where r is a nonlinear static function. The Hammerstein model is characterized by a nonlinear
input/output relationship (if r is not linear), but is linear in the parameters ai and bi.

Nonlinear
static
r()

u(k) s(k) Linear
dynamic

ARX

y(k)

Figure 3.13: Block diagram of a Hammerstein model.

In the Hammerstein model, the static relationship between input and output is given by the
product of the static function, r, and the DC gain of the ARX model, Kdc. Therefore, the char-
acterization of the DC gain of the two blocks is not unique, any pair (Kdc/α , αr), where α is an
arbitrary constant, will produce the same input and output [241]. In order to remove this ambi-
guity, the Kdc of the ARX block is generally set to unity, which allows the DC gain for the entire
Hammerstein model to be solely represented by the nonlinear static function r. The Z-transfer
function of the ARX model (3.7), given by:

H(z) =
Y (z)
U(z)

=
z−nd

(
b0 +b1z−1 +b2z−2 + ...+bnbz−nb

)

1−a1z−1−a2z−2− ...−anaz−na
, (3.13)

can be utilised in order to obtain the DC gain of the ARX model; indeed, the DC gain corresponds
to the H(z), given by (3.13), calculated for z = 1 (in the case there are no poles at z = 1) [242]:

Kdc = H(z)
∣∣∣
z=1

= 1 (3.14)

Therefore, from equations (3.13) and (3.14), it follows [240] that:

∑nb
i=0 bi

1−∑na
i=1 ai

= 1 (3.15)

and, by manipulating (3.15), it follows that:
na

∑
i=1

ai +
nb

∑
i=0

bi = 1 (3.16)

The parameter vector of the ARX block of the Hammerstein model is given (see Section 3.2.3.1)
by:

θHarx =
[
a1 a2 ... ana b0 b1 ... bnb

]T
; (3.17)

therefore, equation (3.16 ) can be written in a matrix form [240] as:

AθHarx = d, (3.18)

where A = [1 1 ... 1] ∈ ℜ1×(na+nb+1) is composed of only unitary coefficients and d = 1. Ex-
amples of Hammerstein models are shown in the case studies of Sections 6.3.1 and 6.2. It is
important to underline that a limitation of the Hammerstein model is that is able to model only
static nonlinearities.
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3.2.3.4 Feedback block-oriented model

Another well known DT BONL model is the feedback block-oriented (FBO) model, characterised
by the negative feedback structure, shown in Fig. 3.14. It is useful to underline that the FBO
model, presented in this section, is the DT version of the CT model structure represented in Fig.
3.6(b); for this reason, the signal at the output of the NLS block, corresponding to the static
function g(), is denoted − fre in both Figs. 3.6(b) and 3.14. From Fig. 3.14, it is possible to

Nonlinear
static
g()

u(k) e(k) Linear
dynamic

ARX

y(k)

-

+

− fre(k)

Figure 3.14: Block diagram of the FBO model.

observe that the three governing equations of the FBO model are:

y(k) =
na

∑
i=1

aiy(k− i)+
nb

∑
i=0

bie(k−nd− i), (3.19)

e(k) = u(k)−
(
− fre(k)

)
, (3.20)

and

− fre(k) = g
(

y(k)
)
. (3.21)

From equations (3.19) and (3.20), it follows that:

y(k) =
na

∑
i=1

aiy(k− i)+
nb

∑
i=0

bi

[
u(k−nd− i)−

(
− fre(k−nd− i)

)]
(3.22)

By utilising (3.21) in (3.22), it follows that:

y(k) =
na

∑
i=1

aiy(k− i)+
nb

∑
i=0

bi

[
u(k−nd− i)−g

(
y(k−nd− i)

)]
(3.23)

Therefore, in the case of a BOF model, equation (3.3) becomes [240]:

y(k) =
na

∑
i=1

aiy(k− i)−
nb

∑
i=0

bi g
(

y(k−nd− i)
)
+

nb

∑
i=0

biu(k−nd− i) (3.24)

An example of FBO a model is shown in the case study of Section 6.3.1.
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3.2.3.5 Nonlinear Kolmogorov-Gabor polynomial model

The KGP model utilises a polynomial nonlinearity to describe the system dynamics [205] [243]
and equation (3.3) becomes:

y(k) =
na

∑
i=1

ai1y(k− i)+
nb

∑
i=0

bi1u(k−nd− i)

+ ...

+
na

∑
i=1

aipynp(k− i)+
nb

∑
i=0

bipunp(k−nd− i)

+
na

∑
i=1

nb

∑
j=0

ci jy(k− i)u(k−nd− j)

+ . . . (3.25)

where np is the maximum polynomial order for the terms involving u and y alone, as well as the
cross-product terms. The KGP model is a black-box model having a nonlinear input/output rela-
tionship, but is linear in the parameters ai j, bi j and ci j. However, the presence of the cross-product
terms (between u and y) in the KGP model structure can lead to potential, and unpredictable, stabil-
ity problems. In essence, cross-product terms introduce input-dependent terms into the (notionally
linearised) model Jacobian, which make the stability properties dependent on the input used. In
fact, some experiences with cross-product terms showed the model response on validation data to
be clearly unstable, even though the model response on training data was stable, in spite of the fact
that the spectral and distribution characteristics of training and validation data were similar. For
this reason, the cross-product terms in the model of equation (3.25) can be removed, obtaining the
simpler model [9][12]:

y(k) =
np

∑
j=1

[ na

∑
i=1

ai jy j(k− i)+
nb

∑
i=0

bi ju j(k−nd− i)
]

In the absence of cross-product terms, the number of parameters to be estimated for the KGP
model is given by:

Npar = np(na +nb +1). (3.26)

Examples of KGP models are shown in the case studies in Sections 6.3.2, 6.2, 6.4 and 7.4. An
advantage of the KGP model, compared to the Hammerstein model, is its reasonably general
nonlinear dynamical input/output relationship.

3.2.3.6 Artificial neural network model

A multi-layer perceptron (MLP) artificial neural network is a black-box model having a nonlinear
input/output relationship and is nonlinear in the parameters. In order to simplify the notation,
define the vector:

V(k)=
[
v1(k) ... vnv(k)

]
=
[
y(k−1) ... y(k−na) u(k−nd) u(k−nd−1) ... u(k−nd−nb)

]
(3.27)

where nv = na + nb + 1. Therefore, the output of a NARX model, described by equation (3.3),
becomes:

y(k) = γ
[
V(k)

]
(3.28)

In the case where a single perceptron neuron is utilised in a ANN, the block diagram, in Fig. 3.7,
becomes the block diagram in Fig. 3.15(a).
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Figure 3.15: (a) Perceptron neuron block diagram. (b) Perceptron neuron symbol.

The signals vi(k) are multiplied by weights w1,...,wnv and then added together with a constant
scalar bias w0, in order to form the signal ℘(k). The signal ℘(k) is subsequently passed through
the activation function Ψ (which can be linear or nonlinear), producing the scalar output y(k),
which can be expressed as [205]:

y(k) = Ψ
(
℘(k)

)
= Ψ

(
w0 +

nv

∑
l=1

wlvl(k)
)
= Ψ

( nv

∑
l=0

wlvl(k)
)

(3.29)

where, by definition, v0(k) = 1 ∀k. In the case of a linear activation function (see Fig. 3.16(a)):

Ψ(℘) =℘ (3.30)

Instead, in the case of a nonlinear activation function, a common choice is the tan-sigmoid function
[244] (see Fig. 3.16(b)), defined as:

Ψ(℘) =
2

1+ e−2℘−1 (3.31)
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Figure 3.16: Activation function of a perceptron neuron. (a) Linear activation function Ψ(℘) =℘.
(b) Tan-sigmoid activation function Ψ(℘) = 2/(1+ e−2℘)−1.
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Figure 3.17: MLP-ANN with one nonlinear hidden layer and one linear output layer.

When n1 perceptron neurons are used in parallel and are connected to an linear output neuron,
the MLP-ANN with one hidden layer is obtained (see Fig. 3.17) and equation (3.3) can be written
[205] as:

y(k) =
n1

∑
i=0

w(out)
i Ψi

( nv

∑
l=0

w(1)
il vl(k)

)
(3.32)

where w(1)
il are the unknown weights (and biases) of the i-th perceptron neuron of the hidden layer,

w(out)
i are the unknown weights (and biases) of the linear output perceptron neuron and vl(k) are

defined in equation (3.27).
While a two layer networks, with sigmoid activation functions in the hidden layer and linear

activation functions in the output layer, can give an arbitrary approximation capability [245] [246],
two hidden layers usually require a lower total neuron count, for a given level of approximation
accuracy. Equation (3.3), in the case of a MLP-ANN, with two nonlinear hidden layers and one
linear output layer, can be written [205] as:

y(k) =
n2

∑
i=0

w(out)
i Ψi

( n1

∑
j=0

w(2)
i j Ψ j

( nv

∑
l=0

w(1)
jl vl(k)

))
(3.33)

where n1 and n2 are the number of neurons in the hidden layers 1 and 2, respectively and w(2)
i j are

the unknown weights (and biases) of the i-th perceptron neuron of the hidden layer 2. Equation
(3.33) shows that the model output y is not linear in the parameters (in the weights and biases). In
Fig. 3.18, the block diagram of a MLP-ANN with two hidden layers and a linear output layer is
shown. The overall model complexity is determined by n1 and n2 , in addition to na and nb. For
the MLP-ANN model, the number of parameters to be estimated is given by:

Npar = (na +nb +2)n1 +(n1 +1)n2 +n2 +1. (3.34)
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Examples of MLP-ANN models are shown in the case study in Sections 6.3.2 and 6.4. Advantages
of the MPL-ANN model are the comprehensive nonlinear dynamical input/output relationship and
its highly flexible and modular structure.
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Figure 3.18: MLP-ANN with two nonlinear hidden layers and one linear output layer.

3.2.4 Discrete-time dynamical order and delay time estimation

As explained in Sections 3.1.1.2 and 3.1.1.4, by increasing the model order, the model complexity
and flexibility increase, and the model becomes capable of a richer variety of dynamical behaviours
but, at the same time, excessively high orders introduce an overfitting problem, which reduces the
ability of the model in generalising on fresh data. In the case of DT NARX models, introduced in
Section 3.2.3, an important part of the model structure selection is the choice of the delay nd and
the dynamical orders na and nb. In the case of an ARX model structure, na, nb and nd are estimated
by implementing a systematic trial and error process on several ARX models, with varying na, nb
and nd , and selecting the values which give the best model performance, as measured by a LF,
which represents a measure of the modelling error. For each ARX model estimation, independent
training and validation data sets are utilised. At the end, the simplest ARX model, able to repeat
the validation data with a sufficient accuracy, is selected (parsimonious model) [247]. The use of
a systematic incremental evaluation process on several ARX models with varying na, nb and nd , in
order to calculate the dynamical order and the time delay of a linear system, is a well established
procedure, and is generally computationally fast; for example, see [248], where an ARX model for
a heating system is identified from measured data; in [249], an ARX structure is identified in order
to model a reactor-exchanger; in [210] [211], ARX models are identified in order to implement the
FSE forecasting inside the chamber of the Pico OWC plant in the Azores; in [250] ARX models
are identified to perform the weekly electricity consumption forecasting for a power board.

In the case of nonlinear models, there are not straightforward methodologies to calculate na,
nb and nd , and the problem of the order determination is still not satisfactorily solved. This is
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mainly due to the significant interaction between the optimal nonlinear structure and the optimal
dynamical order. A widely applied approach, for linear and nonlinear systems, is to identify dif-
ferent models having increasing orders and to select the best compromise between complexity and
accuracy, represented by the fact the LF value does not reduce significantly, by increasing the or-
der of the system, larger then a specific value [141] [205]. Therefore, in this thesis, first na, nb and
nd are estimated by implementing a systematic trial and error process on several ARX models, and
then the same values are utilised for the nonlinear models (e.g. Hammerstein model, KGP model,
ANN models, etc.) [9] [8] [10] [12]. The performance of a model, in fitting the experimental
data, depends simultaneously on the selected structure and on the dynamical order and delay time
of the model. Maintaining the same dynamical order and delay time for the linear and nonlinear
structures provides the possibility to show how the different nonlinear model structures influences
the performance in fitting the experimental data, with a focus on nonlinear modelling capability.

3.3 Hydrodynamic WEC parameter estimation

Given a parametric model structure and the measured input/output data from an investigated pro-
cess, the objective of SI is to find the value for the model parameters, θ, in order to obtain the
‘best’ model to describe the process. Therefore, it is necessary to select a quantifiable criteria to
evaluate the performance of a model. The essence of a model is the prediction aspect; therefore,
the performance of a model should be evaluated depending on the prediction ability, as outlined
by Ljung in [204]. In other words, the objective is to reduce the difference between the process
output, yu(k), and the model output prediction, ŷ(k,θ). Usually, the process output, yu(k) is not
known; only the measured version, y(k), is available, which is corrupted with an additive noise,
ξn(k) (see Fig. 3.19). It is important to underline that, in a NWT, signals can be measured without
requiring physical sensor devices, which are typical sources of random and systematic errors in the
measurements. Therefore, in NWT data, negligible ‘noise’, barring some small numerical error, is
present; therefore, there is no necessity to provide a coloured noise structure in the mathematical
model [9] [8] [10] [12].
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Figure 3.19: System identification block diagram.
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Define the prediction error (or residual) as the difference between the one-step-ahead output
model prediction, ŷ(k,θ), and the measured output from the process, y(k) [205] [247]:

ε(k,θ) = y(k)− ŷ(k,θ) (3.35)

In (3.35), the notation ŷ(k,θ) and ε(k,θ) indicate that the model prediction and the residual error
depend on model parameters θ. Define the LF as [205]:

J(θ) =
N

∑
k=1

l
(

ε(k,θ)
)

(3.36)

where l is a scalar function of the prediction error, and N is the number of data samples. The
estimated model parameters, θ̂, are obtained minimising the LF:

θ̂ = argmin
θ

(
J(θ)

)
(3.37)

It is possible to obtain alternative parameter estimation approaches, depending on the choice of
l in (3.36). A very common choice, convenient for analysis and computation, is the LS method,
where [204]:

l
(

ε(k,θ)
)
=

1
2

ε2(k,θ), (3.38)

which leads to the MSE:

J(θ) =
1
2

N

∑
k=1

ε2(k,θ) =
1
2
‖ ε(θ) ‖2

2=
1
2
ε(θ)Tε(θ) (3.39)

where:
ε(θ) =

[
ε(1,θ) ε(2,θ) ... ε(N,θ)

]T
. (3.40)

In equations (3.38) and (3.39), the constant 1
2 appears, but it is also common to utilise alternative

constants, such as 1
N or 1

2N [205]. The optimization problem of equation (3.37) may be linear or
nonlinear, depending on the relationship between J and the parameters θ, as explained in Sections
3.3.1 and 3.3.2. For compactness, in this thesis, ŷ(k,θ), ε(k,θ) and ε(θ) are sometimes replaced
with ŷ(k), ε(k) and ε, respectively.

3.3.1 Least squares parameter estimation

As introduced in Section 3.2.3, a model with an output, ŷ, is linear in the unknown parameter
vector, θ, if the model output is given by:

ŷ(k) = θ1ϕ1(k)+ · · ·+θqϕq(k) =ϕ(k)Tθ (3.41)

where
ϕ(k) =

[
ϕ1(k) ϕ2(k) · · · ϕq(k)

]T (3.42)

is the variable vector (also termed regressor vector), and

θ =
[
θ1 θ2 ... θq

]T
. (3.43)

Assuming that N data samples of y(k), ϕ1(k), ϕ2(k),..., ϕq(k) have been measured (k = 1, ...,N),
the difference between the measured data and the model prediction at each sample is:

ε(k) = y(k)− ŷ(k) = y(k)−
[
ϕ1(k) ϕ2(k) · · · ϕq(k)

]
θ (3.44)

for k = 1, ...,N. In matrix form:
ε= y− ŷ = y−Φθ (3.45)
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where:

ε=
[
ε(1) ε(2) ... ε(N)

]T
, (3.46)

y =
[
y(1) y(2) ... y(N)

]T
, (3.47)

ŷ =
[
ŷ(1) ŷ(2) ... ŷ(N)

]T (3.48)

and

Φ=




ϕ1(1) ϕ2(1) ... ϕq(1)
ϕ1(2) ϕ2(2) ... ϕq(2)

...
...

. . .
...

ϕ1(N) ϕ2(N) ... ϕq(N)


 . (3.49)

Φ ∈ℜN×q is termed the data matrix [251] or the regression matrix [205] and y ∈ℜN×1 is termed
the observation vector [251]. The LF (3.39), constructed with the LS method, can be rearranged
as:

J(θ) =
1
2

N

∑
k=1

ε2(k,θ) =
1
2
ε(θ)Tε(θ) =

1
2
(y− ŷ(θ))T(y− ŷ(θ))

=
1
2
(y−Φθ)T (y−Φθ) =

1
2
(yT −θTΦT )(y−Φθ)

=
1
2

yT y− 1
2

yTΦθ− 1
2
θTΦT y+

1
2
θTΦTΦθ

=
1
2
θT Hθ+hTθ+h0 (3.50)

where H =ΦTΦ, h =−ΦT y and h0 =
1
2 yT y. Equation (3.50) follows due to the fact that θTΦT y

is a scalar, so that θTΦT y=(θTΦT y)T = yTΦθ [252] [253]. The objective is to find the parameter
vector, θ̂, which minimizes the LF (3.50):

θ̂ = argmin
θ

(
J(θ)

)
(3.51)

Equation (3.50) is the expression of a quadratic form [254]; therefore, when the model output is
linear in the parameters and the sum of squares is chosen as the LF, a LS problem arises [141]
[255], which is characterised by a quadratic LF (do not confuse with linear programming, which
is characterised by a multidimensional linear LF). If H is positive definite, J(θ) is an elliptic
paraboloid (see Fig. 3.20 in the case of θ ∈ ℜ2) and it has a unique minimum given [214] [253]
by:

θ̂ = (ΦTΦ)−1ΦTy. (3.52)
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Figure 3.20: If ΦTΦ is positive definite, J(θ) is an elliptic paraboloid (in this figure, θ ∈ℜ2) .

Since the coefficients H, h and h0 of the paraboloid (3.50) depend on the measured data Φ and
y, different experiments lead to different associated paraboloids, possibly having the minimum
for a different θ̂. Therefore, it is clear that the identified model, characterised by θ̂, is strongly
related to the experiment utilised, and that the model may not be representative in the case of a
different experiment. The property of having a unique optimum solution, which can be calculated
analytically with (3.52), makes LS estimation very attractive [205].

3.3.1.1 LS resolution method: QR factorization

The minimization of the LF (3.50) is not computed directly utilising equation (3.52), because the
use of ΦTΦ increases the possibility of obtaining an ill-conditioned problem [204] [256] [257].
Instead, a QR factorization method is implemented, which computes the LS solution directly from
Φ, without forming ΦTΦ [251] [257]. Given the known regression matrix Φ ∈ ℜN×q and the
observation vector y ∈ ℜN×1, the unknown solution is represented by the vector θ̂ ∈ ℜq×1. The
QR factorization method is based on the following main steps [251] [257] :
1) Calculate an orthogonal matrix Q ∈ ℜN×N and an upper triangular matrix R ∈ ℜN×q, so that
Φ = QR. See Fig. 3.21(a). There are different methods to compute the QR factorization, such
as the GramSchmidt orthogonalization or the more efficient and stable Householder reflection
method [257] [258] (for this work, the QR factorization is computed by using the Matlab qr
command, based on the Householder reflection method).
2) Calculate R̂, taking the upper square q× q part of R (therefore, R̂ ∈ ℜq×q), as shown in Fig.
3.21(a). It is important to underline that R̂ is an upper triangular matrix.
3) Calculate the vector d = QT y, where d ∈ℜN×1. See Fig. 3.21(b).
4) Calculate d̂, taking the first q elements of d (therefore, d̂ ∈ℜq×1), as shown in Fig. 3.21(b).
5) The solution is obtained by resolving the system R̂θ̂= d̂ (see Fig. 3.21(c)). Since R̂ is an upper
triangular matrix, the system R̂θ̂ = d̂ is resolved easily by using back-substitution.
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3.3.1.2 Constrained linear optimization

Given a linear model (3.41), a LF defined by (3.50), and supposing that the parameters also have
to satisfy the linear equality constraint:

Aθ = e, (3.53)

the value of the parameter vector θ̂, which simultaneously minimizes the LF and satisfies the
constraint, is given by [141] [205]:

θ̂ = θ̂(uc)− (ΦTΦ)−1AT (A(ΦTΦ)−1AT )−1(Aθ̂(uc)− e), (3.54)

where θ̂(uc) is calculated by utilising QR factorization (see Section 3.3.1.1). In Fig. 3.22, the
geometric interpretation of constrained linear optimization is shown.

θ̂

θ̂(uc)

A
θ
=

e

θ1

θ2

Figure 3.22: Constrained linear optimization, in the case of θ ∈ℜ2. The closed lines represent the
contour lines of the LF; whereas, the straight line represents the linear constraint Aθ = e. In the
figure, the unconstrained solution, θ̂(uc), and the constrained solution, θ̂, are shown.

3.3.1.3 ARX model identification

Suppose that, by performing some experiments on a process under study, the signals {u(k)} and
{y(k)} (for k = 1, ...,N) are generated and utilised as input and output identification data, respec-
tively. Suppose that an ARX model is selected in order to describe the behaviour of the process
(see Section 3.2.3.1):

ŷ(k) =
na

∑
i=1

aiy(k− i)+
nb

∑
i=0

biu(k−nd− i) (3.55)

where ŷ indicates the model prediction and y the measured data. Equations (3.41) (3.42) (3.43)
become, respectively:

ŷ(k) =ϕarx(k)Tθarx, (3.56)

ϕarx(k) =
[
y(k−1) y(k−2) ... y(k−na) u(k−nd) u(k−nd−1) ... u(k−nd−nb)

]T
(3.57)

and
θarx =

[
a1 a2 ... ana b0 b1 ... bnb

]T
. (3.58)

Equation (3.56) shows that the ARX model is linear in the parameter vector θarx. By defining:

τ = max{na,(nb +nd)}, (3.59)
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the first τ values of the data are utilised as initial conditions; therefore, the first possible predicted
model output is for k = τ+1. By defining:

Ñ =

{
N if nd ≥ 0
N +nd if nd < 0

(3.60)

the last possible predicted model output is for k = Ñ. Therefore, equations (3.47) and (3.49)
become [248] [221]:

y =
[
y(τ+1) y(τ+2) ... y(Ñ)

]T
(3.61)

and

Φ=




y(τ) ... y(τ+1−na) u(τ+1−nd) ... u(τ+1−nd−nb)
y(τ+1) ... y(τ+2−na) u(τ+2−nd) ... u(τ+2−nd−nb)

...
. . .

...
...

. . .
...

y(Ñ−1) ... y(Ñ−na) u(N) ... u(N−nb)


 . (3.62)

As explained in Section 3.3.1.1, the estimated parameters θ̂arx are determined by employing a QR
factorization.

3.3.1.4 Hammerstein model identification

Suppose that some experiments are carried out on a process under study, and that the signals {u(k)}
and {y(k)} (for k = 1, ...,N) are generated and utilised as input and output identification data,
respectively. Suppose that a Hammerstein model is selected in order to describe the behaviour of
the process. As explained in Section 3.2.3.3, the Hammerstein model is composed of two different
sub-blocks, a NLS block and an ARX block. The relationship between the input and the output of
the Hammerstein model is given by:

ŷ(k) =
na

∑
i=1

aiy(k− i)+
nb

∑
i=0

bir
(

u(k−nd− i)
)
, (3.63)

where ŷ indicates the model prediction and y the measured data. The nonlinear static function, r,
of the Hammerstein model can be approximated with a linear combination of basis functions; in
this way it is possible to apply linear regression for the identification. For simplicity, monomials
can be selected as basis functions {u0,u1,u2, ...,unc}; therefore, the relationship between the input
and the output of the NLS block is:

s(k) = c1u(k)+ c2u2(k)+ ...+ cncu
nc(k) (3.64)

where, c0 = 0 (it is imposed that applying a null input the output has to be zero).
In the case where measurements of u(k) and y(k) are available, but not of s(k), the identifica-

tion of the NLS and ARX blocks can be achieved in different ways [259]:
1) By simultaneously estimating the parameters ai, bi and ci, by solving a nonlinear optimization
problem (the LF is not a quadratic function of the parameters), which requires the employment of
iterative numerical methods, as explained in Section 3.3.2.
2) By employing the Narendra-Gallman algorithm [259] [260], where the identification is carried
out by alternately adjusting the coefficients of the nonlinear and the linear sub-blocks. In this way,
the problem is resolved with an iteration of linear optimization sub-problems.
The main disadvantage, of both 1) and 2), is that the identified model does not necessarily converge
to the model which minimizes the MSE between measured output and model predictions [260].
On the other hand, when measurements of u(k), y(k) and s(k) are available, the NLS and ARX
sub-blocks of the Hammerstein model can be identified separately, with a two-step algorithm,
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Figure 3.23: Experiments utilised for the identification of Hammerstein and FBO models. (a)
Nearly-static experiment: the signals us(k) and ys(k) change very slowly, in order to capture the
static relationship between input and output. (b) Dynamic experiment: the signals ud(k) and yd(k)
have a good coverage of the frequencies where the system has a significant non-zero frequency
response (dynamically rich signals).

by employing linear regression and with the guarantee that each identified sub-block minimizes
the MSE between measured output and model predictions, for each sub-block [240] [241]. The
identification data gathering for the Hammerstein model is accomplished utilising two different
experiments: the nearly-static experiment and the dynamic experiment.

• In the nearly-static experiment, the input signal, u(k), changes very slowly through its full am-
plitude range, in order to capture the static relationship between the input signal and the output
signal, y(k). The measured input and output data, produced by the nearly-static experiment, are
denoted us(k) and ys(k), respectively, where the subscript ‘s’ indicates ‘static’ (see Fig. 3.23(a)).
The output signal, ys(k), is independent of the dynamic characteristics of the ARX block (the input
signal is slow enough to make the ARX dynamical effects negligible and only the static nonlin-
ear block transforms the input signal into the output signal). The measured signals {us(k)} and
{ys(k)} (with k = 1, ...,N) are utilised in order to identify the static block. Since the signals are
changing very slowly and, for the ARX block, the Kdc = 1 (see Section 3.2.3.3), it follows that
s(k) ' ys(k). Therefore, the input/output signals of the static block are known and it is possible
to identify the coefficient ci, as shown in Fig. 3.24(a). Equations (3.41) (3.42) (3.43) (3.47) and
(3.49) become, respectively:

ŝ(k) =ϕHc(k)
TθHc , (3.65)

ϕHc(k) =
[
[us(k)]1 [us(k)]2 ... [us(k)]nc

]T
, (3.66)

θHc =
[
c1 c2 ... cnc

]T
, (3.67)

y =
[
ys(1) ys(2) ... ys(N)

]T
(3.68)
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Figure 3.24: The two-step algorithm for the identification of the Hammerstein model. (a) STEP
1: The data collected by the nearly-static experiment are utilised for the identification of the NLS
block. (b) STEP 2: The data collected by the dynamic experiment are utilised for the identification
of the ARX block.
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and

Φ=




[us(1)]1 [us(1)]2 ... [us(1)]nc

[us(2)]1 [us(2)]2 ... [us(2)]nc

...
...

. . .
...

[us(N)]1 [us(N)]2 ... [us(N)]nc


 . (3.69)

The estimated parameters θ̂Hc are determined by utilising a QR factorization algorithm (see Sec-
tion 3.3.1.1).

• In the dynamic experiment, the measured input and output data, denoted {ud(k)} and {yd(k)},
respectively, (with k = 1, ...,N), have a good coverage of the frequencies where the system has
a significant non-zero frequency response (dynamically rich signals), as shown in Fig. 3.23(b);
the subscript ‘d’ indicating ‘dynamic’. {ud(k)} and {yd(k)} are employed to identify the ARX
parameter vector (see Section 3.3.1.3):

θHarx =
[
a1 a2 ... ana b0 b1 ... bnb

]T
. (3.70)

Initially, the input, ud(k), is transformed by the nonlinear static block to obtain sd(k), by using
equation (3.64) (the parameters ci are now known). Next, {sd(k)} and {yd(k)} are used as an
input/output pair, in order to identify the ARX parameters, θ̂Harx , under the constraint AθHarx = e,
where A = [1,1, ...,1] ∈ ℜ1×(na+nb+1) and e = 1 (see Section 3.2.3.3), as shown in Fig. 3.24(b).
As explained in Section 3.3.1.3, the first possible predicted model output is for k = τ+1 (the first
τ values of the data are utilised as initial conditions for the model), where τ = max{na,(nb +nd)};
the last possible predicted model output is for k = Ñ, where:

Ñ =

{
N if nd ≥ 0,
N +nd if nd < 0.

(3.71)

Equations (3.47) and (3.49) become:

y =
[
yd(τ+1) yd(τ+2) ... yd(Ñ)

]T
(3.72)

and

Φ=




yd(τ) ... yd(τ+1−na) sd(τ+1−nd) ... sd(τ+1−nd−nb)
yd(τ+1) ... yd(τ+2−na) sd(τ+2−nd) ... sd(τ+2−nd−nb)

...
. . .

...
...

. . .
...

yd(Ñ−1) ... yd(Ñ−na) sd(N) ... sd(N−nb)


 , (3.73)

respectively. The estimated parameters are determined, by using equation (3.54), as:

θ̂Harx = θ̂
(uc)
Harx
− (ΦTΦ)−1AT (A(ΦTΦ)−1AT )−1(Aθ̂(uc)

Harx
−d), (3.74)

where the unconstrained parameter vector θ̂(uc)
Harx

is calculated by utilising QR factorization (see
Section 3.3.1.1). The Hammerstein model is a good example to show the utility of identifying
the single sub-blocks by utilising data from different experiments, intentionally designed for the
specific sub-block.

3.3.1.5 FBO model identification

The identification of the FBO model, introduced in Section 3.2.3.4, is based on two different
identification experiments (nearly-static and dynamic experiments, shown in Fig. 3.23), and a
two-step algorithm, similar to the approach utilised for the Hammerstein model identification (see
Section 3.3.1.4). The nonlinear static function, g, of the FBO model can be approximated with a
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polynomial; therefore, the relationship between the input and the output of the NLS block is given
by:

− fre(k) = c1y(k)+ c2y2(k)+ ...+ cncy
nc(k) (3.75)

where, c0 = 0 (by imposing the condition fre = 0 when y = 0).

• In the nearly-static experiment, the system is very slowly excited (eliminating any dynamical
effect), in order to capture the static relationship between the input and output signals of the NLS
block, through the full output amplitude range. By carrying out the nearly-static experiment, the
data {us(k)} and {ys(k)} (with k = 1,...,N) are gathered. In the context of wave energy systems, as
explained in Sections 3.2.2 and 3.2.3.4, the FBO model structure has been suggested by Cummins’
equation; in particular, u(k) is the PTO force applied to the WEC (for the case where the excitation
force, fe, and the mooring force, fm, are zero), y(k) is the body displacement from the equilibrium
position, and fre(k) is the restoring force applied to the WEC by gravity and buoyancy forces.
Since, under static conditions, the applied fpto is balanced by an equal and opposite fre, during
the nearly-static experiment us(k)'− fre.s(k) ( fre.s represents the restoring force during the static
experiment), the measurement of us(k) provides knowledge of fre.s(k). The data {− fre.s(k)} and
{ys(k)} are utilised to identify the static block, as shown in Fig. 3.25(a). Equations (3.43), (3.47)
and (3.49) become, respectively:

θFc =
[
c1 c2 ... cnc

]T
, (3.76)

y =
[
− fre.s(1) − fre.s(2) ... − fre.s(N)

]T (3.77)

and

Φ=




[ys(1)]1 [ys(1)]2 ... [ys(1)]nc

[ys(2)]1 [ys(2)]2 ... [ys(2)]nc

...
...

. . .
...

[ys(N)]1 [ys(N)]2 ... [ys(N)]nc


 . (3.78)

The estimated parameters, θ̂Fc , are calculated by utilising QR factorization (see Section 3.3.1.1).

• In the dynamic experiment, the measured input and output data, denoted {ud(k)} and {yd(k)},
respectively, where k = 1, ...,N, are dynamically rich signals (see Fig. 3.23(b)). The subscript ‘d’
indicates ‘dynamic’. The data {ud(k)} and {yd(k)} are employed to identify the ARX parameter
vector (see Section 3.3.1.3), represented by:

θFarx =
[
a1 a2 ... ana b0 b1 ... bnb

]T
. (3.79)

Initially, the output yd(k) is transformed by the NLS block to obtain− fre.d(k), by utilising equation
(3.75) (since the parameters ci are now known). Then, the input of the ARX block is calculated
with the equation ed(k) = ud(k)−

(
− fre.d(k)

)
. As a consequence, both input and output signals

of the ARX block are known (respectively {ed(k)} and {yd(k)}) and it is possible to identify
the ARX parameters, θ̂Farx (See Fig. 3.25(b)). As explained in Section 3.3.1.3, the first possible
predicted ARX output is for k = τ+1 (the first τ values of the data are utilised as initial conditions),
where τ = max{na,(nb +nd)}. The last possible predicted ARX output is for k = Ñ, where:

Ñ =

{
N if nd ≥ 0,
N +nd if nd < 0.

(3.80)

Equations (3.47) and (3.49) become:

y =
[
yd(τ+1) yd(τ+2) ... yd(Ñ)

]T
(3.81)
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(b) STEP 2: The data collected by the dynamic experiment are utilised for the identification of the
ARX block.
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and

Φ=




yd(τ) ... yd(τ+1−na) ed(τ+1−nd) ... ed(τ+1−nd−nb)
yd(τ+1) ... yd(τ+2−na) ed(τ+2−nd) ... ed(τ+2−nd−nb)

...
. . .

...
...

. . .
...

yd(Ñ−1) ... yd(Ñ−na) ed(N) ... ed(N−nb)


 , (3.82)

respectively. The estimated parameters θ̂Farx are calculated by utilising QR factorization (see Sec-
tion 3.3.1.1). The FBO model is a good example to show the utility of identifying the single
sub-blocks by utilising data from different experiments, intentionally designed for the specific
sub-block.

3.3.1.6 KGP model identification

Suppose that, by performing some experiments on a process under study, the signals {u(k)} and
{y(k)} (for k = 1, ...,N) are generated and utilised as input and output identification data, respec-
tively. Suppose that a KGP model is selected in order to describe the behaviour of the process.
As explained in Section 3.2.3.5, the output of the KGP model, in the case where the cross-product
terms are removed, is given by:

ŷ(k) =
np

∑
j=1

[ na

∑
i=1

ai jy j(k− i)+
nb

∑
i=0

bi ju j(k−nd− i)
]
,

where ŷ indicates the model prediction and y the measured data. Equations (3.41), (3.42) and
(3.43) become, respectively:

ŷ(k) =ϕkgp(k)Tθkgp, (3.83)

ϕkgp(k) =
[
y(k−1) ... y(k−na) u(k−nd) ... u(k−nd−nb) (3.84)

y2(k−1) ... y2(k−na) u2(k−nd) ... u2(k−nd−nb) ...

ynp(k−1) ... ynp(k−na) unp(k−nd) ... unp(k−nd−nb)
]T

and

θkgp =
[
a11 ... ana1 b01 ... bnb1 a12 ... ana2 b02 ... bnb2 ... a1np ... ananp b0np ... bnbnp

]T
.

(3.85)
Equation (3.83) shows that the KGP model is linear in the parameter vector θkgp. Equation (3.47)
becomes:

y =
[
y(τ+1) y(τ+2) ... y(Ñ)

]T
, (3.86)

where τ and Ñ are defined in Section 3.3.1.3. For the KGP model, each of the (Ñ− τ) rows of the
data matrix Φ, defined by (3.49), has the form:

[
y(k−1) ... y(k−na) u(k−nd) ... u(k−nd−nb) (3.87)

y2(k−1) ... y2(k−na) u2(k−nd) ... u2(k−nd−nb) ...

ynp(k−1) ... ynp(k−na) unp(k−nd) ... unp(k−nd−nb)
]
,

where k = (τ+1), ..., Ñ. The estimated parameters θ̂kgp are determined by utilising a QR factor-
ization algorithm (see Section 3.3.1.1).
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3.3.2 Nonlinear optimization

For models that are nonlinear in the parameters, θ, the linear regression techniques, presented in
Section 3.3.1, can not be used for model parameter identification. The main idea of optimization
is to minimise some LF, J(θ), which is a measure of error between the model prediction and the
recorded data. Given a model nonlinear in the parameters, J(θ) will have a global minimum and
may have many local minima (see Fig. 3.26) and no analytical solution exists; therefore, the use
of an iterative optimization algorithm is required. Good references, in order to find nonlinear
optimization details, include [141] [205] [261] [262] [263].

θ1

θ2

J(θ)

θ̂local

θ̂global

Figure 3.26: In the case of a model nonlinear in the parameters, the LF, J(θ), may have a global
minimum and many local minima.

3.3.2.1 Nonlinear optimization method classification

In the literature, there are many optimization algorithms, and no single algorithm is suitable for all
problems [264]. Different criteria exist, in order to classify the optimization method, depending
on the properties that are compared:

• Criterion 1: algorithms can be classified as line search or trust-region methods [265]:
� A line search method is an iterative algorithm in the form (see Fig 3.27):

θk = θk−1 +δk−1ν
∇
k−1 (3.88)

where the new parameter vector, θk, is calculated from the previous θk−1, by moving in a direction
ν∇

k−1, with a step size (also denoted learning rate [266]) δk−1. Therefore, at each iteration, the algo-
rithm determines, according to a fixed rule, a direction of movement, and searches for a (relative)
minimum of the LF on that line. Once the new point is found, a new direction is determined and
the process is repeated. Therefore, a line search method first decides the search direction, ν∇

k−1,
and then chooses an appropriate step length, δk−1 [263].
� In a trust-region method, at the step k− 1, the LF J(θ) is approximated, in a trust-region

around the current point θk−1, with a parametric version (such as a quadratic approximation),
J(a)k−1(θ) [267]. Then, inside the trust-region, the minimizing algorithm applies the same strategy

of a line search method on J(a)k−1(θ) (instead of on J(θ)). The size of the trust-region may change at
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each step and the selected size is important to the effectiveness of each step [265] [268]. A trust-
region method first chooses a maximum searching distance (the trust-region size), then calculates
a direction ν∇

k−1, and finally a step size δk−1, in order to obtain the best improvement inside the

trust-region. It is very common to utilise a quadratic function for J(a)k−1(θ).

• Criterion 2: algorithms can be classified as deterministic or stochastic methods [264]:
� A deterministic algorithm works in a mechanically deterministic way, without the introduc-

tion of any random decision; therefore, given the same initial point, the algorithm will reach the
same final solution.
� In a stochastic algorithm, the presence of some randomness in the algorithm, will probably

lead to a different solution every time the algorithm is run, even if the problem to solve is the same
[205] [264].

• Criterion 3: algorithms can be classified as trajectory-based or population-based methods:
� A trajectory-based algorithm, at each step, calculates a single solution point, which will

trace out a piecewise zig-zag path, as the optimization process continues (see Fig. 3.27).
� A population-based algorithm calculates, at each iteration, multiple solutions, which will

interact with each other to generate a new set of solutions [264]. Examples of population-based
algorithms are genetic algorithms (GA) and particle swarm algorithms [261].

θ0

θ1

θ2

θk
θk−1

Figure 3.27: Trajectory drown by an iterative line search method, in the case of θ ∈ ℜ2 and of a
LF with two minima. The algorithm starts from the initial point θ0. The closed lines represent the
contour lines of the LF.

3.3.2.2 Common nonlinear optimization algorithms

The iterative algorithm of equation (3.88), utilised for line search methods, provides a common
foundation for a large number of optimization algorithms. Indeed, the search direction, ν∇

k−1, can
be written as the LF gradient, ∇J(θk−1) (in general, ∇J(θ) always indicates the direction of the
steepest ascent in θ, and −∇J(θ) the direction of the steepest descent [266]), rotated and scaled
by some direction matrix, Rk−1 [205]:

ν∇
k−1 =−Rk−1∇J(θk−1) (3.89)

Different choices of Rk−1 lead to different optimization methods, as explained below:

• Newton’s method. In this case, Rk−1 is chosen as the inverse of the Hessian matrix of the
LF, calculated at the point θk−1 [141] [205]:

Rk−1 =
(

∇2J(θk−1)
)−1

(3.90)
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Compared to the steepest descent method [205], Newton’s method has a faster convergence but, at
the same time, has the requirement for second order derivatives that, if not available analytically,
have to be computed utilising finite difference techniques. Therefore, if the Hessian matrix is
not known analytically, Newton’s method becomes computationally expensive, even for medium
sized problems. Another important drawback is the required inversion of the Hessian matrix,
which strongly limits the size of the studied problem [205].

• Quasi-Newton method. The calculation of the Hessian matrix and its inversion, necessary in
Newton’s method, can be replaced by an appropriate approximation, involving first order deriva-
tives alone, obtaining in this way the family of quasi-Newton methods [141] [205]. The most
common algorithms, in order to calculate the approximation of the inverse of the Hessian for the
quasi-Newton method, are the DFP (Davidon, Fletcher, Powell) and the BFGS (Broyden, Fletcher,
Goldfarb, Shanno) algorithms. For more details, see [141] [205] [265].
.
• Conjugate gradient method. In all quasi-Newton methods, the memory requirement and the
computational complexity increase quadratically with the number of parameters. Therefore, for
large problems, the approximation of the Hessian matrix is not convenient. As an alternative,
given a q-dimensional parameter vector, θ, conjugate gradient methods utilise q different search
directions ν∇

i , each one conjugate with the others (ν∇
i and ν∇

j are conjugate, with respect to the
symmetric positive definite matrix Ac, if (ν∇

i )
T Acν

∇
j = 0 [265]), without a direct approximation

of the Hessian matrix. In conjugate gradient methods, the memory requirement and the compu-
tational complexity increase linearly with the number of parameters q [205]. A drawback is the
larger required number of iterations for convergence, compared to quasi-Newton methods. The
conjugacy of the search directions tends to deteriorate during the running of the algorithm; there-
fore, a typical solution is to restart the algorithm after every q steps, by imposing the search vector
equal to the negative gradient direction [205]. For more details see [265] [269] [262] [263].
.
• Genetic algorithms. Genetic algorithms are stochastic, population-based optimization tech-
niques, based on Darwin’s theory of natural selection. The great success of natural evolution in the
development of new species, which are able to adapt to changing environmental conditions, sug-
gests an innovative approach to mathematical optimization problems [270]. Each possible solution
to the optimization problem, in GAs, is represented by an individual (one point in the parameter
space) belonging to a population (a set of possible solutions). During each successive generation,
a GA selects a sub-population, by implementing a fitness-based process, where fitter solutions
(as measured by a LF) are typically more likely to be selected. The selected sub-population is
combined to originate a new generation, such that the average ‘quality’ of the new population is
improved. Each solution is coded in a string (the chromosome), by utilising an encoding tech-
nique (e.g. binary and floating point coding [271]), which represents the genetic information of
the individual. By operating on the strings of the selected ‘parent’ solutions, a new individual
is generated. Three main genetic operations are utilised to create the new generation: crossover,
mutation and elitism [205] [261] [272] [273].
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3.3.2.3 ANN model identification

The identification of a MLP-ANN, introduced in Section 3.2.3.6, involves tuning the value of
weights and biases of the network, in order to optimize the network performance on the available
input/output training data. By utilising the MSE as measure of the error, defined in (3.39), from
equations (3.33) and (3.35) it is possible to write:

J(θann) =
1
2

N

∑
k=1

[
y(k)− ŷ(k,θann)

]2

=
1
2

N

∑
k=1

[
y(k)−

n2

∑
i=0

w(out)
i Ψi

( n1

∑
j=0

w(2)
i j Ψ j

( nv

∑
l=0

w(1)
jl vl(k)

))]2
, (3.91)

where a MLP-ANN with two nonlinear hidden layers and one linear output layer is utilised. The
unknown parameter vector is given by:

θann =
[
w(1)

11 ... w(1)
n1nv w(2)

11 ... w(2)
n2n1 w(out)

1 ... w(out)
n2

]T
. (3.92)

Equation (3.91) shows that J(θann) is not a quadratic function of θann; therefore, it is not possible
to utilise the linear optimization methods introduced in Section 3.3.1. Historically, a common way
to train a MLP-ANN is the use of the back-propagation algorithm [238] [245] [266]. It is possible
to show that the methodology applied by the back-propagation algorithm is just an equivalent
way to calculate the search direction and the learning rate, utilised by the recursive derivative-
based techniques (3.88) [205] [266]. In the context of a MLP-ANN training, usually, each single
iterative line search step is denoted an epoch. Any of the recursive trajectory-based algorithm for
nonlinear optimization, presented in Section (3.88) can be used for a MLP-ANN training [244]
[274] [275]. In particular, when the number of neurons increases, a good choice is the conjugate
gradient algorithm, which is computational efficient and shown to have good performance for
ANN models [244] [245] [274] [276]. A MLP-ANN can be retrained on the same data over
successive epochs (batch training mode); in this way, all the data training set is applied to the
network before weights and biases are updated. An alternative approach is the calculation of new
parameter values at each time step (incremental training mode); therefore, the utilised data are
different at each epoch. For most problems, a batch training has a faster convergence then an
incremental training [244]. In addition, population-based algorithms, such as GAs, can be utilised
for a MLP-ANN identification [277].

Section 3.1.1.2 has already introduced that, when the model complexity increases, the identi-
fied model becomes more flexible and able to show more sophisticated dynamical behaviour but,
at the same time, unnecessarily high complexity can render the model less capable of generalising
on new data. In Section 3.2.4, it has been explained that na, nb and nd of a DT nonlinear model
can be estimated by implementing a systematic trial and error process on several ARX models. In
the case of MLP-ANN models, the model complexity, in addition to na, nb and nd , is given also
by n1 and n2, which are the number of neurons in the two hidden layers (in the case where the two
hidden layer ANN structure, described by (3.33), is utilised). It is not straightforward to calculate
the optimal values for n1 and n2, but it is known that the model performance is poor, if the network
is not complex enough and, on the other hand, there is the risk of overfitting, if the network is too
complex [244].

3.4 Hydrodynamic WEC model validation

As explained in Section 3.1.1.4, model validation is an important step in SI. The first model as-
sessment is computed on the training data and, if the results are not satisfactory with the training
data, the model cannot be accepted. In this case, the problem may be an incorrect selected model,
which is not able to describe the complexity of the process [205], or the identification algorithm
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may provide a parameter vector too far from the optimal solution. In a case where the performance
achieved on the training data is acceptable, the real validation assessment comes when the model
is tested on new data, that is, when the model has to predict the outcome of an experiment which
was not used for the model parameter identification [278]. In order to deliver the training and
validation steps, the available data is divided into separate training and validation data sets [205]
[221]. It is important to remember that a model, which fits the training data well, is not necessary
a good model on different experimental data (i.e. overfitting problem). Common methods utilised
for model validation are the 1-step (ahead) prediction test and the multi-step (ahead) prediction
test [221]:
• 1-step (ahead) prediction test. The model output prediction, ŷ, is calculate by utilising only the
process measurements u and y (no predicted past values of the output, ŷ, are used), as shown in
Fig. 3.28(a). At each time step, the prediction error e(k) = y(k)− ŷ(k) is computed. 1-step predic-
tion tests are often not sufficient to show model inadequacy and even models with low accuracy
may generate almost perfect 1-step predictions [221].
• Multi-step (ahead) prediction test. The mathematical model is initialised by a few known mea-
sured output values and, successively, the model output is calculated by the previous model pre-
dicted output, ŷ, and by the given measured input, u, as shown in Fig. 3.28(b). Therefore, at each
time step the output error e(k) quickly accumulates.

u(k−nd)

u(k−nd −1)

u(k−nd −nb)

y(k−1)

y(k−na)

Model

ŷ(k)

u(k−nd)

u(k−nd −1)

u(k−nd −nb)

ŷ(k−1)

ŷ(k−na)

Model

ŷ(k)

(a) (b)

Predicted output
Measured

output

Measured
input

Measured
input

Figure 3.28: (a) 1-step prediction (b) Multi-step prediction.

Different error metrics can be utilised to compare the model prediction, ŷ(k), with the mea-
sured signal, y(k) (either for 1-step or multi-step predictions):
• The mean squared error [279]. As explained in Section 3.3, the MSE is defined as:

MSE =
1
N

N

∑
k=1
|y(k)− ŷ(k)|2, (3.93)

where the constant 1
N is commonly replaced by 1

2 or 1
2N [205]. In this section, the constant 1

N is
utilised to maximise the compatibility with the other error metrics introduced. The main disad-
vantage is that the MSE is not normalised with respect to the magnitude of y(k); therefore, it is
difficult to compare different fitting results.
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• The mean absolute percentage error (MAPE). In order to obtain a metric normalised with respect
to the magnitude of y(k), the MAPE is defined [279] as:

MAPE =
100
N

N

∑
k=1

|y(k)− ŷ(k)|
|y(k)| (3.94)

However, a drawback of the MAPE is that it can give a distorted picture of the error, in the case
where there are zero (or nearly-zero) values in the measured signal, y(k). Since, in the context of
wave energy, it is common that y(k) oscillates around the zero value, there is a good possibility of
obtaining a distorted picture of the error. For example, Fig. 3.29 shows the presence of spikes of
the quantity |y(k)− ŷ(k)|/|y(k)|, when the measured displacement, y(k), crosses the zero value.
• The normalised root mean-squared error (NRMSE), defined [8] [12] as:

NRMSE =
‖ y(k)− ŷ(k) ‖2

‖ y(k) ‖2
=

√
1
N ∑N

k=1 |y(k)− ŷ(k)|2
√

1
N ∑N

k=1 |y(k)|2
, (3.95)

has the advantage of being normalised with respect to the magnitude of y(k) and, at the same time,
the presence of nearly-zero values in the measured signal y(k) does not alter the picture of the
error.
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Figure 3.29: (a) Time evolution of the body displacement provided by the experimental data and
predicted by the model. (b) Time evolution of the quantity |y(k)− ŷ(k)|/|y(k)|.

3.5 Summary and discussion

This chapter has introduced the fundamental aspects of SI, a discipline well known in a variety
of engineering subjects; in this thesis, SI is applied for WECs modelling. Section 3.1 shows that
SI is based on an iterative sequence of four steps (experiment design and data gathering, model
order and structure selection, fitting criterion and identification algorithm selection, and model
validation). At the end of the SI procedure, an identified model is provided. It is crucial to stress
that a model is identified on some training data, but the quality of the model has to be evaluated on
some fresh data (validation data); indeed, a model not able to generalize on new data is a relatively
worthless model, but just provides an imperfect copy of the original training data, with no useful
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interpolation value. Usually, the use of SI to resolve an engineering problem does not lead to an
ideal unique answer, but provides a variety of possible solutions, depending on decisions taken
during the SI procedure, which could be all correct and reasonable. Furthermore, the definition of
a ‘best’ model may change from application to application; the best model usually meaning the
best compromise for the specific application. The ideal compromise sought in this thesis is that
between a high model prediction accuracy (increased with the introduction of nonlinearity) and
a low computational requirement. In Section 3.2, by starting from Cummins’ equation, different
CT model structures have been obtained, and utilised as a guideline for the construction of DT
model structures, obtaining grey-box models such as FBO and Hammerstein model structures.
Furthermore, DT black-box model structures are proposed, such as ARX, KGP and ANN models.
In Section 3.3, the use of linear and nonlinear optimization for the identification of the parameters
of WEC model structures is explained, underlining the crucial difference between a model with
a nonlinear input/output relationship and a model nonlinear in the parameters. Indeed, it is pos-
sible to have models with a nonlinear input/output relationship but being linear in the parameters
(such as Hammerstein and KGP models), which have the relevant advantage of requiring only
linear optimization for parameter identification. On the other hand, ANNs are nonlinear both in
the input/output relationship and in the parameters, with the drawback of requiring a nonlinear
optimization. In Section 3.4, the model validation concept is introduced, and the importance of
the model testing on new data is stressed. The important SI step, regarding experiment design and
data gathering, is introduced in Section 3.1.1.1 and will be comprehensively illustrated in Chapter
4, in the specific case of wave tank experiment design for WEC model identification.
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Chapter 4
Wave tank experiment design for WEC
model identification

4.1 Introduction

In Section 3.1.1.1, the importance of utilising informative data for system identification, especially
in the presence of nonlinear systems, was introduced. This chapter focuses on an experiment de-
sign in wave tanks (for both NWT and RWT), in order to generate data for WEC model identifica-
tion. In recent years, a significant variety of different WECs have been studied in RWTs, in order
to analyse their hydrodynamic characteristics. Often, the experiments are based on a WEC subject
to incoming waves, which can be regular monochromatic waves or irregular waves with a specific
wave spectrum (wave spectra are usually characterised by a significant wave height and a peak
period). The data generated by these kinds of experiments can be utilised for WEC model identifi-
cation, but the possibility of designing an experiment, specifically for WEC model identification,
can render the generated data more informative and effective, in order to obtain an accurate iden-
tified model. It is important to stress that, by extending the duration of an experiment, the amount
of information contained in the data usually increases but, at the same time, there are increasing
disadvantages, for both NWT and RWT cases. Indeed, in the case of a CFD-NWT, the amount
of computation time can become unsustainable (the computation time could be up to 1000 times
the simulation time, as suggested in Section 2.3) whereas, in the case of a RWT, a set of long tank
experiments corresponds to an increase of the facility renting costs. In the wave energy commu-
nity, it is usual to use monochromatic waves in order to study the WEC hydrodynamic behaviour
at a specific wave frequency and amplitude; therefore, in order to cover the whole input range
in both frequency and amplitude (in this case the input is the FSE), the number of experiments
quickly becomes significantly large, leading to a considerable experimental time to collect all the
required information. An interesting alternative is the use of ‘time-shrunk’ input signals, charac-
terised by a high concentration of information. These particular signals contain the whole variety
of frequencies and amplitudes, necessary to excite the system over the whole range of operation,
in a more compacted time frame. In the case where the mathematical model structure, utilised
to model the process, is available before the experiment realization, the experiment design can
be even more optimised. Indeed, it is usual to describe a complex system as the interconnection
of smaller sub-systems, each one having a specific input and output. Therefore, the design of a
set of experiments, each one designed to excite a different sub-block, leads to the direct simula-
tion/measure of the input and output of each sub-system, providing the data for the identification
of each sub-block.

This chapter is laid out as follows: Section 4.2 describes the design of excitation signals for
data generation, with Section 4.2.1 explaining the main excitation signal characteristics (spectral
content, amplitude range and amplitude distribution) and Section 4.2.2 illustrating a variety of pos-
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sible input excitation signals. In Section 4.3, different typologies of WT experiments are shown,
with Section 4.3.2 describing the WT identification experiments (free decay, input wave, input
force and prescribed motion experiments) and Section 4.3.1 explaining the WT preliminary ex-
periments (free decay and input force preliminary experiments). In Section 4.4, a methodology to
compare 2D NWT data with 3D BEM (in this case WAMIT) data is presented. Finally, a summary
and discussion are presented in Section 4.5.

4.2 Design of excitation signals for data generation

4.2.1 Excitation signal characteristics

In this section, the main characteristics, utilised to evaluate the quality of an excitation signal for
WEC model identification, are presented. In section 4.2.1.1, the description of the signal spectral
content is introduced. Section 4.2.1.2 explains the important aspect of having a good coverage
of the full input and output amplitude signal ranges. Section 4.2.1.3 illustrates the aspect that a
good excitation signal should have an equal amplitude distribution, in order to excite the system
uniformly.

4.2.1.1 Signal spectral content

The essence of the frequency description of a signal, represented by a spectrum (there are several
variations of spectrum definition, such as energy spectrum or power spectrum) is to decompose
the waveform into a summation of sinusoids of different frequencies [222] [280]. The amplitude
spectrum of the input signal determines the frequencies at which the power is introduced into
the system. It is important to underline that the quality of the identified system is higher at the
frequencies which are strongly excited by the input signal; for example, in the case where the
input signal is a single sine wave of frequency ω1, the identified model is a good representation of
the process only for frequency ω1 [205]. Therefore, during the identification experiment design,
it is important to guarantee that the input excitation signal has a good coverage of the frequencies
where the system has a significant non-zero frequency response.

The fundamental tool to describe the frequency content of a CT signal is the Fourier transform,
which represents a signal, u(t), as an infinite sum of sinusoids of infinite different frequencies.
Mathematically, the Fourier transform is defined [222] [281] as:

U( f ) =
∫ ∞

−∞
u(t)e−i2π f tdt. (4.1)

The Fourier transform, U( f ), is a complex function and can be expressed as:

U( f ) = |U( f )|eiArg
(

U( f )
)
, (4.2)

where the modulus, |U( f )|, provides an indication of the amount of harmonic content of the
signal u(t) at a frequency f , and where Arg

(
U( f )

)
is the phase of U( f ). The different spectral

definitions, available in the literature (e.g. energy spectrum or power spectrum), depend on the
characteristic of the signal u(t) (e.g. continuous/discrete-time or with finite/infinite energy), but
the different spectra are very closely related to the square of the absolute value of the signal Fourier
transform [280].
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Figure 4.1: (a) Signal time evolution. (b) Signal amplitude distribution.

4.2.1.2 Input and output signal amplitude ranges

For any real physical system, the input and output signal ranges are bounded between a maximum
and minimum level, because physical survivability issues of the system (e.g. the applied electric
signal at the input of an amplifier or the PTO force applied to a floating WEC), or because the
system is intentionally designed to work in a specific range, in order to exhibit some desired
properties (e.g. linearity or the absence of harmonic distortion). In the identification experiment
design, it is important to restrict the input and output amplitude to the ranges at which the system
is supposed to normally operate, in order to provide, to the SI procedure, the essentially different
behaviours that the mathematical model has to be able to repeat and exhibit. Indeed, it is not
advantageous to introduce unnecessary complexity in the model structure, just in order to describe
the system behaviour, in conditions which are not of interest, from a practical point of view. For
example, in the case of WEC modelling for power production, the objective is to obtain a model
able to describe the WEC dynamic in power production mode, and not in extreme sea conditions,
when the WEC switches to survival mode. If the presence of system nonlinearity is anticipated,
it is important to properly excite the system in order to observe the system response over the full
range of interest; indeed, model extrapolation is more inaccurate than model interpolation [205].
It is worthwhile stressing that designing an identification experiment, which covers the full range
of the output, is not straightforward, because there is no direct imposition on the output by any
actuator; indeed, the output is just how the system responds to the input. Therefore, in the case of
unknown nonlinear systems, the ability to predict what the output range will be, as a consequence
of the chosen input, may be very complex.

4.2.1.3 Signal amplitude distribution and data sparseness

In Section 4.2.1.2, it was explained that it is important to cover the input signal range to obtain
an accurate identified model. It is relevant to understand that covering the input range well is
necessary but is not sufficient; it is also important how the range is covered. Indeed, an important
signal characteristic, which has to be taken into consideration during the experiment design, is the
(instantaneous) amplitude distribution, which can be visualised by plotting the signal samples in
a histogram [222] [282]. For example, Fig. 4.1(a) shows a sample signal time evolution and Fig.
4.1(b) the corresponding amplitude signal distribution. In order to excite the system uniformly
and obtain the same amount of information of each signal level, the amplitude distribution of the
input signal should, ideally, be uniformly distributed [205].
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A better way to understand the importance of the signal amplitude distribution, is to consider
the general DT model of Fig. 4.2, which represents the block diagram of a general NARX discrete-
time model (see Section 3.2.3). The unknown function γ provides the system output, y(k), as a
response to the vector V(k) ∈ℜ(na+nb+1), which is defined as (see Section 3.2.3.6):

V(k) =
[
y(k−1) ... y(k−na) u(k−nd) u(k−nd−1) ... u(k−nd−nb)

]
(4.3)

u(k−nd)

u(k−nd −1)

u(k−nd −nb)

y(k−1)

y(k−na)

γ[ ] y(k)
V(k)

Figure 4.2: Block diagram for a general NARX discrete-time model, where y(k) = γ
[
V(k)

]
.

.
Therefore, the identification of the system corresponds to the identification of the function γ. In
order to correctly identify γ, it is important that the cloud of points {V(k)}, available from the
experimental data, is uniformly distributed in the domain space, inside an area bounded by the
decided input and output ranges. As a simple explanatory example, consider the case of a system
having V(k) ∈ℜ2 with V(k) = [u(k),u(k−1)], and excited by one of the following four different
input signals:
S1) u(k) = sin(10k).
S2) u(k) = sin(10k)+ sin(1.3k).
S3) u(k) = sin(10k)+ξn(k), where ξn(k) is white noise, uniformly distributed in the interval [-0.1
, 0.1].
S4) u(k) = ξn(k), where ξn(k) is white noise, uniformly distributed in the interval [-1 , 1].
Fig. 4.3 shows the cloud of points, {V(k)} ⊂ ℜ2, in the case of the pure harmonic signal S1; it
is possible to see that the covered space is just the border of an ellipse, a cloud of points with
little spread (inside and outside the ellipse the space is not covered at all) [283], and composing a
nonconvex space (a set C is convex if the line segment between any two points in C lies in C [255]).
Fig. 4.4 shows the cloud of points, {V(k)} ⊂ℜ2, in the S2 case, in which a second harmonic, at a
higher frequency, has been added to the input signal. The situation appears improved, the cloud of
points is spread inside the ellipse, and is assuming the broad characteristics of a convex set (there
are no significant ‘holes’ inside the ellipse). Fig. 4.5 shows the S3 case, in which random noise
has been added to the single harmonic signal S1. In this case, the covered space is nonconvex and
is not significantly spread. Finally, Fig. 4.6 shows the S4 case, in which the input signal is pure
random noise, with equal distribution probability in the range [-1,1]. In this case, the cloud of
points, {V(k)}, is uniformly distributed and has the broad characteristics of a convex set (there are
no significant holes). Therefore, it is clear how different signals cover in a very different way the
{u(k),u(k− 1)} plane. In the simple examples, with input signals S1, S2, S3 and S4, the output
of the system is assumed to be dependent only on the present and past values of the input, u. In
the more general case of an autoregressive model, as shown in Fig. 4.2, V(k) also contains shifted
values of the output, y. This aspect introduces a complication in the experiment design; indeed, if
on one side there is the direct control on the amplitude distribution of the input signal (the signal is
designed to have that specific amplitude distribution), on the other side, there is no direct control
on the distribution of the output, y, which depends only on how the system responds to the input.
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In the case of an unknown nonlinear system, the possibility of predicting the output distribution as
a consequence of the chosen input is not straightforward, as already outlined in Section 4.2.1.2.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

u(k)

u
(k

−
1

)

Figure 4.3: The signal cloud, {u(k),u(k−1)} ⊂ℜ2, in the case of the signal S1.
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Figure 4.4: The signal cloud, {u(k),u(k−1)} ⊂ℜ2, in the case of the signal S2.
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Figure 4.5: The signal cloud, {u(k),u(k−1)} ⊂ℜ2, in the case of the signal S3.
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Figure 4.6: The signal cloud, {u(k),u(k−1)} ⊂ℜ2, in the case of the signal S4.

Another way to describe the amplitude distribution of a signal, u(t), is provided by the crest
factor, Cr(u), defined as the ratio of the signal peak value, upeak, to its root mean square (RMS)
value in the bandwidth of interest, which is also termed the ‘effective’ RMS value, urmse, [192]
[204]:

Cr(u) =
upeak

urmse
, (4.4)

where
upeak = max

t∈[0,T ]
|u(t)|, (4.5)

urmse = urms

√
signal power (energy) in the band of frequencies of interest

total signal power (energy)
, (4.6)

urms =

√
1
T

∫ T

0
u2(t)dt, (4.7)

where T is the measurement time, and urmse ≤ urms. Signals having an impulsive shape have a
large crest factor, and they introduce less power into the system, compared to signals having the
same peak value, but a smaller crest factor [192].

4.2.2 Excitation signal typology

As outlined in Section 3.1.1.1, the signal, used to excite the system during the experiment, plays
an important role in SI. Ideally, the objective is to excite the system as much as possible, in the
shortest possible time, in order to obtain all the required identification information. Useful signals
in SI are random and pseudorandom binary signals, random amplitude random period signals,
chirp signals and multisine signals, which are introduced and explained in the following Sections
4.2.2.1, 4.2.2.2 4.2.2.4 and 4.2.2.3, respectively.

4.2.2.1 Random and pseudorandom binary signals

A random binary signal (RBS) is a random signal which can assume one of only two different
values at any given sample time. If p is the probability of assuming one value, obviously, the prob-
ability of assuming the other value is (1− p) [141] [204]. A pseudorandom binary signal (PRBS)
is a periodic binary sequence (there are only two amplitude levels) that, despite the fact that it is
a deterministic sequence, exhibits statistical characteristics similar to a RBS [214]. The switches
between the two levels can occur only on a discrete-time grid, at multiples of the sampling period,
Ts [192] [204]. See Fig. 4.7 for a RBS/PRBS signal time evolution example. It is interesting to
underline that RBSs and PRBSs have a crest factor equal to one, the best possible crest factor and,
for this reason, they represent a benchmark [192]. RBSs and PRBSs are widely used for linear
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system identification; however, Leontaritis and Billings [284] show that a RBS/PRBS may not be
ideal for the identification of nonlinear systems. Indeed, in the case of nonlinear systems, it is
essential that all the interesting frequencies, amplitudes and all their combinations are present in
the input signal. In a RBS/PRBS, obviously, only two values are present and all the other values
in between are, essentially, missing. Fig. 4.8 depicts the signal cloud, {u(k),u(k− 1)} ⊂ ℜ2, of
a RBS/PRBS, having -1 and 1 as possible signal values. It is shown that the signal cloud covers
only four isolated points in the ℜ2 space: (-1,-1), (-1,1), (1,-1) and (1,1), clearly indicating the in-
adequacy of this signal for nonlinear system identification (the covered space is almost empty and
nonconvex). For this reason, other types of excitation signals are preferred for the identification of
nonlinear systems, such as RARP, chirp and multisine signals.
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Figure 4.7: Sample RBS/PRBS signal time evolution for t = kTs, in the case where the two allowed
amplitude values are -1 and +1.
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Figure 4.8: The signal cloud, {u(k),u(k− 1)} ∈ ℜ2, for a RBS/PRBS, in the case of the two
allowed amplitude values are -1 and +1.

4.2.2.2 Random amplitude random period signal

A crucial aspect of nonlinear systems is that they have dynamics that are amplitude dependent. The
RBS/PRBS, seen in Section 4.2.2.1, does not assume all the possible values of the input system
range (they can assume only two different values); therefore, RBS/PRBS signals are not typically
used for the nonlinear system identification. Pseudorandom sequences with randomly varying
amplitudes (or random amplitude random period (RARP) signals) overcome this limitation, by
introducing also a random change in the signal amplitude. The switches between different levels
can occur only on a discrete-time grid, at multiples of the sampling period, Ts. A RARP signal
can be seen as a sequence of adjacent rectangular pulses with different width, Tr, and amplitude,
Ar (see Figs. 4.9 and 4.10(a)). The construction of the RARP signal is achieved by specifying
the statistical characteristics of the discrete random variable Tr, termed switching period, and the
continuous random variable Ar, in order to decide the width and the amplitude of each rectangular
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pulse, respectively [141]. Given a maximum and a minimum width of the single rectangular
pulse, represented respectively by T (max)

r and T (min)
r , Tr assumes all the values Tr = nTs (where n

is an integer number) in the interval [T (min)
r ,T (max)

r ], with probability mass function (PMF), fTr .
Similarly, given a maximum and a minimum amplitude for the signal, represented respectively
by A(max)

r and A(min)
r , Ar assumes values in the interval [A(min)

r ,A(max)
r ], with a probability density

function (PDF), fAr . The RARP signals, used for this thesis, have constant fTr and fAr , as shown
in Fig. 4.10. A RARP signal is obtained by sequentially constructing each pulse; at the beginning
of each new pulse, specific values of Tr and Ar are selected, indicating the unique width and
amplitude of the new pulse.

0 10 20 30 40 50
−10

−5

0

5

10

Time

A
m

p
lit

u
d
e

Figure 4.9: Sample RARP signal time evolution, for t = kTs.
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Figure 4.10: RARP signal: (a) Rectangular pulse time evolution. (b) The width of each rectangular
pulse is described by a constant PMF, fTr . (c) The amplitude of each rectangular pulse is described
by a constant PDF, fAr .

In a RARP signal, the presence of rectangular pulses with different widths is important for the
frequency richness of the signal; indeed, short pulses introduce higher frequencies into the spec-
trum, whereas, longer pulses correspond to a low frequency content [205] [227]. The frequency
content (shown in Fig. 4.11(c)) and the amplitude distribution (shown in Fig. 4.11(d)) of different
realizations of the same RARP stochastic process may vary due to the inherent randomness of
the signal. However, as the signal length increases, the amplitude distribution converges to a flat
coverage of the desired range, shown in Fig. 4.10(c) and the frequency content converges to a
spectral limit. Fig. 4.12 shows the signal cloud, {u(k),u(k− 1)} ⊂ ℜ2, for a RARP signal. It
is possible to see that the cloud of points is well distributed and has the broad characteristics of
a convex set (there are no significant holes), indicating a good quality signal. It is interesting to
note that the majority of points of the cloud are located on the diagonal line, which represents the
points u(k) = u(k−1). Indeed, the only points outside the diagonal are the points representing a
switching of the RARP signal from one value to another one, as shown in Fig. 4.13.
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Figure 4.11: Spectrum and amplitude distribution for chirp, RARP and multisine signals.
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Figure 4.12: The signal cloud, {u(k),u(k−1)} ⊂ℜ2, for a RARP signal.
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Figure 4.13: The plotted time evolution of a sample RARP signal shows the points representing a
switching of the RARP signal from one value to another (u(k) 6= u(k−1)) and the points without
a switching (u(k) = u(k−1)).
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4.2.2.3 Multisine signal
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Figure 4.14: Sample multisine signal time evolution for t = kTs.
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Figure 4.15: The signal cloud, {u(k),u(k−1)} ⊂ℜ2, for a multisine signal.

.
A multisine signal, shown in Fig 4.14, is the superposition of Ns sine waves:

u(k) =
Ns

∑
n=1

An sin(2π fnkTs +ϕn) (4.8)

where fn is the frequency, ϕn the phase and An the maximum amplitude of the n-th sinusoid (in
the literature, An is commonly termed amplitude of the sinusoid but, in this chapter, An is termed
the maximum amplitude, to avoid any ambiguity with the (instantaneous) amplitude of the signal
u(t)). If fn = n f1, where f1 is the lowest frequency (also termed fundamental frequency), then the
sinusoids are equidistant in frequency (see Fig. 4.11(e)) [192] [214] [242] [285]. The multisine
signal allows strong control over the spectral content, with free choice for the maximum amplitude
of each harmonic. For example, Fig. 4.11(e) shows a multisine signal having a fundamental fre-
quency of 0.05 Hz and equal maximum amplitude for every harmonic up to 1 Hz. For a multisine
signal there is flexibility in the amplitude distribution design (Fig. 4.11(f)); indeed, the amplitude
distribution is determined by the phases of the harmonic components, which leads to control over
the amplitude content in the multisine signals, through phase optimisation techniques (without
changing the amplitude spectrum) [192] [218]. Typically, the crest factor for a multisine signal
is 1.7 [192]. Fig. 4.15 shows the signal cloud {u(k),u(k− 1)} ⊂ ℜ2, for a multisine signal. It
is possible to see that the cloud of points is well distributed and has the broad characteristics of a
convex set (there are no significant holes), indicating a good quality signal.
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4.2.2.4 Chirp signal
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Figure 4.16: Sample chirp signal time evolution for t = kTs.
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Figure 4.17: Time evolution of the instantaneous frequency f (k) for a chirp signal.

A chirp signal (also termed swept sine), shown in Fig. 4.16, is a sine wave signal characterised
by a variable instantaneous frequency, f (k), which sweeps up and/or down, in the user-selected
frequency-band [ f1, f2], in one sweep period Tsw = NswTs, where Ts is the signal sampling period
and (Nsw +1) is the number of samples contained in one sweep period [192] [227] [286]:

u(k) = Ac sin
[
2π f (k)kTs +ϕ

]
(4.9)

where Ac is the maximum amplitude and ϕ the initial phase. The instantaneous frequency, f (k) is
specified to change linearly with k (as shown in Fig. 4.17), so that:

f (k) = ak+b (4.10)

Therefore, by imposing the limiting values of f (k), given by:
{

f1 = a0+b for k = 0
f2 = aNsw +b for k = Nsw

(4.11)

it follows that:
b = f1 (4.12)

and
a =

f2− f1

Nsw
= ( f2− f1)

Ts

Tsw
(4.13)

Therefore, the instantaneous frequency becomes:

f (k) = f1 +
f2− f1

Nsw
k (4.14)
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By introducing (4.14) into (4.9), it follows that:

u(k) = Ac sin
[
2π
(

f1k+
f2− f1

Nsw
k2
)

Ts +ϕ
]

(4.15)

Equation (4.15) shows that a chirp signal, having an instantaneous frequency f (k), which changes
linearly with k, is a sinusoid with an argument that changes quadratically with k; for this reason,
(4.15) is also termed a quadratic-phase sinusoid [285] [287].

The chirp signal’s frequency sweeps a desired range linearly during the signal duration; there-
fore, its frequency content is distributed fairly evenly across that range (see Fig. 4.11(a)). Most
of the power of the chirp signal is distributed in the user-selected frequency-band [ f1, f2] [192].
The (instantaneous) amplitude of the chirp signal is well bounded, with free choice in setting Ac.
However, there is no choice over the amplitude distribution, which is well defined and has two
peaks near the extremes where the signal slows, stops and changes direction at every oscillation
(see Fig. 4.11(b)). A chirp signal has typically a crest factor equal to 1.45 [192]. Fig. 4.18 shows
the signal cloud, {u(k),u(k− 1)} ⊂ ℜ2, for a chirp signal. It is possible to see that the cloud of
points forms a set, that we may call a ‘chirp-leaf’, which is well distributed inside its border and
has the broad characteristics of a convex set (there are no significant holes), indicating a good
quality signal. In Fig. 4.18, the areas with higher point density are the upper-right and lower-left
corners, which correspond to the maximum and minimum limits of the signal in Fig. 4.16, when
it slows, stops and changes direction.
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Figure 4.18: The signal cloud, {u(k),u(k−1)} ⊂ℜ2, for a chirp signal (chirp-leaf).

4.3 Wave tank experiment typology

The experiments carried out in a WT (either NWT or RWT) can be divided in two main categories
[7] [9] [10]:
• Wave tank preliminary experiments, which can be utilised to determine a rough measurement
of the resonant frequency and bandwidth of the device and, therefore, help in the identification
experiment design (see Section 4.3.1).
• Wave tank identification experiments, which are used to generate data to identify parametric
models (see Section 4.3.2).

4.3.1 Wave tank preliminary experiments

Two simple preliminary experiments can be used to determine a rough measurement of the reso-
nant frequency and the bandwidth of the WEC, thereby informing the identification experiments
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(see Section 4.3.2), regarding where the input power spectrum should be allocated. Both prelimi-
nary experiments involve a very low total amount of kinetic and potential energy in the device and
the fluid, which results in relatively fast CFD simulations, for NWT experiments. This allows the
preliminary experiments to be quickly executed before the identification experiments are carried
out. The WT preliminary experiments are [7] [9] [10]:
• Free decay preliminary experiments (presented in Section 4.3.1.1).
• Input force preliminary experiments (presented in Section 4.3.1.2).

4.3.1.1 Free decay preliminary experiments

In a free decay experiment, a body is initially displaced from its equilibrium position, by provid-
ing initial conditions, such as position, velocity and acceleration, and the resulting body motion,
y(t), recorded. For the heave, pitch and roll modes of motion, the mismatch between the gravita-
tional and buoyancy forces acts as the restoring force. The surge, sway and yaw modes have no
natural restoring forces; however, a spring force can be applied to the body, to allow free decay
experiments to be performed for these modes of motion [11]. As an example, consider a free decay
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Figure 4.19: Free decay experiment of a sphere with a 1 m radius and 1 m draft, carried out in
a 2D NWT. The initial body displacement is 0.3 m, the initial body velocity is zero. (a) Body
displacement time evolution. (b) Body displacement spectral content.

experiment of a sphere with a 1 m radius and 1 m draft, implemented in a 2D NWT (the same body
will be used, in Chapter 6, for the identification of fin→ y, η→ y and η→ fe models). The body
is released from an initial displacement of 0.3 m and with a null initial velocity. The experimental
data y(t) is represented in Fig. 4.19(a), where it is possible to see that the oscillation period, TWT

od ,
is constant and equal to 2.2 s; the superscript ‘WT’ indicates that the oscillation period has been
obtained by utilising data generated in a real or numerical WT (in this section data generated from
a BEM code are also used). The oscillation frequency (also termed the damped natural frequency)
can be calculated by TWT

od as:

ωWT
od =

2π
TWT

od
, (4.16)

which provides ωWT
od = 2.86 rad/s. Alternatively, the Fourier transform Y (ω) = F

[
y(t)
]
, which

furnishes information regarding the spectral content of the free decay oscillation signal, can be
used to extract information regarding both ωWT

od and the bandwidth of y(t).
.
Oscillation frequency variation of linear and nonlinear systems
Given a linear or a nonlinear system, it is important to underline that the oscillation frequency,
observed in a free decay experiment is not necessarily constant, but could change in time during
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the experiment, as shown in the following linear and nonlinear system cases.
• Linear system case. Given a general floating body in water, which can be described by the
differential equation:

n

∑
q=0

aqy(q)(t) =
m

∑
q=0

bqu(q)(t) (4.17)

where u(t) is the input system (such as a PTO force applied directly on the body) and y(t) is the
output body displacement. The Laplace transform of the free decay oscillation (the zero-input
component of the output) is given, in the case of distinct poles (see equations (A.21) and (A.27)),
by :

Y (s) =
[∑n

q=1 ∑q
j=1 aqsq− jy( j−1)(0)−∑m

q=1 ∑q
j=1 bqsq− ju( j−1)(0)]

∑n
q=0 aqsq =

n

∑
j=1

k j

(s− p j)
, (4.18)

where p j = (σ j + iω j) are the poles of the system. As explained in Appendix A.5, each complex
conjugate pair of poles p = (σ+ iω) and p∗ = (σ− iω)) provides a contribution to the output equal
to:

r(t) = L −1
[ k

s− p

]
+L −1

[ k∗

s− p∗

]
= 2|k|eσt cos

(
ωt +Arg(k)

)
(4.19)

where k depends on the system initial conditions. As an example, consider a linear 4-th order
system, having a transfer function given by:

H(s) =
20(s− z1)

(s− p1)(s− p2)(s− p3)(s− p4)
, (4.20)

where z1 = 1 is the zero and p1 = (−0.1+ i5), p2 = (−0.1− i5), p3 = (−0.3+ i19) and p4 =
(−0.3− i19) are the poles. In this case, the system is characterised by the absence of dominant
poles, since it is not true that |−0.1| � |−0.3|. The pole locations are shown in Fig. 4.20. The
system, represented by its transfer function (4.20), has a free decay oscillation that can be obtained
by (4.18) and (4.19), given by:

y(t) = r1(t)+ r2(t) (4.21)

where
r1(t) = 2|k1|e−0.3t cos

[
19t +Arg(k1)

]
(4.22)

r2(t) = 2|k2|e−0.1t cos
[
5t +Arg(k2)

]
(4.23)

The initial conditions of the free decay experiment determine the k1 and k2 values and, conse-
quently, the contribution from r1(t) and r2(t) to the solution in (4.21). For example, for initial
conditions of y(0) = 0, y(1)(0) = 0.3, y(2)(0) = 20, and y(3)(0) = 0, the resulting r1(t) and r2(t)
are plotted in Fig. 4.21, where it is possible to see that r2(t) is the most persistent contribution,
and that r1(t) is not significant after about 8 s. The resulting free decay output (4.21) is shown in
Fig. 4.22, which shows that, especially in the first 4 s, the presence of the oscillation at 19 rad/s is
important, and that after 8 s it is possible to only observe an oscillation at 5 rad/s.

Consider the same system transfer function structure of (4.20), with the same zero at s = 1 but,
this time, with a dominant complex conjugate pair of poles: p1 = (−0.1+ i5), p2 = (−0.1− i5),
p3 = (−7+ i19) and p4 = (−7− i19) (in this case |−0.1| � |−7|), as shown in Fig. 4.23. Given
the same initial conditions y(0) = 0, y(1)(0) = 0.3, y(2)(0) = 20, and y(3)(0) = 0, the resulting
damped oscillations r1(t) and r2(t) are shown in Fig. 4.24, where it is possible to see that r2(t)
is the most persistent contribution, and that r1(t) is not significant after about 0.3 s. The resulting
free decay output (4.21) is plotted in Fig. 4.25, which shows that only the model frequency of 5
rad/s is relevant in the free decay oscillation.
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Figure 4.20: Pole locations on the complex plane, where p1 = (−0.1+ i5), p2 = (−0.1− i5),
p3 = (−0.3+ i19) and p4 = (−0.3− i19) (no presence of dominant poles). The poles represented
with the same symbol are a complex conjugate pair.
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Figure 4.21: The transfer function (4.20), with z1 = 1, p1 = (−0.1 + i5), p2 = (−0.1 −
i5), p3 = (−0.3 + i19), and p4 = (−0.3− i19), generates the damped oscillations r1(t) =
2|k1|e−0.3t cos

[
19t +Arg(k1)

]
and r2(t) = 2|k2|e−0.1t cos

[
5t +Arg(k2)

]
, in the case of initial con-

ditions equal to y(0) = 0, y(1)(0) = 0.3, y(2)(0) = 20, and y(3)(0) = 0.
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Figure 4.22: The free decay output of the system (4.20), with z1 = 1, p1 = (−0.1+ i5), p2 =
(−0.1− i5), p3 = (−0.3+ i19), and p4 = (−0.3− i19), in the case of initial conditions equal to
y(0) = 0, y(1)(0) = 0.3, y(2)(0) = 20, and y(3)(0) = 0.
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Figure 4.23: Pole locations on the complex plane, where p1 = (−0.1+ i5), p2 = (−0.1− i5),
p3 = (−7+ i19), and p4 = (−7− i19) (presence of dominant poles). The poles represented with
the same symbol are a complex conjugate pair.
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Figure 4.24: The transfer function (4.20), with z1 = 1, p1 = (−0.1+ i5), p2 = (−0.1− i5), p3 =

(−7+ i19), and p4 = (−7− i19), generates the damped oscillations r1(t) = 2|k1|e−7t cos
[
19t +

Arg(k1)
]

and r2(t) = 2|k2|e−0.1t cos
[
5t+Arg(k2)

]
, in the case of initial conditions equal to y(0) =

0, y(1)(0) = 0.3, y(2)(0) = 20, and y(3)(0) = 0.
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Figure 4.25: The free decay output of the system (4.20), with z1 = 1, p1 = (−0.1+ i5), p2 =
(−0.1− i5), p3 = (−7 + i19), and p4 = (−7− i19), in the case of initial conditions equal to
y(0) = 0, y(1)(0) = 0.3, y(2)(0) = 20, and y(3)(0) = 0.
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.
• Nonlinear system case. In the case of a free decay experiment for a nonlinear system, the
oscillation frequency variation is more complex than in the linear case, indeed, it depends on the
variation of the oscillation amplitude. In the literature, there are numerous examples of nonlinear
systems, which are characterised by a free decay oscillation with an oscillation frequency that
changes in time during the experiment. For example consider a nonlinear undamped pendulum
[288] [289] [290]:

d2θ(t)
dt2 + k sin[θ(t)] = 0, (4.24)

a nonlinear damped pendulum [289] [290]:

d2θ(t)
dt2 +2γ

dθ(t)
dt

+ k sin[θ(t)] = 0, (4.25)

a nonlinear pendulum in presence of a viscous force [289]

d2θ(t)
dt2 +Cv

dθ(t)
dt

∣∣∣dθ(t)
dt

∣∣∣+ k sin[θ(t)] = 0 (4.26)

and a spring-mass system characterised by a general nonlinear restoring term R[.] [288]:

m
d2y(t)

dt2 +R[y(t)] = 0 (4.27)

In [67], a free decay experiment, carried out in a NWT, for a semisubmerged sphere with radius
and draft of 0.125 m and initial displacement of -0.1 m, shows an oscillation frequency increment
with the oscillation amplitude reduction.

Free decay oscillation frequency measure
The main objective of a free decay preliminary experiment is measuring the free decay oscillation
frequency, ωWT

od , to be used as an approximation of the resonant frequency ωm (the frequency at
which the modulus of the frequency response has the maximum) of the fin→ y and η→ y models,
in order to design the input signal for the input wave and input force identification experiments.
Furthermore, the bandwidth of Y (ω), which is the Fourier transform of the free decay displace-
ment y(t), may suggest the bandwidth that the excitation signal has to span. An important question
is if it is correct to utilise ωWT

od as an approximation of ωm. The answer is not straightforward, in-
deed, the two frequency measures in general are different as well known for a 2nd-order system.
For example, consider a mechanical oscillator described by a linear 2nd-order constant-coefficient
ODE:

mÿ(t)+bẏ(t)+ ky(t) = fin(t) (4.28)

where fin and y are the system input and output, respectively. Equation (4.28) can be written in
the frequency domain as:

[−ω2m+ iωb+ k]Y (ω) = Fin(ω) (4.29)

where Y (ω) and Fin(ω) are the Fourier transforms of y(t) and fin(t), respectively. Equation (4.28)
can be rearranged [69] [291] as:

ÿ(t)+ γ ẏ(t)+ω2
o y(t) =

1
m

fin(t) (4.30)

where

ωo =

√
k
m

(4.31)

is the undamped natural frequency and

γ =
b
m

(4.32)
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is the damping coefficient. By setting fin(t) = 0 in (4.30), the associated homogeneous equation
is obtained:

ÿ(t)+ γ ẏ(t)+ω2
o y(t) = 0 (4.33)

The free decay oscillation is the solution of equation (4.33) and in the case of γ2 ≤ 4ω2
o (under-

damped case) the solution is a damped oscillation given by [69] [290] [291]:

y(t) = Ae−
γ
2 t cos

[(√
ω2

0−
γ2

4

)
t +ϕ

]
(4.34)

where A and ϕ depend on the free decay initial conditions, and

ωod =

√
ω2

o−
γ2

4
=

√
k
m
− 1

4

( b
m

)2
(4.35)

is the damped natural frequency. In Fig. 4.26(b), an example of a free decay damped oscillation is
shown. By setting γ= 0, in equation (4.33), the solution is an undamped oscillation with frequency
ωo, given by equation (4.31); in Fig. 4.26(c), an example of an undamped free decay oscillation is
shown.

tt

ωωm

ωm =

√
ω2

o− γ2

2
ωoωod =

√
ω2

o− γ2

4

y(t)
y(t)|H(ω)| (a) (b) (c)

Figure 4.26: A system, described by a constant-coefficient 2nd-order ODE ÿ(t)+γ ẏ(t)+ω2
o y(t)=

1
m fin(t), is associated with: (a) a resonant frequency ωm, (b) an oscillation frequency (also termed
damped natural frequency) ωod and (c) an undamped natural frequency ωo.

In the case where an external harmonic force fin(t) = F0 cos(ωt) is present in equation (4.30),
the steady-state solution of (4.30) is given by [290] [292]:

y(t) = F0|H(ω)|cos
(

ωt +Arg
(
H(ω)

))
(4.36)

where H(ω) is obtained by equations (4.29), (4.31) and (4.32), and is given by:

H(ω) =
Y (ω)
Fin(ω)

=
1

m(ω2
o−ω2 + jωγ)

(4.37)

It is possible to show that |H(ω)| has its maximum at the resonant frequency, which is given [141]
[290] [291] by:

ωm =

√
ω2

o−
γ2

2
=

√
k
m
− 1

2

( b
m

)2
, (4.38)

as shown in Fig. 4.26(a). Therefore, by comparing equations (4.35) and (4.38), it follows that
ωm ≤ ωod ≤ ωo.

The well known analysis applied to the mechanical oscillator, described by equation (4.28),
can be extended to a linear hydrodynamic oscillator, described by equation (2.89) [69]:

{−ω2[M+ma(ω)]+ iωN(ω)+K}Y (ω) = Fin(ω) (4.39)
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where the hydrodynamic coefficients ma(ω), N(ω) and K can be calculated by a BEM software
package. The comparison of equations (4.29) and (4.39) shows that a correspondence between the
coefficients of the two equations exists:

m ⇐⇒ [M+ma(ω)] (4.40)

b ⇐⇒ N(ω) (4.41)

k ⇐⇒ K (4.42)

A relevant difference is that equation (4.29) is characterised by constant coefficients, whereas
equation (4.39) has frequency dependent coefficients. However, in the case where y(t), which
is the inverse Fourier transform of Y (ω), oscillates as a pure sinusoid with a single frequency,
the coefficients of equation (4.39) assume a specific value, by substituting the actual frequency.
Therefore, equations (4.31), (4.35) and (4.38), in the case of a hydrodynamic oscillator, become,
respectively [1] [22] [69] [293]:

ωBEM
o =

√
K

M+ma(ωBEM
o )

, (4.43)

ωBEM
od =

√
K

M+ma(ωBEM
od )

− 1
4

( N(ωBEM
od )

M+ma(ωBEM
od )

)2
(4.44)

and

ωBEM
m =

√
K

M+ma(ωBEM
m )

− 1
2

( N(ωBEM
m )

M+ma(ωBEM
m )

)2
(4.45)

where the superscript ‘BEM’ indicates that the solutions are obtained by utilising information gen-
erated in a BEM software package (in this case WAMIT). It is important to note that, in the case of
a free decay experiment, the time evolution of the body displacement is not a pure monochromatic
harmonic at a single frequency but a damped oscillation, which has a proper frequency spread, as
shown in Fig. 4.19(b); therefore, equations (4.43), (4.44) and (4.45) provide approximations of
ωo, ωod and ωm, respectively [22].

The transfer function of the linear fin→ y WEC model, described by equation (4.39), is given
by:

HBEM
fin→y(ω) =

1
−ω2[M+ma(ω)]+ iωN(ω)+K

(4.46)
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Figure 4.27: (a) 3D sphere. (b) In a 2D NWT, the sphere becomes a one cell thick circle, with
symmetry planes on the front and back faces of the domain. (c) Infinitely long horizontal cylin-
der (equivalent to the one cell thick circle). (d) The infinitely long horizontal cylinder can be
approximated well in WAMIT by a horizontal cylinder with a finite length L.
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Figure 4.28: Horizontal cross-sectional area of an horizontal cylinder with a 50% draft.

As an example, consider a spherical WEC moving in heave, with a 1 m radius and 1 m draft
(see Fig. 4.27(a)). In a 2D NWT, the sphere becomes a circle with a 1 m radius, 1 m draft and one
cell thick (see Fig. 4.27(b)), which is equivalent to an infinitely long horizontal cylinder (see Fig.
4.27(c)), as explained in Section 4.4. The infinitely long horizontal cylinder can be approximated
well in WAMIT by a horizontal cylinder with a 1 m radius, 1 m draft and 25 m length (as explained
in the details of Section 4.4), which has the body mass given by:

M =
ρ
2

R2πL, (4.47)

(where ρ is the water density, ρ/2 is the body density, R is the cylinder radius and L is the cylinder
length), a restoring coefficient (see Section 2.2.7) given by:

K = ρgAcr (4.48)

(where Acr = 2RL is the horizontal cross-sectional area, as shown in Fig. 4.28, and g is the grav-
itational acceleration) and WAMIT curves ma(ω), N(ω) and |He(ω)| shown in Figs. 4.29, 4.30
and 4.31, respectively. The transfer function HBEM

fin→y(ω) of the horizontal cylinder with a 1 m ra-
dius, 1 m draft and 25 m length, calculated with equation (4.46), is shown in Fig. 4.32, which
illustrates that HBEM

fin→y(ω) has a peak at a frequency ωBEM
m = 2.8 rad/s and that Y (ω) have a peak at

a frequency ωWT
od = 2.86 rad/s. Therefore, ωWT

od and ωBEM
m , of the fin→ y linear model, are very

similar. Furthermore, Fig. 4.32 shows that the bandwidth of Y (ω) and HBEM
fin→y(ω) are different but

significantly similar. Therefore, the conclusion is that the oscillation frequency ωWT
od and the band-

width, obtained by the free decay preliminary experiment in the WT (either NWT or RWT), can
be used to design the excitation signal spectrum for input force experiments (see Section 4.3.2.3),
as shown in Fig. 4.33.
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Figure 4.29: Added mass curve, calculated by WAMIT, of a horizontal cylinder moving in heave,
with 25 m length, 1 m radius and 1 m draft (used to approximated an infinitely long horizontal
cylinder).
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Figure 4.30: Radiation resistance curve, calculated by WAMIT, of a horizontal cylinder moving
in heave, with 25 m length, 1 m radius and 1 m draft (used to approximated an infinitely long
horizontal cylinder).
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Figure 4.31: Excitation force curve, calculated by WAMIT, of a horizontal cylinder moving in
heave, with 25 m length, 1 m radius and 1 m draft (used to approximate an infinitely long horizontal
cylinder).
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Figure 4.32: Normalized spectrum content comparison. |HBEM
fin→y(ω)|, |Y (ω)| and |HBEM

η→y (ω)| have
a peak at frequencies 2.8 rad/s, 2.86 rad/s and 2.7 rad/s, respectively.
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The difference between the bandwidth of Y (ω) and HBEM
fin→y(ω) can be explained by observing

the Laplace transforms Y (s) and HBEM
fin→y(s), given by equations (4.49) and (4.50), respectively.

Indeed,

Y (s) = L
[
y(t)
]
=

P(s)
∑n

i=0 aisi (4.49)

where P(s) is a polynomial in s, the coefficients of which depend on the initial conditions of
the free decay experiment, and the denominator of (4.49) is the characteristic polynomial of the
WEC model, which depends on model poles (see Appendix Section A.6). Given hBEM

fin→y(t) =

F−1
[
HBEM

fin→y(ω)
]
, it is possible to write (see equation (A.22)):

HBEM
fin→y(s) = L

[
hBEM

fin→y(t)
]
=

∑m
i=0 bisi

∑n
i=0 aisi (4.50)

where the numerator and denominator depend on model zeros and poles, respectively. Therefore,
(4.49) and (4.50) have the same denominator but a different numerator, resulting in a different
bandwidth.

The excitation signal design, for an input wave experiment (see Section 4.3.2.2), requires the
knowledge of the transfer function of the linear η→ y model, which is the product of He(ω) and
HBEM

fin→y(ω) (see block diagram in Fig. 3.4). Therefore, by using equation (4.46), it follows that:

HBEM
η→y (ω) =

Y (ω)
η(ω)

= He(ω)HBEM
fin→y(ω) =

He(ω)
−ω2[M+ma(ω)]+ iωN(ω)+K

(4.51)

where Y (ω) and η(ω) are the Fourier transforms of y(t) and η(t), respectively. Fig. 4.32 shows
that the resonant frequency ωBEM

m of HBEM
η→y (ω) is very similar to ωWT

od , and that HBEM
η→y (ω) has a

significant response from zero to a maximum frequency, which can be roughly indicated by the
upper frequency of the bandwidth of Y (ω) (about 7 rad/s). Therefore, the spectral information of
the free decay preliminary experiment in the WT (either a NWT or a RWT), can be used to design
the excitation signal spectrum for input wave experiments (see Section 4.3.2.2), as shown in Fig.
4.33. .

y(t)

t

free decay
preliminary
experiment

ωωWT
od

|Y (ω)|

NWT / RWT F [.] The bandwidth and ωWT
od

are utilised as preliminary
information to design

the identification experiments

Bandwidth

Figure 4.33: A free decay preliminary experiment can be used to determine a rough measurement
of the resonant frequency and the bandwidth of the WEC, informing the input force and input
wave identification experiments, where their input power spectrum should be allocated.

Comparison of WT free decay preliminary experiment data with BEM (WAMIT) data
In the case of a relatively small body displacement and velocity, WEC dynamics are usually well
approximated by a linear model; therefore, the damped natural frequency ωWT

od , calculated by WT
data, would be reasonably similar to ωBEM

od , computed by BEM data. The calculation of ωWT
od and

96



(WAMIT)

K ma(ω) N(ω)

WEC geometry

y(t)

t

TWT
od

Numerical
calculation

BEM software package

ωBEM
od

Free decay

NWT / RWT

ωWT
od

preliminary

COMPARABLE ?

experiment

M

Figure 4.34: Block diagram for the comparison of a free decay preliminary experiment with
WAMIT data, by using equations (4.16) and (4.44), respectively.

ωBEM
od can be carried out by using equations (4.16) and (4.44), respectively. Consider the case of

a sphere moving in heave, with a 1 m radius and 1 m draft (see Fig. 4.27(a)), and implemented in
a 2D NWT (see Fig. 4.27(b)), which corresponds, in WAMIT, to a horizontal cylinder moving in
heave, with 25 m length, 1 m radius and 1 m draft (see Fig. 4.27(d)), as explained in Section 4.4.
For this body geometry, it follows that ωWT

od = 2.86 rad/s and ωBEM
od = 2.76 rad/s, which show good

agreement between WT and WAMIT data. Fig. 4.34 shows the block diagram for the comparison
of a free decay preliminary experiment with WAMIT data.

4.3.1.2 Input force preliminary experiments

In an input force experiment, a PTO force, fpto, is directly applied to the body as an input, as-
suming null excitation and mooring forces ( fin = fpto + fe + fm = fpto), and the resulting body
displacement measured as output. Fig. 4.35 shows that the block fin→ y takes as input the sum-
mation of the three forces fe, fpto and fm. The data generated in an input force experiment are
{ fin(k)} and {yin(k)}, (with k =,1...,N), as shown in Table 4.1. In order to avoid any ambiguity,
in the case where different WT experiment typologies are utilised to identify different sub-blocks
of the same WEC model (see for example Section 6.3.1), in the symbolism yin, the subscript ‘in’
confirms that the input of the model is an input force. The objective of the input force preliminary
experiment is to obtain a first indication regarding the resonant frequency and the bandwidth of
the fin→ y model, which is highlighted with a dotted line in Fig. 4.35, in order to design the ex-
citation signal for the input wave and input force identification experiments, which are explained
in Sections 4.3.2.2 and 4.3.2.3, respectively. In the case where the body oscillations are small, a
WEC is often well described by a linear fin→ y model, with Fourier transfer function H fin→y(ω).
The calculation of H fin→y(ω) can be carried out by applying a small amplitude chirp signal (see
Section 4.2.2.4), as a direct force on the device. Unlike the chirp signal used for the identification
experiments (see Section 4.3.2.3), which must cover a desired amplitude range, the chirp signal,
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Figure 4.35: Block diagram of a WEC hydrodynamic model. The data { fin(k)} and {yin(k)},
generated in a WT input force preliminary experiment, are utilised to obtain a first indication
regarding the resonant frequency and the bandwidth of the fin → y model (highlighted by the
dashed line). In the case of a WT input force identification experiment, the data { fin(k)} and
{yin(k)} are utilised to identify the fin→ y model.

in this preliminary experiment, can be of very low amplitude (but it should not be lower than the
amplitude of the additive noise, present in RWT measurements), allowing fast computation times,
in the case where a CFD-NWT is being used. Consider a spherical WEC with a 1 m radius, 1 m
draft, moving in heave and implemented in a 2D NWT (the same body utilised in Section 4.3.1.1).
The utilised exciting signal, fin(t), is a chirp signal, which linearly sweeps the frequency range
0-12.6 rad/s in 600 s, where the superscript ‘WT’ indicates that WT data are utilised (in this sec-
tion data generated by a BEM package are also utilised). Fig. 4.36(a) shows the first 200 s of
fin(t). The consequent body displacement, y(t), obtained in the 2D CFD-NWT, is represented in
Fig. 4.36(b). The Fourier transfer function of the linear fin→ y model can be calculated as:
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Figure 4.36: Input force preliminary experiment utilising a small chirp signal. (a) Excitation force
applied to the body. (b) Consequent body displacement.

HWT
fin→y(ω) =

Y (ω)
Fin(ω)

(4.52)

where Y (ω) and Fin(ω) are the Fourier transforms of the measured y(t) and fin(t), respectively. In
the case where significant additive noise is present in the measurements of fin(t) and y(t), equation
(4.52) may provide poor accuracy in the calculation of HWT

fin→y(ω); in this case, the transfer function
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can be computed [141] [222] [294] as:

HWT
fin→y(ω) =

SWT
f y (ω)

SWT
f f (ω)

(4.53)

where SWT
f y (ω) is the cross-spectrum of the signals fin(t) and y(t), and SWT

f f (ω) the spectrum of
fin(t). Fig. 4.37 shows the transfer function HWT

fin→y(ω) (calculated by using equation (4.52) and
the signals shown in Fig. 4.36), with a resonant frequency of 2.83 rad/s, and suggests that the
excitation signal of the identification experiments should be designed to span the region of 0-7
rad/s. Fig. 4.38 shows the main idea of the input force preliminary experiment.
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Figure 4.37: Comparison of input force preliminary experiment data, generated in a 2D NWT (in
the case of a 2D circle with a 1 m radius and 1 m draft), with BEM (WAMIT) data.
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Figure 4.38: An input force preliminary experiment can be used to determine a rough measurement
of the resonant frequency and the bandwidth of the WEC, informing the identification experiments
where the input power spectrum should be allocated.

As explained in Section 4.3.1.1, when the body displacement and velocity are relatively small,
the WEC dynamics are often well approximated by a linear model and results obtained by WT data

99



and BEM data should be similar. Therefore, the transfer function HWT
fin→y(ω) (calculated by using

the measured signals y(t), fin(t) and either equation (4.52) or (4.53)) should have good agreement
with HBEM

fin→y(ω) (calculated by using equation (4.46) and the hydrodynamic coefficients provided
by WAMIT). Fig. 4.39 shows the block diagram for the comparison of WT input force preliminary
experiment data and WAMIT data. HWT

fin→y(ω) and HBEM
fin→y(ω) are plotted in Fig. 4.37, in the case of

the 2D circle with a 1 m radius and 1 m draft, showing good agreement between WT and WAMIT
data.
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Figure 4.39: Block diagram for the comparison of WT input force preliminary experiment data
with BEM (WAMIT) data.

4.3.2 Wave tank identification experiments

This section details a variety of WT experiments utilised to produce data to identify the parameters
of a WEC model or model sub-blocks [7] [9] [10] [12] [13]:
• Free decay experiments (presented in Section 4.3.2.1).
• Input wave experiments (explained in Section 4.3.2.2).
• Input force experiments (illustrated in Section 4.3.2.3).
• Prescribed motion experiments (presented in Section 4.3.2.4).

4.3.2.1 Free decay identification experiments

As explained in Section 4.3.1.1, in a free decay experiment, a body is initially displaced from its
equilibrium position, by providing initial conditions, such as position, velocity and acceleration,
and the resulting body motion recorded. A free decay preliminary experiment is used to provide an
indication of the system’s resonant frequency and bandwidth; in the case of a free decay identifi-
cation experiment, the collected data are used to identify the system dynamics (see the case study
in Chapter 5). The data generated in a free decay experiment is the body displacement {y(k)},
with k = 1...,N, as shown in Table 4.1.
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Experiment type Input signal type Output signal type
{Input symbol} {Output symbol}

Free decay - Body displacement
- {y(k)}

Input wave body motion FSE Body displacement
{η(k)} {yη(k)}

Input wave excitation force FSE Excitation force
{η(k)} { fe(k)}

Input force PTO force Body displacement
{ fin(k)} {yin(k)}

Prescribed motion Body displacement Restoring force
{ys(k)} { fb.s(k)}

Table 4.1: Data generated in the different WT experiments.

4.3.2.2 Input wave identification experiments

In the case of input wave experiments, the waves are created in the WT and the FSE, η, is mea-
sured at a specific location, providing the data, {η(k)} (with k =,1...,N), which is used as the
input signal for the WEC model identification. Often, the FSE is required to be known at the
WEC’s center of mass; in this case, it is not possible to directly measure this quantity, since the
body occupies that space. A possible solution is the employment of techniques of spatial recon-
struction of the wave field, using a group of sensors located in the proximity of the floating body.
Alternatively, the experiment can be decomposed into two separate experiments where, firstly the
input waves are generated and measured in the absence of the WEC (Fig. 4.40(a)), and then the
experiment is repeated with the same input waves being generated with the WEC in place (Fig.
4.40(b)). It is important to underline that the frequency and amplitude ranges of the input signal,
for the input wave experiments, are limited by the underlying fluid dynamics and limiting wave
steepness. The choice of input signals should be guided by the sea states the WEC is expected
to operate in. The experiments can be designed using either specific individual sea spectra, or by
creating a generalised broad-banded spectrum spanning the entire set of expected spectra likely to
be encountered at a location. Monochromatic waves are also a possibility, if desired.

Ƞ(k)Mean free surface elevation

Mean free surface elevation

wave

wave

Experiment without the body to 
measure the free surface elevation

Experiment with the body 
to measure dynamic variables 
(e.g. the excitation force or the 

body displacement)

(a)

(b)

fe(k)

yȠ (k)

Figure 4.40: The input wave experiment is carried out in two steps (a) Step 1: the input waves
are generated and the FSE at the desired position measured without the body. (b) Step 2: the
experiment is repeated, with the same input waves being generated with the WEC in place, in
order to measure dynamic variables (e.g. the excitation force or the body displacement).
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Figure 4.41: Block diagram of a WEC hydrodynamic model. The data {η(k)} and {yη(k)},
generated in an input wave body motion experiment, are utilised to identify the model highlighted
by the dashed line. The data {η(k)} and { fe(k)}, generated in an input wave excitation force
experiment, are utilised to identify the model highlighted by the dash-dotted line.

Depending on the physical quantity utilised as the model output, there are two different options
for an input wave experiment: body motion and excitation force [7] [9] [12]:
• The input wave body motion experiment. In this case, the position and/or velocity is measured
and used as the output signal for the model identification. The data generated in an input wave body
motion experiment are {η(k)} and {yη(k)} (with k =,1...,N), as shown in Table 4.1. In order to
avoid any ambiguity, in the case where different WT experiment typologies are utilised to identify
different sub-blocks of the same WEC model (for example see Section 6.4), in the symbolism
yη, the subscript ‘η’ confirms that the input of the model is a FSE. The WEC can be constrained
to different degrees of freedom, as required. Fig. 4.41 illustrates a WEC hydrodynamic block
diagram (developed in Section 3.2.2), where it is shown that the data, generated by an input wave
body motion experiment, can be utilised to identify the hydrodynamic model highlighted with the
dashed line.
• The input wave excitation force experiment. The body is held fixed and the force, applied
from the fluid on the body, is measured and used as the output signal for the identification of
the excitation force model. The data generated in an input wave excitation force experiment are
{η(k)} and { fe(k)}, with k =,1...,N (as shown in Table 4.1), which can be used to identify the
hydrodynamic model block, highlighted with the dash-dotted line in Fig. 4.41. The use of input
wave excitation force experiments for WEC model identification is explained in Section 6.2.

4.3.2.3 Input force identification experiments

As explained in Section 4.3.1.2, in an input force experiment, a PTO force, fpto, is directly applied
to the body as an input, assuming null excitation and mooring forces ( fin = fpto + fe + fm = fpto),
and the resulting body displacement measured as output. The data generated in an input force
experiment are { fin(k)} and {yin(k)}, (with k =,1...,N), as shown in Table 4.1. The input and
output data generated can be used to identify the hydrodynamic model block, fin→ y, highlighted
with a dotted line in Fig. 4.35. Unlike the input wave experiment, where the choice of input signal
is constrained by the laws of fluid dynamics, the input force experiment allows total freedom over
the choice of input signal to be applied to the system by an actuator. As explained in Section
4.2.1.1, the input signal has to cover the WEC frequency range of interest. This could be ascer-
tained from some rough measurement of the resonant frequency and bandwidth of the device, for
example by using free decay and input force preliminary experiments (see Sections 4.3.1.1 and
4.3.1.2), and the range of sea frequencies in which the WEC is expected to operate. Usually the
bandwidth of the device and of the sea waves are well connected; however, the device may also be
subject to high frequency inputs from mooring snap loads, maximum stroke end-stop collisions,
latching control etc. The nature of the input force experiment provides the possibility of exciting
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the system in a broad band to also cover the high frequencies. The typical signals utilised in an
input force experiment are chirp, RARP and multisine signals (see Section 4.2.2) [7] [8] [9] [10].
The use of input force experiments for WEC model identification is shown in Section 6.3.

4.3.2.4 Prescribed motion identification experiments

In a prescribed motion experiment, the body moves along a predefined trajectory (input signal),
while the resulting fluid body interaction force (output signal) is recorded, assuming no wave ex-
citation. In the case where the body moves very slowly, the total force applied from the fluid to
the body corresponds to the (static) buoyancy force, fb. By adding the gravitational force to fb,
the restoring force, fre, is obtained (see Section 2.2.7). Therefore, as an example, the data gener-
ated with a prescribed motion experiment can be used to identify the static relationship between
the body displacement and the hydrostatic restoring force. During the experiment, the body is dis-
placed through its full range of motion and the resulting hydrostatic force on the body is measured.
The data generated by the prescribed motion experiment are {ys(k)} (the body displacement) and
{ fb.s(k)} (the hydrostatic force), for N = 1, ...,N, as shown in Table 4.1. In order to avoid any
ambiguity, in the case where different WT experiment typologies are utilised to identify differ-
ent sub-blocks of the same WEC model, in the symbolisms ys and fb.s, the subscript ‘s’ confirms
‘(nearly) static’. For example, the data generated by a prescribed motion experiment can be used to
identify the static block of a Hammerstein model, highlighted in Fig. 4.42(a) (see Sections 3.3.1.4,
6.2 and 6.3.1), or the static block of a FBO model, highlighted in Fig. 4.42(b) (see Sections 3.3.1.5
and 6.3.1).
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− fre(k)

(b)

Linear
dynamic
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fin(k) s(k) y(k)

Prescribed motion experiment

Prescribed motion experiment

Figure 4.42: Block diagrams of WEC hydrodynamic models. The data {yre(k)} and { fre(k)}, gen-
erated by a prescribed motion experiment, are utilised to identify: (a) The static block, highlighted
by the dashed line, of a Hammerstein model. (b) The static block, highlighted by the dashed line,
of a FBO model.

4.4 Comparison of 2D NWT data with 3D BEM (WAMIT) data

The comparison between data generated by a WT and a BEM software package (such as WAMIT)
can be useful in order to verify the presence of nonlinearity in the WT experiments (see Chapter
5). The body geometry implemented in WAMIT is three-dimensional; therefore, in the case of a

103



RWT or a 3D NWT, the comparison between WT data and WAMIT data is straightforward, since
the same geometry is utilised in the WT and in WAMIT (see Fig. 4.43).

Diameter

3D WAMIT

Diameter

3D NWT / RWT

Figure 4.43: The comparison of 3D NWT/RWT data with 3D BEM (WAMIT) data is obtained by
utilising the same geometry in the NWT/RWT and BEM code (in this case a sphere).
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Figure 4.44: A 2D NWT is one cell thick and symmetry planes are imposed on the front and back
faces of the domain; therefore, the body geometry is an infinitely long horizontal bar, having a
constant vertical cross-sectional area. (a) A 3D sphere becomes an infinitely long horizontal bar,
having a vertical cross-section of a circle. (b) A 3D cone becomes an infinitely long horizontal
bar, having a vertical cross-section of a triangle.

In Section 2.3, it is explained that a CFD-NWT is very time consuming; therefore, 2D NWTs
are often used to allow timely investigation of an optimal experiment design, before moving to the
much more computationally complex 3D NWT. In the case of a 2D NWT, the comparison with
3D WAMIT data is not straightforward; a 2D NWT is one cell thick and symmetry planes are
imposed on the front and back faces of the domain; therefore, the body geometry is an infinitely
long horizontal bar, having a constant vertical cross-sectional area [7] [12] [14] [35]. As examples,
a 3D sphere becomes an infinitely long horizontal bar, having a vertical cross-section of a circle
(see Fig. 4.44(a)), and a 3D cone becomes an infinitely long horizontal bar, having a vertical
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cross-section of a triangle (see Fig. 4.44(b)). Since the body represented in a 2D NWT has infinite
length, in Newton’s 2nd law

∑
i

fi(t) = Mÿ(t), (4.54)

the body mass, M, and the forces acting on the body, fi(t), are infinitely large. Consequently, even
ma(ω), N(ω) and He(ω) are infinitely large, indeed, they are parts of the hydrodynamic forces, as
equations (2.89) and (2.91) show. On the other hand, it is important to observe that each truncated
piece of the infinitely long horizontal body, having a length L, is characterised by:
• A finite mass, M(L) = AvcrLρb, where Avcr is the vertical cross-sectional area and ρb the body
density. Therefore, M(L) is linearly proportional to L.
• Finite forces, f (L)i , acting on the body. The force applied from the water to the body is calculated
on the total wetted body surface, as shown by equation (2.11); therefore, since the total wetted
body surface increases linearly with L, the added mass, m(L)

a (ω), the radiation resistance, N(L)(ω),
and the excitation force, H(L)

e (ω), of the truncated body are expected to increase linearly with L.
Since, in a 2D NWT, the body is an infinitely long horizontal bar, by implementing a long

horizontal bar in WAMIT (long enough to approximate an infinitely long bar), results obtained
by a 2D NWT and WAMIT can be compared. The ideal finite length of the WAMIT horizontal
bar is not obvious and requires investigation. Consider a 3D spherical WEC with a 1 m radius
and 1 m draft (see Fig. 4.27(a)); in a 2D NWT, the sphere becomes a circle with a 1 m radius, 1
m draft and one cell thick (see Fig. 4.27(b)), which is equivalent to an infinitely long horizontal
cylinder (see Fig. 4.27(c)). In WAMIT, six different horizontal cylinders are considered, with a
1 m radius, 1 m draft and lengths of 1, 2, 5, 10, 25 and 50 m, as approximations of an infinitely
long horizontal cylinder. In Fig. 4.45, the ma(ω) curves of the six different cylinders are plotted,
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Figure 4.45: ma(ω) curves, calculated by WAMIT, for six different 1 m radius horizontal cylinders,
with lengths of 1, 2, 5, 10, 25 and 50 m. The curves increase unbounded with L.

showing that the curves increase with L. In Fig. 4.46, the value of ma(ω) for ω = 3 rad/s is plotted
for each cylinder, showing that the added mass increases linearly with L, as expected. By defining
the added mass per unit length as:

m(ul)
a (ω) =

ma(ω)
L

(4.55)

and by plotting m(ul)
a (ω) of the six different cylinders in Fig. 4.47, it is possible to see that the

curves converge to a limit curve by increasing L, and that, for L≥ 25 m, the curve does not change
significantly (apart from the very low frequencies). In particular, m(ul)

a (ω), for ω = 3 rad/s, is
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plotted in Fig. 4.48, for each of the six different cylinder lengths. The same approach can be used
by defining the radiation resistance per unit length as:

N(ul)(ω) =
N(ω)

L
(4.56)

and the excitation force per unit length as:

H(ul)
e (ω) =

He(ω)
L

(4.57)

Figs. 4.49, 4.50, 4.51 and 4.52 show the WAMIT results for the radiation resistance. In particular,
Fig. 4.51 shows that, for L ≥ 25 m, the N(ul)(ω) curves do not change significantly. Figs. 4.53,
4.54, 4.55 and 4.56 show the WAMIT results for the excitation force. In particular, Fig. 4.55
shows that, for L≥ 25 m, the H(ul)

e (ω) curves do not change significantly.
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Figure 4.46: ma(ω = 3) values, calculated by WAMIT, for six different 1 m radius horizontal
cylinders, with lengths of 1, 2, 5, 10, 25 and 50 m. The values increase unbounded and linearly
with L.
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Figure 4.47: m(ul)
a (ω) curves, calculated by using WAMIT data, for six different 1 m radius hori-

zontal cylinders, with lengths of 1, 2, 5, 10, 25 and 50 m. The curves increase with L and converge
to an upper limit curve. For L≥ 25 m the curve does not change significantly (apart from the very
low frequencies).
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Figure 4.48: m(ul)
a (ω = 3) values, calculated by using WAMIT data, for six different 1 m radius

horizontal cylinders, with lengths of 1, 2, 5, 10, 25 and 50 m. The values increase with L and
converge to an upper limit value.
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Figure 4.49: N(ω) curves, calculated by WAMIT, for six different 1 m radius horizontal cylinders,
with lengths of 1, 2, 5, 10, 25 and 50 m. The curves increase unbounded with L.
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Figure 4.50: N(ω = 3) values, calculated by WAMIT, for six different 1 m radius horizontal
cylinders, with lengths of 1, 2, 5, 10, 25 and 50 m. The values increase unbounded and linearly
with L.
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Figure 4.51: N(ul)(ω) curves, calculated by using WAMIT data, for six different 1 m radius hori-
zontal cylinders, with lengths of 1, 2, 5, 10, 25 and 50 m. The curves increase with L and converge
to an upper limit curve. For L≥ 25 m the curve does not change significantly.
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Figure 4.52: N(ul)(ω = 3) values, calculated by using WAMIT data, for six different 1 m radius
horizontal cylinders, with lengths of 1, 2, 5, 10, 25 and 50 m. The values increase with L and
converge to an upper limit value.
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Figure 4.53: |He(ω)| curves, calculated by WAMIT, for six different 1 m radius horizontal cylin-
ders, with lengths of 1, 2, 5, 10, 25 and 50 m. The curves increase unbounded with L.
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Figure 4.54: |He(ω = 3)| values, calculated by WAMIT, for six different 1 m radius horizontal
cylinders, with lengths of 1, 2, 5, 10, 25 and 50 m. The values increase unbounded and linearly
with L.
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Figure 4.55: |H(ul)
e (ω)| curves, calculated from WAMIT data, for six different 1 m radius horizon-

tal cylinders, with lengths of 1, 2, 5, 10, 25 and 50 m. The curves increase with L and converge to
an upper limit curve. For L≥ 25 m the curve does not change significantly.
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Figure 4.56: |H(ul)
e (ω = 3)| values, calculated by using WAMIT data, for six different 1 m radius

horizontal cylinders, with lengths of 1, 2, 5, 10, 25 and 50 m. The values increase with L and
converge to an upper limit value.
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Figure 4.57: In a 2D NWT, the body displacement and the FSE are assumed to be constant along
the body length direction.

The transfer function, of the linear fin→ y model, is obtained by the frequency domain Cum-
mins’ equation (4.39):

H fin→y(ω) =
Y (ω)
Fin(ω)

=
1

−ω2[M+ma(ω)]+ iωN(ω)+K
(4.58)

where the numerator, Y (ω), is independent of L (in a 2D NWT, the body displacement is assumed
to be constant along the body length direction, as shown in Fig. 4.57), and the denominator, Fin(ω),
increases linearly with L. Therefore, |H fin→y(ω)| is expected to decrease with a trend ∝ 1/L. In
Fig. 4.58, the curves representing |H fin→y(ω)| of the six different cylinders are plotted, confirming
that the curves decrease in height with L. In Fig. 4.59, the value of |H fin→y(ω)| for ω = 3 rad/s
is plotted for each cylinder, showing the trend ∝ 1/L, as expected. Therefore, in this case, the
normalization of the curves per unit length is obtained by:

H(ul)
fin→y(ω) = H fin→y(ω)L (4.59)

In Fig. 4.60, the curves |H(ul)
fin→y(ω)| of the six cylinders are plotted, where it is possible to see that

the curves converge to a limit curve by increasing L, and that, for L ≥ 25 m, the curves do not
change significantly. In Fig. 4.61, the values |H(ul)

fin→y(ω)|, for ω = 3 rad/s, are plotted for the six
cylinders.

The block diagram of Fig. 3.4 shows that the transfer function of the linear η→ y model is
given by:

Hη→y(ω) =
Y (ω)
η(ω)

= He(ω)H fin→y(ω) (4.60)

where both the denominator η(ω), which is the Fourier transform of η(t), and the numerator Y (ω)
are independent of L (in a 2D NWT, the body displacement and the FSE are assumed to be constant
along the body length direction, as shown in Fig. 4.57). Therefore, Hη→y(ω) is independent of
L (if L is sufficiently large to approximate an infinitely long cylinder) and the normalization per
unit length is not necessary. In Fig. 4.62, the |Hη→y(ω)| curves of the six different cylinders are
plotted, showing that, by increasing L, the curves converge to a limit curve and that, for L ≥ 10
m, the curves do not change significantly. In Fig. 4.63, the value of |Hη→y(ω)|, for ω = 3 rad/s, is
plotted for each cylinder.
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Figure 4.58: |H fin→y(ω)| curves, calculated from WAMIT data, for six different 1 m radius hori-
zontal cylinders, with lengths of 1, 2, 5, 10, 25 and 50 m. The curves decrease with L.
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Figure 4.59: |H fin→y(ω = 3)| values, calculated from WAMIT data, for six different 1 m radius
horizontal cylinders, with lengths of 1, 2, 5, 10, 25 and 50 m. The values decrease with a 1/L
trend.
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Figure 4.60: |H(ul)
fin→y(ω)| curves, calculated by using WAMIT data, for six different 1 m radius

horizontal cylinders, with lengths of 1, 2, 5, 10, 25 and 50 m. The curves decrease with L and
converge to an lower limit curve. For L≥ 25 m the curve does not change significantly.
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Figure 4.61: |H(ul)
fin→y(ω = 3)| values, calculated by using WAMIT data, for six different 1 m radius

horizontal cylinders, with lengths of 1, 2, 5, 10, 25 and 50 m. The values decrease with L and
converge to an lower limit value.
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Figure 4.62: |Hη→y(ω)| curves, calculated from WAMIT data, for six different 1 m radius horizon-
tal cylinders, with lengths of 1, 2, 5, 10, 25 and 50 m. The curves decrease with L and converge to
a limit curve. For L≥ 5 m the curve does not change significantly.
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Figure 4.63: |Hη→y(ω = 3)| values, calculated from WAMIT data, for six different 1 m radius
horizontal cylinders, with lengths of 1, 2, 5, 10, 25 and 50 m. The values decrease with L and
converge to a limit value.
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Figure 4.64: ωo, ωod and ωm values, calculated from WAMIT data, for six different 1 m radius
horizontal cylinders, with lengths of 1, 2, 5, 10, 25 and 50 m. The frequencies converge to limit
values, by increasing L.

Fig. 4.64 shows the values of the frequencies ωo, ωod and ωm, obtained by WAMIT data and
equations (4.43) (4.44) (4.45), for the six different cylinders, where it is possible to see that, for
L≥ 25 m, the values do not change significantly.

In WAMIT, the computation time is proportional to the number of panels utilised to approx-
imate the body surface and, consequently, to the body length L. The increment of L, in order to
better approximate an horizontal infinitely long body, has to be justified by a sufficient improve-
ment in accuracy. The quantities m(ul)

a (ω), N(ul)(ω), H(ul)
e (ω), H(ul)

fin→y(ω), Hη→y(ω), ωo, ωod and
ωm, calculated from WAMIT data for a 3D horizontal cylinder, moving in heave, with different
lengths, a 1 m radius and 1 m draft, do not change significantly, for L ≥ 25 m; therefore, in this
study case, the conclusion is that a 25 m long cylinder is a sufficient approximation of a horizontal
infinitely long body of a 2D tank.

4.5 Summary and discussion

This chapter explains the experiment design in WTs (for both NWT and RWT), in order to gener-
ate informative data for WEC model identification. Nonlinear dynamic systems are significantly
more complex than linear ones, and if the gathered data are not informative enough, the identified
model will not be sufficiently accurate. The objective of an experiment design is to obtain infor-
mative data, on the WEC under investigation, in the shortest possible time; indeed, by extending
the duration of an experiment, in the case of a CFD-NWT, the amount of computation time could
become unsustainable and, in the case of a RWT, the facility renting costs could be excessive. In
WT experiments, the use of ‘time-compacted’ input signals, characterised by a high concentra-
tion of information, are crucial. Section 4.2.1 describes the excitation signal characteristics, such
as spectral content, amplitude range and amplitude distribution, utilised in order to evaluate the
quality of an excitation signal. The conclusion is that the designed excitation signal should cover
the full input and output amplitude signal ranges and the bandwidth, where the system has a sig-
nificant non-zero frequency response. Furthermore, the amplitude distribution of the input signal
should be uniform, in order to excite the system uniformly. Section 4.2.2 introduces different input
excitation signals, explaining that RBS/PRBS are not suitable for nonlinear system identification;
instead, RARP, chirp and multisine signals have appropriate characteristic for their use in nonlin-
ear SI. Section 4.3.2 introduces a variety of WT identification experiments, such as free decay,
input wave, input force and prescribed motion experiments. Section 4.3.1 explains the use of WT
preliminary experiments (which are characterised by a fast computation time, in case of a CFD-
NWT), such as free decay and input force preliminary experiments, to obtain rough measurement
of the resonant frequency and the bandwidth of the WEC, informing the successive identification
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experiments where the input power spectrum should be allocated. Furthermore, since the body
displacement is relatively small in the WT preliminary experiments, the WEC behaviour can be
reasonably described by a linear model and the WT experimental data can be compared with fully
linear BEM results. In the case of a 2D NWT, the comparison with 3D BEM data is not straight-
forward; indeed, in a 2D NWT, the body geometry is an infinitely long horizontal bar, having a
constant vertical cross-sectional area. In Section 4.4, a methodology to compare 2D NWT data
with 3D BEM data is presented.
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Chapter 5
Identification of CT linear hydrodynamic
models from free decay NWT experiments

5.1 Introduction

As explained in Section 2.6, a significant number of WEC models are based on a parametric
state-space representation of Cummins’ equation (2.86), whose parameters are identified from
LPT-BEM data. LPT is based on strong hypotheses, which completely remove the hydrodynamic
nonlinearity of the fluid-body interaction (see Section 2.4); therefore, the resulting WEC models
have good accuracy only for small body displacement (in comparison to the body dimensions).
A way to increase the model accuracy, in the case of larger body displacement, is by introduc-
ing some nonlinear terms in the model structure, such as nonlinear restoring, Froude-Krylov and
viscous drag forces (see Section 2.6.2), with the consequent disadvantage of increasing both the
model complexity and computation time, together with the loss of some desirable properties, such
as superposition and frequency domain description. In this chapter, a different methodology is
proposed, in order to obtain WEC models characterised by both a linear structure and increased
accuracy (compared to LPT-BEM models), even in the case of a large body displacement. The ba-
sic idea is to select a parametric state-space model structure and identify the unknown parameters
from free decay CFD-NWT data, instead of BEM data. CFD-NWTs generate data rich informa-
tion, in contrast to the limited scope of data generated by LPT-BEM solvers and so it is possible
to extract hydrodynamic nonlinearity information, which is ‘injected’ into the linear model. The
identified model is purely linear, but its average behaviour is more representative of the actual
nonlinear process (in the operating amplitude region the model is identified from), compared to
the average behaviour of a linear model, identified from BEM data. Since the identified model de-
pends heavily on the data it is identified from, in this chapter, four different free decay experiments
are utilised, characterised by four different initial body displacements. In contrast to traditional
system identification, where forcing input signals are used to excite the system dynamics, in this
chapter, only free decay experiments are employed (no input signals). An important advantage
of free decay experiments, over input wave, input force and prescribed motion experiments (see
Sections 4.3.2.2, 4.3.2.3 and 4.3.2.4, respectively) is that free decay experiments are simple to
realise, both in a NWT and a RWT, since no actuators to move the WEC, or strategies for wave
generation and absorption, are required. In [165], independently of this work (which is published
in [11] and [14]), Armesto develops a similar approach to identify an OWT state-space model,
representing the Cummins’ equation, from free decay CFD-NWT data. The main distinction, be-
tween the work of Armesto and the present work, is in the different identification strategy. In
Armesto’s approach, the radiation and restoring terms are identified together from the same data;
in this work, instead, the identification of the restoring term precedes the identification of the ra-
diation term, by using knowledge of the hydrostatic force versus body displacement, reducing the
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dimension of the parameter space and simplifying the search for a global minimum. Furthermore,
in Armesto’s method, no constraints on the parameters are introduced, in order to obtain stable
and passive linear models; in contrast, in this work, new a priori constraints on the parameters are
introduced in the identification, in order to guarantee the stability and passivity of the model. As
a case study, the methodology presented in this chapter is applied to a floating vertical cylinder,
but the method can be utilised with a body having any shape or oscillating in an other DoF (i.e.
pitching).

This chapter is laid out as follows: Section 5.2 describes the SI data generation, with Section
5.2.1 explaining the 3D CFD-NWT and floating body geometry, implemented in OpenFOAM,
Section 5.2.2 illustrating the four NWT experimental data sets generated, and Section 5.2.3 de-
scribing the comparison of NWT free decay identification experiment data with BEM data. In
Section 5.3, the selected linear model structure is presented. In Section 5.4, the identification
methods are explained, with Section 5.4.1 describing the proposed identification method from
NWT data, and Section 5.4.2 illustrating the traditional model identification from BEM data. In
Section 5.5, the results of the identification methods are illustrated. Finally, a summary and dis-
cussion are presented in Section 5.6.

5.2 NWT implementation and generated NWT data description

5.2.1 NWT and floating body description

The data utilised in this chapter are generated in a 3D CFD-NWT, implemented in OpenFOAM
(see Section 2.3.1). The tank has the geometry of a vertical cylinder, with a 5 m height, 50 m
radius and is filled with 3 m of water (with a density of 997 kg/m3) and the remaining 2 m is air,
as shown in Fig. 5.1. The floating body under investigation is a vertical cylinder with a 391.5 kg
mass, 0.5 m radius and 0.5 m draft, as shown in Fig. 5.2. The body is placed in the exact centre
of the tank and has an equilibrium buoyancy position 50% submerged, so that its center of mass
coincides with the still water level at the centre of the tank. Since the body is constrained to move
in heave only, static stability is not an issue. Four free decay experiments (see Section 4.3.2.1)
with varying initial vertical displacements of 5, 10, 20 and 45 cm, above the equilibrium position,
(all the experiments have an initial null body velocity) were conducted in the NWT.

2 m (Air)

3 m (Water)

50 m

Floating body

Figure 5.1: Cylindrical NWT, used for the free decay experiments.

As explained in Section 2.3, an important step in the CFD-NWT implementation is the mesh
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Figure 5.2: The 3D floating cylinder considered in the present case study.

specification, which determines the accuracy and computation time of the simulations. It is possi-
ble to take advantage of the symmetry of the NWT and body geometries, in order to simplify the
meshing process and reduce the consequent computation time of the simulations. The utilised tank
and body are axisymmetric (the condition of rotational symmetry is satisfied) and the body only
moves in heave along the tank’s central axis; therefore, only one slice of the full circle (see Figs.
5.3 and 5.4) needs to be modelled, if symmetric boundary conditions are applied, as implemented
in OpenFOAM [50], by using the wedge command. The arc of the wedge spans one degree in an-
gle and is only one cell thick, effectively transforming the 3D problem into a 2D problem, which
significantly reduces the number of cells needed to mesh the domain, considerably speeding up
run time. The vertical component of the surface force, applied from the fluid to the body (see
Section 2.2.1), is given by:

f f l.y =
∫

S
(Σ n) · iy dS = 360

∫

Swe

(Σ n) · iy dS (5.1)

where Σ is the total stress tensor (given by the summation of pressure and viscous stresses), n is
the unit normal vector to the surface, iy is the unit vertical vector, S is the wetted body surface and
Swe is the wetted body surface of the one degree wedge (see Fig. 5.3). Therefore, the total force,
applied from the fluid to the body, is 360 times the force calculated by the NWT, which utilises
the one degree wedge. The tank is meshed with hexahedral cells, by using OpenFOAM’s mesh
generator blockMesh [50]. In the horizontal direction, there are 1000 cells with exponentially
increasing length, so that the first cell, in the centre of the tank, has a 2.4 mm length and the last
cell, next to the tank wall, has a 240 mm length (see Figs. 5.4 and 5.5). This allows a fine mesh
resolution near the body, while reducing the total number of cells needed to cover the full width
of the tank. In the vertical direction, 1000 cells with a uniform height of 5 mm are used.

Tank wall

Body

100 m

SweS

Figure 5.3: Top view of the NWT used for the free decay experiments, where axisymmetry has
enabled the tank’s circular cross-section to be represented by a narrow wedge in OpenFOAM.
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Figure 5.4: Schematic top view of the one cell thick wedge, implemented in OpenFOAM. In the
horizontal direction there are 1000 cells with exponentially increasing length.
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Figure 5.5: In the horizontal direction of the 2D NWT, there are 1000 cells with exponentially
increasing length.
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5.2.2 Generated NWT data description

The CFD-NWT free decay experiments are simulated for 12 s, and the large tank diameter is
chosen to eliminate the effect of wave reflection from the side walls of the tank during the ex-
periments. Indeed, the reflected waves, at the tank walls, may be a source of measurement error;
Fig. 5.6 (which is a CFD post processing view of the dynamic pressure field in the water after 6
seconds of simulation) shows that the generated waves, propagating from the oscillating body, do
not reach the tank walls by the half way mark of the simulation; therefore, the waves will not be
reflected back to the body before the end of the 12 s simulation.

Floating cylinder
Propagating waves

Calm water

Tank wall

Figure 5.6: CFD-NWT post process of the dynamic pressure field in the tank, after 6 s of the 12
s simulation, for the 45 cm initial amplitude free decay experiment (the tank points with positive
dynamic pressure are coloured in red, blue points represent negative pressure).

OpenFOAM calculates the total and dynamic pressures in the fluid at each time step and offers
functions, which integrate these values over the wetted body surface, in order to provide the total
and dynamic forces applied from the fluid to the body. The hydrostatic force, applied from the fluid
to the body, can be calculated by subtracting the dynamic force from the total force. Therefore,
each experiment provides the body displacement, y(t j), the dynamic, static and total heave forces,
applied from the fluid to the body (360 times the forces calculated by the NWT), respectively
denoted f D

f l(t j), f S
f l(t j) and f f l(t j), where j = 1,2, ...,N, with N = 4800 (the signal sampling time

is Ts = 0.0025 s). Fig. 5.7 shows y(t j), f D
f l(t j), f S

f l(t j) and f f l(t j) for the experiment with initial
displacement 45 cm. Given f S

f l(t j) and the body mass, M, it is possible to obtain the restoring
force applied on the body (see Section 2.2.7):

fre(t j) = f S
f l(t j)−Mg (5.2)

In Figs. 5.8, 5.9 and 5.10, the signals y(t j), f S
f l(t j) and fre(t j) are plotted, respectively, for the

experiments with initial displacements of 5, 10, 20 and 45 cm. Note that, in Fig. 5.9, f S
f l converges

to the limit 3841 N, in each experiment; indeed, at equilibrium, the static force and the gravitational
force, Mg = 391.5× 9.81 = 3841, have the same intensity and opposite directions (see Section
2.2.7). In order to illustrate the inherent nonlinear hydrodynamic effects, captured by the CFD-
NWT simulations, the results in Figs. 5.8 and 5.10 are normalised against their initial value and
plotted in Figs. 5.11 and 5.12, respectively. Linearity would require these free decay curves to
overlay each other when normalised (if linear scaling applies). However, due to nonlinear effects,
such as viscosity and vortex shedding (shown in Fig. 5.13), the normalised NWT responses vary
for different initial amplitudes.
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Figure 5.7: NWT experimental data for the free decay experiment with a 45 cm initial displace-
ment. The experiment provides the body displacement, y(t j), the dynamic, static and total heave
forces, applied from the fluid to the body (360 times the forces calculated by the NWT), respec-
tively denoted f D

f l(t j), f S
f l(t j) and f f l(t j).
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Figure 5.8: Body displacement in the NWT free decay experiments.
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Figure 5.9: Static force applied from the fluid to the body in the NWT free decay experiments.
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Figure 5.10: Restoring force applied to the body in the NWT free decay experiments.
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Figure 5.11: Simulated body displacement from NWT free decay experiments, normalised against
their initial position.
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Figure 5.12: Simulated restoring force from NWT free decay experiments, normalised against
their initial value.

0.1 s 0.3 s 0.5 s

Floating cylinder

Vortex shedding

Figure 5.13: The dynamic pressure, calculated by the NWT, in the fluid around the floating cylin-
der at 0.1 s, 0.3 s and 0.5 s, showing the creation of a vortex structure by the sharp bottom corner
of the cylinder. The tank points with positive dynamic pressure are coloured in red, blue points
represent negative pressure.
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5.2.3 Comparison of NWT free decay identification experiment data with BEM
data

As explained in Section 4.3.1.1, in the case of a relatively small body displacement and velocity,
WEC dynamics are usually well approximated by a linear model; therefore, the damped natural
frequency ωNWT

od , calculated from a NWT free decay experiment with a small initial condition
(compared to the body dimensions), would be reasonably similar to ωBEM

od , computed from BEM
data (Fig. 4.34 shows the block diagram for ωNWT

od and ωBEM
od comparison). Figs. 5.14 and 5.15

show, respectively, ma(ω) and N(ω) calculated by WAMIT, for the same cylinder utilised in the
NWT experiments (a vertical cylinder, moving in heave, with a 0.5 m radius and 0.5 m draft).
The comparison between the damped natural frequency ωNWT

od = 3.6 rad/s, calculated from NWT
data with equation (4.16), and ωBEM

od = 3.57 rad/s, computed from BEM data with equation (4.44),
shows very good agreement. Fig. 5.16 shows graphically the very good agreement between ωNWT

od
and ωBEM

od , where the peak of |Y (ω)| occurs at ωNWT
od and the peak of |HBEM

fin→y(ω)| occurs at ωBEM
m '

ωBEM
od , as shown in Section 4.3.1.1.
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Figure 5.14: Added mass curve, calculated by WAMIT, of a vertical cylinder moving in heave,
with a 0.5 m radius and 0.5 m draft.
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Figure 5.15: Radiation resistance curve, calculated by WAMIT, of a vertical cylinder moving in
heave, with a 0.5 m radius and 0.5 m draft.
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Figure 5.16: Graphical comparison of ωNWT
od and ωBEM

od . The peak of |Y (ω)| (for the free decay ex-
periment with a 5 cm initial displacement) occurs at ωNWT

od = 3.6 rad/s, and the peak of |HBEM
fin→y(ω)|

occurs at ωBEM
m ' ωBEM

od = 3.57 rad/s.

5.3 Hydrodynamic WEC model description

As explained in Section 2.6.1, a large number of WEC models are based on the linear Cummins’
equation, which can be implemented in different ways (e.g. constant-coefficient differential equa-
tion, transfer function, convolution integral and state-space model). The mathematical state-space
description is very convenient for the analysis and design of control systems and is very common in
the control engineering community. In this chapter, Cummins’ equation is converted into a state-
space model in two different steps. Initially, the radiation convolution sub-system is converted
into a state-space model [74], which, subsequently, is introduced into a larger state-space model
(here termed the Cummins’ state-space model) [9] [11] [74] [75] [295]. As explained in Section

fin

-

+
-

1
M+m∞

K

∫ t

−∞
hra(t−τ)ẏ(τ)dτ

∫
dt

∫
dt

ÿ ẏ y

- fre

Radiation sub-system

vs

Figure 5.17: Cummins’ equation block diagram; the dashed line highlights the radiation sub-
system.

2.6.1, in Cummins’ equation (2.86), the radiation sub-system is described by the LTI convolution
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integral (see Fig. 5.17), given by:

vs(t) =
∫ t

−∞
hra(t− τ)ẏ(τ)dτ, (5.3)

and the reduced radiation impedance is given by equation (2.74):

Hra(ω) = F
[
hra(t)

]
= N(ω)+ iω

[
ma(ω)−m∞

]
. (5.4)

The radiation sub-system (5.3) can be represented by the state-space model given by:

ẋs(t) = Asxs(t)+Bsẏ(t) (5.5)

vs(t) = Csxs(t)

where
xs(t) =

[
xs.1(t) xs.2(t) · · · xs.n(t)

]T (5.6)

is the state vector, composed by n elements. Equation (2.99) becomes

gra(t) = CseAstBs (5.7)

and, from equations (2.100) and (2.94), it follows that:

Gra(s) = L
[
gra(t)

]
= Cs(sI−As)

−1Bs =
bmsm + ...+b1s+b0

sn +an−1sn−1 + ...+a1s+a0
(5.8)

The Fourier transform of gra(t) is given by:

Gra(ω) = F
[
gra(t)

]
= Gra(s)

∣∣∣
s=iω

=
bm(iω)m + ...+b1(iω)+b0

(iω)n +an−1(iω)n−1 + ...+a1(iω)+a0
(5.9)

The convolution integral (5.3) and the state-space model, of equation (5.5), are equivalent if
hra(t) = gra(t) (and consequently Hra(ω) = Gra(ω), where Hra(ω) = F

[
hra(t)

]
). This exact

equivalence holds only for a state-space model of infinite order (i.e. n = ∞); however, an approx-
imation is generally made to represent the convolution integral with a state-space model of finite
order n, as:

Re{Gra(ω)} ' Re{Hra(ω)}= N(ω) (5.10)

and
Im{Gra(ω)} ' Im{Hra(ω)}= ω

[
ma(ω)−m∞

]
(5.11)

From equation (5.11), it follows that:

ma(ω)'
Im{Gra(ω)}

ω
+m∞ (5.12)

Furthermore, Gra(ω) must also satisfy the properties of Hra(ω), described by equations (2.75) -
(2.80). A consequence of equations (2.75) and (5.9) is that:

lim
ω→0

Gra(ω) =
b0

a0
= 0 (5.13)

and, therefore, it follows [85] that:
b0 = 0 (5.14)

An implication of equations (2.76) and (5.9) is that:

lim
ω→∞

Gra(ω) =
bm(iω)m

(iω)n = 0 (5.15)
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Therefore, since it it assumed that bm 6= 0, it follows that n > m, which means that Gra(s) is strictly
proper. A consequence of equations (A.8) and (2.79) is that:

lim
t→0+

hra(t) = lim
s→∞

sY (s) = lim
s→∞

bmsm+1

sn 6= 0 (5.16)

and since n > m, it follows [85] that:
m = n−1 (5.17)

Therefore, by introducing equations (5.14) (5.17) in (5.8) and (5.9), it follows that:

Gra(s) =
bn−1sn−1 + ...+b1s

sn +an−1sn−1 + ...+a1s+a0
(5.18)

Gra(ω) =
bn−1(iω)n−1 + ...+b1(iω)

(iω)n +an−1(iω)n−1 + ...+a1(iω)+a0
(5.19)

As explained in Section 2.6.1, there are many possible equivalent realisations of a state-space
model. Here, for the state-space model described by equation (5.5), which is utilised for the
radiation sub-system, the observable companion-form realisation is used, since it has the advantage
of only requiring a small number of non-zero parameters, with As, Bs and Cs given [74] [88] [144]
[296] by:

As =




0 0 0 ... 0 −a0
1 0 0 ... 0 −a1
0 1 0 ... 0 −a2
...

...
...

. . .
...

...
0 0 0 ... 0 −an−2
0 0 0 ... 1 −an−1



, (5.20)

Bs =
[
0 b1 b2 ... bn−2 bn−1

]T (5.21)

and
Cs =

[
0 0 0 ... 0 1

]
. (5.22)

Cummins’ equation (2.86) can be represented by an overall state-space model, which contains the
state-space model (5.5) of the radiation sub-system [9] [11] [14]. The first step is to define new
variables, as follows:

xn+1(t) = y(t) (5.23)

and
xn+2(t) = ẋn+1(t) = ẏ(t) (5.24)

and the new state vector as:

x(t) =
[

x1(t) ... xn(t)︸ ︷︷ ︸
xs(t)

xn+1(t) xn+2(t)
]T

(5.25)

where y(t) is the body displacement and xs(t) is defined by equation (5.6). From equation (5.24),
it follows that:

ẋn+2(t) = ÿ(t) (5.26)

By introducing equations (5.6), (5.22) and (5.24) into equation (5.5), it follows that:

ẋs(t) = Asxs(t)+Bsxn+2(t) (5.27)

vs(t) = Csxs(t) = xn(t)

By introducing equations (5.3), (5.23), (5.26) and (5.27) in equation (2.86), it follows that:

(M+m∞)ẋn+2(t)+ xn(t)+Kxn+1(t) = fin(t) (5.28)
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and, therefore, that:

ẋn+2(t) =−
1

M+m∞
xn(t)−

K
M+m∞

xn+1(t)+
1

M+m∞
fin(t) (5.29)

Equations (5.20), (5.21), (5.22), (5.25), (5.27) and (5.29) can be combined, in order to express
Cummins’ equation in the following state-space model [11] [14] [74] form:

ẋ(t) = Ax(t)+B fin(t) (5.30)

y(t) = Cx(t)

where:

A =




0 0 0 ... 0 −a0 0 0
1 0 0 ... 0 −a1 0 b1
0 1 0 ... 0 −a2 0 b2
...

...
...

. . .
...

...
...

...
0 0 0 ... 0 −an−2 0 bn−2
0 0 0 ... 1 −an−1 0 bn−1
0 0 0 ... 0 0 0 1
0 0 0 ... 0 − 1

M+m∞
− K

M+m∞
0




, (5.31)

B =
[
0 0 ... 0 0 1

M+m∞

]T
, (5.32)

C =
[
0 0 ... 0 1 0

]
. (5.33)

The linear hydrodynamic model, described by equations (5.25) and (5.30)-(5.33), is parametrised
by 2n+2 parameters (i.e. M, K, m∞, a0,...,an−1, b1,...,bn−1) and its output y(t) is the superposition
of the zero-input component and the zero-state component, evaluated as (see Section 2.6.1):

y(t) = CeA(t−t0)x(t0)+
∫ t

t0
CeA(t−τ)B fin(τ)dτ (5.34)

If t0 = 0 and fin(t) = 0 ∀ t, then
y(t) = CeAtx(0). (5.35)

Equation (5.35) describes the free decay oscillation of a floating body, where xn+1(0) represents
the initial displacement of the body from its equilibrium position, and xn+2(0) the initial body
velocity.

5.4 Hydrodynamic WEC model parameter identification

In Sections 5.2 and 5.3, the experimental data gathering and WEC model structure have, respec-
tively, been explained. In this section, the fitting criterion and identification algorithm are il-
lustrated in detail. In Section 5.4.1, the parameter vector is identified by using a proposed new
strategy, based on NWT data. In Section 5.4.2, the parameter vector, of the same WEC model
structure, is identified by using a traditional methodology, based on BEM data, which will be used
as a benchmark for the new methodology. Both methodologies, presented in Sections 5.4.1 and
5.4.2, do not identify the body mass M; rather, they assume it as a known property of the WEC
being investigated (M can be determined from a variety of numerical modelling tools, such as
AutoCAD, or measured directly). Therefore, the model identification methodologies focus only
on the 2n+ 1 parameters, related to the restoring and radiation forces (i.e. K, m∞, a0,...,an−1,
b1,...,bn−1).
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5.4.1 Hydrodynamic WEC model parameter identification from free decay NWT
data

The model parameter vector identification is carried out in two different steps, using NWT free
decay data (as shown in the block diagram of Fig. 5.18):
• The restoring term estimate. From static fluid force and body displacement data sets, the restor-
ing coefficient K is identified (best LS linear approximation of the linear/nonlinear restoring force),
by utilising linear regression, as explained in Section 5.4.1.1.
• The radiation and added mass terms estimate. Once estimated K, the unknown parameters m∞,
a0,..., an−1, b1,..., bn−1 are identified, by fitting the free decay response of Cummins’ state-space
model with the data (nonlinear optimization), as explained in Section 5.4.1.2.

5.4.1.1 Restoring term estimate

As explained in Section 2.2.7, in the case where a body has a variable horizontal cross-sectional
area, the restoring force is a nonlinear function of the body displacement, and is given by:

fre(y) = ρg∆Vb(y) (5.36)

where ∆Vb(y) is the submerged body volume variation, obtained by moving the body from its
static equilibrium. Equation (5.36) can be approximated with the linear equation given by:

fre(y) =−Ky (5.37)

where K > 0 is the restoring coefficient, which is identified with a LS fitting. Fig. 5.19 shows
a general example of a nonlinear fre(y) curve and its linear approximation, which is graphically
represented by a straight line with slope −K, passing through the origin. The NWT data {y(t j)}
and { fre(t j)} (for j = 1, ...,N) can be utilised as input and output data, respectively, for the LS
identification of the model, described by equation (5.37). Therefore, equations (3.41) (3.42) (3.43)
(3.47) and (3.49) become, respectively:

f̂re(t j) =ϕ(t j)
Tθre, (5.38)

ϕ(t j) =
[
− y(t j)

]
, (5.39)

θre =
[
K
]
, (5.40)

y =
[

fre(t1) fre(t2) ... fre(tN)
]T

, (5.41)

and

Φ=




−y(t1)
−y(t2)

...
−y(tN)


 . (5.42)

Equation (5.38) shows that the model is linear in the parameter vector θre (in this case, the param-
eter vector is composed of one element). As explained in Section 3.3.1.1, the estimated parameter
vector θ̂re is determined by employing a QR factorization. It is important to note that the identified
K can be considered an average restoring effect, which may change, depending on the identifica-
tion data. In contrast, in the case of identification from BEM data (see Section 5.4.2) the identified
restoring term depends only on the cross-sectional area of the body at equilibrium, since infinitesi-
mally small deviations around the equilibrium position are assumed in LPT. Therefore, in the case
where K is identified from BEM data, the identified linear restoring curve is always tangential to
the nonlinear restoring curve at the origin, as shown in Fig. 5.19.
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data. The slope of the lines is equal to −K.

5.4.1.2 Radiation resistance and added mass estimate

Once K is identified, using the methodology explained in Section 5.4.1.1, the unknown parameter
vector θ = [m∞ a0 . . .an−1 b1 . . .bn−1] of Cummins’ state-space model, described by equations
(5.25) and (5.30)-(5.33) is identified by fitting the model free decay prediction from NWT data.
The model free decay prediction is given by equation (5.35), where all the elements of x(0) are
null, excluding xn+1(0), which is set equal to the initial displacement of the NWT experiment
utilised (note that xn+1(t) = ŷ(t)). The free decay model prediction, ŷ, and the free decay NWT
data, y, are fitted with a LS criteria, given by:

θ̂ = argmin
θ

J(θ) (5.43)

where
J(θ) = ∑

q

∣∣y(tq)− ŷ(tq,θ)
∣∣2 (5.44)

and θ̂ is the parameter vector giving the best LS fit. The optimization problem, in equations (5.43)-
(5.44), is nonlinear in the parameters, with a strong sensitivity to the initial seed θ0, caused by a
loss function with multiple local minima (see Section 3.3.2).

An important aspect of any identification problem is the use of prior available information
regarding the process under study, which is, in this case, a body floating on water, characterised by
the properties of stability and passivity [86] (passivity describes an intrinsic characteristic of sys-
tems that can store and dissipate energy but not create it, as outlined in Section 2.4.1.2); therefore,
it is desirable that the identified model inherits these properties, in order to ensure compatibility
with the process [86]. Consequently, given the linear hydrodynamic model, described by equations
(5.25) and (5.30)-(5.33), it is necessary to find constraints on the parameters, in order to guarantee
the properties of passivity and stability for both the radiation sub-system (5.5) and Cummins’ state-
space model (5.30). In the current work, new a priori constraints on the parameters Cin

j (θ)≤ 0, for
j = 1, ...,Nc, are introduced into the optimization, in order to guarantee the stability and passivity
of both the radiation state-space model (5.5) and the Cummins’state-space model (5.30). There-
fore, the unconstrained optimization problem of equations (5.43)-(5.44) becomes the constrained
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optimization problem: {
θ̂ = argmin

θ
J(θ)

Cin
j (θ)≤ 0 for j = 1, ...,Nc

(5.45)

where J(θ) is given by equation (5.44). For linear-time-invariant systems, a necessary and suf-
ficient condition for passivity is that the real part of the transfer function is positive for all fre-
quencies (positive realness) [86] [157]. It is important to note that Cummins’ equation (2.86) has
the structure of a negative feedback interconnection, as shown in Fig. 5.20, where the blocks,
highlighted by the dash-dotted line, represent the passive forward path [85] [157] and the ra-
diation sub-system is the feedback path. Since a negative feedback interconnection of passive
systems is passive [85] [157], the Cummins’ state-space model, described by equation (5.30), is
passive if and only if the radiation state-space model, described by equation (5.5) is passive (i.e.
Re[Gra(ω)]≥ 0 ∀ ω).

fin
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M+m∞

K

∫
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∫
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ÿ ẏ

y- fre

Radiationvs

-
+

sub-system

Figure 5.20: Negative feedback structure of Cummins’ equation.

The stability of the radiation sub-system, expressed as a Laplace rational transfer function, can
be tested by applying the Routh-Hurwitz stability criterion (see Appendix A.7) to the polynomial
in the denominator of equation (5.18), in order to find analytical constraints on the parameters ai,
for i = 0, ...,(n−1). The poles p1,...,pn+2 of Cummins’ state-space model (5.30) correspond to the
n+2 eigenvalues of the matrix A, given by equation (5.31). The stability of Cummins’ state-space
model is guaranteed by introducing the nonlinear constraints Re[pi] ≤ 0, for i = 1, ...,(n+ 2),
into the optimization constraints Cin(θ) = [Cin

1 (θ) ... Cin
Nc
(θ)]. It is not straightforward to find

an analytical expression in order to calculate the real part of the poles p1,...,pn+2 with respect
to the parameter vector θ, but it is possible to resolve the problem numerically. The nonlinear
constrained problem, expressed by equations (5.45), is solved by converting it into a sequence of
nonlinear unconstrained problems. The main idea is to iteratively call the unconstrained optimiza-
tion algorithm, by using the solution of the previous iteration. For this reason, this methodology is
also termed sequential unconstrained minimization technique (SUMT) [297] [298]. The new un-
constrained optimization problem is obtained by combining the original loss function, J(θ), and
the constraints, Cin

j (θ), where j = 1, ..,Nc, in a new augmented Lagrangian function, JALF , (also
termed the Lagrangian barrier function) [298][299][300], defined as:

JALF(q,λ,θ) = J(θ)−
Nc

∑
j=1

λ j log
(

q j−Cin
j (θ)

)
(5.46)

where λ j ≥ 0 are the Lagrange multipliers , q j ≥ 0 are the shifts, λ = [λ1, ...,λNc ] and q =
[q1, ...,qNc ]. By controlling the change of the λ j and q j values, it is possible to generate a se-
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quence of unconstrained problems, which have solutions converging to the solution of the original
constrained problem, given by equation (5.45) [297]. Fig. 5.21 shows the block diagram for the
solution of the original constrained problem, by utilising JALF . In equation (5.46), when q j = 0,

Cummins’ state-space

ẋ(t) = Ax(t)+B fin(t)
ŷ(t) = Cx(t)

x(0) fin(t) = 0

MSE
calculation

θ

J(θ)

Loss function

Optimization algorithm

ŷ(t)

t

y(t)

t

Constraint function
Cin(θ)

θ

θ Augmented Lagrangian

function construction

JALF(q,λ,θ)

qλ

Figure 5.21: Block diagram of the optimization methodology to estimate the 2n parameters θ =
[m∞ a0 . . .an−1 b1 . . .bn−1]. Since only free decay experiments are considered, the external force
fin is set to zero.

and θ moves from the feasible region (the region where constraints are satisfied, i.e. Cin
j (θ) ≤ 0)

toward the infeasible region (the region where constraints are violated, i.e. Cin
j (θ)> 0), approach-

ing the feasible region border (see Fig. 5.22), it follows that Cin
j (θ)→ 0−, − log(−Cin

j (θ))→ ∞
(see Fig. 5.22(b)) and JALF(θ)→ ∞. Therefore, the border between the feasible and infeasible
regions represents an infinite barrier for the optimization algorithm (the final effect is that the
optimization is indirectly constrained) [299]. Each i-th sub-problem is characterised by different
λ(i) and q(i) values, which are kept constant for the same sub-problem; therefore, each i-th sub-
problem has a different shape of J(i)ALF(θ). In order to ensure that a good global solution of the
i-th optimization sub-problem is achieved (and therefore a good global solution of the original
constrained problem), a GA search method is employed (see Section 3.3.2.2), which maintains
a number of candidate solutions spread across the search space, preventing the algorithm getting
trapped in a local minimum. In particular, a Matlab implementation of a GA as a solver is utilised.
The GA optimization has been set to have in each generation 300 individuals, 2 elite children that
automatically survive to the next generation and about 50% of children generated with crossover
and 50% with mutation (see Section 3.3.2.2). The algorithm stops when the value of the mean
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1 a0 0
a1 0 0
c1 c2 0

Table 5.1: Table utilised for the Routh-Hurwitz stability criterion.

squared error is less than 10−15 or the number of generations reaches 100. By resolving each i-th
optimization sub-problem, the sequences

{
q(i)
}

,
{
λ(i)
}

and
{

J(i)ALF(θ)
}

are generated, which have
the properties [267]:

q(i) −→
i→∞

0 (5.47)

λ(i) −→
i→∞

0 (5.48)

J(i)ALF(θ)−→i→∞
J(θ) (5.49)

The presence of the shift q(i), in equation (5.46), avoids the inherent ill-conditioning, which is
present in classical barrier-function methods [299]. Fig. 5.23 shows an example of

{
J(i)ALF(θ)

}

sequence generation, in order to resolve a constrained optimization problem.
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j (θ)≤ 0

region
Infeasible

region
Feasible

toward the infeasible region
Moving from the feasible regionB

or
de

rb
et

w
ee

n
re

gi
on

s

toward the infeasible reg
ion

Moving from the feasible reg
ion

Barrier

Figure 5.22: (a) Feasible and infeasible regions in the parameter plane (in this case, θ = (θ1,θ2) ∈
ℜ2). (b) The introduction of− log

(
−Cin

j (θ)
)

terms, in an augmented Lagrangian function, creates
a barrier between the feasible and infeasible regions.

The approximation of the radiation convolution integral (5.3) with a model having a transfer
function (5.18) with n = 2, provides a good trade-off between accuracy and complexity [74].
Therefore, in the case of n = 2, the Cummins’ state space (5.30) is of order 4, and the transfer
function of the radiation sub-system, given by equation (5.18), becomes:

Gra(s) =
b1s

s2 +a1s+a0
(5.50)

By applying the Routh-Hurwitz stability criterion to the denominator of equation (5.50), Table
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Figure 5.23: Example of
{

J(i)ALF(θ)
}

sequence generation, in the case of the minimization of J(θ)=
θ3, under the constraint θ≥ 0.5, which leads to Cin = 0.5−θ≤ 0. In the case where q=0, it follows
that J(i)ALF(λ

(i),θ) = θ3−λ(i) log(θ−0.5). The plotted curves are obtained for λ(1) = 1, λ(2) = 0.5,
λ(3) = 0.2 and λ(4) = 0.05. The arrow shows that the minima of the J(i)ALF(λ

(i),θ) converge to the
minimum of the original constrained problem, represented by J.

A.1 of Appendix A.7, becomes Table 5.1, with a2 = 1, and equation (A.29) becomes:

c1 =

−det
∣∣∣∣

1 a0
a1 0

∣∣∣∣
a1

=
a1a0−1×0

a1
= a0 (5.51)

The stability of the linear system (5.50) is guaranteed if there is no algebraic sign change in the
elements of the first left column of Table 5.1, which is given by:

[
1 a1 a0

]T
(5.52)

and, therefore, if and only if:
a1 > 0 (5.53)

and
a0 > 0 (5.54)

Under the condition n = 2, equation (5.31) becomes:

A =




0 −a0 0 0
1 −a1 0 b1
0 0 0 1
0 − 1

M+m∞
− K

M+m∞
0


 , (5.55)

and the stability of Cummins’ state-space model, described by (5.30), is guaranteed if the four
eigenvalues pq of the matrix (5.55), which correspond to the poles of the system, satisfy the con-
ditions:

Re
[

pq

]
≤ 0 for q = 1, ...,4 (5.56)
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The study of the passivity of the radiation sub-system is carried out by calculating the Fourier
transfer function of the system represented by the Laplace transfer function (5.50); therefore:

Gra(ω) = Gra(s)
∣∣∣
s=iω

=
b1iω

(iω)2 +a1iω+a0
=

ib1ω
[(a0−ω2)+ ia1ω]

[(a0−ω2)− ia1ω]
[(a0−ω2)− ia1ω]

=
a1b1ω2 + ib1ω(a0−ω2)

(a0−ω2)2 +a2
1ω2 (5.57)

From equations (5.10) and (5.57), it follows that:

N(ω)' Re
[
Gra(ω)

]
=

a1b1ω2

(a0−ω2)2 +a2
1ω2 (5.58)

Therefore, N(ω)≥ 0 ∀ω, which represents the condition for the passivity of system (5.50), is true
if and only if:

a1b1 ≥ 0 (5.59)

From equations (5.53), (5.54), (5.56) and (5.59), it follows that, in the case of n = 2, the full set of
optimization constraints are given by:





Cin
1 (θ) =−a0 ≤ 0

Cin
2 (θ) =−a1 ≤ 0

Cin
3 (θ) =−b1 ≤ 0

Cin
4 (θ) = Re[p1]≤ 0

Cin
5 (θ) = Re[p2]≤ 0

Cin
6 (θ) = Re[p3]≤ 0

Cin
7 (θ) = Re[p4]≤ 0

(5.60)

Therefore, in the case of n = 2, equations (5.43), (5.44) and (5.60) represent the nonlinear con-
strained optimization problem, whose solution is shown in Section 5.5.

5.4.2 Hydrodynamic WEC model parameter identification from BEM data

A well established method to develop linear hydrodynamic models consists of using the frequency-
dependent coefficients calculated by a BEM software package (see Section 2.4), in order to iden-
tify the parameter vector of Cummins’ equation, which is approximated with a parametric model
structure (see Section 2.6.1). This modelling approach has the advantage of obtaining models
from limited information about the vessel, such as hull form and mass distribution, as shown in
Fig. 5.24. Given the linear model structure, described by equations (5.25) and (5.30)-(5.33), it is
necessary to find the 2n+1 parameters K, m∞, a0,...,an−1, b1...bn−1 (M is assumed to be known).
The BEM software package (in this case WAMIT) provides the hydrodynamic coefficients K, m∞
, {N(ω j)} and {ma(ω j)} for j = 1,2, ...,Nω, which can be used, together with equation (5.4), to
calculate the reduced radiation impedance, given by:

Hra(ω j) = N(ω j)+ iω j
[
ma(ω j)−m∞

]
, (5.61)

as shown in the block diagram of Fig. 5.24. As explained in Section 5.3, the Fourier transfer
function Gra(ω j,θ) of the radiation-sub-system (5.5), is given by equation (5.19), which is a
parametric approximation of the reduced radiation impedance (5.61). Therefore, it is possible
to determine the unknown parameter vector θbem = [a0 ... an−1 b1 ... bn−1] with a complex LS
frequency response curve fitting method [85] [86] [88] [155], given by:

θ̂bem = argmin
θbem

∑
j

∣∣Hra(ω j)−Gra(ω j,θbem)
∣∣2 (5.62)

which is a nonlinear optimization problem (see Section 3.3.2). In [165] and [74], stability and
passivity properties are not considered during the model identification procedure, and no post
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identification strategies are proposed, in order to obtain a stable and passive model. In [85] [86]
[155] [157], stability is not enforced as a constraint and, consequently, the resulting radiation sub-
system model, obtained by the LS minimization, may not necessarily be stable. Their proposed
solution, after identification, is the reflection of the unstable poles from the right-hand side to the
left-hand side of the complex plane, thus obtaining a suboptimal solution. In [85] [86] [155] [157]
passivity is not introduced as a constraint and, therefore, the resulting radiation sub-system model,
obtained by the LS minimization, may not necessarily be passive. Their proposed solution is to
try different order approximations and choose the one that is passive. The restoring coefficient K,
calculated by BEM software, is given by equation (2.37), which shows that K is proportional to the
body horizontal cross-sectional area, Acr, at the equilibrium position, as shown in Fig. 4.28. The
hydrodynamic model identification method, explained in this section, is implemented in the well
known MSS toolbox by Perez & Fossen [155], which uses a Gauss-Newton search algorithm (see
Section 3.3.2.2) to resolve the nonlinear optimization problem (5.62). In Section 5.5, the linear
hydrodynamic model, identified with the method explained in this section, is termed a boundary
element method identified model (BEM-IM), as shown in Fig. 5.25.

Radiation

BEM package

M

t

ŷ(t)
Model

prediction

(WAMIT)

N(ω j)m∞

m∞

sub-system
identification

K

Body geometry

State-space model

a0...an−1
b1...bn−1

Hra(ω j) = N(ω j)+ iω j[ma(ω j)−m∞]

ma(ω j)

Hra(ω j)

θ̂bem = argmin
θbem

∑
j

∣∣Hra(ω j)−Gra(ω j,θbem)
∣∣2

Cummins’
equation

Unconstrained optimization

Figure 5.24: Block diagram of the sequence of steps to identify the BEM-IM model, from BEM
data.
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Figure 5.25: Four different free decay NWT experiments are available, characterised by initial
body displacement equal to 5, 10, 20 and 45 cm. From each experiment a linear model is iden-
tified (denoted NWT5, NWT10, NWT20 and NWT45, respectively).The BEM-IM model’s radi-
ation parameter vector is identified using the toolbox by Perez&Fossen [155], taking as input the
frequency domain hydrodynamic coefficients, calculated by using the BEM software WAMIT.
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Model K̂ â0 â1 b̂1 m̂∞
(N/m) (kg)

NWT5 7704.8 6.1647 1.9037 468.35 245.31
NWT10 7704.7 8.1343 2.3840 760.35 254.77
NWT20 7704.8 8.5645 3.1069 1383.9 255.99
NWT45 7704.4 12.6962 9.7500 5398.7 244.44
BEM-IM 7681.6 7.6393 1.8582 315.82 230.20

Table 5.2: Estimated model parameters.

5.5 Results

As explained in Section 5.2, four different free decay NWT experiments are available, charac-
terised by initial body displacement equal to 5, 10, 20 and 45 cm; from each experiment, a linear
model is identified (see Section 5.4.1), denoted NWT5, NWT10, NWT20 and NWT45, respec-
tively, as shown in Fig. 5.25 (the number in the name represents the initial amplitude of the free
decay experiment from which the model is determined; i.e. NWT20 is the model whose param-
eters are determined from the free decay experiment, with 20 cm as initial amplitude). In this
section, the performance of the models, identified by the new methodology based on NWT data,
are compared to the performance of the traditional BEM-IM (see Section 5.4.2), which is used as a
benchmark. The five identified models NWT5, NWT10, NWT20, NWT45 and BEM-IM have the
same model structure, given by equations (5.25) and (5.30)-(5.33), where the radiation sub-system
has order n = 2, as explained in Section 5.4.1.2; the only distinction between the five models is
represented by the values of the parameters K, m∞, a0, a1 and b1, which are shown in Table 5.2.
The cylindrical body, investigated in this case study, has a constant cross-sectional area; therefore,
its hydrostatic restoring curve is a linear function of the displacement away from its equilibrium
position. This is confirmed by the graph of Fig. 5.26 of the restoring force versus body position,
for the 45 cm initial amplitude NWT experiment, which is shown in Fig. 5.27. The utilised cylin-
drical body is characterised by K = ρgAcr = 997×9.81×0.52×π = 7681.6 N/m. The results in
Table 5.2 show excellent agreement for the restoring force parameter, K, across all five models.
The value of the remaining four parameter m∞, a0, a1 and b1 vary between the different models,
in an attempt to model the significant variation between the different sets of free response data.
These response differences, evident in Fig. 5.11, show more significant damping for larger initial
amplitudes (and subsequent oscillations).
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Figure 5.26: Restoring force vs. position for the free decay experiment with 45 cm initial dis-
placement, and its calculated linear fit to obtain the parameter K.
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Figure 5.27: Time evolution of the body position and restoring force, for the free decay experiment
with 45 cm initial displacement.
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Figure 5.28: Location on the complex-plane of the dominant poles of Cummins’ state-space
model, described by equation (5.30).

The calculation of the model poles can provide a useful analysis tool. For a stable linear
system, the dominant poles are those closest to the imaginary axis and represent slower modes
i.e. lower damping effects (the oscillations decay more slowly). Fig. 5.28 shows that the models,
whose parameters are determined from the larger initial amplitude conditions, do indeed have
stronger damping than for models determined from the smaller amplitude conditions, mainly due
to nonlinear viscous damping during the initial phase; the arrows in Fig. 5.28 show this trend.
The only form of energy dissipation of the five identified models (i.e. BEM-IM, NWT5, NWT10,
NWT20 and NWT45 models) is through the radiation term N(ω), given by equation (5.10). All
the different dissipative effects, modelled by CFD (viscosity, vortex shedding and, as well as,
wave radiation), are all therefore encapsulated into the radiation term of the linear models. Each
identified model is characterised by a different radiation sub-system, represented by N(ω) and
ma(ω), which can be calculated with equations (5.10) and (5.12), respectively. Fig. 5.29 plots
the radiation resistances for the different identified models and shows that the models, identified
from NWT data with larger initial amplitude, have larger radiation resistances, as predicted by the
information shown in Figs. 5.11 and 5.28. Fig. 5.29 also shows that the radiation resistances, of the
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identified models, satisfy the properties limω→0 N(ω) = 0, limω→∞ N(ω) = 0 and N(ω) ≥ 0 ∀ ω,
which are described by equations (2.75), (2.76) and (2.78), respectively. Fig. 5.30 shows that
the added mass, given by equation (5.12), also varies between the different models. Figs. 5.28,
5.29 and 5.30 show that, the models identified from NWT data, by decreasing the initial body
amplitude, converge to the model identified from BEM data, as expected.
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Figure 5.29: Radiation resistance of the linear systems identified from NWT experiments and
WAMIT data.
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Figure 5.30: Added mass of the linear systems identified from NWT experiments and WAMIT
data.

It is important to stress that the five identified models are representative in the NWT operating
(amplitude) region they are identified from, which can be graphically represented by the free decay
body position-velocity-planes, shown in Fig. 5.31. It is possible to see that the space bounded by
the 5 cm free decay spiral, in Fig. 5.31(a), is significantly smaller than the space bounded by the
45 cm free decay spiral, in Fig. 5.31(d). The space bounded by the BEM data is just a point at the
origin of the position-velocity-plane. Each model represents the ‘best’ linear model able to repeat
the nonlinear NWT behaviour, inside the whole bounded region is identified from, which loses
fidelity as it tries to predict system behaviour away from this region.

This is shown in Fig. 5.32, which plots the NWT data from the 45 cm free decay experiment,
together with the free decay predictions of the different models, when given an initial amplitude
of 45 cm. As expected, the NWT45 model predicts closest to the NWT experimental data, since it
is the exact dataset the model was identified from. The other model predictions are progressively
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worse, the further their initial amplitude is from the 45 cm point. The BEM-IM model has the
worst fit, which is also expected, considering it is identified from WAMIT data, which represents
the body hydrodynamics for an infinitesimally small deviation around the equilibrium position. In
order to further illustrate the loss in fidelity of the linear models, as they try to predict the system
behaviour for different amplitudes, Table 5.3 lists the NRMSE percentage between the different
model predictions and the four different NWT experiment data sets. The NRMSE percentage is
defined as:

NRMSE% = 100

√
∑q
∣∣y(tq)− ŷ(tq)

∣∣2
√

∑q
∣∣y(tq)

∣∣2
(5.63)

where ŷ is the model prediction and y the NWT free decay oscillation. Table 5.3 shows that each
model predicts well in the response region it was identified from, and then predicts progressively
worse, as the initial amplitude becomes larger or smaller than the initial amplitude of the data,
which the model was identified from. It is important to underline that the identification regions,
shown in Fig. 5.31, are of increasing sizes and contained one inside another, like Russian Ma-
tryoshka dolls; the model, identified from a larger region, has to average its behaviour on the
whole identification region, losing accuracy if is validated exclusively in a smaller region. By
comparing Figs. 5.31(d) and 5.33, it is possible to see that, in the case of an initial displacement
of 45 cm, the trajectory converges faster to the equilibrium position in the body position-velocity-
plane, than the trajectory starting from 5 cm, as expected from the presence of stronger dissipative
nonlinearities, such as viscosity and vortex shedding, in the case of 45 cm initial displacement.
As expected, the best performance of the BEM-IM model is for the experiment with a 5 cm ini-
tial displacement, which is the closest experiment to an infinitesimally small deviation around the
equilibrium position. However, even for the small 5 cm experiment, the NWT5 model performs
better than the BEM-IM model, indicating that nonlinearities are already present in the data.
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Figure 5.31: Body position-velocity-plane, for the four NWT free decay experiments, with differ-
ent initial conditions: (a) 5 cm, (b) 10 cm, (c) 20 cm and (d) 45 cm.
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Figure 5.33: Body position-velocity-plane, for the NWT free decay experiments with initial dis-
placement of 5 cm (zoom of Fig. 5.31(a)).

Experiment initial amplitude
5 cm 10 cm 20 cm 45 cm

M
od

el

NWT5 4.35% 34.0% 54.0% 67.6%
NWT10 43.4% 7.32% 28.6% 46.5%
NWT20 83.3% 34.1% 7.54% 26.4%
NWT45 123% 65.9% 31.0% 7.93%

BEM-IM 10.8% 55.7% 98.2% 140.6%

Table 5.3: NRMSE% between the predictions by the NWT5, NWT10, NWT20, NWT45 and
BEM-IM, models and the NWT data with initial conditions 5, 10, 20 and 45 cm. The best result
for each model is highlighted in bold.
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It is interesting to underline that the identification method, utilised in this chapter with NWT
data, can be utilised in the case of RWT data, by just introducing a small variation to the method.
Indeed, the restoring term identification requires knowledge of the restoring force (which can be
obtained by the static heave force, as shown in equation (5.2)) versus the body displacement (see
Section 5.4.1.1), which can be obtained in a RWT by utilising a prescribed motion experiment (see
Section 4.3.2.4), as shown in Fig. 5.34.
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Figure 5.34: Block diagram of the sequence of steps to estimate the model parameter vector, from
RWT data, by utilising free decay and prescribed motion experiments.
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5.6 Summary and discussion

In this chapter, a new methodology for linear hydrodynamic parametric model identification is
presented, which is based on the use of CFD-NWT data, instead of traditional LPT-BEM data.
The major improvement is due to the fact that LPT is based on strong assumptions, which totally
remove hydrodynamic nonlinear effects, such as viscosity, nonlinear restoring force and vortex
shedding. Since SI techniques can introduce into the model only the information contained in the
identification data, the models identified from LPT-BEM data are not able to describe nonlinear
hydrodynamic effects. On the other hand, NWT data contain the full range of effects, described
by the Navier-Stokes equations, obtained by paying the price of a high computation time. The
main ingredients of SI, i.e. experimental data gathering, model structure selection and fitting cri-
terion and identification algorithm selection (see Section 3.1.1), are presented in Sections 5.2, 5.3
and 5.4, respectively. Four different NWT free decay experiments, characterised by initial body
displacement of 5, 10, 20 and 45 cm, are generated in the NWT, by utilising a floating vertical
cylinder with a 391.5 kg mass, 0.5 m radius and 0.5 m draft. The normalization of the free decay
body displacement, against their initial value, shows the presence of significant nonlinear damping
effects in the data, such as viscosity and vortex shedding. Each experiment is utilised to identify a
linear model. An additional model, BEM-IM, is identified from traditional BEM data, and utilised
as a benchmark for the performance of the other models. The results of this chapter show that
models, whose parameters are determined from the larger initial amplitude conditions, have larger
damping effects than models determined from the smaller amplitude conditions. The comparison
of model predictions shows that each model is representative of the region it is identified from. The
results, obtained from the BEM-IM model, quickly lose fidelity, as the oscillation amplitudes be-
come significant (which is a serious limitation of linear potential theory). Even in the experiment
with the smaller initial condition of 5 cm, the NWT5 model performs better than the BEM-IM
model, which shows that the BEM-IM model is not describing nonlinearities, already present in
the experimental data. Furthermore, the linear models NWT5, NWT10, NWT20 and NWT45 are
representative in the operating amplitude region they are identified from, and then lose fidelity
as they try to predict WEC behaviour away from this region (as shown by the identification on a
free decay experiment and the validation on the other three free decay experiments). The results
of this chapter indicate that different linear models are required to represent different operating
amplitudes (which can be associated with different sea states). Since NWT data can be simu-
lated for different operating regions, this gives the present method an advantage over LPT-BEM,
as LPT-BEM only gives parameters valid only for very small operating condition. The ability to
develop different linear models locally representative of different operating regions opens the door
for adaptive models (and possibly adaptive control) approaches, which switch between different
representative linear models at different operating conditions. The convergence of the hydrody-
namic models, derived through the proposed identification method, to those obtained by using
BEM data, as the oscillation amplitude asymptotically approaches zero (i.e. dominant complex
conjugate poles, radiation resistance and added mass), provides a confirmation of the quality of
the proposed modelling approach. The presented methodology shows the power of model com-
plexity reduction, based on SI and NWT-CFD data, by providing identified models, able to behave
similarly to CFD models, but with the important advantage of a reduced computation time. The
drawback of the new methodology, proposed in this chapter, is the use of CT model structures,
which leads to nonlinear optimization, with a strong sensitivity to the initial seed, caused by a
loss function with multiple local minima. In Chapters 6 and 7, nonlinear DT model structures,
linear in the parameters, are proposed in order to obtain identification methods, based on linear
optimization from NWT and RWT data, respectively,
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Chapter 6
Identification of DT hydrodynamic
parametric models from input/output
NWT experiments

6.1 Introduction

In Section 3.2 Cummins’ equation is used to provide the general hydrodynamic model structure,
shown in Fig. 6.1, where:
• η→ y denotes the family of all models (linear or nonlinear) having the FSE as input and the
body displacement as output.
• fin → y denotes the family of all models (linear or nonlinear) having fin(t) = fe(t)+ fpto(t)+
fm(t) as input and the body displacement as output, where fe, fpto and fm are the excitation, PTO
and mooring forces, respectively.
• η→ fe denotes the family of all models (linear or nonlinear) having the FSE as input and the
excitation force as output.

fe

+

+
+

fin

fm

fpto

η yExcitation
force model

Main device
dynamics model

fin → yη → fe

η → y

Figure 6.1: General block diagram of a WEC model, inspired by Cummins’ equation. The blocks
η→ fe, fin→ y and η→ y can be linear or nonlinear.

In Chapter 5, a case study for the identification of CT state-space models from NWT ex-
periments is presented, underlining that CT model structures provide a good insight into system
understanding since, usually, CT models are derived from physical principles and the model pa-
rameters are strongly related to the physical system properties. In Chapter 5, the main drawback of
the use of CT model structures involves the consequent adoption of nonlinear optimization strate-
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gies, which are necessary in order to identify the model parameter vector, since the loss function,
associated with the CT model structure, is characterised by the presence of multiple local min-
ima and, therefore, a strong sensitivity to the initial optimization seed. In this chapter, DT model
structures are utilised, which have the disadvantage of losing the physical meaning of the param-
eters (see Section 3.2.3) but, on the other hand, DT model structures provide greater flexibility
in the construction of nonlinear input/output model structures, which are linear in the parameters
(see Section 3.1.1), with the consequent employment of convex optimization. Furthermore, as
explained in Section 3.2.3, DT models have other important advantages over CT models (i.e. the
nature of DT data is particularly compatible with digital computer calculations, the majority of
SI techniques are based on discrete-time models and, from the point of view of control applica-
tions, DT model descriptions are more suitable). In this chapter, a variety of DT model structures
(i.e. ARX, Hammerstein, FBO, ANN and KGP models), belonging to the model families η→ y,
fin→ y and η→ fe, are identified from CFD-NWTs, by carrying out input wave excitation force,
prescribed motion, input force and input wave body motion experiments, (see Section 4.3).

This chapter is laid out as follows: Section 6.2 describes the identification of DT models, be-
longing to the η→ fe model family, from 2D CFD-NWT data, for the case study of three different
infinitely long horizontal bars, having the vertical cross-sections of a triangle, a circle and a box;
with Section 6.2.1 explaining the utilised NWT and floating body, Section 6.2.2 illustrating the
generated NWT data, Section 6.2.3 describing the model structures employed and their identifica-
tion, and Section 6.2.4 showing model performance and results.
Section 6.3.1 describes a first case study of DT model identification, belonging to the fin → y
model family, from 3D CFD-NWT data, for the case study of a conical floating body; with Sec-
tion 6.3.1.1 explaining the NWT and floating body employed, Section 6.3.1.2 illustrating the gen-
erated NWT data, Section 6.3.1.3 describing the utilised model structures and their identification,
and Section 6.3.1.4 showing model performance and results.
Section 6.3.2 describes a second case study of DT model identification, belonging to the fin→ y
model family, from 2D CFD-NWT data, for the case study of an infinitely long horizontal cylinder;
with Section 6.3.2.1 explaining the utilised NWT and floating body, Section 6.3.2.2 illustrating the
generated NWT data, Section 6.3.2.3 describing the model structures employed and their identifi-
cation, and Section 6.3.2.4 showing model performance and results.
Section 6.4 describes the identification of DT models, belonging to the η→ y model family, from
2D CFD-NWT data, for the case study of an infinitely long horizontal cylinder; with Section
6.4.1 explaining the utilised NWT and floating body, Section 6.4.2 illustrating the generated NWT
data, Section 6.4.3 describing the model structures employed and their identification, and Section
6.4.4 showing model performance and results. Finally, a summary and discussion are presented in
Section 6.5.
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6.2 Identification of η→ fe models (a case study)

The study of the dynamics of a WEC requires the knowledge of all the forces applied on the WEC,
in particular, the force applied by the incident waves to the body (excitation force). When the body
is in motion, the excitation force is not directly measurable; however, the excitation force is a vi-
tal variable required by energy maximising control systems [301] and, in the absence of a direct
measurement, a suitable model is required in order to produce an excitation force estimate. In
this section, the attention is focused on modelling the relationship between the undisturbed FSE,
η, measured in a stationary position that corresponds to the center of mass of the body, and the
excitation force, fe, that is the force experienced by the body when it is held fixed in the presence
of waves (see Section 2.4.1.1). In the context of linear models, based on the hypotheses of small
waves, inviscid and incompressible fluid, the relationship between η and fe can be described in
the time domain via a convolution integral or, in frequency domain, with a transfer function (see
Section 2.4.1.1). When the wave amplitude increases, becoming of the same order of magnitude
of the dimensions of the body, some nonlinear effects may appear, and the use of nonlinear in-
put/output model structures has to be considered. In this case study, three different NARX DT
model structures (see Section 3.2.3), belonging to the η→ fe model family (see Fig. 6.2), are
considered, i.e. ARX, Hammerstein and KGP model structures. The models are first trained with
a NWT experimental data set and, successively, their performance validated with a second NWT
experimental data set.

η(k) fe(k)
η → fe

model

NARX DT

Figure 6.2: General NARX DT model to describe the relationship between FSE and excitation
force.

6.2.1 NWT and floating body description

This case study considers a 2D NWT, implemented in OpenFOAM (see Section 2.3.1). The tank is
50 m deep, with walls 100 m from the device and with wave creation and absorption implemented
via the waves2FOAM package [52], by utilising two 95 m long relaxation zones, situated 5 m
either side of the device (see Fig. 6.3). Above the water, there is a volume of air with a 5 m height.
The tank is one cell thick, corresponding to a thickness of 1 cm, and symmetry planes are defined
at the front and back faces. In the NWT, there is a total of 72,000 cells. Three different bodies
are utilised, having the geometries and dimensions shown in Fig. 6.4. Since the experiments are
carried out in a 2D NWT, the body geometries of the test devices are infinitely long horizontal
bars (see Section 4.4), having vertical cross-sections of a triangle, a circle and a box. The three
bodies are fixed with a 1 m draft, which is 50% of the device height. In the context of 2D NWT
simulations, the waves move along a direction perpendicular to the infinitely long horizontal body
axis (see Fig. 4.57), therefore, no wave directionality effects on the body are investigated.

6.2.2 Generated NWT data description

Two different experiment types are performed in order to provide the model identification data,
the input wave excitation force experiment and the prescribed motion experiment.

Input wave excitation force experiments
The input wave excitation force experiment (see Section 4.3.2.2) involves holding the body fixed,
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Figure 6.4: Test device geometries: box, circle and triangle. The dotted line represents the mean
free surface elevation.

in the presence of input waves, and measuring the resulting hydrodynamic force applied from the
fluid to the body. As explained in Section 2.4.1.1, the definitions of the Froude-Krylov and exci-
tation forces are not unique, they can be calculated by considering only the dynamic pressure, due
to the incident field, or by utilising the total pressure (static plus dynamic pressure). In the present
work, the excitation force counts only the dynamic part of the pressure; and so, the excitation force
is zero if there are no incident waves (otherwise, by considering static plus dynamic pressure, the
excitation force would be equal to the buoyancy force, in the absence of incident waves). There-
fore, the excitation force is given by removing the hydrostatic force f o

f l , experienced by the device
in the absence of waves, from the total measured force, f f l(k), applied from the fluid to the body,
and is given by:

fe.d(k) = f f l(k)− f o
f l (6.1)

The input wave excitation force experiment produces two signals for model identification, one

Experiment type Input signal type Output signal type Identified model
{Input symbol} {Output symbol}

Input wave FSE Excitation force ARX
excitation force

{
ηd(k)

} {
fe.d(k)

}
Hammerstein (ARX block)

KGP
Prescribed motion FSE Excitation force Hammerstein (static block){

ηs(k)
} {

fe.s(k)
}

Table 6.1: Generated data in the different experiment types.

containing the FSE, {ηd(k)}, and, the other, the resulting excitation force, { fe.d(k)} (with k =
,1...,N), as shown in Table 6.1 (both considered positive when they are upward). Since this ex-
periment is used to identify the dynamics of the system under study, it is important that the input
signal {ηd(k)} has a good coverage of the frequencies and amplitude ranges, where the system
has to operate (see Section 4.2.1). In the symbolisms fe.d and ηd , the subscript ‘d’ indicates ‘dy-
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namic’. As explained in Section 4.3.2.2, since the FSE is required to be known at the WEC’s
center of mass, it is not possible to directly measure the FSE, since the body occupies that space,
and the input wave excitation force experiment is decomposed into two separate sub-experiments,
as shown in Fig. 4.40.

The excitation force curve, He( f ), calculated by WAMIT, can be used as a first indication,
in order to design the FSE excitation signal bandwidth. As explained in Section 4.4, by imple-
menting a long horizontal bar in WAMIT (for the geometry employed, a length of 25 m has been
shown sufficient), the infinitely long horizontal bar, in a 2D NWT, can be approximated by the
horizontal finite length body in WAMIT. Fig. 6.5, shows the the excitation force curve, calcu-
lated by WAMIT, of the horizontal cylinder, of 25 m length, where it is possible to see that the
larger |He( f )| values occur in the bandwidth [0 , 0.2] Hz. For this case study, two different FSE
realizations are generated (one for model identification and the other for model validation) from
the sea state having a JONSWAP spectrum [73] [302], characterised by a Hs = 1.5 m significant
wave height and a Tp = 10 s peak period. The spectral content of the FSE signal, used for model
identification, is shown in Fig. 6.6. Each sea state realization has been obtained as a multisine
signal, consisting of 50 equally spaced frequencies in the range 0.005-0.495 Hz (∆ f = 0.01 Hz),
by selecting a random phase for each harmonic. The first sea state realization is used with each
body geometry, in order to generate the training experiments T 1, C1 and B1, for the triangle, circle
and box, respectively (see Figs. 6.7 and 6.8). All the training experiments have a duration of 600
s and a sampling period Ts = 0.1 s (therefore, the number of generated samples is N=6000). Sim-
ilarly, the second sea state realization is used with each body geometry, in order to generate the
validation experiments T 2, C2 and B2 (see Fig. 6.9). All validation experiments have a duration of
400 s and Ts = 0.1 s (therefore, the number of generated samples is N=4000). In Figs. 6.8(a) and
6.9(a), it is possible to see that the training and validation FSE realizations have been intentionally
constructed in a way so that the device is never overtopped or dried out (i.e. −1 < η(k) < 1 for
any k).
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Figure 6.5: Excitation force curve, calculated by WAMIT, of the horizontal cylinder with 25 m
length, 1 m radius and 1 m draft (used to approximate an infinitely long horizontal cylinder).
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Figure 6.6: Fourier transform of the FSE signal of the input wave excitation force experiment, used
for training. The FSE realization is generated from the sea state having a JONSWAP spectrum
characterised by Hs = 1.5 m and Tp = 10 s. The FSE signal has been obtained as a multisine
signal, consisting of 50 equally spaced frequencies in the range 0.005-0.495 Hz (∆ f = 0.01 Hz),
by selecting a random phase for each harmonic.

ηd(k)

fe.d(k)

fe.d(k)

fe.d(k)

(T 1,T 2)
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Figure 6.7: From each FSE signal, utilised in the input wave excitation force experiments, three
different excitation force signals are obtained, one for each geometry.
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Figure 6.8: Training data, generated with the input wave excitation force experiments. (a) FSE
signal. (b) Excitation force signal, in the case of the triangular body (experiment T 1). (c) Excita-
tion force signal, in the case of the circular body (experiment C1). (d) Excitation force signal, in
the case of the rectangular body (experiment B1).
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Figure 6.9: Validation data, generated with the input wave excitation force experiments. (a) FSE
signal. (b) Excitation force signal, in the case of the triangular body (experiment T 2). (c) Excita-
tion force signal, in the case of the circular body (experiment C2). (d) Excitation force signal, in
the case of the rectangular body (experiment B2).
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.
Prescribed motion experiments
This experiment is used to identify the static curve of the Hammerstein model (see Section 3.3.1.4).
Ideally, in order to obtain the static relationship between the FSE and the excitation force, the body
is held fixed and the FSE is very slowly increased (in order to make the dynamic effects negligible)
from the bottom to the top of the body (producing the FSE signal, {ηs(k)}), and the resulting force,
applied from the fluid to the body, { f f l.s(k)}, is measured, as explained in Section 4.3.2.4 (see Fig.
6.10(a)). Since the dynamic effects are negligible, f f l.s(k) corresponds to the hydrostatic force.
The subscript ‘s’ indicates ‘(almost) static’. However, in terms of implementing the experiment in
the NWT, it is easier to keep the water level constant and slowly submerge the body (producing
the body displacement signal, {ys(k)}, to obtain the measurement of the same hydrostatic force
signal { f f l.s(k)} (see Fig. 6.10(b)). From the measurements {ys(k)} and { f f l.s(k)}, it is possible
to obtain the FSE signal, given by:

ηs(k) =−ys(k) (6.2)

and the excitation force, given by:

fe.s(k) = f f l.s(k)− f o
f l.s (6.3)

where f o
f l.s is the fluid hydrostatic force, when the body draft is 1 m. Therefore, two signals are

produced by the prescribed motion experiment for model identification, the input {ηs(k)}, given
by equation (6.2), representing the FSE, and the output { fe.s(k)}, given by equation (6.3), rep-
resenting the excitation force, for k = 1, ...,N (see Table 6.1). The results from the prescribed
motion experiment, in the case of the triangle, are shown in Fig. 6.11. Fig. 6.11(a) shows the FSE,
starting from the bottom of the device and slowly rising, until the device is completely submerged.
Fig. 6.11(b) shows the excitation force on the body during this FSE change. Fig. 6.11(c) plots the
excitation force as a function of the FSE, showing the nonlinear nature of the relationship for the
triangular geometry. Fig. 6.12 and 6.13 show the results, from the prescribed motion experiment,
for the circle and the box, respectively. The restoring curves, resulting from NWT data, are com-
pared with the analytical restoring curves (resulting by geometrical volume calculations [303]) in
Figs. 6.14(a), 6.14(b) and 6.14(c) for the triangle, circle and box, respectively, where it is possible
to see the excellent agreement.

The body is fixed and 
the FSE slowly rises 

(a) (b)

Ƞs(k)
Motionless 

body

Moving body

Moving FSE Motionless FSE

The FSE does not move and
the body slowly descends 

ys(k)ffl.s(k) ffl.s(k)

Figure 6.10: (a) The body is held fixed and the FSE is very slowly increased from the bottom to
the top of the body and the resulting force, applied from the fluid to the body, is measured. (b)
Prescribed motion experiment: the water level is kept constant and the body is slowly submerged
to obtain the measurement of the body displacement and the force applied by the fluid to the body.
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Figure 6.11: Prescribed motion experiment in the case of the triangle: (a) FSE signal. (b) Excita-
tion force signal. (c) Excitation force as a function of the FSE.
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Figure 6.12: Prescribed motion experiment in the case of the circle: (a) FSE signal. (b) Excitation
force signal. (c) Excitation force as a function of the FSE.
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Figure 6.13: Prescribed motion experiment in the case of the box: (a) FSE signal. (b) Excitation
force signal. (c) Excitation force as a function of the FSE.
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Figure 6.14: Comparison of the NWT data, resulting from the prescribed motion experiment, with
the theoretical curves. (a) Triangle. (b) Circle. (c) Box.
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6.2.3 Model description and identification

ARX model
In the case of the η→ fe model family, the ARX model structure is given by (see Section 3.2.3.1):

fe(k) =
na

∑
i=1

aiy(k− i)+
nb

∑
i=0

biη(k−nd− i) (6.4)

By performing the input wave excitation force experiment, the signals {ηd(k)} and { fe.d(k)}, for
k = 1...N, are generated (see Section 6.2.2), which can be utilised as the input and output signals,
respectively, for the identification of the ARX model. The first possible predicted model output is
for k = τ+1 (see Section 3.3.1.3), where:

τ = max{na,(nb +nd)} (6.5)

The last possible predicted model output is for k = Ñ (see Section 3.3.1.3), where:

Ñ =

{
N if nd ≥ 0,
N +nd if nd < 0.

(6.6)

In the case of ARM model identification, equations (3.61) and (3.62) become:

y =
[

fe.d(τ+1) fe.d(τ+2) ... fe.d(Ñ)
]T

(6.7)

and

Φ=




fe.d(τ) ... fe.d(τ+1−na) ηd(τ+1−nd) ... ηd(τ+1−nd−nb)
fe.d(τ+1) ... fe.d(τ+2−na) ηd(τ+2−nd) ... ηd(τ+2−nd−nb)

...
. . .

...
...

. . .
...

fe.d(Ñ−1) ... fe.d(Ñ−na) ηd(N) ... ηd(N−nb)


 , (6.8)

respectively. The estimated parameter vector θ̂arx = [a1 ... ana b0 ... bnb ]
T is determined by

utilising y, Φ and QR factorization (see Section 3.3.1.1) to resolve the LS problem.

Hammerstein model

Nonlinear
static
r()

η(k) s(k) Linear
dynamic

ARX

fe(k)

Figure 6.15: Block diagram of the Hammerstein model for a η→ fe hydrodynamic structure.

.
The Hammerstein model block diagram, shown in Fig. 6.15, is described by an input/output
relationship (see Section 3.2.3.3) given by:

fe(k) =
na

∑
i=1

ai fe(k− i)+
nb

∑
i=0

bir
(

η(k−nd− i)
)

(6.9)

The nonlinear static function r() is parametrized with a polynomial; therefore, the relationship
between the input and the output of the nonlinear static block is given by:

s(k) = c1η(k)+ c2η2(k)+ ...+ cncη
nc(k) (6.10)

where c0 = 0 is imposed (in the absence of waves, the excitation force has to be zero, as explained
in Sections 2.4.1.1 and 6.2.2). The Hammerstein model is identified by following the two steps
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explained in Section 3.3.1.4. In the first step, the data generated by the prescribed motion experi-
ment {ηs(k)} and { fe.s(k)} (see Section 6.2.2) are employed. As explained in Section 3.3.1.4, in
(almost) static conditions:

{ss(k)}= { fe.s(k)} (6.11)

Therefore, {ηs(k)} and { fe.s(k)} are the input and output data, respectively, which can be utilised
in order to identify the Hammerstein static block r(), separately from the linear dynamic block. It
is important to underline that the fe.s(ηs) curve is just the buoyancy force fb(ηs) curve vertically
shifted, as shown in Fig. 6.16 (note that the fe.s(ηs) curve passes throughout the origin). In this
way, the Hammerstein model black-box structure is given a lighter shade of ‘grey’, by considering
the physical meaning of the nonlinear static function.

Rigid

fb
fe.s

ηs

Vertical body dimension

shift

ηs

ηs

ηs
body region
Totally dry body region

Totally submerged

body region
Partially submerged

Figure 6.16: The fe.s(ηs) curve is the buoyancy force fb(ηs) curve, vertically shifted.

In this case, equations (3.68) and (3.69) become:

y =
[

fe.s(1) fe.s(2) ... fe.s(N)
]T (6.12)

and

Φ=




[ηs(1)]1 [ηs(1)]2 ... [ηs(1)]nc

[ηs(2)]1 [ηs(2)]2 ... [ηs(2)]nc

...
...

. . .
...

[ηs(N)]1 [ηs(N)]2 ... [ηs(N)]nc


 , (6.13)

respectively. The estimated parameter vector θ̂Hc = [c1 ... cnc ]
T is determined by utilising y,

Φ and QR factorization to resolve the LS problem. The parameter vector θ̂Hc is calculated for
different values of nc, together with the associated static curve fitting error, given by equations
(3.95) and (6.10):

NRMSE(nc) =
‖ fe.s(k)−∑nc

j=1 c jη
j
s(k) ‖2

‖ fe.s(k) ‖2
=

√
∑N

k=1 | fe.s(k)−∑nc
j=1 c jη

j
s(k)|2

√
∑N

k=1 | fe.s(k)|2
(6.14)

The smallest nc, which leads to a fitting error of less than 3%, is selected (as a good compromise
between parsimony and accuracy). Fig. 6.17 shows the fitting error of the Hammerstein static
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curve as a function of nc, and the identified values of nc for the different geometries (nc equal
to 1, 2 and 3 for box, triangle and circle respectively, as shown in Table 6.2). Fig. 6.18 shows,
for the three different geometries, the polynomial fitting of the data from the prescribed motion
experiments (polynomial fitting of the static curve of the Hammerstein model).

Figure 6.17: The fitting error of the static curve of the Hammerstein model for different polynomial
order nc. The smallest nc, which guarantees a fitting error of less than 3%, is chosen. In the case
of the box, the static curve is a straight line; therefore, the fitting error is already zero for nc = 1.
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Figure 6.18: Results from the prescribed motion experiments and polynomial fitting of the Ham-
merstein static curves, in the case of the triangular (nc = 2), circular (nc = 3) and rectangular
(nc = 1) geometries.

In the second step, the ARX block is identified by utilising the signals {ηd(k)} and { fe.d(k)},
generated in the input wave excitation force experiment (see Section 6.2.2). Now that the param-
eter vector θ̂Hc is known, the input {ηd(k)} is transformed through the nonlinear static block, in
order to obtain {sd(k)}, by using equation (6.10). Next, {sd(k)} and {ηd(k)} are used as the input
and output data, in order to identify the ARX parameter vector, θ̂Harx , under the constraint that
the DC gain of the ARX model is unity equal to one (see Section 3.3.1.4). In this case, equations
(3.72) and (3.73) become:

y =
[

fe.d(τ+1) fe.d(τ+2) ... fe.d(Ñ)
]T

(6.15)
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and

Φ=




fe.d(τ) ... fe.d(τ+1−na) sd(τ+1−nd) ... sd(τ+1−nd−nb)
fe.d(τ+1) ... fe.d(τ+2−na) sd(τ+2−nd) ... sd(τ+2−nd−nb)

...
. . .

...
...

. . .
...

fe.d(Ñ−1) ... fe.d(Ñ−na) sd(N) ... sd(N−nb)


 , (6.16)

respectively, where τ and Ñ are given by equations (6.5) and (6.6), respectively. The estimated
parameter vector θ̂Harx = [a1 ... ana b0 ... bnb ]

T is given by:

θ̂Harx = θ̂
(uc)
Harx
− (ΦTΦ)−1AT (A(ΦTΦ)−1AT )−1(Aθ̂(uc)

Harx
−d), (6.17)

where A = [1,1, ...,1] ∈ ℜ1×(na+nb+1) and d = 1 (see Section 3.3.1.4), and the unconstrained pa-
rameter vector, θ̂(uc)

Harx
, is calculated by utilising QR factorization to resolve the LS problem.

KGP model
In the case of the η→ fe model family, the KGP model structure, where the cross-product terms
are removed in order to reduce the possibility of stability problems (see Section 3.2.3.5), is de-
scribed by the input/output relationship given by:

fe(k) =
np

∑
j=1

[ na

∑
i=1

ai j f j
e (k− i)+

nb

∑
i=0

bi jη j(k−nd− i)
]

(6.18)

In this case, equation (3.72) becomes:

y =
[

fe.d(τ+1) fe.d(τ+2) ... fe.d(Ñ)
]T

, (6.19)

where τ and Ñ are given by equations (6.5) and (6.6), respectively, and each of the (Ñ− τ) rows
of the data matrix Φ, defined by (3.49), has the form:

[
fe.d(k−1) ... fe.d(k−na) ηd(k−nd) ... ηd(k−nd−nb) (6.20)

f 2
e.d(k−1) ... f 2

e.d(k−na) η2
d(k−nd) ... η2

d(k−nd−nb) ...

f np
e.d(k−1) ... f np

e.d(k−na) ηnp
d (k−nd) ... ηnp

d (k−nd−nb)
]
,

where k = (τ+1), ..., Ñ. The estimated parameter vector, θ̂kgp, is determined by utilising y, Φ and
QR factorization to resolve the LS problem.

6.2.4 Results

By utilising the methodology illustrated in Section 3.2.4, the dynamical orders na and nb, and
the input delay time nd can be identified for the NARX models, utilised for the three geometries
(each geometry is associated with specific na, nb and nd values). For each geometry, the first
step is to obtain an indication regarding possible values of na, nb and nd , by identifying 3100
different ARX structures, by utilising all the possible combinations of the integers 1 ≤ na ≤ 10,
0 ≤ nb ≤ 9 and −20 ≤ nd ≤ +10 (it is possible to efficiently realize this calculation with the use
of the Matlab command arxstruc). Since na provides the number of poles of the system, it is
the most important parameter and it is the first to be estimated. In Fig. 6.19, the loss function
LF = LF(na,nb,nd), in the case of the triangular geometry for the training experiment T 1, is
plotted versus na, where each vertical line shows the range of LF for a specific value of na and for
0≤ nb ≤ 9 and −20≤ nd ≤+10. The objective is to obtain small values of LF, and it is possible
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Figure 6.19: LF = LF(na,nb,nd), in the case of the triangular geometry for the training experiment
T 1, is plotted versus na, where each vertical line shows the range of LF for a specific value of na

and for 0 ≤ nb ≤ 9 and −20 ≤ nd ≤ +10. There is no significant reduction of LF for na > 5;
therefore, na = 5 is the correct value to obtain a parsimonious model structure.

−20 −15 −10 −5 0 5 10

0.29

0.3

0.31

0.32

0.33

0.34

0.35

n
d

L
o

s
s
 f

u
n

c
ti
o

n

 

 

Figure 6.20: LF curves for the experiment T 1, for na = 5 and 0≤ nb ≤ 9. By increasing nb the LF
does not reduce anymore, this occurs when nd =−7.
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Figure 6.21: LF curves for experiment T 1 in the case of na = 5 and nb = 1, 2, 4 and 8. LF has
minima at nd =−8 (if nb = 2), at nd =−9 (if nb = 4) and at nd =−10 (if nb = 8).

to see that there is no significant reduction of LF for na > 5, showing that na = 5 is the correct
value to obtain a parsimonious model structure. Once na is selected, the next step is the estimation
of nb and nd .

By plotting a different LF curve versus nd , for each value of nb, shows that the minimum of
the LF occurs at different nd , dependently on the value of nb. Fig. 6.20 shows the LF curves for
experiment T 1, for the case of na = 5 and 0 ≤ nb ≤ 9; it is possible to see that the minima of the
curves stop decreasing for about nd equal to -7 (as indicated by the two arrows in the picture).
In particular, Fig. 6.21 shows the LF curves for experiment T 1, for the case of na = 5 and nb =
1, 2, 4 and 8; it is possible to see that LF has a minimum at nd = −8 (if nb = 2), at nd = −9
(if nb = 4) and at nd = −10 (if nb = 8). The objective is to obtain small values of LF, and it is
possible to see that there is no significant difference for nb = 2, 4 or 8, showing that nb = 2 is the
correct value to obtain a parsimonious model structure. Fig. 6.22 shows the loss function versus
nd , in the case of na = 5 and nb = 2, where it is possible to see that the minimum value occurs
for nd =−8. The same strategy is utilised for the identificatin of na, nb and nd for circle and box
geometries, by utilising experiment C1 and B1, respectively; the results are summarized in Table
6.2. As expected, the nd identified for the three different geometries are negative, compatibly with
the fact that the relationship between η and fe is noncausal (see Section 2.4.1.1). The estimated
values of nd show that the triangle is the most noncausal body, followed by the box and circle.
This degree of noncausality can be geometrically explained by remembering that η is measured
in a point placed in the centre of the body and that the body experiences a force before the wave
crest arrives to the body centre. In Fig. 6.23, the three geometries are plotted overlapped, in order
to show that the wave crest interacts first with the triangle, than with the box and the circle.

Geometry na nb nd nc np

Triangle 5 2 -8 2 2
Circle 3 2 -6 3 2
Box 3 2 -7 1 2

Table 6.2: Identified na, nb, nd , nc and np for the triangular, circular and rectangular geometries.
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Figure 6.22: LF curves for experiment T 1. Determination of nd =−8, for the triangular geometry,
in the case of na = 5 and nb = 2.

Wave
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Figure 6.23: The three geometrical body are plotted overlapped, in order to show that the wave
crest interacts first with the triangle, than with the box and the circle.

By utilising the na, nb and nd values of Table 6.2, and the methodology described in Section
6.2.3, three different ARX models are identified with the training experiments T 1, C1 and B1, for
the triangle, circle and box, respectively. Since the models utilised are linear in the parameters,
the use of a 1-step prediction criterion, for the identification of the models, leads to a convex
optimization problem (the advantageous convex optimization would be lost by using a multi-step
prediction criterion for the training). Therefore, each model is trained with a 1-step prediction
criterion and, once identified, the model is used to make a multi-step prediction (see Section 3.4)
on the same training data; Table 6.3 shows the NRMSE multi-step prediction performance for each
ARX model. Since a model, which fits well the training data, is not necessary a good model on a
different experiment (potential overfitting problem), the three identified ARX models are utilised
to make multi-step predictions on the data provided by the validation experiments T 2, C2 and B2,
for the triangle, circle and box, respectively. Table 6.4 shows the NRMSE multi-step prediction
performance, on validation data. Similarly, three Hammerstein and KGP models are trained with
experiments T 1, C1 and B1, and multi-step predictions are made on experiments T 1, C1, B1, T 2,
C2 and B2; the fitting results are shown in Tables 6.3 and 6.4. In the case of the KGP model, the
polynomial order np = 2 has been identified, observing that larger values of np improve the training
fitting but degrade the quality of the validation fitting (i.e. overfitting). In Tables 6.3 and 6.4, it is
possible to observe that, for all 6 experiments, the KGP model is shown to be the best (marked in
green and with the number (1)) , followed by the Hammerstein model (marked in orange and with
the number (2)) and finally the ARX model (marked in red and with the number (3)). Therefore,
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it is possible to conclude that the problem under investigation includes nonlinearities, and that the
nonlinear identified models are able to describe them.

Geometry ARX Hammerstein KGP
Triangle 0.2316 (3) 0.1060 (2) 0.0792 (1)
Circle 0.1233 (3) 0.1135 (2) 0.0922 (1)
Box 0.1311 (3) 0.1270 (2) 0.0961 (1)

Table 6.3: NRMSE multi-step performance model on training data. The best model performance
is marked in green and with the number (1), the second model performance is marked in orange
and with the number (2), and the worst model performance is marked in red and with the number
(3).

Geometry ARX Hammerstein KGP
Triangle 0.2486 (3) 0.1125 (2) 0.0876 (1)
Circle 0.1295 (3) 0.1163 (2) 0.1016 (1)
Box 0.1350 (3) 0.1309 (2) 0.1014 (1)

Table 6.4: NRMSE multi-step performance model on validation data. The best model performance
is marked in green and with the number (1), the second model performance is marked in orange
and with the number (2), and the worst model performance is marked in red and with the number
(3).

By analysing the results for the different geometries in Tables 6.3 and 6.4, it is possible to see
that the linear ARX model structure finds the triangular geometry the most difficult to simulate,
followed by the rectangular and the circular one. This suggests that the degree of nonlinearity in
the data is greater in the triangular geometry, followed by the rectangular and then the circular
one. From a fluid dynamics point of view, the amount of nonlinearity can be correlated to the
body shapes, by observing that the triangle has the most nonlinear hydrostatic characteristics (see
Fig. 6.18). On the other hand, the box has a linear restoring curve, but a very flat bottom with
sharp corners, which can be the source of important nonlinear effects, based on viscosity and vor-
tex shedding. Finally the circle has a moderate nonlinearity in the hydrostatic curve and a very
smooth shape, which may create moderate viscosity and vorticity effects. Figs. 6.24 and 6.25
show, for experiments T 1 and T 2, respectively, the multi-step predictions of the identified ARX,
Hammerstein and KGP models. It is possible to see that none of the identified models is perfect,
but the linear model has particular difficulty in following peaks in the excitation force. In Fig.
6.26, the models, trained with experiment T 1, are utilised to simulate multi-step predictions on
the validation experiment, characterised by a sinusoidal FSE with an amplitude of 0.72 m and a
frequency of 0.1 Hz; it can be seen that the fully nonlinear NWT simulation exhibits an asym-
metric output, with respect to the MFSE, in response to the symmetrical sinusoidal η (a typical
example of nonlinear behaviour), owing to the fact that the triangle’s geometry is asymmetric with
respect to the MFSE. The linear ARX model is not able to replicate this nonlinear behaviour and
is outperformed by the nonlinear models, which approximate the asymmetric output well.
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Figure 6.24: Multi-step predictions, of the identified models, on the training experiment T 1 (only
a portion of the data is plotted).
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Figure 6.25: Multi-step predictions of the models (identified with T 1), in the case of the validation
experiment T 2 (only a portion of the data is plotted).
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Figure 6.26: The models, trained with experiment T 1, are utilised to simulate multi-step predic-
tions on the validation experiment, characterised by a sinusoidal FSE with an amplitude of 0.72 m
and a frequency of 0.1 Hz.

In general, the fitting error of an identified model is usually larger in validation than in train-
ing. By comparing the NRMSE of a model over training and validation (see Tables 6.3 and 6.4,
respectively), it is possible to observe the degradation of performance of a model from training to
validation. Therefore, in this thesis, a new metric is proposed, termed the normalised validation
training degradation (NVTD) parameter, defined as:

NV T D =
NRMSE(validation) - NRMSE(training)

NRMSE(training)
(6.21)

• In the case where NVTD < 0, the identified model performs better on the validation data than
on the training data (the identified model shows good ability in generalizing on new data)
• In the case where NVTD ' 0, the identified model performs similarly on the validation and
training data (the identified model shows good ability in generalizing on new data).
• In the case where NVTD� 0, the identified model performance degrades on the validation data
(the identified model shows difficulties in generalizing on new data).
In this thesis, a NVTD = 0.25 is chosen as an upper threshold for a model having a good ability
in generalizing. Table 6.5, shows the NVTD parameter, resulting from Tables 6.3 and 6.4, where
it is possible to see that NVTD< 0.25 always, indicating a parsimonious structure for the models
and a good estimate for the parameter vectors.

Geometry ARX Hammerstein KGP
Triangle 0.0734 0.0613 0.1061
Circle 0.0503 0.0247 0.1020
Box 0.0297 0.0307 0.0552

Table 6.5: NVTD parameter values, resulting from Tables 6.3 and 6.4.
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6.3 Identification of fin→ y models (two case studies)

In this section, different NARX DT model structures (see Section 3.2.3), belonging to the fin→ y
model family, are identified, in order to describe the heave motion of a floating body, in response
to an input PTO force, under the hypotheses of no incident waves and no mooring forces. As
shown in Fig. 6.27, the block fin→ y takes, as input, the summation of fe, fpto and fm; therefore,
the block is not able to differentiate between these three forces. This equivalence, within the
assumption of separation of the fluid-body force in excitation, radiation and buoyancy forces (see
Section 2.4.1), can be utilised for the identification of fin→ y models, by applying a dynamically
rich PTO force. Indeed, as outlined in Section 4.2, the signal, used to excite the system during the
experiment, plays an important role in SI. Ideally, in order to obtain all the required identification
information, the input signal should be able to excite the system as much as possible, in the shortest
possible time. The direct application of a PTO force allows total freedom over the choice of input
signal to be applied to the system (unlike the input wave experiments, where the choice of input
signal is constrained by the laws of fluid dynamics). Two different case studies of fin→ y model
identification are considered, in the first case (see Sections 6.3.1), sinusoidal PTO force signals
are intentionally chosen with a low frequency content to emphasize the static nonlinearity of the
restoring force, whereas, in the second case (see Section 6.3.2), different dynamically rich PTO
force signals are utilised (i.e. RARP, multisine and chirp signals).

fe = 0
+

+
+

fin

fm = 0

fpto

yMain device
dynamics model

fin → y

Figure 6.27: General block diagram of a WEC model, inspired by the CT Cummins’ equation,
to describe the relationship between fin and y, in the case of no incident waves and no mooring
forces.

6.3.1 Conical body case ( fin→ y models)

In this case study, three different NARX DT model structures, belonging to the fin → y model
family, are identified (i.e. ARX, Hammerstein and FBO model structures), in order to describe the
heave motion of a floating conical body, in response to an input PTO force, under the hypotheses of
no incident waves and no mooring forces. The data, utilised for model identification, are generated
in a 3D CFD-NWT. Initially, a simple linear ARX model is considered and, then, the addition of
a nonlinear static block is demonstrated to enable the model to capture nonlinear hydrodynamic
effects. The PTO force signal is intentionally chosen with a low frequency content (a pure sinusoid
of 0.125 Hz) to emphasize the static nonlinearity of the restoring force, by reducing other possible
velocity-dependent nonlinearities. For comparison with the linear ARX model, a traditional linear
CT model (in this chapter termed the Cummins-BEM model), based on a parametric form of
Cummins’ equation, is also evaluated, by using frequency domain hydrodynamic coefficients,
calculated by the BEM software WAMIT.
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6.3.1.1 NWT and floating body description

The data utilised in this case study are generated in a 3D CFD-NWT, implemented in OpenFOAM
(see Section 2.3.1). The tank has a geometry of a parallelepiped, with a 3 m height, 21 m width
and 21 m thickness; above the water, there is a volume of air with a 1.5 m height, as shown in
Fig. 6.28. The test device is placed in the exact centre of the tank. The geometry of the device
is a vertical cone, which has strong known nonlinearities in its restoring force, and is thus chosen
to illustrate the different model capabilities of handling this effect. The cone has a mass of 130.5
kg, a diameter and height of 1 m and is orientated with its axis aligned vertically, with the base
above the tip. The cone’s mass density is 50% of the water density, resulting in a submerged
draft of about 0.8 m (see Fig. 6.29). The body only moves in heave along the tank’s central axis
and, by utilising the symmetry of the NWT and body geometries, it is possible to simplify the
meshing process and reduce the spatial computation domain, by modelling only a quarter of the
NWT and body (as shown in Fig. 6.30), with the consequent reduction of the computation time
of the simulations (the symmetric boundary conditions are implemented in OpenFOAM, by using
the wedge command [50]). The quarter NWT contains a total of 142,000 cells. It is important to
underline that the vertical force, applied from the fluid to the body, is 4 times the vertical force
calculated by the NWT.

10.5m

3m

Floating bodyAIR

WATER

10.5m

1.
5m

Figure 6.28: NWT side view.

1 m

0.8 m

1 m

Air

Water

MFSE

Heave motion

Figure 6.29: Body geometry.
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boundary
condition

Symmetric
boundary
condition

Part of the NWT
implemented

Figure 6.30: NWT top view. The spatial computation domain is reduced by modelling only a
quarter of the NWT and the body, by using symmetric boundary conditions, with the consequent
reduction of the computation time of the simulations.

6.3.1.2 Generated NWT data description

The utilised nonlinear model structures (i.e. Hammerstein and FBO models) contain two different
types of blocks: the linear dynamic block and the nonlinear static block. This section details the
two different NWT experiments, used to identify these two different types of blocks. The input
force experiment is used to identify the linear dynamic block and the nonlinear static block is
identified with the prescribed motion experiment.

Input force experiments
The input force experiment (see Section 4.3.2.3) excites the body with a PTO input force, { fin.d(k)},
and measures the resulting body motion, {yin.d(k)}, both considered positive when they are up-
ward (see Table 6.6). The subscript ‘d’ indicates ‘dynamic’. The input force experiments have a
duration of 60 s and a sampling period Ts = 0.1 s. In this case study, the input force experiment
is utilised for the identification of the dynamic block of the Hammerstein, FBO and ARX models,
as shown in Table 6.6. The signal { fin.d(k)} represents the force applied to the complete cone (the
force is four times the force simulated by the quarter NWT, shown in Fig. 6.30). Two different
input force experiments are carried out:
• Input force experiment 1: The body is subject to a sinusoidal input PTO force, having a relatively
low frequency of 0.125 Hz and a relatively small amplitude of 240 N. The frequency of this exper-
iment was intentionally chosen low, to emphasize the static nonlinearity of the restoring force, by
reducing other possible velocity-dependent nonlinearities. The body is also initially displaced 30
cm above its equilibrium position, allowing its free decay oscillation to be superimposed on the
response to the PTO force, as shown in Fig. 6.31.
• Input force experiment 2: The only difference of this experiment, with input force experiment 1,
is in the amplitude of the sinusoidal input PTO force, in this it case has a larger amplitude of 960
N, as shown in Fig. 6.32.
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Experiment type Input signal type Output signal type Identified model
{Input symbol} {Output symbol}

Input force PTO force Body displacement ARX
{ fin.d(k)} {yin.d(k)} Hammerstein (ARX block)

FBO (ARX block)
Prescribed motion Body displacement Buoyancy force Hammerstein (static block)

{ys(k)} { fb.s(k)} FBO (static block)

Table 6.6: Generated data in the different NWT experiments.
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Figure 6.31: NWT data from input force experiment 1, for the complete cone (the force is four
times the force simulated by the quarter NWT, shown in Fig. 6.30). The body is subject to a
sinusoidal input PTO force, and is also initially displaced 30 cm above its equilibrium position,
allowing its free decay oscillation to be superimposed on the response to the PTO force.
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Figure 6.32: NWT data from input force experiment 2, for the complete cone (the force is four
times the force simulated by the quarter NWT, shown in Fig. 6.30). The body is subject to a
sinusoidal input PTO force, and is also initially displaced 30 cm above its equilibrium position,
allowing its free decay oscillation to be superimposed on the response to the PTO force.
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.
Prescribed motion experiments
The prescribed motion experiment (see Section 4.3.2.4) can be used to identify the static relation-
ship between the body displacement and the hydrostatic force. The body is displaced through its
full range of motion and the resulting force, applied from the fluid to the body, is measured, which
corresponds to the buoyancy force (since the body moves very slowly, all the hydrodynamic ef-
fects are negligible). Two vectors, containing the body displacement, {ys(k)}, and the hydrostatic
(buoyancy) force, { fb.s(k)}, are produced by this experiment, as shown in Table 6.6. The sub-
script ‘s’ indicates ‘(almost) static’. The results from the prescribed motion experiment are shown
in Fig. 6.33, with Fig. 6.33(a) showing the motion of the body, starting from the fully submerged
position and slowly moving out of the water, and Fig. 6.33(b) showing the hydrostatic force on
the body, during this motion. At the beginning of the simulation, which corresponds to the to-
tally submerged cone, the hydrostatic force is equal to 2560 N, which is analytically confirmed by
fb = ρgVb = 2560 N, where ρ = 997 kg/m3 is the water density, g the gravitational acceleration
and Vb = πR2h/3 the totally submerged volume, where R = 0.5 m and h = 1 m, are the cone ra-
dius and height, respectively. The information provided by this experiment can be manipulated,
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Figure 6.33: NWT data from the prescribed motion experiment for the complete cone (the force is
four times the force simulated by the quarter NWT, shown in Fig. 6.30). (a) Motion of the body,
starting from the fully submerged position and slowly moving out of the water. (b) Hydrostatic
force on the body, during the motion.

in order to identify the static curves of the Hammerstein and FBO models. In Fig. 6.34(a), the
hydrostatic force is plotted as a function of the position, which shows the nonlinear nature of this
relationship. The restoring force on the body is given by fre = fb−Mg (see Section 2.2.7); there-
fore, the restoring curve, shown in Fig. 6.34(b), is just the curve of Fig. 6.34(a), vertically shifted.
The static curve g(), of the FBO model, shown in Fig. 6.34(c), has the body displacement and
− fre as input and output variables, respectively (see Section 6.3.1.3). Therefore, g() is obtained
by mirroring the curve shown in Fig. 6.34(b), with respect to the horizontal axis. In static condi-
tions, the body does not move as a consequence of the fact that the force applied by the PTO is
balanced by the restoring force; therefore, in static conditions fin =− fre. The Hammerstein static
curve, r(), shown in Fig. 6.34(d), has fin and the body displacement as input and output variables,
respectively (see Section 6.3.1.3 for details). As a consequence, Fig. 6.34(d) can be obtained by
swapping horizontal and vertical axes of Fig. 6.34(c). In this way, by considering the physical
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meaning of the nonlinear static function, the Hammerstein and FBO model structures are given
a lighter shade of ‘grey. Fig. 6.35 shows the comparison of the NWT data, resulting from the
prescribed motion experiment, with the theoretical cone restoring curve, resulting from analytical
volume calculations [303]; it is possible to see the excellent agreement.
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Figure 6.34: (a) Hydrostatic force as a function of the body position (results from the prescribed
motion experiment). (b) Restoring force as a function of the body position. (c) FBO static curve
g(). (d) Hammerstein static curve r().
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Figure 6.35: Comparison of the NWT data, resulting from the prescribed motion experiment, with
the theoretical restoring curve of the cone.

6.3.1.3 Model description and identification

ARX model
In the case of the fin→ y model family, the input/output relationship of the ARX model structure
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Figure 6.36: Block diagram of the Hammerstein model for a fin→ y hydrodynamic structure.

is given (see Section 3.2.3.1) by:

y(k) =
na

∑
i=1

aiy(k− i)+
nb

∑
i=0

bi fin(k−nd− i) (6.22)

By performing the input force experiment, the signals { fin.d(k)} and {yin.d(k)}, for k = 1...N, are
generated (see Section 6.3.1.2), which can be utilised as input and output data, respectively, for
the identification of the ARX model. The first possible predicted model output is for k = τ+ 1,
where τ is given by equation (6.5). The last possible predicted model output is for k = Ñ, where
Ñ is given by equation (6.6). In this case, equations (3.61) and (3.62) become:

y =
[
yin.d(τ+1) yin.d(τ+2) ... yin.d(Ñ)

]T
(6.23)

and

Φ=




yin.d(τ) ... yin.d(τ+1−na) fin.d(τ+1−nd) ... fin.d(τ+1−nd−nb)
yin.d(τ+1) ... yin.d(τ+2−na) fin.d(τ+2−nd) ... fin.d(τ+2−nd−nb)

...
. . .

...
...

. . .
...

yin.d(Ñ−1) ... yin.d(Ñ−na) fin.d(N) ... fin.d(N−nb)


 ,

(6.24)
respectively. The estimated parameter vector, θ̂arx = [a1 ... ana b0 ... bnb ]

T , is determined by
utilising y, Φ and QR factorization to resolve the LS problem (see Section 3.3.1.1).

Hammerstein model
The Hammerstein model block diagram, shown in Fig. 6.36, is described by the input/output
relationship (see Section 3.2.3.3) given by:

y(k) =
na

∑
i=1

aiy(k− i)+
nb

∑
i=0

bir
(

fin(k−nd− i)
)

(6.25)

The nonlinear static function r() is approximated with a polynomial; therefore, the relationship
between the input and the output of the nonlinear static block is given by:

s(k) = c1 fin(k)+ c2 f 2
in(k)+ ...+ cnc f nc

in (k) (6.26)

where c0 = 0; indeed, in the case of (almost) static conditions, no incident waves generated and
in the absence of an applied PTO force, the body displacement has to be zero. The Hammerstein
model is identified following the two steps explained in Section 3.3.1.4. In the first step, the data
generated by the prescribed motion experiment { fb.s(k)} and {ys(k)} (see Section 6.3.1.2) are
utilised to identify the nonlinear static function r(). As explained in Section 3.3.1.4, in (almost)
static conditions:

{ss(k)}= {ys(k)} (6.27)

and input PTO and restoring forces have same intensity and opposite direction (see Section 6.3.1.2),
and so:

{ fin.s(k)}=−
(
{ fb.s(k)}−Mg

)
. (6.28)
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Equations (6.27) and (6.28) provide output and input data, respectively, in order to identify the
Hammerstein static block r(), separately from the linear dynamic block. In this case, equations
(3.68) and (3.69) become:

y =
[
ys(1) ys(2) ... ys(N)

]T (6.29)

and

Φ=




[ fin.s(1)]1 [ fin.s(1)]2 ... [ fin.s(1)]nc

[ fin.s(2)]1 [ fin.s(2)]2 ... [ fin.s(2)]nc

...
...

. . .
...

[ fin.s(N)]1 [ fin.s(N)]2 ... [ fin.s(N)]nc


 , (6.30)

respectively. The estimated parameter vector θ̂Hc = [c1 ... cnc ]
T is determined by utilising y, Φ

and QR factorization to resolve the LS problem. In order to determine a parsimonious value of nc,
the parameter vector θ̂Hc is calculated for different values of nc, together with the associated static
curve fitting error, given by equations (3.95) and (6.26):

NRMSE(nc) =
‖ ys(k)−∑nc

j=1 c j f j
in.s(k) ‖2

‖ ys(k) ‖2
=

√
∑N

k=1 |ys(k)−∑nc
j=1 c j f j

in.s(k)|2√
∑N

k=1 |ys(k)|2
(6.31)

The smallest nc, which leads to a fitting error of less than 3%, is selected (as a good compro-
mise between parsimony and accuracy). Fig. 6.37 shows the NRMSE of the static curves of the
Hammerstein model, as a function of nc, where it is possible to see that nc = 10 is the smallest
polynomial order, which guarantees a fitting error of less than 3% (see Table 6.7). Fig. 6.38 shows
the fitting of the static curve of the Hammerstein model, in the case of nc = 10.
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Figure 6.37: Fitting error of the static curve of the Hammerstein model, for different polynomial
order nc. A fitting error of less than 3% is given by nc = 10.

na nb nd nc nc

Hammerstein FBO
5 4 0 10 3

Table 6.7: na, nb, nd and nc utilised for the different DT model structures.

In the second step, the ARX block is identified by utilising the signals { fin.d(k)} and {yin.d(k)},
generated by the input force experiments (see Section 6.3.1.2). Now that the parameter vector θ̂Hc
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Figure 6.38: Hammerstein nonlinear static function r() fitting, with nc = 10.

is known, the input { fin.d(k)} is transformed through the nonlinear static block, in order to obtain
{sd(k)}, by using equation (6.26). Next, {sd(k)} and {yin.d(k)} are used as the input and output
data to identify the ARX parameter vector, θ̂Harx , under the constraint that the DC gain of the ARX
model is unity (see Section 3.3.1.4). In this case, equations (3.72) and (3.73) become:

y =
[
yin.d(τ+1) yin.d(τ+2) ... yin.d(Ñ)

]T
(6.32)

and

Φ=




yin.d(τ) ... yin.d(τ+1−na) sd(τ+1−nd) ... sd(τ+1−nd−nb)
yin.d(τ+1) ... yin.d(τ+2−na) sd(τ+2−nd) ... sd(τ+2−nd−nb)

...
. . .

...
...

. . .
...

yin.d(Ñ−1) ... yin.d(Ñ−na) sd(N) ... sd(N−nb)


 , (6.33)

respectively, where τ and Ñ are given by equations (6.5) and (6.6), respectively. The estimated
parameter vector, θ̂Harx = [a1 ... ana b0 ... bnb ]

T , is given by:

θ̂Harx = θ̂
(uc)
Harx
− (ΦTΦ)−1AT (A(ΦTΦ)−1AT )−1(Aθ̂(uc)

Harx
−d), (6.34)

where A = [1,1, ...,1] ∈ ℜ1×(na+nb+1) and d = 1 (see Section 3.3.1.4), and the unconstrained pa-
rameter vector, θ̂(uc)

Harx
, is calculated by utilising QR factorization to resolve the LS problem.

FBO model
As explained in Section 3.2.2, Cummins’ equation can be expressed in the form of a FBO model,
which has the block diagram shown in Fig. 6.39. In this negative feedback configuration, the non-
linear static block, g(), relates the body position to the negative of the restoring force (− fre(k));
therefore, g() can be identified separately from the linear dynamic block, from the knowledge of
the restoring force as a function of the body position. The nonlinear static function g() is ap-
proximated with a polynomial; therefore, the relationship between the input and the output of the
nonlinear static block is given by:

− fre(k) = c1y(k)+ c2y2(k)+ ...+ cncy
nc(k) (6.35)
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Figure 6.39: Block diagram of the FBO model, in the case of a fin→ y hydrodynamic structure.
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Figure 6.40: Fitting error of the static curve of the FBO model, for different polynomial order nc.
A fitting error of less than 3% is given by nc = 3.
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Figure 6.41: FBO nonlinear static function r() fitting, with nc = 3.
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where c0 = 0 is set (in the case of a null displacement from the equilibrium position, the restoring
force has to be zero). The FBO model is identified following the two steps explained in Section
3.3.1.5.

In the first step, the data generated by the prescribed motion experiment { fb.s(k)} and {ys(k)}
(see Section 6.3.1.2) can be utilised to identify the nonlinear static function g(). From { fb.s(k)}
and from the definition of restoring force (see Section 2.2.7), it follows that:

{− fre.s(k)}=−({ fb.s(k)}−Mg) (6.36)

Consequently, output and input identification data for the static block, respectively {− fre.s(k)}
and {ys(k)}, are available and the curve g() can be identified, separately, from the linear dynamic
block. In this case, equations (3.68) and (3.69) become:

y =
[
− fre.s(1) − fre.s(2) ... − fre.s(N)

]T (6.37)

and

Φ=




[ys(1)]1 [ys(1)]2 ... [ys(1)]nc

[ys(2)]1 [ys(2)]2 ... [ys(2)]nc

...
...

. . .
...

[ys(N)]1 [ys(N)]2 ... [ys(N)]nc


 , (6.38)

respectively. The estimated parameter vector, θ̂Fc = [c1 ... cnc ]
T , is determined by utilising y,

Φ and QR factorization to resolve the LS problem. Similarly to the Hammerstein model identi-
fication, in order to determine a parsimonious value of nc, the parameter vector θ̂Fc is calculated
for different values of nc, together with the associated static curve fitting error, given by equations
(3.95) and (6.35):

NRMSE(nc) =
‖ − fre.s(k)−∑nc

j=1 c jy
j
s(k) ‖2

‖ − fre.s(k) ‖2
=

√
∑N

k=1 |− fre.s(k)−∑nc
j=1 c jy

j
s(k)|2

√
∑N

k=1 |− fre.s(k)|2
(6.39)

The smallest nc, that leads to a fitting error of less than 3%, is selected (as a good compromise
between parsimony and accuracy). Fig. 6.40 shows the NRMSE of the static curve of the FBO
model, as a function of nc, where it is possible to see that nc = 3 is the smallest polynomial order,
which guarantees a fitting error of less than 3% (see Table 6.7). Fig. 6.41 shows the fitting of the
static curve of the FBO model for nc = 3.

In the second step, the ARX block is identified by utilising the signals { fin.d(k)} and {yin.d(k)},
generated by the input force experiment (see Section 6.3.1.2). Now that the parameter vector θ̂Fc

is known, the signal {yin.d(k)} is transformed through the nonlinear static block, in order to obtain
{ed(k)}, by using equation (6.35):

ed(k) = fin.d(k)−
( nc

∑
j=1

c jy
j
in.d(k)

)
(6.40)

As a consequence, both input and output signals of the ARX block are known ({ed(k)} and
{yin.d(k)}, respectively) and it is possible to identify the ARX parameters, θ̂Farx (See Section
3.3.1.5). In this case, equations (3.81) and (3.82) become:

y =
[
yin.d(τ+1) yin.d(τ+2) ... yin.d(Ñ)

]T
(6.41)

and

Φ=




yin.d(τ) ... yin.d(τ+1−na) ed(τ+1−nd) ... ed(τ+1−nd−nb)
yin.d(τ+1) ... yin.d(τ+2−na) ed(τ+2−nd) ... ed(τ+2−nd−nb)

...
. . .

...
...

. . .
...

yin.d(Ñ−1) ... yin.d(Ñ−na) ed(N) ... ed(N−nb)


 (6.42)
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respectively, where τ and Ñ are given by equations (6.5) and (6.6), respectively. The estimated
parameter vector θ̂Farx = [a1 ... ana b0 ... bnb ]

T is determined by utilising y, Φ and QR factor-
ization to resolve the LS problem.

Cummins-BEM model
A well established method to develop linear hydrodynamic models consists of using the frequency-
dependent coefficients calculated by a BEM software package (see Section 2.4), in order to iden-
tify the parameter vector of Cummins’ equation, which is approximated with the parametric model
structure shown in Fig. 6.42 and, in this chapter, termed the Cummins-BEM model. The Fourier
transfer function, Gra(ω), of the radiation-sub-system, is a parametric rational function approxi-
mation of the reduced radiation impedance, given by equation (2.74). The radiation sub-system
parameter values are identified by employing the toolbox in [155], which utilises the radiation
resistance and the added mass (calculated by the BEM software WAMIT) and LS fitting in the
frequency domain (see Section 2.6.1), in order to identify the hydrodynamic parametric model.
The restoring coefficient, K, and the high-frequency asymptote of the added mass, m∞, are also
calculated by WAMIT.

fin

-

+
-

1
M+m∞

K

∫
dt

∫
dt

ÿ ẏ y

- fre

sub-system

vs Radiation

Figure 6.42: Block diagram of the Cummins-BEM model.

6.3.1.4 Results

By utilising the strategy illustrated in Section 3.2.4, the dynamical orders na = 5 and nb = 4, and
the input delay time nd = 0 are identified for the NARX models, as shown in Table 6.7. In the case
of input force experiments (both NWT and RWT), the PTO actuator applies a force directly on the
body, removing any delay effect between the force applied and the body displacement; therefore,
as expected, the identified delay time is null (nd = 0). Fig. 6.43 shows the NWT simulation and
the multi-step predictions of the linear ARX and Cummins-BEM models, in the case of input
force experiment 1 (see Section 6.3.1.2), characterised by a sinusoidal input PTO force with a
relatively small amplitude (240 N). The output contains two parts, the transient due to the initial
displacement, and the steady-state response to the harmonic input. It can be seen that, for these
small amplitude conditions, the linear models are shown here to work well, for both the transient
and the steady-state parts. The NRMSE for the ARX and Cummins-BEM models are, respectively,
0.0862 and 0.0987.

A second set of model predictions are simulated in the case of input force experiment 2 (see
Section 6.3.1.2), characterised by a sinusoidal input PTO force with a larger amplitude (960 N).
The results are shown in Fig. 6.44, where it is possible to see that the resulting body motions are
much larger and that the linear model predictions diverge from the NWT data. Table 6.8 shows
the NRMSE multi-step prediction performance. The fully nonlinear NWT simulation exhibits
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an asymmetric output, with respect to the equilibrium position, in response to the symmetrical
sinusoidal input, owing to the fact that the cone’s geometry makes it harder to push into the water
than out. It is not possible for the linear models to replicate this nonlinear behaviour.

Finally, the predictions of the nonlinear models, in the case of input force experiment 2 (char-
acterised by the larger input force amplitude of 960 N), are compared to the NWT simulation in
Fig. 6.45. Here it can be seen that the nonlinear models outperform their linear counterparts’
performance for the same case, shown in Fig. 6.44. The nonlinear models are able to replicate
the asymmetric steady-state response, and better able to reproduce the transient oscillations, par-
ticularly the FBO model, which performs very well (see Table 6.8 for the NRMSE multi-step
prediction performance).

Model NRMSE
ARX 0.3190

Cummins-BEM 0.3348
Hammerstein 0.1343

FBO 0.0729

Table 6.8: NRMSE multi-step prediction performance of the identified models, in the case of input
force experiment 2.
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Figure 6.43: First 24 s of the multi-step predictions of the identified linear models (i.e. Cummins-
BEM and ARX models), in the case of training input force experiment 1 (the input PTO force is a
sinusoid of amplitude 240 N and frequency 0.125 Hz).

178



0 5 10 15 20

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (s)

B
o
d
y
 d

is
p
la

c
e
m

e
n

t 
(m

)

 

 

Cummins−BEM

ARX

NWT data

Figure 6.44: First 24 s of the multi-step predictions of the identified linear models (i.e. Cummins-
BEM and ARX models), in the case of training input force experiment 2 (the input PTO force is a
sinusoid of amplitude 960 N and frequency 0.125 Hz).

0 5 10 15 20
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (s)

B
o
d
y
 d

is
p
la

c
e
m

e
n
t 
(m

)

 

 

Hammerstein

FBO

NWT data

Figure 6.45: First 24 s of the multi-step predictions of the identified nonlinear models (i.e. Ham-
merstein and FBO models), in the case of training input force experiment 2 (the input PTO force
is a sinusoid of amplitude 960 N and frequency 0.125 Hz).
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6.3.2 Circular body case ( fin→ y models)

In this case study, three different NARX DT model structures, belonging to the fin → y model
family, are identified (i.e. ARX, KGP and ANN model structures), in order to describe the heave
motion of a floating 2D circular body, in response to an input PTO force, under the hypotheses of
no incident waves and no mooring forces (see Fig. 6.27). The data, utilised for model identifica-
tion, are generated in a 2D CFD-NWT. In the case of small body displacements, the relationship
between fin and y can be described by a linear model but, when the body displacement amplitude
increases, becoming of the same order of magnitude of the dimension of the body, some nonlinear
effects may appear, and the use of nonlinear input/output model structures has to be considered.
In contrast to the case study of Section 6.3.1, where the input PTO force is a sinusoidal signal
with a low frequency (chosen in order to emphasize the static nonlinearity of the restoring force,
by reducing other possible velocity-dependent nonlinearities), in this case study, different dynami-
cally rich PTO force signals (i.e. RARP, multisine and chirp signals) are utilised in order to obtain
all the required identification information. The models are first trained with a NWT experimental
data set and, subsequently, their performance validated with a second NWT experimental data set.

6.3.2.1 NWT and floating body description

This case study utilises the 2D NWT shown in Fig. 6.46, which is implemented by using Open-
FOAM (see Section 2.3.1). The NWT has a 50 m depth and walls located 100 m from the centre
of the tank, with wave absorption implemented via the waves2FOAM package [52], by utilising
two 90 m long relaxation zones, situated 10 m either side of the device (located at the centre of the
tank). Above the water, there is a volume of air with a 2.5 m height. The tank is one cell thick, with
a thickness of 1 cm, and symmetry planes are defined at the front and back faces. A 2D circular
device geometry is simulated, which relates to the cross-section of a horizontally aligned cylinder
of infinite length (see Section 4.4). The cylinder has a radius of 1 m, a density of half the density
of the water, so that it rests 50% submerged (see Fig. 6.47). Fig. 6.48 shows a view of the NWT
mesh around the body, where it is possible to see that the cell dimensions exponentially increase,
by moving from the centre of the tank to the tank walls; this provides a fine mesh resolution near
the body, while reducing the total number of cells needed to cover the full NWT domain, for a total
of 43,000 cells. The cylinder motion is constrained to heave in all the experiments. The variable
cross-sectional area of the device geometry makes its hydrodynamic description challenging.
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Figure 6.46: NWT side view.
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Figure 6.47: (a) 2D circular device with a 1 m radius and 1 m draft (implemented in a NWT with
one cell thickness and symmetry planes on the front and back faces of the domain). (b) Infinitely
long horizontal cylinder (equivalent to the one cell thick circle). (c) The infinitely long horizontal
cylinder can be approximated well, in WAMIT, by a horizontal cylinder with a 25 m length.

Figure 6.48: Mesh utilised, in the 2D CFD-NWT, around the circular body. The cell dimensions
exponentially increasing moving from the centre of the tank to the tank walls, providing a fine
mesh resolution near the body.
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Experiment type Input signal type Output signal type Identified model
{Input symbol} {Output symbol}

Input force PTO force Body displacement ARX
{ fin.d(k)} {yin.d(k)} KGP

ANN

Table 6.9: Data generated, in the NWT, with the input force experiments.

6.3.2.2 Generated NWT data description

As explained in Section 4.3.2.3, an input force experiment is used to identify a hydrodynamic
model between an input PTO force and the device motion (both considered positive when they are
upward); two time series vectors are produced by these experiments for the model identification,
one containing the input PTO force, { fin.d(k)}, and the other the body displacement, {yin.d(k)}, as
shown in Table 6.9. The subscript ‘d’ indicates ‘dynamic’. All the experiments, utilised in this case
study, have a duration of 600 s and a sampling period Ts = 0.1 s. Since the thickness of the NWT
is 1 cm, all the forces, calculated by the NWT and denoted f (1cm)

i , are for a horizontal cylinder
with a 1 cm thickness; therefore, a force applied on a body, having a general body thickness Lb, is
given by:

f (Lb)
i =

f (1cm)
i
0.01

Lb, (6.43)

All the forces considered in this case study are normalised for Lb = 1 m. As outlined in Section
4.2, the signal, used to excite the system during the experiment, plays an important role in SI.
Ideally, in order to obtain all the required identification information, the input signal should be
able to excite the system as much as possible, in the shortest possible time. It is important to
ensure that the input excitation signal has a good coverage of the frequencies where the system
has a significant non-zero frequency response. A circular body, in a 2D NWT, is equivalent to a
horizontal infinitely long cylinder, which, under the hypotheses of small waves and body displace-
ment, can be approximated by a 25 m long horizontal cylinder in WAMIT (see Section 4.4), as
shown in Fig. 6.47. Fig. 6.49 shows the normalized transfer function |HBEM

fin→y( f )|/|HBEM
fin→y( f )|max,

resulting from WAMIT data, for the 25 m long horizontal cylinder; it is possible to see that the
system has a significant non-zero frequency response in the bandwidth [0 , 1.5] Hz. In this case

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f (Hz)

|H
B
E
M

f
in

→
y
(f
)|

|H
B
E
M

f
in

→
y
(f
)|
m
a
x

Figure 6.49: Normalized transfer function for a linear hydrodynamic fin → y model, calculated
from WAMIT data, for the 25 m long horizontal cylinder. The model has a significant non-zero
frequency response in the bandwidth [0 , 1.5] Hz.
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study, three different signal types are investigated for the input force experiments, a RARP signal
type (see Section 4.2.2.2), a multisine signal type (see Section 4.2.2.3) and a chirp signal type (see
Section 4.2.2.4). The signals are designed to span the force amplitude range of [-1 , 1] kN, and
the frequency range of [0 , 1.5] Hz. Two versions of each signal are generated: one to be used for
model training (see Figs. 6.51(a), 6.52(a) and 6.53(a)) and the second one for model validation
(see Figs. 6.54(a), 6.55(a) and 6.56(a)).

RARP signal
The RARP signal is designed to have a random switching period with a constant probability den-
sity function (see Section 4.2.2.2) in the interval [0.01,0.67] s, as shown in Fig. 6.50(b), and a
random force amplitude with a constant probability density function in the range [−1,1] kN, as
shown in Fig. 6.50(c). The signal is randomly generated twice under these constraints, with one
signal being used for model training and the second for model validation. Fig. 6.51 shows the first
100 s of the RARP training experiment (denoted R1) with Fig. 6.51(a) showing the input RARP
force, and Fig. 6.51(b) the resulting body motion. Fig. 6.54 shows the first 100 s of the RARP
validation experiment (denoted R2).

0.01 0.67 Tr (s)

fTr

0 −1 1 Ar (kN)0

(a) (b) (c)
fAr

Tr

Ar

Time

pulse
Rectangular

Figure 6.50: Characteristics of the RARP input PTO force signal, utilised in the CFD-NWT, in
the case of the 2D circular device of Fig. 6.47(a), for the identification of DT fin → y models.
(a) Rectangular pulse time evolution. (b) The width of each rectangular pulse is described by a
constant PDF, fTr . (c) The amplitude of each rectangular pulse is described by a constant PDF,
fAr .

.
Multisine signal
The multisine signal is designed with a flat frequency spectrum with a fundamental frequency of
1/600 Hz and all harmonics up to 1.5 Hz (a total of 900 sinusoids). All frequency components
have equal amplitudes, in order to create a flat spectrum, and are assigned random phases. The
amplitude of the frequency components is manually tuned (uniformly across all frequencies) until
the time series distribution spans the range [-1 , 1] kN. The signal is generated twice, by using the
same frequency spectrum but with different random phases, with one signal for model training and
the second for model validation. Figs. 6.52 and 6.55 show the first 100 s of the training experiment
(denoted M1) and the validation experiment (denoted M2), respectively.

Chirp signal
The chirp signal is designed to linearly sweep from 0 to 1.5 Hz in 600 s, and to span the range [-1
, 1] kN. Fig. 6.53 shows the chirp training experiment (denoted C1) with Fig. 6.53(a) showing the
first 200 s of the input PTO force, and Fig. 6.53(b) the complete 600 s body displacement signal.
In order to generate a second signal for model validation, the chirp signal is reversed, linearly
sweeping from 1.5 to 0 Hz. Fig. 6.56 shows the chirp validation experiment (denoted C2) with
Fig. 6.56(a) showing the last 200 s of the input PTO force, and Fig. 6.56(b) the complete 600 s
body displacement signal.
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Figure 6.51: First 100 s of the training experimental data R1.
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Figure 6.52: First 100 s of the training experimental data M1.
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Figure 6.53: Training experimental data C1. (a) First 200 s of the input PTO force signal. (b) 600
s of the body displacement signal.
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Figure 6.54: First 100 s of the validation experimental data R2.
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Figure 6.55: First 100 s of the validation experimental data M2.
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Figure 6.56: Validation experimental data C2. (a) Last 200 s of the input PTO force signal. (b)
600 s of the body displacement signal.
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6.3.2.3 Model description and identification

ARX model
By performing the input force experiment, the signals { fin.d(k)} and {yin.d(k)} are generated (see
Section 6.3.2.1), which can be utilised as input and output data, respectively, for the identification
of the ARX model (see Section 6.3.1.3).

KGP model
In the case of the fin→ y model family, the KGP model structure, where the cross-product terms
are removed in order to reduce the possibility of stability problems (see Section 3.2.3.5), is de-
scribed by the input/output relationship given by:

y(k) =
np

∑
j=1

[ na

∑
i=1

ai jy j(k− i)+
nb

∑
i=0

bi j f j
in(k−nd− i)

]
(6.44)

In this case, equation (3.72) becomes:

y =
[
yin.d(τ+1) yin.d(τ+2) ... yin.d(Ñ)

]T
, (6.45)

where τ and Ñ are given by equations (6.5) and (6.6), respectively, and each of the (Ñ− τ) rows
of the data matrix Φ, defined by (3.49), has the form:

[
yin.d(k−1) ... yin.d(k−na) fin.d(k−nd) ... fin.d(k−nd−nb) (6.46)

y2
in.d(k−1) ... y2

in.d(k−na) f 2
in.d(k−nd) ... f 2

in.d(k−nd−nb) ...

ynp
in.d(k−1) ... ynp

in.d(k−na) f np
in.d(k−nd) ... f np

in.d(k−nd−nb)
]
,

where k = (τ+1), ..., Ñ. The estimated parameter vector, θ̂kgp, is determined by utilising y, Φ and
QR factorization to resolve the LS problem.

ANN model
The ANN model, shown in Fig. 6.57, is described by the input/output relationship (see Section
3.2.3.6), given by:

y(k) =
n2

∑
i=0

w(out)
i Ψi

( n1

∑
j=0

w(2)
i j Ψ j

( nv

∑
l=0

w(1)
jl vl(k)

))
(6.47)

where
[
v1(k) ... vnv(k)

]
=
[
y(k−1) ... y(k−na) fin(k−nd) fin(k−nd−1) ... fin(k−nd−nb)

]
,

v0(k) = 1, nv = na + nb + 1, n1 and n2 are the number of neurons in the hidden layers 1 and 2,
respectively, and w(1)

i j , w(2)
i j and w(out)

i are the unknown weights (and biases) of the i-th perceptron
neuron of the hidden layer 1, 2 and output, respectively.

It is not straightforward to calculate the optimal values for n1 and n2; a good compromise
between complexity and accuracy of the model has been found by utilising n1 = 3 and n2 = 5 (see
Table 6.10). The identification of the model requires the employment of nonlinear optimization
techniques; in particular, the unknown parameter vector, θann = [w(1)

11 , ..., w(1)
n1nv , w(2)

11 , ..., w(2)
n2n1 ,

w(out)
1 , ..., w(out)

n2 ], is identified by utilising a conjugate gradient algorithm in batch training mode
(the ANN model is retrained with the same data over successive epochs), which is computational
efficient and shown to have good performance for ANN models (see Section 3.3.2). In order to
counter the difficulty of local minima in the search surface, a variety of initial conditions (100
instances) is used.
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Figure 6.57: ANN model structure with two nonlinear hidden layers and one linear output layer.

6.3.2.4 Results

By utilising the strategy explained in Section 3.2.4, the dynamical orders na = 4 and nb = 2, and
the input delay time nd = 0 are identified, as shown in Table 6.10. Indeed, Fig. 6.58 shows the loss
function LF = LF(na,nb,nd) versus na, for the training experiment R1, where each vertical line
shows the range of LF for a specific value of na and for 1≤ nb≤ 8 and−8≤ nd ≤ 4. No significant
reduction of LF for na > 4, showing that na = 4 is the correct value to obtain a parsimonious model
structure. Fig. 6.59 shows the LF values in the case where na = 4, nb = 2 and−8≤ nd ≤ 4, where
it is possible to see that the minimum occurs for nd = 0. As explained in Section 6.3.1.4, since
in the case of input force experiments the PTO actuator applies a force directly on the body, the
expected identified delay time is null.

The polynomial order of the KGP model np = 2 is selected (see Table 6.10), by observing that
larger values of np improve the training fitting but degrade the quality of the validation fitting (i.e.
overfitting).

na nb nd np n1 n2

4 2 0 2 3 5

Table 6.10: na, nb, nd , np, n1 and n2 utilised for the different DT model structures.
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Figure 6.58: LF = LF(na,nb,nd) is plotted versus na, in the case of the circular body of Fig.
6.47(a) and the training experiment R1, where each vertical line shows the range of LF for a
specific value of na and for 1 ≤ nb ≤ 8 and −8 ≤ nd ≤ 4. There is no significant reduction of LF
for na > 4; therefore, na = 4 is the correct value to obtain a parsimonious model structure.
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Figure 6.59: LF = LF(na,nb,nd) is plotted versus nd , for na = 4 and nb = 2, in the case of the
circular body of Fig. 6.47(a) and the training experiment R1. The minimum occurs for nd = 0.
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From each training experiments (i.e. R1, M1 and C1), three different models are identified (i.e.
ARX, KGP and ANN models) with a 1-step prediction criterion (a total of 9 models). Once iden-
tified, each model is used to make a multi-step prediction (see Section 3.4) on the same training
data, the model was identified from. Fig. 6.60 shows the multi-step predictions of the identified
models, on the training experiment M1. Table 6.11 reports the NRMSE multi-step prediction per-
formance for each identified model, showing that, for training data fitting, the ANN models always
perform best (marked in green and with the number (1)), followed by the KGP models (marked
in orange and with the number (2)). The ARX models have consistently the worst training perfor-
mance (marked in red and with the number (3)), suggesting that the data contain nonlinearities,
which the KGP models and the ANN models, in particular, are able to capture.

Since a model which fits the training data is not necessary a good model on a different ex-
periment (i.e. the overfitting problem), each identified model with experiments R1, M1 and C1 is
utilised to make multi-step predictions on the data provided from the validation experiments R2,
M2 and C2. Fig. 6.61 shows the multi-step predictions of the models (identified with M1) in the
case of the validation experiment M2. Table 6.12 shows the NRMSE multi-step prediction perfor-
mance of the models, on the validation experiments M2, R2 and C2, where it is possible to see that
the ANN model structure, which worked very well in training, has inconsistent performance and
that the ARX models usually have poor performance. The KGP model structure shows qualities
of both accuracy and consistency.
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Figure 6.60: Multi-step predictions of the identified models, on the training experiment M1 (only
a portion of the data is plotted).

Model trained with
M1 R1 C1

ARX 0.1018 (3) 0.0820 (3) 0.0799 (3)
KGP 0.0810 (2) 0.0684 (2) 0.0536 (2)
ANN 0.0408 (1) 0.0536 (1) 0.0442 (1)

Table 6.11: NRMSE multi-step performance for training. The best model performance is marked
in green and with the number (1), the second model performance is marked in orange and with the
number (2), and the worst model performance is marked in red and with the number (3).
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Figure 6.61: Multi-step predictions of the models (identified with M1) in the case of the validation
experiment M2 (only a portion of the data is plotted).

Model trained with
M1 R1 C1

M
od

el
va

lid
at

ed
w

ith

ARX 0.1005 (3) 0.0868 (3) 0.0988 (2)
M2 KGP 0.0807 (2) 0.0749 (2) 0.0748 (1)

ANN 0.0414 (1) 0.0600 (1) 0.1162 (3)
ARX 0.1351 (3) 0.1240 (3) 0.1346 (2)

R2 KGP 0.1249 (1) 0.1192 (2) 0.1196 (1)
ANN 0.1306 (2) 0.1099 (1) 0.1513 (3)
ARX 0.0828 (2) 0.0704 (2) 0.0757 (3)

C2 KGP 0.0654 (1) 0.0566 (1) 0.0513 (2)
ANN 0.4572 (3) 0.1755 (3) 0.0497 (1)

Table 6.12: NRMSE multi-step performance model for validation. The best model performance is
marked in green and with the number (1), the second model performance is marked in orange and
with the number (2), and the worst model performance is marked in red and with the number (3).

As explained in Section 6.2.4, usually, the fitting error of an identified model is larger with val-
idation data than with training data. The NRMSE multi-step prediction performance with training
and validation data (see Tables 6.11 and 6.12, respectively) are used to calculate the NVTD pa-
rameter (see Table 6.13), defined by equation (6.21). A NVTD = 0.25 is chosen as an upper
threshold for a model having a good ability to generalize and, in Table 6.13, each NVTD < 0.25 is
written in bold, to indicate a good model performance. NVTD values, of the identified ARX and
KGP models, show that the two model structures generalise quite well with experiments M2 and
C2, indicating good quality of the utilised data and the identified parameter vector, but they show
more difficulty on experiment R2. On the other hand, as already noted in Table 6.12, the identified
ANN models are less consistent; indeed, they exhibit, in some cases, the ability to generalise well
(training with M1 and validation with M2; training with R1 and validation with M2; training with
C1 and validation with C2) and, in other cases, an inability to generalise (training with C1 and
validation with M2; training with M1 and validation with C2; training with R1 and validation with
C2; all validations with R2). The results show the supplemental difficulty for ANN identification,
depending on the nonlinear optimization algorithm and larger number of parameters employed
(see Table 6.14). It is interesting to note that all the identified models exhibit greater difficulty for
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validation with experiment R2, possibly due to the fact that RARP signals have very sharp corners,
corresponding to fast changes in the applied PTO force and resulting body acceleration, which can
create nonlinear effects, which are not easily modelled.

Model trained with
M1 R1 C1

M
od

el
va

lid
at

ed
w

ith

ARX -0.0128 0.0585 0.2365
M2 KGP -0.0037 0.0950 0.3955

ANN 0.0147 0.1194 1.6290
ARX 0.3271 0.5122 0.6846

R2 KGP 0.5420 0.7427 1.2313
ANN 2.2010 1.0504 2.4231
ARX -0.1866 -0.1415 -0.0526

C2 KGP -0.1926 -0.1725 -0.0429
ANN 10.2059 2.2743 0.1244

Table 6.13: NVTD parameter values calculated from NRMSE multi-step prediction performance,
by using the training and validation data of Tables 6.11 and 6.12, respectively. A NVTD = 0.25 is
chosen as an upper threshold for a model having a good ability in generalizing, and each NVTD
< 0.25 is written in bold.

ARX KGP ANN
7 14 50

Table 6.14: Number of identified parameters, for the different model structures, given by equations
(3.9), (3.26) and (3.34).

The NRMSE multi-step performance for validation, shown in Table 6.12, can be utilised to
analyse which signal typology produce more accurate models. For convenience, Table 6.12 is
copied into Table 6.15, where extra information is added. Each row of Table 6.15 shows the per-
formance of three models, having the same model structure but different parameter vector values,
identified with three different experiments (i.e. R1, M1 and C1), and validated with the same ex-
periment, which can be R2 or M2 or C2. The first row, for example, describes the performance of
three different ARX models, identified with experiments R1, M1 and C1, and validated with exper-
iment M2 (see Fig. 6.62(a)). The best model performance is marked in green and with the number
(1), the second model performance is marked in orange and with the number (2), and the worst
model performance is marked in red and with the number (3). Similarly, the last row describes the
performance of three different ANN models, identified with experiments R1, M1 and C1, and val-
idated with experiment C2 (see Fig. 6.62(b)). Therefore, first, second and third columns represent
the performance of the models identified with experiments R2, M2 and C2, respectively. In each
column, the number of cases the models performs best, medium or worst are counted; the results
in percentage are shown in Fig. 6.63, where it is possible to see that the models, which perform
best, are identified with R1, then C1 and finally M1, suggesting that the RARP signals perform
better in identifying accurate models, followed by chirp signals.
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Model trained with
M1 R1 C1

M
od

el
va

lid
at

ed
w

ith

ARX 0.1005 (3) 0.0868 (1) 0.0988 (2)
M2 KGP 0.0807 (3) 0.0749 (2) 0.0748 (1)

ANN 0.0414 (1) 0.0600 (2) 0.1162 (3)
ARX 0.1351 (3) 0.1240 (1) 0.1346 (2)

R2 KGP 0.1249 (3) 0.1192 (1) 0.1196 (2)
ANN 0.1306 (2) 0.1099 (1) 0.1513 (3)
ARX 0.0828 (3) 0.0704 (1) 0.0757 (2)

C2 KGP 0.0654 (3) 0.0566 (2) 0.0513 (1)
ANN 0.4572 (3) 0.1755 (2) 0.0497 (1)

Table 6.15: NRMSE multi-step performance model for validation. Each row represents the per-
formance of three models, having the same model structure but different parameter vector values,
identified with three different experiments (i.e. R1, M1 and C1), and validated with the same ex-
periment, which can be R2 or M2 or C2. In each row, the best model performance is marked in
green and with the number (1), the second model performance is marked in orange and with the
number (2), and the worst model performance is marked in red and with the number (3).
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Figure 6.62: (a) Three different ARX models are identified with experiments R1, M1 and C1 and
validated with the experiment M2. (b) Three different ANN models are identified with experiments
R1, M1 and C1 and validated with the experiment C2.
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Figure 6.63: Number of cases in percentage when the models, identified with experiments R1, M1
and C1, performs best (1st), medium (2nd) or worst (3rd), with the validation data (i.e. R2, M2
and C2).
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6.4 Identification of η→ y models (a case study)

In this case study, three different NARX DT model structures, belonging to the η→ y model
family (see Fig. 6.64), are considered (i.e. ARX, KGP and ANN model structures), in order to
describe the heave motion of a floating 2D circular body, in response to incident waves (the FSE is
measured in a position that corresponds to the center of mass of the body), under the hypotheses of
no PTO and no mooring forces. The data, utilised for model identification, are generated in a 2D
CFD-NWT. In the case of small waves and body displacement, the relationship between η and y
can be described by a linear model but, when the wave and body displacement amplitudes increase,
becoming of the same order of magnitude of the dimensions of the body, some nonlinear effects
may appear, and the use of nonlinear input/output model structures has to be considered. The
models are first trained with a NWT experimental data set and, subsequently, their performance
validated with a second NWT experimental data set.

η(k) y(k)η → y

model

NARX DT

Figure 6.64: General NARX DT model to describe the relationship between FSE and body dis-
placement.

6.4.1 NWT and floating body description

This case study utilises the 2D CFD-NWT depicted in Fig. 6.65 and implemented by utilising
OpenFOAM (see Section 2.3.1). The NWT has a 50 m depth and walls located 100 m from
the centre of the tank (where the floating body is located), with wave creation/absorption zones,
implemented via the waves2FOAM package [52], by utilising two 90 m long relaxation zones,
situated 10 m either side of the device. Above the water, there is a volume of air with a 2.5 m
height. The tank is one cell thick, with a thickness of 1 cm, and symmetry planes are defined at
the front and back faces. The cell dimensions exponentially increasing moving from the centre
of the tank to the tank walls; this provides a fine mesh resolution near the body, while reducing
the total number of cells needed to cover the full NWT domain, for a total of 43,000 cells. A
2D circular device geometry is simulated , which relates to the cross-section of a horizontally
aligned cylinder of infinite length (see Section 4.4). The cylinder has a radius of 1 m and a density
which is half that of the water, so that it rests 50% submerged, as shown in Fig. 6.66. The body
motion is constrained in heave. In the context of 2D NWT simulations, the waves move along a
direction perpendicular to the infinitely long horizontal body axis (see Fig. 4.57); therefore, no
wave directionality effects on the body are investigated.

20m

50
m

Floating body AIR

WATER

90m90m

Wave
generation
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Wave
absorption

zone

2.
5m

wave

Figure 6.65: NWT side view.
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2m

1m

MFSE

Figure 6.66: Side view of the 2D circular body. The dashed line represents the mean free surface
elevation.

6.4.2 Generated NWT data description

In the input wave body motion experiment (see Section 4.3.2.2), the excitation on the body is
provided exclusively by the incident waves generated in the NWT, no PTO force is applied, no
mooring is present and the body displacement is measured. Two time series vectors are produced
by this experiment for model identification, one containing the FSE, {ηd(k)}, and the other the
body displacement, {yd(k)}, both considered positive when they are upward (see Table 6.16). The
subscript ‘d’ indicates ‘dynamic’. All the experiments utilised in this section have a duration of
600 s and a sampling period Ts = 0.1 s. The free surface elevation at the body’s vertical axis is
considered as input to the model and must, therefore, be measured without the body in the tank.
After the input wave series, {ηd(k)}, has been measured, the experiment is repeated with the body
in place and the resulting body motion, {yd(k)}, recorded.

Experiment type Input signal type Output signal type Identified model
{Input symbol} {Output symbol}

Input wave body motion PTO force Body displacement ARX
{ηd(k)} {yd(k)} KGP

ANN

Table 6.16: Generated data, in the NWT, with the input wave body motion experiments.

As explained in Section 4.2, in the experiment design, care must be taken to use excitation
signals which provide an adequate distribution across the amplitude/frequency space. For the
identification of models representative of a specific location, an excitation which covers the range
of possibilities at the specific location should be chosen. However, the focus of the thesis is to show
the new methodology, rather than provide a complete description of any particular location/device
combination and, for simplicity, two different input wave experiments (W1 for training, and W2
for validation) are carried out, where the input wave signals are two different realizations of a com-
monly occurring sea state at the European Marine Energy Centre (EMEC) test site, with significant
wave height Hs = 0.6 m and peak period Tp = 8 s. The input wave signals are multisine signals,
consisting of 100 equally spaced frequencies, in the range [0.005 , 0.995] Hz (the frequency dis-
tance between two adjacent harmonics is given by ∆ f = 0.01 Hz), with amplitudes determined
from a JONSWAP spectrum [73] [302] and randomly assigned phases. Both experiments W1 and
W2 have a duration of 600 s and a sampling period Ts = 0.1 s. Figs. 6.67 and 6.68 show the data
generated in experiments W1 and W2, respectively. Fig. 6.69 shows the spectral content of the
FSE signal of the experiment W1.
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Figure 6.67: Training experimental data W1.

0 100 200 300 400 500 600

−0.4

−0.2

0

0.2

0.4

Time (s)

F
S

E
 (

m
)

0 100 200 300 400 500 600

−0.5

0

0.5

Time (s)

B
o

d
y
 d

is
p

la
c
e

m
e

n
t 

(m
)

Figure 6.68: Validation experimental data W2.

0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

Frequency (Hz)

S
p
e
c
tr

a
l 
c
o
n
te

n
t 
(m

/H
z
)

Figure 6.69: Spectral content of the FSE signal of the experiment W1.
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Figure 6.70: Normalized transfer function for a linear hydrodynamic η→ y model, calculated
from WAMIT data, for the 25 m long horizontal cylinder.

As explained in Section 6.3.2.1, the utilised 2D circular body is equivalent to an infinitely
long horizontal cylinder, which can be approximated well, in WAMIT, by a horizontal cylinder
with a 25 m length, as shown in Fig. 6.47. Fig. 6.70 shows the normalized transfer function
|HBEM

η→y ( f )|/|HBEM
η→y ( f )|max, resulting from WAMIT data, for the 25 m long horizontal cylinder.

The nonlinear hydrodynamic effects (i.e. nonlinear Froude-Krylov, viscous and restoring forces)
are strongly depending on the extent of the time-varying wetted body surface, which is the surface
of interaction between the body and the water. Since the body displacement alone is not sufficient
to provide an indication regarding the variation of the wetted body surface, it is more useful to take
into consideration the relative float heave displacement, defined as yRH(k) = y(k)−η(k). Indeed,
yRH provides a more accurate measure of the amount of the body that is submerged in the water. In
Fig. 6.71(a), the first 70 s of the body displacement and FSE are plotted together (generated with
the experiment W1), in order to show the strong similarity of the two signals, suggesting that the
body behaves like a wave follower [304]. In Fig. 6.71(b), yRH is plotted for the whole experiment
W1. In both experiments W1 and W2, −0.1 ≤ yRH ≤ 0.1 m, as shown in Fig. 6.72(a); therefore,
the wetted body surface does not change in a significant way during the experiments, suggesting
that the involved hydrodynamic nonlinearities are modest (see Fig. 6.72(b)).
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Figure 6.71: (a) First 70 s of the body displacement and FSE, generated with the experiment W1.
(b) Relative float heave displacement for the whole experiment W1.
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Figure 6.72: (a) In both experiments W1 and W2, −0.1 ≤ yRH ≤ 0.1 m. (b) The wetted body
surface does not change in a significant way during the experiments.

6.4.3 Model description and identification

ARX model
In the case of the η→ y model family, the input/output relationship of the ARX model structure is
given (see Section 3.2.3.1) by:

y(k) =
na

∑
i=1

aiy(k− i)+
nb

∑
i=0

biη(k−nd− i) (6.48)

By performing the input wave body motion experiment, the signals {ηd(k)} and {yd(k)}, for
k = 1...N, are generated (see Section 6.4.2), which can be utilised as input and output for the ARX
model identification. The first possible predicted model output is for k = τ+ 1, where τ is given
by equation (6.5). The last possible predicted model output is for k = Ñ, where Ñ is given by
equation (6.6). In this case, equations (3.61) and (3.62) become:

y =
[
yd(τ+1) yd(τ+2) ... yd(Ñ)

]T
(6.49)

and

Φ=




yd(τ) ... yd(τ+1−na) ηd(τ+1−nd) ... ηd(τ+1−nd−nb)
yd(τ+1) ... yd(τ+2−na) ηd(τ+2−nd) ... ηd(τ+2−nd−nb)

...
. . .

...
...

. . .
...

yd(Ñ−1) ... yd(Ñ−na) ηd(N) ... ηd(N−nb)


 , (6.50)

respectively. The estimated parameter vector θ̂arx = [a1 ... ana b0 ... bnb ]
T is determined by

utilising y, Φ and QR factorization to resolve the LS problem.

KGP model
In the case of the η→ y model family, the KGP model structure, where the cross-product terms are
removed in order to reduce the possibility of stability problems (see Section 3.2.3.5), is described
by the input/output relationship given by:

y(k) =
np

∑
j=1

[ na

∑
i=1

ai jy j(k− i)+
nb

∑
i=0

bi jη j(k−nd− i)
]

(6.51)

In this case, equation (3.72) becomes:

y =
[
yd(τ+1) yd(τ+2) ... yd(Ñ)

]T
, (6.52)
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where τ and Ñ are given by equations (6.5) and (6.6), respectively, and each of the (Ñ− τ) rows
of the data matrix Φ, defined by (3.49), has the form:

[
yd(k−1) ... yd(k−na) ηd(k−nd) ... ηd(k−nd−nb) (6.53)

y2
d(k−1) ... y2

d(k−na) η2
d(k−nd) ... η2

d(k−nd−nb) ...

ynp
d (k−1) ... ynp

d (k−na) ηnp
d (k−nd) ... ηnp

d (k−nd−nb)
]
,

where k = (τ+1), ..., Ñ. The estimated parameter vector, θ̂kgp, is determined by utilising y, Φ and
QR factorization to resolve the LS problem.

ANN model
The input/output relationship of the ANN model is given by equation (6.47), where, in the case of
the η→ y model family,
[
v1(k) ... vnv(k)

]
=
[
y(k−1) ... y(k−na) η(k−nd) η(k−nd−1) ... η(k−nd−nb)

]
,

A good compromise between complexity and accuracy of the model has been found by utilising
n1 = 10 and n2 = 10 (see Table 6.17). The unknown parameter vector is identified by utilising a
conjugate gradient algorithm in batch training mode (the ANN model is retrained with the same
data over successive epochs), and a variety of initial conditions (100 instances) is used.

6.4.4 Results

By utilising the strategy explained in Section 3.2.4, the dynamical orders na = 8 and nb = 2, and
the input delay time nd = −7 are identified (see Table 6.17). Fig. 6.73 shows the loss function
LF = LF(na,nb,nd) versus na, for training experiment W1, where each vertical line shows the
range of LF for a specific value of na and for 1 ≤ nb ≤ 8 and −20 ≤ nd ≤ −3. No significant
reduction of LF for na > 8, showing that na = 8 is the correct value to obtain a parsimonious model
structure. Fig. 6.74 shows the LF values in the case where na = 8, nb = 2 and −20 ≤ nd ≤ 10;
it is possible to see that the minimum value occurs for nd = −7. As explained in Section 6.2.4,
there is a noncausal relationship between the FSE and the excitation force, which leads the body
to start moving before the wave crest reaches the centre of the body (where the FSE is measured).
Therefore, also the relationship between η and y is noncausal (indeed, in this case study nd =−7).
The polynomial order of the KGP model np = 2 is selected, observing that larger values of np

improve the training fitting, but degrade the quality of the validation fitting (i.e. overfitting).
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Figure 6.73: LF = LF(na,nb,nd), in the case of the circular body of Fig. 6.66 and the training
experiment W1, is plotted versus na, where each vertical line shows the range of LF for a specific
value of na and for 1 ≤ nb ≤ 8 and −20 ≤ nd ≤ −3. There is no significant reduction of LF for
na > 8; therefore, na = 8 is the correct value to obtain a parsimonious model structure.
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na nb nd np n1 n2

8 2 -7 2 10 10

Table 6.17: na, nb, nd , np, n1 and n2 utilised for the different DT model structures.

−20 −15 −10 −5 0 5 10
1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

x 10
−8

n
d

L
o

s
s
 f

u
n

c
ti
o

n

 

 

Noncausal model Causal model

nd = −7

Figure 6.74: LF = LF(na,nb,nd) is plotted versus nd , for na = 8 and nb = 2, in the case of the
circular body of Fig. 6.66 and the training experiment W1. The minimum occurs for nd =−7.

Fig. 6.75 shows, for training experiment W1, the multi-step predictions of ARX, KGP and
ANN models. All the fitting results on training experiment W1 are summarised in Table 6.18,
where it is possible to observe only small differences in the performance of the linear ARX model
compared to the two nonlinear models, indicating that the floating body motion does not exhibit
much nonlinear behaviour for the geometry and wave conditions chosen in this case study (as
already predicted in Section 6.4.2, by observing the relative float heave displacement). However,
even for more energetic sea states (and, in particular, longer wave periods), within power pro-
duction ranges, the device response to wave excitation alone (for example in the absence of a
PTO force) does not tend to become significantly nonlinear, as documented in [170]. The models
trained with the W1 dataset are validated with the W2 dataset. Fig. 6.76 shows a comparison of
the ARX, KGP and ANN model multi-step predictions against the validation data. The NRMSE
performance for each of the different models against the validation data is summarised in Table
6.18, where it is possible to see that the ARX and KGP model are similar and that the ANN model
loses prediction accuracy. In order to better understand the degradation of performance of each
model from training to validation, the NVTD parameter , defined by equation (6.21), is calculated
for each model (see Table 6.19). A NVTD = 0.25 is chosen as an upper threshold for a model
having a good ability in generalizing and, in Table 6.19, each NVTD < 0.25 is written in bold,
to indicate a good model performance. The NVTD results show the ARX and KGP models gen-
eralise quite well, indicating good quality of the utilised data and the identified parameter vector.
On the other hand, the ANN model, which was the best in training, degrades considerably in
validation, showing an inability to generalise, likely a consequence of the nonlinear optimization
necessary to identify the ANN parameters, which does not guarantee the achievement of a global
minimum. Furthermore, as shown in Table 6.20, the number of parameters for the ANN model is
considerably larger than the number of parameters for the ARX and KGP models, increasing the
difficulty of finding a global minimum.
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Figure 6.75: Multi-step predictions, of the identified models, on the training experiment W1.

Model trained Model validated
with W1 with W2

ARX 0.1721 (3) 0.1793 (2)
KGP 0.1713 (2) 0.1787 (1)
ANN 0.1671 (1) 0.2429 (3)

Table 6.18: NRMSE multi-step performance for training and validation. The best model perfor-
mance is marked in green and with the number (1), the second model performance is marked in
orange and with the number (2), and the worst model performance is marked in red and with the
number (3).
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Figure 6.76: Multi-step predictions of the models (identified with W1), in the case of the validation
experiment W2.
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Model NVTD
ARX 0.0418
KGP 0.0432
ANN 0.4536

Table 6.19: NVTD parameter values calculated from NRMSE multi-step prediction performance,
by using the training and validation data of Table 6.18. A NVTD = 0.25 is chosen as an upper
threshold for a model having a good ability in generalizing, and each NVTD < 0.25 is written in
bold.

ARX KGP ANN
11 22 241

Table 6.20: Number of identified parameters, for the different model structures, given by equations
(3.9), (3.26) and (3.34).

6.5 Summary and discussion

In this chapter, the framework for hydrodynamic model identification from recorded experimental
data, developed in Chapters 3 and 4, is applied in four different case studies, by utilising data
generated in 2D and 3D CFD-NWTs. In Chapter 5, the ID framework has been used for the iden-
tification of linear CT state-space models, underlining the advantage of a CT model structure in
providing a good understanding of the system since, usually, CT models are derived from physical
principles and the model parameters are strongly related to the physical system properties. On
the other hand, the loss functions, associated with CT model structures, are usually characterised
by the presence of multiple local minima, which requires the adoption of nonlinear optimization
strategies, which are sensitive to the initial optimization seed. In this chapter, different linear and
nonlinear DT model structures are utilised (i.e. ARX, Hammerstein, FBO, KGP and ANN model
structures), which have the disadvantage of losing the physical meaning of the parameters but, on
the other hand, give greater flexibility in the construction of nonlinear input/output model struc-
tures, which are linear in the parameters, with the consequent possibility of convex optimization.
Under the hypotheses of small waves, inviscid fluid and small body displacement, linear model
structures represent a convenient choice to describe the WEC dynamics. When the wave and body
displacement amplitudes increase, becoming of the same order of magnitude of the dimensions of
the body, some nonlinear hydrodynamic effects may appear, and the use of nonlinear input/output
model structures can improve the model accuracy. Usually, the fitting error of an identified model
is larger in validation than in training, for this reason, in this chapter, a new metric is proposed,
termed NVTD parameter (see Section 6.2.4), in order to quantify the degradation of performance
of a model, progressing from training to validation data sets.

Section 6.2 shows a case study where three different fixed 2D bodies are utilised, which have
the vertical cross-sections of a triangle, a circle and a box. For each geometry, three different
DT model structures (i.e. ARX, Hammerstein and KGP models), belonging to the η→ fe model
family, are identified (for a total of 9 identified models). Since the experiments are carried out in
a 2D CFD-NWT, the body geometries of the test devices are equivalent to infinitely long horizon-
tal bars. In the NWT, two different kinds of experiments are carried out, the prescribed motion
experiments, utilised to obtain data for the Hammerstein static curve identification (a different
experiment for each geometry), and the input wave excitation force experiments, employed for
the generation of data, utilised for the identification of the dynamic part of the model structures.
Two different FSE realizations (one for model identification and the other for model validation)
are utilised in the input wave excitation force experiments, which are realizations from the sea
state having a JONSWAP spectrum with Hs = 1.5 m Tp = 10 s. The same FSE realizations are
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utilised with all the geometries, for a total of 6 experiments. Each model is trained with a 1-step
prediction criterion and, once identified, the model is used to make multi-step predictions on the
same training data and on a different validation data set. For all 6 input wave excitation force
experiments (both training and validation), the KGP model structure appears best, followed by
the Hammerstein and finally the ARX model structure. None of the identified models is perfect,
but the linear model has particular difficulty in following peaks in the excitation force. The data
utilised in the case study show the presence of hydrodynamic nonlinearities, which the nonlinear
identified models are able to describe. The analysis of the results for the different geometries, in
training and validation, shows that the linear ARX model structure finds the triangular geometry
to be the most difficult to simulate, followed by the rectangular and the circular geometries. This
suggests that the degree of nonlinearity in the data is greater for the triangular geometry, followed
by the rectangular and the circular geometries. From a fluid dynamics point of view, the degree
of nonlinearity can be connected to the body shapes, by observing that the triangle has the most
nonlinear hydrostatic curve. On the other hand, the box has a linear restoring curve, but a very flat
bottom with sharp corners, which can be the source of important nonlinear effects, based on vis-
cosity and vortex shedding. Finally the circle has a moderate nonlinearity in the hydrostatic curve
and a very smooth shape, which may create a moderate viscosity and vorticity. The limitations
of the linear ARX models, with respect to the nonlinear models, are shown in particular in the
validation experiment for the triangular geometry, where the NWT data exhibit a symmetric (with
respect to the MFSE) sinusoidal FSE at the input, and an asymmetric excitation force at the output,
which is a typical example of nonlinear behaviour; indeed, the ARX model is not able to replicate
the asymmetric behaviour. For all 9 identified models, a value of NVTD< 0.25 was calculated,
indicating a parsimonious structure for the models and a good estimate for the parameter vectors.

In Section 6.3.1, the heave motion of a 3D conical floating body, in response to an input PTO
force (under the hypotheses of no incident waves and no mooring forces) is investigated. The
conical body geometry is chosen because it is characterised by strong nonlinearities in its restor-
ing force, which is appropriate to illustrate the different model capabilities of handling this effect.
Three different DT model structures (i.e. ARX, Hammerstein and FBO models), belonging to the
fin→ y model family, are identified. For comparison of the linear ARX model, a traditional lin-
ear CT model (in this chapter termed the Cummins-BEM model), based on a parametric form of
Cummins’ equation, is also evaluated, by using frequency domain hydrodynamic coefficients, cal-
culated by the BEM software WAMIT. The identified ARX model structure is more accurate than
the Cummins-BEM model. In the 3D CFD-NWT, two different kinds of experiments are carried
out, the prescribed motion experiment, utilised to obtain data for the Hammerstein and FBO static
curve identification, and the input force experiment, used for the generation of data, employed
for the identification of the dynamic part of the model structure. Each model is trained with a
1-step prediction criterion and, once identified, the model is used to make a multi-step prediction
on the same training data. Two different input force experiments are carried out in the NWT, both
characterised by a sinusoidal PTO force signal with a low frequency, which emphasizes the static
nonlinearity of the restoring force, by reducing other possible velocity-dependent nonlinearities.
In both the input force experiments, the body is also initially displaced 30 cm above its equilib-
rium position, allowing its free decay oscillation to be superimposed on the response to the PTO
force. The first input force experiment has a sinusoidal PTO force signal with a relatively small
amplitude; in this case, the linear models show good performance in fitting the NWT body dis-
placement, for both the transient and the steady-state motion. The second input force experiment
has a sinusoidal PTO force signal with a larger amplitude; in this case, the fully nonlinear NWT
simulation shows an asymmetric output, with respect to the equilibrium position, in response to
the symmetrical sinusoidal input. It is not possible for the linear models to replicate this nonlinear
behaviour. The linear models also show difficulty in the fitting of the transient part of the output.
On the other hand, the nonlinear models are able to replicate the asymmetric steady-state response,
and better able to reproduce the transient oscillations, particularly the FBO model, which performs
very well.
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In Section 6.3.2, the heave motion of a 2D circular floating body is investigated in response
to an input PTO force, under the hypotheses of no incident waves and no mooring forces. Three
different DT model structures (i.e. ARX, KGP and ANN model structures), belonging to the fin→
y model family, are identified. In contrast to the case study of Section 6.3.1, where the input PTO
force is a sinusoidal signal with a low frequency, in this case study, three different dynamically rich
PTO force signals (i.e. RARP, multisine and chirp signals) are utilised in order to obtain all the
required identification information. Two versions of each signal type are generated, one to be used
for model training and the other for model validation. By utilising a 1-step prediction criterion,
from each training experiments (i.e. R1, M1 and C1), three different models are identified (i.e.
ARX, KGP and ANN models), for a total of 9 models. Once identified, each model is used to make
multi-step predictions on the same training data, and on a different validation data set. In the case
of multi-step predictions on training data, the ANN models always perform best, followed by the
KGP models, and finally the ARX models, suggesting that the data contain nonlinearities, which
the KGP models and the ANN models, in particular, are able to capture. In the case of multi-step
predictions on validation data, in general, the ANN model structure has inconsistent performance,
the ARX model structure usually has poor performance, and the KGP model structure shows good
accuracy and consistency. The results show the difficulty for ANN identification, depending on the
nonlinear optimization algorithm and a larger number of parameters to be identified. An analysis
regarding which signal type is more performing, in order to identify accurate models, shows that,
in this case study, the RARP signal is more performing, in order to identify accurate models,
followed by the chirp signal.

In Section 6.4, the heave motion of a 2D circular floating body is investigated, in response
to incident waves, under the hypotheses of no PTO and no mooring forces. Three different DT
model structures (i.e. ARX, KGP and ANN model structures), belonging to the η→ y model fam-
ily, are identified. Two different FSE signals (one for model identification and the other for model
validation) are generated in the 2D CFD-NWT, which are realizations of the sea state, having a
JONSWAP spectrum with Hs = 0.6 m Tp = 8 s. Each model is trained with a 1-step prediction cri-
terion and, once identified, the model is used to make multi-step predictions on the same training
data and on a different validation data set. The multi-step model predictions on training data, show
only small differences in the performance of the linear ARX model compared to the two nonlinear
models, indicating that the floating body motion does not exhibit much nonlinear behaviour for the
geometry and wave conditions chosen in this case study. In the case of multi-step model predic-
tions on the validation experiment, it is possible to see that the ARX and KGP model performance
are similar and that the ANN model loses prediction accuracy. In particular, the calculated NVTD
values show that the ARX and KGP models generalise quite well, indicating good quality of the
utilised data and the identified parameter vector but, on the other hand, the ANN model, which is
the best in training, degrades considerably in validation, showing an inability to generalise, likely a
consequence of the nonlinear optimization and of the larger number of parameters to be identified.
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Chapter 7
Identification of DT hydrodynamic
parametric models from input/output RWT
experiments

7.1 Introduction

In Chapters 3 and 4, a methodology for the identification of hydrodynamic models is introduced by
utilising experimental data. In Chapters 5 and 6, the methodology is applied to data generated in a
NWT, which are becoming more and more available thanks to increases in computing power [305].
However, in the wave energy field, RWTs are a popular tool to investigate the WEC characteristics,
under controlled and repeatable conditions. Furthermore, a RWT furnishes an environment to
repeatedly test, at small scale, rare sea conditions and verify the survivability characteristics of a
WEC. Recently, the use of European RWTs has been promoted through the MARINET program
[306], by offering free-of-charge access to companies and research groups to 45 different European
marine renewable energy research infrastructures.

In this chapter, the framework for model identification, already applied to NWT data, is broad-
ened to the context of data generated in a RWT, analysing the performance of identified linear and
nonlinear models. The data utilised for this chapter were recorded at the Coastal Ocean And Sed-
iment Transport (COAST) Laboratory of Plymouth University, UK, where hydrodynamic tests
were carried out on a scaled Wavestar WEC point-absorber [307].

Section 7.2 describes the main advantages and disadvantages of a RWT compared to a NWT.
Section 7.3, explains the main preprocessing operations necessary to apply to the data measured
in a RWT, before using them for model identification and validation. Section 7.4 illustrates a
particular case study, with Section 7.4.1 describing the characteristics of Plymouth facility, Section
7.4.2 illustrating the utilised scaled Wavestar WEC, Section 7.4.3 explaining the experiments used
to collect the data and utilised in this chapter, Section 7.4.4 showing the utilised model structures
and their identification and Section 7.4.5 illustrating the identified model performance. Finally,
conclusions are drawn in Section 7.5.

7.2 RWT and NWT comparison

In the wave energy community, the two main sources of data, utilised to test and model WECs, are
the experiments generated in a NWT (as utilised in Chapters 5 and 6), and the real experiments
generated in a RWT. Both NWT and RWT have their own particular advantages and disadvantages,
as explained in Sections 7.2.1 and 7.2.2.
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7.2.1 RWT advantages compared to NWT

RWTs, compared to NWTs, have the following main advantages [7]:
• All NWTs are implemented by utilising mathematical models, which necessarily are an approx-
imation of the real system under study (e.g. the approximations introduced from the turbulence
model). Furthermore, the approximated equations utilised are resolved with numerical techniques,
which introduce additional numerical errors. As a result, a NWT simulation does not completely
correspond to the time-evolution of the real system. On the other hand, a RWT allows the obser-
vation and study of the real system, without the introduction of any modelling error.
• The NWTs implemented with CFD, and utilised for the data generation in Chapters 5 and 6, are
characterised by a long computation time, which, typically, can be up to 1000 times the simulation
time (e.g. 1 s of simulation time takes 1000 s to compute). It is important to underline that, based
on the observation of the data for the last 40 years, the CPU power will double every 18 months in
the next years; this will lead to a constant reduction of the computing costs [24].

7.2.2 RWT disadvantages compared to NWT

A RWT, compared to a NWT, has the following main disadvantages [10] [11]:
• In the majority of the cases, the device has to be scaled to perform a test in a RWT, introducing
complications with scaling effects [308]. In a NWT, instead, the devices can be tested directly at
any real scale.
• In a NWT, the device can be constrained to different modes of motion by utilising ideal nu-
merical constraints; in a RWT, instead, it is necessary to utilise real mechanical restraints, which
increase the cost of the tests and introduce friction, altering the device dynamics under investiga-
tion.
• In a RWT, there is the presence of random and systematic errors in the measurements. For ex-
ample, in [212], the presence of the measurement error (introduced by the bending and torsion of
the basin’s bridge, which supports the WEC modal test) is outlined.
• In a RWT, it is not possible to directly measure the hydrodynamic force on the body.
• In a RWT, reflections from tank walls represents a considerable inconvenience, since they alter
the wave field surrounding the WEC under investigation. The presence of beaches in a RWT re-
duces the problem but does not eliminate it. Another possibility to reduce the wave reflection is
the use of active absorbing wavemakers, which are more effective than beaches, but more expen-
sive [309]. In a NWT, the wave reflections can be effectively controlled by numerical absorption
techniques.
• In a RWT, specialist equipment, including a prototype WEC device, is required, increasing the
cost of the tests.
• In a RWT, motion capture requires the use of physical sensor devices, which can alter the device
or fluid dynamics.

7.3 RWT data preprocessing

7.3.1 Calibration: zero error calculation and cancellation

As explained in Section 7.2.2, one of the disadvantages of a NWT is the presence of random
and systematic errors in the measurements. Random errors are fundamentally due to physical
noise (i.e. by natural fluctuations due to thermal particle motion) and, by their nature, they are
unpredictable [310] [311]. On the other hand, systematic errors do not have a random nature and
they can result from an erroneous calibration, leading to the presence of a constant bias uncertainty,
called zero error (also known as offset error), on the measured quantity, as shown in Fig. 7.1 [312].
Examples of quantities, which can suffer of zero error in the RWT measurements, are the body
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Figure 7.1: Relationships between the real value of a quantity and its measurement: the dashed
line represents an ideal measurement curve (the measured value is equal to the real value), the
continuous line represents a real measurement curve affected by a zero error.

displacement and the FSE [313] [314]. The objective of this chapter is to model the relationship
between the FSE and body displacement. If the FSE is constantly zero at the input of the model
(no waves), the body displacement, at the output of the model, has to be zero as well (without
waves the body does not move from its equilibrium position). Therefore, the zero errors, present
in the FSE and the body displacement measurements, have to be calculated and removed before
the identification and validation of the models. The mean value of the FSE measured in a point of
the tank should be zero, therefore, the cancellation of the zero error is straightforward; indeed, it
is sufficient to calculate the mean value of the signal and remove it from the original signal:

η(k) = ηm(k)−
1
Nt

Nt

∑
k=1

ηm(k) (7.1)

where ηm is the original measured FSE signal, η is the corrected FSE signal and Nt the total
number of samples available for the FSE signal.

In contrast to the FSE, the body displacement can be a signal with non-zero mean value (for
example in the case of a nonlinear asymmetric restoring force); therefore, it is not correct to
remove the mean value from the original signal. Instead, a way to estimate the zero error of the
body displacement is to start the experiment without any input excitement (no waves) for some
seconds (for example 5 s) and to measure the corresponding and constant (apart from the random
error on the measurement) body displacement. The initial sequence of nearly constant values of
the measured body displacement can be averaged to reduce the influence of the random error on
the estimation of the zero error. Once calculated, the zero error can be removed from the original
signal:

y(k) = ym(k)−
1

Nc

Nc

∑
k=1

ym(k) (7.2)

where ym is the original measured body displacement signal, y is the corrected body displacement
signal and Nc is the number of samples of the body displacement having an initial constant (apart
from the random error on the measurement) signal value. Fig. 7.2 shows the measured FSE and
body displacement before and after the zero error cancellation for experiment E1.

7.3.2 Data interpolation

In general, in a RWT experiment, different physical quantities are measured using different sen-
sors, each one characterised by its own sampling time. The experimental data set, utilised in this
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Figure 7.2: Measured FSE and body displacement before and after the zero error cancellation (in
the case of experiment E1).

chapter, consist of FSE measurements having a sampling time equal to 8 ms and body displace-
ment measurements having a sampling time equal to 2 ms. Since it is necessary to have input and
output variables with the same sampling time for the identification of the models, a preprocessing
operation of interpolation is necessary before the use of the data. The data utilised in this chapter
have been interpolated with a sampling time Ts = 0.1 s

7.4 Case study

7.4.1 Wave tank facility specifications (Plymouth)

The data utilised for this chapter have been collected during a period of four weeks in September
2013, through the MARINET access program at the COAST Laboratory of Plymouth University,
UK [315]. The RWT is 35 m long by 15.5 m wide and with an adjustable floor, that can be set with
a depth up to 3 m. (the data utilised in this chapter have been obtained with a 3 m depth floor). On
the wave tank, 24 dry-backed flap wavemakers of 2.0 m hinge depth are installed, each of them
individually controlled for wave generation. The presence of an absorbing beach significantly
reduces the amplitude of reflected waves. Fig. 7.3 shows the COAST ocean wave basin.

7.4.2 Device specifications

The scaled Wavestar WEC studied is a point-absorber composed of a 1 m diameter hemispherical
float, rigidly attached to a 2 m length arm (see Fig. 7.4) [316] [317]. The total weight of the float-
arm system is 130 kg. The WEC is constrained to have a single DoF: the rigid float-arm structure
rotates in pitch around a fixed hinge, located 1.69 m above the mean FSE. An hydraulic cylinder is
attached to the support frame, roughly halfway down the arm, with the purpose of controlling the
pitching motion of the device, by applying a PTO force. The WEC is attached to the bridge at the
facility utilising a mounting frame. See Fig. 7.5 for the detailed mechanical drawing. The force
applied from the hydraulic cylinder is described by fcyl = −Kcyl∆cyl −Dcyl∆̇cyl , where Kcyl = 50
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Figure 7.3: RWT at the COAST Laboratory of Plymouth University. On the left, the dry-backed
flap wavemakers are shown.

Figure 7.4: Scaled Wavestar WEC tested at Plymouth.
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mean FSE

Figure 7.5: Mechanical dimensions in mm of the scaled Wavestar WEC. The WEC is depicted at
its equilibrium position. In the picture, the mean FSE is also represented [316].

Figure 7.6: Relative position the WEC and the FSE probe (top view) [316].
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Exp. name Hs [m] Tp [s]
E1 0.124 2
E2 0.184 2.5
E3 0.245 3
E4 0.369 2.5
E5 0.490 3
E6 0.720 4

Table 7.1: Hs and Tp of experiments E1, E2, E3, E4, E5 and E6

N/m, Dcyl = 100 Ns/m are the stiffness and damping coefficient, respectively, ∆cyl is the hydraulic
cylinder displacement and ∆̇cyl is the hydraulic cylinder velocity.

The input variable, utilised for the mathematical model, is the FSE available at the center of
mass of the float, the measurement of which is problematic, since the body occupies that position.
The problem is overcome by utilising a FSE probe that is at the side of the float, on a line parallel
to the wavefront and passing through the center of mass of the float, as shown in Fig. 7.6. In this
way, it is possible to obtain the FSE elevation at the center of mass of the float (plus the waves
radiated by the body).

Hydraulic cylinder 
(body displacement measurement)

Figure 7.7: Scaled Wavestar WEC tested at Plymouth. The arrow shows the hydraulic cylinder
used to measure the body displacement and to apply the PTO force [316].

7.4.3 Experimental data

In this chapter, 6 different RWT experiments are utilised for the WEC modelling. In each exper-
iment, the waves are generated by the flap wavemakers and measured by the FSE probe, shown
in Fig. 7.6; the waves create WEC motion, which is measured as an extension of the hydraulic
cylinder, by a sensor (see Fig. 7.7) [316]. The cylinder displacement ∆cyl (from the equilibrium
position), measured by the sensor, is positive when the cylinder extends and, consequently, when
the float enters into the water. It is desirable having a variable, representing the body displacement,
which is positive when the float emerges from the water and negative when enters into the water;
therefore, the body displacement is defined conventionally as y =−∆cyl .

The FSE of each experiment is a realization of a different irregular sea state characterised by a
JONSWAP spectrum. The significant wave height, Hs, and peak wave period, Tp, of the different
experiments are shown in Table 7.1. In Figs. 7.8, 7.9, 7.10, 7.11, 7.12 and 7.13, it is possible to
see the time evolution of the FSE and y for experiments E1, E2, E3, E4, E5 and E6 respectively.
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Figure 7.8: Signals time evolution for experiment E1 (Hs = 0.124 m, Tp = 2 s).
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Figure 7.9: Signals time evolution for experiment E2 (Hs = 0.184 m, Tp = 2.5 s).
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Figure 7.10: Signals time evolution for experiment E3 (Hs = 0.245 m, Tp = 3 s).
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Figure 7.11: Signals time evolution for experiment E4 (Hs = 0.369 m, Tp = 2.5 s).
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Figure 7.12: Signals time evolution for experiment E5 (Hs = 0.490 m, Tp = 3 s).
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Figure 7.13: Signals time evolution for experiment E6 (Hs = 0.720 m, Tp = 4 s).
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Figure 7.14: Transformation curve from the hydraulic cylinder displacement, ∆cyl , into the float
heave displacement, yH .

7.4.4 Model selection

The Wavestar WEC is a well known device in the wave energy community, and it has been repeat-
edly studied in recent years. Different kinds of models have been utilised to describe its behaviour,
some of them purely linear, based on the assumption of linear potential theory [318] and, more
recently, nonlinear terms have been introduced into the models. In [75], a nonlinear hydrostatic
restoring moment, described by a cubic polynomial function, is introduced into the model. In
[75] and [182], a drag term is introduced by utilising Morison’s equation. The accuracy of the
nonlinear WEC models show some improvement, compared to the linear ones, especially for peak
displacement but, at the same time, viscous drag moment can be negligible in the case of passively
damping PTO [75]. In [170], the influence of the nonlinear Froude-Krylov force on the dynamics
of a float is outlined (the float has the same geometry and dimensions of the scaled Wavestar WEC
used in this chapter). All the previously mentioned nonlinear effects are strongly dependent on
the extent of the time-varying wetted body surface, which is the surface of interaction between
the body and the water. Since the body displacement alone is not sufficient to provide an indi-
cation of the variation of the wetted body surface, it is more useful to take into consideration the
relative float heave displacement, yRH , defined as yRH(k) = yH(k)−η(k), where yH is the float
heave displacement. Indeed, yRH provides a more accurate measure of the amount of the body
that is submerged into the water. By using the mechanical information available in Fig. 7.5, it is
possible to convert the hydraulic cylinder displacement, ∆cyl , into the heave float displacement yH .
Fig. 7.14 shows the transformation curve from the hydraulic cylinder displacement into the float
heave displacement. Fig. 7.15 represents the relative float heave displacement for experiment E1.
Fig. 7.15(a) shows the float heave displacement time evolution, Fig. 7.15(b) shows the float heave
displacement probability distribution. Analogous plots for experiments E2, E3, E4, E5 and E6 are
shown in Appendix B, in Figs. B.1, B.2, B.3, B.4 and B.5. In the six experiments utilised in this
chapter, the relative float heave displacement is, for the majority of the time, contained between
-0.1 and +0.1 m. Fig. 7.16 shows that the float cross-sectional area does not change in a significant
way for a relative float heave displacement between -0.1 and +0.1 m, suggesting that the involved
hydrodynamic nonlinearities are modest.
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Figure 7.15: Relative float heave displacement for experiment E1. (a) Time evolution (b) Proba-
bility distribution.

Figure 7.16: Mechanical dimensions of the float in meters. The body cross-sectional area does not
change in a significant way for a relative float heave displacement between -0.1 and +0.1 m.

7.4.4.1 Model structures

From the considerations of Section 7.4.4, it is reasonable to suppose the presence of weak non-
linear effects; therefore, linear and nonlinear structures are investigated and their performances
compared to verify the necessity of nonlinear models to describe experiments E1,... E6. The two
utilised model structures, belonging to the η→ y model family, are the linear ARX model (see
Section 3.2.3.1):

y(k) =
na

∑
i=1

aiy(k− i)+
nb

∑
i=0

biη(k−nd− i) (7.3)

and the KGP model (see Section 3.2.3.5):

y(k) =
np

∑
j=1

[ na

∑
i=1

ai jy j(k−i)+
nb

∑
i=0

bi jη j(k−nd−i)
]

(7.4)

As explained in Section 3.2.3.5, the presence of the cross-product terms (between µ and y) in the
KGP model structure can lead to potential, and unpredictable, stability problems. For this reason,
the model described by (7.4) does not contain any cross-product terms. The ARX models provide a

214



reference linear model, with which nonlinear KGP models can be compared. As explained in Sec-
tion 3.2.4, the estimated na, nb and nd for the ARX model, are also utilised with the KGP models
since, maintaining the same dynamical order and delay time for the linear and nonlinear models,
provides the possibility of isolating the comparative linear/nonlinear structure performances.

7.4.4.2 Dynamical orders and delay time identification

In this chapter, the same framework is utilised, as in Section 3.2.4 and Chapter 6 for the identifica-
tion of the dynamical orders na, nb and the delay time nd of the DT linear and nonlinear models. A
first indication, regarding possible values of na, nb and nd , is obtained by identifying 3100 different
ARX structures, by utilising all the possible combinations of the integers 1≤ na ≤ 10, 0≤ nb ≤ 9
and −20≤ nd ≤+10. In Fig. 7.17, the loss function LF = LF(na,nb,nd), for the experiment E1,
is plotted versus na, where each vertical line shows the range of LF for a specific value of na and
for 0≤ nb ≤ 9 and −20≤ nd ≤+10. The objective is to obtain small values of LF; therefore, the
bottom of the vertical lines are the values to focus on. It is possible to see that there is no relevant
reduction of LF for na > 5. Very similar results are obtained for experiments E2, E3, E4, E5 and
E6. In Appendix B, Figs. B.6, B.7, B.8, B.9 and B.10. show the associated plots. These results
indicate that na = 5 is the correct value to obtain a parsimonious model structure.
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Figure 7.17: LF for experiment E1. For na > 5 there is not any relevant reduction of the LF (na = 5
is the correct value to obtain a parsimonious model structure).
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Figure 7.18: LF curves for experiment E1 in the case of na = 5 and nb = 0, 4 and 6. LF has a
minimum at nd = −4 (if nb = 0), at nd = −7 (if nb = 4) and at nd = −8 (if nb = 6). The curves
move down and left with nb increasing from 0 to 4 to 6, as indicated by the black arrow.

215



−30 −20 −10 0 10

3.5

4

4.5

5

5.5

6

6.5

7

7.5
x 10

−8

n
d

L
o
s
s
 f
u
n
c
ti
o
n

 

 

Figure 7.19: LF curves for experiment E1. Increasing nb the LF does not reduce anymore, this
occurs when nd =−7 (na = 5 has been already identified).

Once na is selected, the next step is the estimation of nb and nd . Plotting a different LF
curve versus nd , for each value of nb, shows that the minimum of the LF occurs at different nd ,
dependently on the value of nb. Indeed, Fig. 7.18 shows the LF curves for experiment E1 for
the case of na = 5 and nb = 0, 4 and 6; it is possible to see that LF has a minimum at nd = −4
(if nb = 0), at nd = −7 (if nb = 4) and at nd = −8 (if nb = 6). Fig. 7.18 also shows that the
curves move down and left as nb increases from 0 to 4 to 6, as indicated by the black arrow in
the picture. By increasing nb even more, the curves still move left but they stop moving down,
as shown in Fig. 7.19 with LF = LF(na = 5,0 ≤ nb ≤ 29,−30 ≤ nd ≤ +10). The fact that the
curves stop moving down is relevant, because it gives a clear indication that there is no advantage
in introducing complexity into the model, for no gain in model fidelity (the minimum of LF stops
decreasing). Plotting different LF curves versus nd , on the same graph, for different value of nb,
is useful to obtain a first indication for the value of nd . Indeed, Fig 7.19 shows that the minima
of the curves stop decreasing for about nd equal to -7. For experiments E2, E3, E4, E5 and E6,
the curves stop going down for nd = −8,−5,−8,−9 and −11 respectively, suggesting a range
of −11 ≤ nd ≤ −5. In Appendix B, Figs. B.11, B.12, B.13, B.14 and B.15 show the associated
plots. Now that a range for nd is available, the next step is to find the associated range for nb.
Fig. 7.20 shows LF = LF(na = 5,0 ≤ nb ≤ 20,−11 ≤ nd ≤ −5) versus nb, for the experiment
E1. Each vertical line shows the range of LF for a specific value of nb, with na = 5 and nd taking
all the possible values between -11 and -5. In Fig. 7.20 it is possible to see that the bottom of
the vertical lines of LF stops decreasing significantly for nb > 4. By applying the same procedure
for experiments E2, E3, E4, E5 and E6, the LF ceases to reduce further for nb > 10,7,12,7,8
respectively. In Appendix B, Figs. B.16, B.17, B.18, B.19 and B.20 show the associated plots.
Therefore, the range 4 ≤ nb ≤ 12 associated with the range −11 ≤ nd ≤ −5, is suggested. The
use of an approximated model structure (ARX models) to describe the data, results in different
suggested values of nb and nd from different experiments (however, the same na = 5 has been
identified from all experiment). It is important to underline that the objective is the identification
of the simplest model structure having the same na, nb and nd for all the different inputs (different
FSE), able to provide multi-step predictions of the body displacement, as close as possible to the
experimental data. Therefore, the multi-step predictions of the models are calculated starting from
the smallest nb = 4, and increasing in complexity until good average multi-step model performance
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for experiments E1, E2, E3, E4, E5 and E6, is obtained. Good results are obtained for nb = 6 (and
the associated nd =−8).

Table 7.2: Identified na, nb, nd and np for experiments E1, E2, E3, E4, E5 and E6
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Figure 7.20: LF for experiment E1 (na = 5,−11≤ nd ≤−5 and 0≤ nb ≤ 20). For this experiment,
no relevant reduction of the LF for nb > 4.

7.4.5 Model training and validation

In Section 7.4.4.2, the delay time and the dynamical orders of the model structures are estimated
(nd = −8, na = 5 and nb = 6, as shown in Table 7.2) and now it is possible to proceed to the
model training and validation, utilising the experimental data. The models have to describe the
behaviour of the WEC in different sea states and there are different strategies to identify the model
parameters.

A first possibility, referred here as single training, it is to identify a set of parameters for each
available sea state (in this case six sea states) and for each model structure. Subsequently, the set of
parameters, corresponding to the present sea state, is loaded into the model structure to predict the
behaviour of the WEC. In this chapter, as explained in Section 7.4.3, each available experiment is
a realization belonging to a different sea state (see Table 7.1). For the identification and validation
of the model parameters, each experiment is divided in two parts: the first 70% time length part
and the final 30% time length part. Each model is trained with a 1-step prediction on the first
part and, once identified, the model is used to make a multi-step prediction on the same first 70%
training part of the experiment, and a multi-step prediction on the final 30% validation part of the
experiment (see Fig. 7.21).
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Figure 7.21: In the case of single training, each experiment is divided in two parts: the first 70%
time length part and the final 30% time length part. Each model is trained with a 1-step prediction
on the first part, and, once identified, it is used to make a multi-step prediction on the same first
70% training part of the experiment, and a multi-step prediction on the final 30% validation part
of the experiment.

Table 7.3: NRMSE models multi-step prediction performance with na = 5, nb = 6 and nd = −8.
Each model is trained with a 1-step prediction on the first 70% part, and once identified, it is used
to make a multi-step prediction on the same 70% training part of the experiment (reported in the
table), and a multi-step prediction on the final 30% validation part of the experiment (reported in
the table). The nonlinear KGP models are compared to the linear ARX models; in white when the
nonlinear model performs better than the linear one, in red when the nonlinear model performs
worse. The performance of the linear ARX models are in yellow.
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Table 7.3 shows the NRMSE multi-step prediction performance for each model. Furthermore,
the nonlinear KGP models are compared to the linear ARX model, in white when the nonlinear
model performs better than the linear one, in red when the nonlinear model performs worse. The
performance of the linear ARX models is shown in yellow. In each experiment (apart the final
30% of experiment E2), the multi-step predictions of the KGP models, with np = 2, are better than
the multi-step predictions of the ARX models, in both the initial 70% and final 30% validation
parts, but the level of improvement is not significant. Furthermore, by increasing np to 3, the KGP
multi-step predictions show a degradation in validation, compared to the KGP model with np = 2,
indicating that np = 3 introduces too much complexity into the model, suggesting the presence of
overfitting. Similar conclusions apply for np equal to 4 and 5. Therefore, the results clearly indi-
cate that the floating body motion does not exhibit much nonlinear behaviour, as already predicted
in Section 7.4.4, by observing the relative float heave displacement. Usually, the fitting error of
an identified model is larger with validation data than with training data. The NRMSE multi-step
prediction performance with training and validation data (see Table 7.3) are used to calculate the
NVTD parameter (see Table 7.4), defined by equation (6.21). A NVTD = 0.25 is chosen as an
upper threshold for a model having a good ability to generalize; therefore, Table 7.4 shows that
all the identified ARX and KGP(2) models generalise quite well, indicating good quality of the
utilised data and the identified parameter vector.

Experiment ARX KGP(2)
E1 -0.1078 -0.1287
E2 0.0409 0.0581
E3 0.0971 0.1547
E4 -0.0357 -0.0173
E5 -0.0405 -0.0720
E6 -0.0577 -0.0136

Table 7.4: NVTD parameter values calculated from NRMSE multi-step prediction performance,
by using the data of Table 7.3.

A second possibility for the model identification, referred here as mixed training, is to obtain
a unique set of parameters for each model structure, able to describe the behaviour of the WEC
in any sea condition. Therefore, only one ARX model and one KGP model having np = 2 are
identified. As in the case for single training, each experiment is divided in two parts: the first 70%
time length part and the final 30% time length part. The first 70% of each dataset E1, E2, E3, E4, E5
and E6 are utilised together to train the models with a 1-step prediction criterion. Once the models
are identified, they are validated with a multi-step prediction criterion on the final 30% part of each
experiment (each model is validated in six different sea states). The NRMSE multi-step prediction
performance for the models is shown in Table 7.5, where the nonlinear KGP models are compared
to the linear ARX models; in white when the nonlinear model performs better than the linear one,
in red when the nonlinear model performs worse. The performance of the linear ARX models is
in yellow. The validation of the models shows that, in each experiment (apart from E2 and E3), the
multi-step predictions of the KGP models, with np = 2, are better than the multi-step predictions
of the ARX models but, once again, the level of improvement is not significant, confirming the
linear nature of the data.

At this point, the following question is posed: to obtain a good prediction on a sea state,
is it better to train the models only on the same sea state (to specialise the models only for the
specific sea condition), or it is always better to train the models using all the information available,
even if the extra information are from different sea states? In order to answer this question, the
performance of the models identified with single training, shown in Table 7.3, and with mixed
training, shown in Table 7.5, are compared in Table 7.6, where the boxes in white indicate that the
model identified with single training performs better than the model identified with mixed training
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trained, and in red when it performs worse. The results show that there is not a clear answer
regarding if it is better identify the models using a single sea state or utilising simultaneously all
the data from the different sea states.

Table 7.5: Validation NRMSE models multi-step prediction performance with na = 5, nb = 6 and
nd = −8 in the case where the models are trained with a 1-step prediction using simultaneously
the first 70% part of all the experiments (mixed training). The models, once identified, are used
to make a multi-step prediction on the final 30% validation part of each experiment (reported in
the table). The nonlinear KGP model with np = 2 is compared to the linear ARX model; in white
when the nonlinear model performs better than the linear one, in red when the nonlinear model
performs worse. The performances of the linear ARX models are in yellow.

Table 7.6: Comparison of validation NRMSE models multi-step prediction performances in the
cases of single and mixed training for na = 5, nb = 6 and nd =−8. Each model, once identified, is
used to make a multi-step prediction on the final 30% validation part of each experiment (reported
in the table). The boxes in white indicate that the model identified using single training performs
better than the model identified using mixed training and in red when it performs worse.

The space of sea states (for example described in terms of Hs and Tp) can be discretized. The
level of discretization is a compromise between the total number of sea states and the accuracy of
each sea state description. A larger number of sea states requires more experiments and, conse-
quently, a larger number of model parameters sets to interpolate between. Therefore, the number
of utilised sea states should be limited, and the models should be able to describe any sea con-
dition, by interpolating/extrapolating the information provided from the known sea states. In the
case of the Wavestar WEC, six different experiments are available from six different sea states.
The models are trained with a 1-step prediction, by simultaneously using 100% of five experiments
and, once identified, they are used to make a multi-step prediction on 100% of the sixth missing
experiment. In this way, the ability of the identified models to interpolate/extrapolate the informa-
tion, provided from the known sea states to predict an unknown sea condition, is tested. In total,
the procedure has been repeated six times, each time by changing the sixth missing experiment.
In Table 7.7, the NRMSE multi-step prediction model performance, on validation data, is shown.
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In a similar way, Tables 7.8, 7.9, 7.10, 7.11 and 7.12 show the NRMSE multi-step prediction
model performance, on the validation experiments E2, E3, E4, E5 and E6, respectively. Tables 7.7,
7.8, 7.9, 7.10, 7.11 and 7.12 show that the NRMSE multi-step prediction model performance are
larger (but still comparable) than the NRMSE multi-step prediction model performance in Table
7.5, where the models are trained using the first 70% of all six experiments. The results indicate
a good ability of the models to interpolate/extrapolate the information provided from the known
sea states to predict an unknown sea condition. Also, in this case, in each experiment (apart from
experiment E2), the multi-step predictions of the KGP models with np = 2 are better than the
multi-step predictions of the ARX models.
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Table 7.7: Validation NRMSE models multi-step prediction performances, in case the models are
trained with a 1-step prediction using simultaneously 100% of experiments E2, E3, E4, E5 and
E6. The models, once identified, are used to make a validation multi-step prediction on 100% of
the experiment E1 (reported in the table). The nonlinear KGP model with np = 2 is compared to
the linear ARX model; in white when the nonlinear model performs better than the linear one, in
red when the nonlinear model performs worse. The performance of the linear ARX model is in
yellow.
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Table 7.8: Validation NRMSE models multi-step prediction performances, in case the models are
trained with a 1-step prediction using simultaneously 100% of experiments E1, E3, E4, E5 and
E6. The models, once identified, are used to make a validation multi-step prediction on 100% of
the experiment E2 (reported in the table). The KGP model with np = 2 is compared to the ARX
model; in white when the nonlinear model performs better than the linear one, in red when the
nonlinear model performs worse. The performance of the ARX model is in yellow.
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Table 7.9: Validation NRMSE models multi-step prediction performances, in case the models are
trained with a 1-step prediction using simultaneously 100% of experiments E1, E2, E4, E5 and
E6. The models, once identified, are used to make a validation multi-step prediction on 100% of
the experiment E3 (reported in the table). The KGP model with np = 2 is compared to the ARX
model; in white when the nonlinear model performs better than the linear one, in red when the
nonlinear model performs worse. The performance of the ARX model is in yellow.
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Table 7.10: Validation NRMSE models multi-step prediction performances, in case the models
are trained with a 1-step prediction using simultaneously 100% of experiments E1, E2, E3, E5 and
E6. The models, once identified, are used to make a validation multi-step prediction on 100% of
the experiment E4 (reported in the table). The KGP model with np = 2 is compared to the ARX
model; in white when the nonlinear model performs better than the linear one, in red when the
nonlinear model performs worse. The performance of the ARX model is in yellow.
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Table 7.11: Validation NRMSE models multi-step prediction performances, in case the models
are trained with a 1-step prediction using simultaneously 100% of experiments E1, E2, E3, E4 and
E6. The models, once identified, are used to make a validation multi-step prediction on 100% of
the experiment E5 (reported in the table). The KGP model with np = 2 is compared to the ARX
model; in white when the nonlinear model performs better than the linear one, in red when the
nonlinear model performs worse. The performance of the ARX model is in yellow.
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Table 7.12: Validation NRMSE models multi-step prediction performances, in case the models
are trained with a 1-step prediction using simultaneously 100% of experiments E1, E2, E3, E4 and
E5. The models, once identified, are used to make a validation multi-step prediction on 100% of
the experiment E6 (reported in the table). The KGP model with np = 2 is compared to the ARX
model; in white when the nonlinear model performs better than the linear one, in red when the
nonlinear model performs worse. The performance of the ARX model is in yellow.

7.5 Summary and discussion

In this chapter, the framework for model identification, developed in Chapters 3 and 4, and utilised
in Chapters 5 and 6 with NWT data, is applied on real experimental data, obtained by studying a
scaled Wavestar WEC, at the RWT of Plymouth University. Six different experiments are utilised,
each one characterised by an irregular FSE belonging to a different sea state. For each experiment,
the measurements of the FSE and of the body displacement are provided. For the identification
of the models, having FSE and body displacement as input and output respectively, two different
model structures are utilised: the ARX and KGP models. Both models are linear in the parameters,
leading to the advantage of a linear optimization for their identification. Furthermore, the ARX
model provides a reference input-output linear model for the input-output nonlinear KGP model.
The common dynamical orders na, nb and delay time nd , which the ARX and KGP models share
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(na = 5, nb = 6 and nd = −8), are identified by utilising the same framework used in Chapters 3
and 6 with NWT data.

For the identification of the models, two different strategies are applied: single training and
mixed training. With single training, for each model structure, a different parameter vector is
identified for each available sea state; with mixed training, for each model structure, a unique
parameter vector is identified, able to describe the behaviour of the WEC in any sea condition.
In both strategies, in nearly all experiments, the validation of the models show that the multi-step
predictions of the KGP models (with np = 2) are better than the multi-step predictions of the ARX
models, but the level of improvement is not significant, showing that the hydrodynamic nonlinear
effects, acting on the Wavestar WEC in the utilised experiments, are not significant, due to the
reduced relative body displacement. The results also show that there is not a clear answer regarding
the advantage of identifying the models by using a single sea state or utilising, simultaneously, all
the experiments from the different sea states. An interesting potential future work is the study of
the application of a PTO excitation force on the same Wavestar device, providing the possibility of
creating a more significant relative body displacement and introducing, in this way, more nonlinear
hydrodynamic effects into the system.
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Chapter 8
Conclusions

Contemporary society is characterised by an increase of energy demand, in order to supply all the
different humans activities. Wave energy represents an important resource of renewable energy,
which can provide a significant support to the development of more sustainable energy solutions.
The energy transported by the waves can be partially extracted by the PTO system, connected to
the WEC. The amount of extracted energy can be increased by optimizing the WEC shape and
the WEC-PTO control strategy, which both require mathematical hydrodynamic models, able to
correctly describe the WEC-fluid interaction. The hydrodynamic laws are the foundations for a
complete description of the WEC-fluid interaction, but their solution represents a very complex
and challenging problem. Different approaches to hydrodynamic WEC-fluid interaction mod-
elling, such as CFD and LPT (as reviewed in Chapter 2), lead to different mathematical models,
each one characterised by different accuracy and computational speed. The main objective of this
thesis is to obtain models which are between the CFD and LPT extremes, a good compromise
able to describe the most important nonlinearities of the physical system, without requiring exces-
sively computational time. A pragmatic framework is proposed in this thesis for hydrodynamic
model construction, based on system identification, where models are determined from recorded
experimental data. One of the major improvements proposed by this thesis is the use of CFD-
NWT or RWT data, instead of traditional LPT-BEM data, for hydrodynamic model identification,
since NWT and RWT data can contain the full range of nonlinear hydrodynamic effects (where
the experiment is correctly designed).

In Chapter 3, CT hydrodynamic model structures are proposed, outlining the fact that they pro-
vide a good insight into system understanding since, usually, CT models are derived from physical
laws and the model parameters are strongly related to the physical system properties. Chapter 5
shows that one of the main drawbacks of the use of CT model structures is the requirement of
nonconvex optimization strategies, which are necessary in order to identify the model parameter
vector, since the loss function, associated with the CT model structure, is characterised by the pres-
ence of multiple local minima and, therefore, a strong sensitivity to the initial optimization seed.
Therefore, in this thesis, the use of DT model structures is proposed, which have the disadvantage
of losing the physical meaning of the parameters but, on the other hand, DT model structures pro-
vide greater flexibility in the construction of nonlinear input/output model structures, which are
linear in the parameters, with the consequent employment of convex optimization strategies.

This thesis proposes, in Chapter 4, the use of two typologies of WT experiments, the prelim-
inary and identification experiments. The preliminary experiments (which are characterised by a
fast computation time, in case of a CFD-NWT) are utilised to obtain a rough measurement of the
resonant frequency and the bandwidth of the WEC, informing the successive identification exper-
iments where the input power spectrum should be allocated. On the other hand, the identification
experiments are utilised to produce data to identify the parameters of a WEC model or model
sub-blocks. The hydrodynamic model identification framework, proposed in Chapters 3 and 4,
is utilised for six different case studies, where the utilised CFD-NWT data are provided by Josh
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Davidson from Maynooth University and the RWT data are provided by Morten Jakobsen from
Aalborg University.

Chapters 5 and 6 show that the relevance of nonlinear hydrodynamic forces acting on a WEC,
such as viscous drag, nonlinear restoring and Froude-Krylov forces, changes depending on the
wave and oscillation amplitudes; indeed, large body amplitudes increase the nonlinear dissipative
effects. The ideal WEC modelling solution is a nonlinear parametric model, characterised by a
good compromise between accuracy and computation time, able to describe the whole operating
amplitude-frequency region. Theoretically, if the model structure described exactly the physics of
the WEC-fluid interaction, and if an infinity of experimental data were available, the SI framework
would provide an accurate model, adapted for any operating region. Unfortunately, any real case
is far from this ideal situation; indeed, the model structure is only a reasonable approximation of
the process, and the amount of experimental data are limited, which leads to an accurate iden-
tified model only for a specific operating region. Chapter 5 shows the identification of a set of
different models, where each identified model is representative in the operating amplitude region
it is identified from, and then loses fidelity as it tries to predict the WEC dynamics away from
this region. Therefore, the WEC behaviour could be described by switching between different
representative models, at different operating conditions. The identification of such a model set
requires the availability of a group of different experimental data, able to cover the whole WEC
operational range of interest. Linear models, identified from LPT-BEM data, describe accurately
only very small operating conditions, whereas linear models, identified from CFD-NWT data (i.e.
ARX and state-space models), show in Chapters 5 and 6 average behaviour more representative
of the actual nonlinear process (in the operating amplitude region the model is identified from),
compared to linear models identified from LPT-BEM data. In Chapter 5, the results show that,
as the average WEC displacement amplitude approaches zero in the NWT experimental data, the
models identified converge to to those obtained by using LPT-BEM data (i.e. dominant complex
conjugate poles, radiation resistance and added mass curves). Furthermore, in Chapter 5, new
a-priori constraints on the parameters are utilised in the identification, in order to guarantee the
stability and passivity of the models.

Chapters 6 shows that, when wave and body displacement amplitudes increase, the identified
linear ARX models lose accuracy and, in general, nonlinear structures, identified from WT data
too, are more accurate on the training data. This suggests that the data contain nonlinearities,
which the nonlinear models are able to capture; in particular, linear models are not able to repli-
cate asymmetric restoring force and asymmetric body displacement, in response to a symmetrical
sinusoidal input, whereas nonlinear models approximate the asymmetric output well.

The fitting of model predictions with the training data can be improved by increasing the
model complexity, but an unnecessarily large model complexity can reduce the ability of the model
in generalising on new data (i.e. overfitting problem), making the model worthless. Therefore,
it is very important to verify the performance of the identified model on fresh validation data.
In Chapter 6, the results illustrate that the ANN models, which are always the best in training,
have inconsistent performance in validation, showing the difficulty for ANN model identification,
which depends on a larger number of parameters to be identified and on the use of nonlinear
optimization algorithms, characterised by a sensitivity to the initial seed, caused by a loss function
with multiple local minima. On the other hand, the KGP model structures, which are identified
with convex optimization methods, have good accuracy and consistency on the validation data, as
shown by the results in Chapter 6.

The results in Section 6.2 show that the degree of nonlinearity in the WEC-fluid interaction
is strongly dependent on the body shape, which is responsible for the generation of viscous and
vortex shedding effects and a nonlinear hydrostatic force. In particular, for the considered case
study, the linear ARX model structure finds the triangular geometry the most difficult to simulate
(and therefore suggesting that the triangular geometry generates the larger degree of nonlinear
effects), followed by the rectangular and the circular geometry.

In Chapter 7, the framework for model identification, already applied to NWT data, is success-
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fully broadened to the context of data generated in a RWT, where hydrodynamic tests were carried
out on a scaled Wavestar WEC point-absorber. Single training and mixed training strategies are
compared, in order to obtain accurate models able to generalize on fresh validation data. The
performance of identified linear and nonlinear models shown to be very similar due to the very
limited presence of nonlinear hydrodynamic effects in the utilised data. The results also show that
there is not a clear answer regarding the advantage of identifying the models by using a single sea
state or utilising, simultaneously, all the experiments from the different sea states.

The comparison between data generated by a WT (in the case of small wave and body dis-
placements) and a LPT-BEM software package, such as WAMIT, can be useful in order to verify
the presence of nonlinearity in the WT experiments. In the case of a 2D NWT, the comparison
with 3D BEM data is not straightforward; indeed, in a 2D NWT, the body geometry is an infinitely
long horizontal bar, having a constant vertical cross-sectional area. In Chapter 4, a methodology
to compare 2D NWT data with 3D BEM data is proposed, based on the transformation of the orig-
inal 3D body geometry into a new 3D horizontal bar, having an appropriate length L. In particular,
the introduced per unit length quantities m(ul)

a (ω), N(ul)(ω), F(ul)
e (ω), H(ul)

fin→y(ω) and H(ul)
η→y(ω),

calculated with WAMIT, are shown to converge to a limit curve obtained by 2D NWT data (see in
particular Fig. 4.37, in the case of a 2D circular body), confirming the correctness of the proposed
method. It is shown that an unbounded increment of L (which leads to an increment of the WAMIT
computation time), in order to better approximate an horizontal infinitely long body, is not justi-
fied by a corresponding improvement in accuracy (i.e. for the considered horizontal cylinder, the
appropriate body length is shown to be L = 25 m).

The identification of an accurate model requires the use of informative data, which are strongly
dependent on the excitation signal utilised to influence the process during the experiment. Non-
linear dynamic systems are significantly more complex than linear ones; consequently, the choice
of an excitation signal becomes even more crucial. The analysis carried out in Section 6.3.2, re-
garding which signal type performs better in identifying accurate models, shows that, in the case
of heaving floating bodies, RARP signals (characterised by a very flat amplitude distribution) and
chirp signals (characterised by a flat amplitude distribution, apart two peaks near the extremes
of the amplitude range) are good candidates. Furthermore, Chapters 6 and 7 show that the data
generated from input force experiments (where the PTO applies an external force on a WEC)
contains, in general, a greater degree of nonlinearity compared to the data generated from input
wave experiments. Indeed, the direct application of a PTO force, on the WEC, significantly en-
larges the variation in the wetted body surface area during the experiment, enhancing the nonlinear
Froude-Krylov hydrodynamic effects.

8.1 Future work

The SI framework presented in this thesis highlights several possible directions for further re-
search, that can be addressed in order to advance the construction of models for WEC motion
simulation, control and power production assessment.
• The case studies shown in this thesis, for simplicity and clarity, describe WEC dynamics in the
case of a single DoF. It would be interesting to analyse single and multi-body WECs with multi
DoF (or even WEC arrays), by developing new specific WT experiments and multi DoF hydrody-
namic parametric models.
• The SI framework, presented in this thesis, is utilised for the construction of WEC hydrodynamic
models; a possible area of research is the application of the presented work for the identification
of models to also describe PTO and mooring systems, which are fundamental parts of the WEC
design.
• In this thesis, the models are identified to describe the dynamics of heaving floating structures;
a possible future work is the use of the developed SI framework, in order to model wave surge
converters, overtopping devices and OWCs.
• The study in Chapter 7, carried out with the COAST Laboratory RWT data, does not provide a
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clear answer as to whether it is better to train the models with single or mixed training. Possible
future work is the analysis of new cases in order to better understand this aspect.
• In Chapters 6 and 7, the data, utilised for the identification of models belonging to the η→ y
model family, do not contain a high degree of nonlinearity; therefore, it would be interesting to use
the SI framework, in the case of new data (containing a larger degree of nonlinearity), obtained
from new body geometries and sea state conditions.
• This thesis develops a general SI framework and proposes a variety of parametric grey and black-
box model structures, which show interesting solutions for the WEC-fluid interaction modelling
problem. At the same time, the development of linear and nonlinear parametric hydrodynamic
structures is not certainly considered complete with this thesis, and it is still an active and fasci-
nating research topic for future work.
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Appendix A
Laplace transform

A.1 Definition

Given a function y(t), defined for all real numbers t ≥ 0, its Laplace transform, Y : A ⊂ C→ C,
where A is the region of convergence (ROC), is defined by [319] [320] [321] [322]:

Y (S) = L
[
y(t)
]
=

∫ ∞

0
y(t)e−stdt (A.1)

where s = σ+ iω is a complex number, termed frequency variable (σ and ω are real numbers and
i is the imaginary unit). The ROC of the Laplace transform is a right sided half plane, defined as
A = {s ∈ C with Re[s]> σ0 ∈ℜ}, where σ0 is a real part of the rightmost pole of Y (s).

The inverse Laplace transform recovers the original function y(t) for t ≥ 0, and gives zero for
t < 0:

y(t) = L −1
[
Y (s)

]
=

1
2πi

∫ σ+∞

σ−∞
y(t)estdS =

{
y(t) t ≥ 0

0 t < 0
(A.2)

where σ > σ0. Therefore, in equation (A.2), the contour of integration is a straight line parallel
to the imaginary axis contained in the ROC. As an example, given the complex function Y (s) =
1/(s− p), with the pole p = σ+ iω, the inverse Laplace transform is given by:

L −1
[ 1

s− p

]
= ept = eσt

[
cos(ωt)+ isin(ωt)

]
(A.3)

A.2 Properties

A.2.1 Linearity

Given the functions y1(t) and y2(t) and the constants c1 and c2, it is possible to write:

L
[
c1y1(t)+ c2y2(t)

]
= c1L

[
y1(t)

]
+ c2L

[
y2(t)

]
(A.4)

A.2.2 Laplace transform of derivatives

Given a function y(t) with derivatives y(i)(t) for i≥ 1, it is possible to write [322] [323]:

L
[
y(i)(t)

]
= siY (s)− si−1y(0)− si−2y(1)(0)− si−3y(2)(0)− ...− y(i−1)(0)

= siY (s)−
i

∑
j=1

si− jy( j−1)(0) (A.5)

In the case of i = 0, equation (A.5) has to be replaced with:

L [y(0)(t)] = L
[
y(t)
]
= Y (s) (A.6)
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A.2.3 Laplace transform of a convolution function

Given two functions x(t) and y(t), null for t < 0 and with Laplace transform X(s) and Y (s),
respectively, it follows that [320]:

L
[∫ ∞

−∞
x(τ)y(t− τ)dτ

]
= X(s)Y (s) (A.7)

A.2.4 Initial-value theorem

Given the functions y(t) with Laplace transform Y (s), it is possible to write [319] [320]:

lim
t→0+

y(t) = lim
s→∞

sY (s) (A.8)

A.3 Roots of a complex polynomial

•Fundamental theorem of algebra. Every complex polynomial P : C→ C, of order n, has exactly
n roots [324] [325].
• In general, a complex polynomial can have real or complex roots. If the polynomial coefficients
are real, the complex roots must occur in complex conjugate pairs a± ib [292].

A.4 Partial fraction expansion

A rational function, given by

Y (s) =
N(s)
D(s)

=
∑m

j=0 b js j

∑n
j=0 a js j (A.9)

where n > m. In the case of D(s) has no repeated roots, equation (A.9) can be written as:

Y (s) =
n

∑
j=1

k j

s− p j
(A.10)

where:
k j =

[
Y (s)(s− p j)

]
s=p j

(A.11)

is termed residue of the p j pole. It is important to underline that, if p j = p∗q, then k j = k∗q (conjugate
poles have conjugate residues).

A.5 Complex conjugate pairs of poles

Given the complex function:

Y (s) =
k1

(s− p1)
+

k∗1
(s− p∗1)

(A.12)

where p1 = (σ1 + iω1), by utilising equations (A.3), (A.4) and (A.12), it follows that:

y(t) = L −1
[
Y (s)

]
= k1L

−1
[ 1
(s− p1)

]
+ k∗1L

−1
[ 1
(s− p∗1)

]

= k1ep1t + k∗1ep∗1t = 2Re
[
k1ep1t

]

= 2|k1|eσ1t cos
[
ω1t +Arg(k1)

]
(A.13)
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A.6 Zero-input and zero-state components of the output of a linear
model

Given a system described by the linear differential equation:
n

∑
k=0

aky(k)(t) =
m

∑
k=0

bku(k)(t) (A.14)

where u(t) and y(t) are input and output, respectively. By applying the Laplace transform (and its
linearity) in (A.14), it follows that:

n

∑
k=0

akL
[
y(k)(t)

]
=

m

∑
k=0

bkL
[
u(k)(t)

]
(A.15)

By applying (A.5) and (A.6) in (A.15), it follows that:

a0Y (s)+
n

∑
k=1

ak

(
skY (s)−

k

∑
j=1

sk− jy( j−1)(0)
)
= b0U(s)+

m

∑
k=1

bk

(
skU(s)−

k

∑
j=1

sk− ju( j−1)(0)
)

(A.16)

a0Y (s)+
n

∑
k=1

akskY (s)−
n

∑
k=1

k

∑
j=1

aksk− jy( j−1)(0) = b0U(s)+
m

∑
k=1

bkskU(s)−
m

∑
k=1

k

∑
j=1

bksk− ju( j−1)(0)

(A.17)

Y (s)
( n

∑
k=0

aksk
)
−

n

∑
k=1

k

∑
j=1

aksk− jy( j−1)(0) =U(s)
( m

∑
k=0

bksk
)
−

m

∑
k=1

k

∑
j=1

bksk− ju( j−1)(0) (A.18)

Y (s) =
∑m

k=0 bksk

∑n
k=0 aksk U(s)+

[∑n
k=1 ∑k

j=1 aksk− jy( j−1)(0)−∑m
k=1 ∑k

j=1 bksk− ju( j−1)(0)]

∑n
k=0 aksk (A.19)

Define:

P(s) =
n

∑
k=1

k

∑
j=1

aksk− jy( j−1)(0)−
m

∑
k=1

k

∑
j=1

bksk− ju( j−1)(0) (A.20)

which is a polynomial in s of order (n−1),

Yzi(s) =
P(s)

∑n
k=0 aksk (A.21)

and

H(s) =
∑m

k=0 bksk

∑n
k=0 aksk (A.22)

H(s) is termed the transfer function. Note that Yzi(s) and H(s) have the same denominator (there-
fore same poles) but different numerator (therefore different zeros). By introducing equations
(A.21) and (A.22) in (A.19), it follows that:

Y (s) = H(s)U(s)+Yzi(s) (A.23)

The inverse Laplace transform, of equation (A.23), is given by:

y(t) = yzs(t)+ yzi(t) (A.24)

where
y(t) = L −1

[
Y (s)

]
(A.25)

yzs(t) = L −1
[
H(s)U(s)

]
=

∫ ∞

−∞
h(τ)u(t− τ)dτ (A.26)

yzi(t) = L −1
[
Yzi(s)

]
(A.27)

yzs(t) and yzi(t) are termed the zero-state component and the zero-input component, respectively.
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an an−2 an−4 ...
an−1 an−3 an−5 ...
c1 c2 c3 ...
d1 d2 d3 ...
e1 e2 e3 ...
... ... ... ...

Table A.1: Routh-Hurwitz stability criterion table.

A.7 Routh-Hurwitz stability criterion

Given a complex polynomial, expressed as:

P(s) =
n

∑
j=0

a js j (A.28)

with s ∈ C and ai ∈ ℜ, the Routh-Hurwitz stability criterion determines the number of roots of
(A.28), which are located in the right half-plane [143] [326]. The criterion is based on the con-
struction of Table A.1, which has n+ 1 rows, where the first two rows contain the polynomial
coefficients. The subsequent ck row is formed as follows:

c1 =

−det
∣∣∣∣

an an−2
an−1 an−3

∣∣∣∣
an−1

=
an−1an−2−anan−3

an−1
, (A.29)

c2 =

−det
∣∣∣∣

an an−4
an−1 an−5

∣∣∣∣
an−1

=
an−1an−4−anan−5

an−1
(A.30)

and in general

ck =

−det
∣∣∣∣

an an−2k
an−1 an−2k−1

∣∣∣∣
an−1

=
an−1an−2k−anan−2k−1

an−1
, (A.31)

where the integer index k assumes values from 1 to the integer part of (n+1)/2. The subsequent
dk row is formed as follows:

d1 =

−det
∣∣∣∣
an−1 an−3
c1 c2

∣∣∣∣
c1

=
c1an−3−an−1c2

c1
, (A.32)

d2 =

−det
∣∣∣∣
an−1 an−5
c1 b3

∣∣∣∣
c1

=
c1an−5−an−1c3

c1
(A.33)

and in general

dk =

−det
∣∣∣∣
an−1 an−2k−1
c1 ck+1

∣∣∣∣
c1

=
c1an−2k−1−an−1ck+1

c1
. (A.34)

The procedure is the same for the subsequent rows (if present). The polynomial, expressed by
equation (A.28), has a number of roots, located on the right half-plane, given by number of alge-
braic sign changes in the elements of the first left column of Table (A.1) [143].
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Appendix B
Hydrodynamic model identification from
RWT experiments
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Figure B.1: Relative float heave displacement for experiment E2. (a) Time evolution (b) Probabil-
ity distribution.
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Figure B.2: Relative float heave displacement for experiment E3. (a) Time evolution (b) Probabil-
ity distribution.

232



0 50 100
−0.2

−0.1

0

0.1

0.2

Time [s]

R
e

la
ti
v
e

 d
is

p
la

c
e

m
e

n
t 

[m
]

−0.2 −0.1 0 0.1 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

Amplitude [m]

P
ro

b
a

b
ili

ty

(a) (b)

Figure B.3: Relative float heave displacement for experiment E4. (a) Time evolution (b) Probabil-
ity distribution.
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Figure B.4: Relative float heave displacement for experiment E5. (a) Time evolution (b) Probabil-
ity distribution.

0 50 100 150
−0.2

−0.1

0

0.1

0.2

0.3
 

Time [s]

R
e

la
ti
v
e

 d
is

p
la

c
e

m
e

n
t 

[m
]

−0.2 −0.1 0 0.1 0.2
0

0.02

0.04

0.06

0.08

0.1

Amplitude [m]

P
ro

b
a

b
ili

ty

(a) (b)

Figure B.5: Relative float heave displacement for experiment E6. (a) Time evolution (b) Probabil-
ity distribution.
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Figure B.6: LF for experiment E2. For na > 5 there is no relevant reduction of the LF (na = 5 is
the correct value to obtain a parsimonious model structure).
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Figure B.7: LF for experiment E3. For na > 5 there is no relevant reduction of the LF (na = 5 is
the correct value to obtain a parsimonious model structure).
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Figure B.8: LF for experiment E4. For na > 5 there is no relevant reduction of the LF (na = 5 is
the correct value to obtain a parsimonious model structure).
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Figure B.9: LF for experiment E5. For na > 5 there is no relevant reduction of the LF (na = 5 is
the correct value to obtain a parsimonious model structure).
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Figure B.10: LF for experiment E6. For na > 5 there is no relevant reduction of the LF (na = 5 is
the correct value to obtain a parsimonious model structure).
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Figure B.11: LF curves for experiment E2. Increasing nb the LF does not reduce anymore, this
happens when nd =−8 (na = 5 has been already identified).
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Figure B.12: LF curves for experiment E3. Increasing nb the LF does not reduce anymore, this
happens when nd =−5 (na = 5 has been already identified).
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Figure B.13: LF curves for experiment E4. Increasing nb the LF does not reduce anymore, this
happens when nd =−8 (na = 5 has been already identified).
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Figure B.14: LF curves for experiment E5. Increasing nb the LF does not reduce anymore, this
happens when nd =−9 (na = 5 has been already identified).
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Figure B.15: LF curves for experiment E6. Increasing nb the LF does not reduce anymore, this
happens when nd =−11 (na = 5 has been already identified).
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Figure B.16: LF for experiment E2 (na = 5,−11≤ nd ≤−5 and 0≤ nb≤ 20). For this experiment,
no relevant reduction of the LF for nb > 10.
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Figure B.17: LF for experiment E3 (na = 5,−11≤ nd ≤−5 and 0≤ nb≤ 20). For this experiment,
no relevant reduction of the LF for nb > 7.
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Figure B.18: LF for experiment E4 (na = 5,−11≤ nd ≤−5 and 0≤ nb≤ 20). For this experiment,
no relevant reduction of the LF for nb > 12.
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Figure B.19: LF for experiment E5 (na = 5,−11≤ nd ≤−5 and 0≤ nb≤ 20). For this experiment,
no relevant reduction of the LF for nb > 7.
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Figure B.20: LF for experiment E6 (na = 5,−11≤ nd ≤−5 and 0≤ nb≤ 20). For this experiment,
no relevant reduction of the LF for nb > 8.
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