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Abstract — Gray box modelling of physiological systems involves
constructing a model structure based on physical knowledge of
the system and model parameterisation using numerical techniques.
This paper presents a gray box model of arterial vasoaction (the pro-
cess of constricting and dilating blood vessels in order to maintain
an appropriate level of blood pressure and blood flow). The model
structure is built in accordance with the physical system . The ini-
tial parameterisation was manual, with the model consequently opti-
mised using gradient techniques and genetic algorithms. The model
was validated by demonstrating good correlation between experi-
mental results and model output.
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I INTRODUCTION

Gray box modelling is a popular approach for mod-
elling real systems, combining both black box and
white box methodologies [1]. Black box modelling
is a method, which uses no knowledge of the physi-
cal system, but is based on experimental data only.
The exact opposite is white box modelling, where
all necessary information about the system is avail-
able, therefore the model can be constructed di-
rectly from prior knowledge. Gray box modelling
has the advantage of using both physical a priori
knowledge of the system for model structure devel-
opment, and parameter estimation from available
experimental data.

Gray box modelling is an increasingly popular
approach for studying physiological systems. In
most such cases, the input/output relationship of
a system is not of paramount importance, as the
aim of the model is to develop a greater under-
standing of the physical system and its underlying
processes.

An important physiological process, which is the
focus of numerous biomedical and bioengineering
studies, is the regulation of blood pressure (BP).
This process is critical in maintaining nutrient
and oxygen supply to the various perfused organs,
hence an accurate model is necessary in order to
achieve a true understanding of the system. Mul-
tiple interconnecting mechanisms are involved in
blood flow and blood pressure regulation, posing
a difficulty in developing a simple mathematical
model from first principles.

This present study will attempt to model short
term blood flow/pressure regulation, while assum-
ing that the primary pump, the heart, has a rel-
atively constant mean output. Familiarity with
the processes can help outline the model structure,
while the parameters can be tuned, based on avail-
able experimental data. However, if the underlying
model structure is poor, it is unlikely that even the
most powerful optimisation techniques can achieve
an acceptable data fit. Manual, deterministic and
probabilistic search approaches were employed.

Deterministic optimisation is an approach that
yields identical solutions when the same initial con-
ditions are defined, for example Gradient descent,
Newton and Gauss-Newton. They are popular due
to their simplicity and the fact that, at least, a lo-
cal minimum solution is almost guaranteed. The
algorithm used in this study is the quasi-Newton
method, the rational for which is explained in Sec-
tion III (b).

Stochastic optimization uses a degree of ran-
domness in its search methodology and gives dif-
ferent solutions even when the same starting point
is used, which can help to combat premature con-
vergence due to local minima. Some examples of
stochastic algorithms are genetic algorithms (GAs)
and simulated annealing. In this study, genetic
algorithms have been used extensively. They are
useful for optimization of problems with irregular
solution surfaces, as they can explore a large solu-
tion space with multiple trials.

The remainder of the paper is organised as
follows: Sections II and IIT deal with the model



structure determination and optimisation tech-
niques used, while available experimental data
and model results are presented in Sections IV
and V respectively. The conclusions are laid out
in Section VL.

II PHYSIOLOGICAL MODEL FOR
VASOACTION

This study will focus on modelling short term re-
nal (kidney) blood flow regulation. A basic blood
pressure equation can be expressed in the form of
Ohm’s Law as follows:

MAP =CO.TPR (1)
where:

MAP is the mean (of the systolic and diastolic)
pressure (measured in mmHg),

CO is cardiac output, evaluated as the product of
heart rate and stroke volume (in 1/s), and

TPR is the total peripheral resistance as seen by
the heart (in mmHg s/1).

As CO is taken to be constant, the main control
parameter in this case will be the peripheral resis-
tance. This assumption is acceptable as the heart
rate variability during SNA stimulation was shown
to be very small (e.g. HR = 233.59 + 2 beats per
min. for frequency of stimulation of 5Hz).

A number of factors, both systemic (hor-
monal, neural) and local (tissue metabolites and
paracrine), are involved in blood flow regulation.
The change in the levels of these important fac-
tors can result in adjustment of the TPR, hence
causing vasoconstriction or vasodilation.

Central to the short timescale of interest to us,
with a time delay between stimulation and re-
sponse of approximately 0.6s [2], is the neural con-
trol of blood pressure through sympathetic nerve
activity (SNA). However, in addition to neural
control, several other mechanisms have significant
effect on resistance, including;:

e Hormones, which can effect both vasodilation
or vasoconstriction, depending on the partic-
ular hormone and the type of receptor it binds
to (e.g. Epinephrine, Antidiuretic Hormone,
Angiotensin IT and Cortisol) [3, 4],

e Intrinsic factors (myogenic autoregulation),
which regulate blood vessel compliance in re-
sponse to a distorting force on the walls due
to blood pressure [5],

e Paracrines, which are humoral substances
that are secreted by cells in the endothelium,
and have vasodilatory effects(e.g. Prostacy-
clin, Nitric Oxide), vasoconstrictory effects

(e.g. Thromboxane, Endothelin-1), or both
(e.g. Endothelin-1 [6]).

e Metabolic factors, which can elicit vasoaction
in response to local metabolic demands. Typ-
ical mediators include oxygen (constriction).
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Fig. 1: Summary of vasoactive mechanisms

Fig. 1 (adapted from [7]) attempts to summarise
the various factors involved in mediating vasoac-
tion. These factors, and their activation mecha-
nisms, will be used to form the basic structure of
the model. The SNA input will be the only open-
loop component in the model. This open-loop rep-
resentation is due to the fact that the experimen-
tal procedure included severing of the renal sym-
pathetic nerves and application of artificial SNA
simulation. A simple representation of the struc-
ture of the gray box model is shown in Fig. 2.
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Fig. 2: Feedforward/feedback configuration

The feedforward path represents the neural
mechanism for renal blood flow regulation. The
two feedback paths represent the effects that both
local and systemic blood pressure/flow control
mechanisms have in response to SNA-based acti-
vation of renal blood flow.

To date, a number of attempts have been
made to model the blood flow response to SNA.
However, most focus on black-box techniques,
which have no physical meaning and also fail to
capture essential aspects of the response [2, 8, 9].



III PARAMETER OPTIMISATION

Various optimization techniques can be used to pa-
rameterise the gray box model and the objective
function to be minimised is defined as:

where,

e g, is the blood flow data obtained from the
model simulations, and

e y; is the original blood flow data

The model was tested for frequencies of simula-
tion of 1.5, 2.0, 3.0, 5.0 and 8.0Hz and the param-
eters were determined to give optimum results for
all frequencies of simulation.

a) Manual Tuning

Given the intuitive nature of the model and the
strong relationship with the underlying physiology,
initial attempts focussed on tuning the model pa-
rameters by trial and error. There were 4 param-
eters to determine and two piecewise linear func-
tions. The relationship between SNA and blood
flow is approximately linear above a certain thresh-
old level of renal blood flow, hence the feedforward
loop dynamics are relatively easy to predict. How-
ever, below that threshold level, local factors are
activated to oppose the reduction in blood flow,
thus activating the feedback path in the model.
This latter relationship is nonlinear, hence more
challenging to parameterise ‘by hand’. However,
there is a reasonably strong relationship between
the parameters and blood flow response, hence the
manual tuning was justified as a starting point of
the model parameterisation.

b) Gradient Search

The first attempt at numerical optimisation in
this study involved gradient search techniques. A
quasi-Newton algorithm was employed to deter-
mine the global minimum of the objective func-
tion. Most Newton gradient search algorithms
require calculations of the gradient and Hessian
(second partial derivative, representing the curva-
ture). Numerical calculation of the Hessian is usu-
ally computed by dividing a difference by a very
small quantity, which can lead to loss of precision
and even divergence from the minimum, in some
cases. However, in the quasi-Newton method, the
parameter approximations for the next step are
calculated using estimates of the Hessian, calcu-
lated in a specific manner to reduce precision loss
[10].

¢) Stochastic Methods

Stochastic methods are probabilistic search meth-
ods and, when combined with concurrent meth-
ods, they support a set of individuals containing
information for each unknown parameter. These
methods offer a set of solution vectors at every it-
eration and the fittest individuals can proliferate
to improve the solution set in future generations.

GAs, which are members of the family of con-
current and stochastic search methods, attempt
to mimic the natural selection process by a num-
ber of specific operators: selection, mutation and
crossover. At every generation (iteration), the fit-
ness of each individual is assessed and the fittest
members of the population are selected for the re-
combination process. These fittest individuals re-
combine and then mutate in order to produce a
new generation of solutions. However, the effec-
tiveness of the algorithm can depend on the en-
coding technique used. GAs can be coded either
as binary strings, real numbers, integers etc.

IV DATA AVAILABILITY

Experiments were performed on 6 anaesthetized
New Zealand white rabbits at the Circulatory Con-
trol Lab., University of Auckland [11]. A tran-
sit time flow probe (type 2SB; Transonic Sys-
tems, Ithaca, NY, USA), connected to a compati-
ble flowmeter (T106, Transonic Systems) was used
to measure renal blood flow (RBF), with arterial
pressure being monitored using a catheter inserted
into the central ear artery and connected to a pres-
sure transducer (Cobe, Arvarda, CO). The mea-
sured signals were sampled at 500Hz, digitized and
saved continuously as 2s averages of each variable.
In addition, heart rate (HR, beats/min) was de-
rived from the MAP waveform.

For stimulation, the renal nerves were placed
across a pair of hooked stimulating electrodes
and then sectioned proximal to the electrodes.
Stimulation sequences using both amplitude (AM)
and frequency modulation (FM) were applied, all
using a pulse width of 2ms. In the AM sequence,
voltages of 0.5, 1.0, 1.5, 2.0, 3.0, 5.0 and 8.0 V were
applied in random order at a constant frequency
of 5Hz. For the FM sequence, frequencies of 0.5,
1.0, 1.5, 2.0, 3.0, 5.0 and 8.0 Hz were applied
in random order using a voltage equal to that
required to produce a maximal RBF response.
For both AM and FM sequences, the stimulation
interval was 3 min., with a 5 min. recovery period
before delivering the next stimulus.



V MODELLING RESULTS
a) Model Structure

Since the renal vasculature is just one component
which regulates blood pressure, the response from
systemic mechanisms is unlikely to be nearly as
significant as the response from local mechanisms.
Therefore, a single feedback block will be employed
in the structure as shown in the block diagram of
Fig.3.
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Fig. 3: Block diagram of proposed model structure

One further component was added to the ba-
sic structure shown in Fig.2, in order to correctly
represent the relationship between the varying lev-
els of steady state blood flow response to the fre-
quency of SNA stimulation. This (mildly) non-
linear characteristic is represented in Fig.3 by the
‘Freq. transform’ block.

The model structure is based on the following
physiological premise. Above a certain (threshold)
value of normal blood flow, the response of blood
flow to SNA is relatively linear. The ‘Smooth mus-
cle dynamics’ block in Fig.3 represents this dy-
namic response of the vascular smooth muscle to
stimuli. The effect of SNA is that of vasoconstric-
tion and the speed and magnitude of the response
are defined by the corresponding pole location
(time constant) and gain respectively. However,
when blood flow drops below a certain value, lo-
cal myogenic factors and paracrines work progres-
sively harder (as blood flow decreases) to maintain
an acceptable level of local blood flow, causing re-
active vasodilation. This combination of thresh-
old and progressive response is captured by the
‘Activation level’ block in Fig.3, while the ‘Local
dynamics’ block captures the speed of response of
these local reactionary mechanisms.

Fig.4 shows the typical response shape obtained
from the model. The initial response to a step
activation in SNA is roughly first order exponen-
tial, but as soon as blood flow reduction reaches a
certain level, local (opposite) effects temper the
response dramatically. Following release of the
SNA activation, the response returns rapidly to
the original level, assisted by the local paracrines,
etc. which are still active and have not yet been
dispersed. Finally, the blood flow overshoots its

, SNA activation

Vasodilation ‘overshoot’

Time

Blood flow reduction
A

Vasodilation reaction
Fig. 4: Typical ‘large-signal’ response to SNA activation

original value, due to the slow dispersal of these
local vasodilatory effects.

From the above description, some aspects of the
model can be clarified:

e The local vasodilatory response is not linear
and has some ‘threshold’ of blood flow change
above which it is activated,

e The response of the local vasodilatory reaction
is significantly slower than that of the smooth
muscle to the SNA stimulus (i.e. 7, > 7y),
and

e The magnitude of the action (to SNA) and re-
action (by the local vasodilatory mechanism)
is comparable, at least to an order of magni-
tude.

b) Parameter optimisation

The parameters of the dynamic feedforward and
feedback blocks, as well as the two nonlinear char-
acteristics, were first determined by trial and error,
then optimised using gradient techniques and ge-
netic algorithms.

The model parameter values and minimum cost
function obtained by the initial manual optimisa-
tion process are detailed in Tables 1 and 2 respec-
tively.

Table 1: Dynamic blocks parameters for each of the three
optimisation techniques - Manual, Gradient and GA

ky | ke |15 (s) | ™ (s)

Manual 1 80 20 200
Gradient | 0.94 | 66.63 | 19.65 | 206.87
GA 1.05 | 81.58 | 20.37 | 203.85
GA+ Grad | 1.04 | 72.15 | 20.09 | 179.98

A demonstration of the nonlinear feedback ‘ac-
tivation level’ function input/output relationship
is shown in Fig 5.



Table 2: Minimum cost functions for each of the three
optimisation techniques - Manual, Gradient and GA

OptimisationT echnique | MinimumCost
Manual 234.59
Gradient 109.19
GA 107.82
GA + Grad 102.46
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Fig. 5: Feedback activation function

Furthermore, the nonlinear function, represent-
ing the steady-state relationship between fre-
quency of SNA and blood flow response, is shown
in Fig. 6.
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Fig. 6: Transformation for frequency stimulation

The performance of the model in comparison to
the recorded experimental data may now be eval-
uated via Fig.7.

Clearly, even with manual tuning, the model has
captured the essence of the response contained in
the the experimental data, with the exception of
the noise present in the physiological data. How-
ever, it is not the intention of the model to rep-
resent this noise. Arguably a better comparison
could be made if the experimental data had been
filtered prior to plotting, but the filter would in-
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Fig. 7: Comparison of model response with experimental
data (Manually optimised parameters)

troduce dynamics of its own, which may interfere
with the parameter determination.

Following the manual tuning of the model, we
applied a gradient algorithm to fine-tune the pa-
rameters. In addition, the representation of the
local vasodilator ‘Activation level block’ was ex-
tended to increase its flexibility. Numerous simu-
lations of the model were completed and we noted
that the performance of the search algorithm was
highly dependent on the initial conditions, thus
concluding that the performance surface is highly
irregular.

The minimum value for the cost function ob-
tained with the quasi-Newton method and the cor-
responding parameter values are shown in Table 1
and Table 2 respectively, which represent a modest
improvement over the manual tuning case. How-
ever, due to the irregularity of the surface, we
concluded that the optimum solution will not be
reached with a gradient optimisation technique,
therefore GAs were applied to the problem. A
binary encoding technique was selected initially,
but as the algorithm evolved, real numbers were
used, because the problem was not binary in na-
ture. Large numbers of individuals (more than
100) and up to 100 iterations were used during
each search to ensure that a wide solution space
was covered. The obtained parameter values using
GAs for the feedback and feedforward blocks, and
the corresponding minimum cost function, are also
displayed in Tables 1 and 2.

A further enhancement of the parameter values
can be achieved by using the end point of the GA
solution as a starting point for a gradient technique
to fine-tune the parameter values. The results are
again included in Tables 1 and 2 and indicate a
modest improvement in the cost. The model out-
put, resulting from this last set of parameter val-
ues, is compared to the experimental data in Fig.
8, which shows an improvement over Fig.7.
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Fig. 8: Comparison of model response with experimental
data (GA + gradient optimised parameters)

However, the relatively good fit for manual
tuning gives credence to the chosen structure and
indicates the physical transparency of the model.

VI CONCLUSION

A novel nonlinear gray box model for arterial va-
soaction was developed in this study. It is based on
underlying physiological principles and optimised
using numerical methods, with best results given
by a combination of genetic algorithms and gradi-
ent techniques. The model fit obtained was signifi-
cantly better than previously reported models [11].
The model was validated by demonstrating a very
good correlation between model results and ex-
perimental data, though a black box model could
have possibly yielded a much better input/outpt
match. This confirms the model structure em-
ployed, indicating the dynamics and activation lev-
els associated with individual physiological com-
ponents, which would remain invisible in a black
box model. For example, the 'feedback activation
function’ shows the blood flow reduction levels at
which the local vasodilatory effects become active
(Fig.5).

Further enhancements will extend aspects of the
model structure. Currently, the model does not in-
clude features to account for variability across dif-
ferent animals due, for example to different rest-
ing conditions (mean HR, MAP etc), hence some
elements will be incorporated to achieve this im-
provement. In addition, a feature will be included
in future models to take into account the different
rates of responses in positive-going and negative-
going directions, clearly seen in Fig. 7, which are
due to different activation and dispersion rates.

Finally, it is also anticipated that a model can
be built to combine the effects of both amplitude
and frequency-coded SNA stimulation and genetic
programming can be employed to obtain an

optimum structure of the model.
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