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Paraxial speckle-based metrology systems with an
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Digital speckle photography can be used in the analysis of surface motion in combination with an optical linear
canonical transform (LCT). Previously [D. P. Kelly et al. Appl. Opt. 44, 2720 (2005)] it has been shown that
optical fractional Fourier transforms (OFRTs) can be used to vary the range and sensitivity of speckle-based
metrology systems, allowing the measurement of both the magnitude and direction of tilting (rotation) and
translation motion simultaneously, provided that the motion is captured in two separate OFRT domains. This
requires two bulk optical systems. We extend the OFRT analysis to more general LCT systems with a single
limiting aperture. The effect of a limiting aperture in LCT systems is examined in more detail by deriving a
generalized Yamaguchi correlation factor. We demonstrate the benefits of using an LCT approach to metrology
design. Using this technique, we show that by varying the curvature of the illuminating field, we can effec-
tively change the output domain. From a practical perspective this means that estimation of the motion of a
target can be achieved by using one bulk optical system and different illuminating conditions. Experimental
results are provided to support our theoretical analysis. © 2006 Optical Society of America

OCIS codes: 120.6150, 070.0070, 120.3940, 070.6020.
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. INTRODUCTION
igital speckle photography is a well-known technique in

peckle metrology.1–20An optically rough target is illumi-
ated with coherent light, and the speckle field produced
y the target, before and after, motion or deformation1–20

s captured, using a CCD camera. In some cases the
peckle field is first manipulated by some optical signal
rocessing (OSP) system before capture. For example,
iziani,11 demonstrated that by passing the reflected
peckle field though a bulk optical Fourier transform
OFT) system, accurate measurement of small surface
ilts of an optically rough target could be achieved. This
etrology system is sometimes simply referred to as a de-

ocused system11,15

Other OSP systems besides the OFT arrangement just
entioned can be used, and we discuss some of these now.
he fractional Fourier transform (FRT) describes wave
ropagation in graded-index media21–29 and can also be
mplemented by using bulk optics.27,28 Briefly, the FRT or-
er indicates the domain into which a given function is
ransformed, and an order of a=1 is simply the Fourier
ransform (FT). The FRT angle � is related to the FRT or-
er by �=a�� /2�. Sheridan et al.16,17 showed that an opti-
al FRT (OFRT) system could be used, in a manner simi-
ar to that of Tiziani,11 to vary the sensitivity of the

etrology system to both tilting and translation motion
y varying the fractional angle associated with the OFRT.
ater, using a geometric interpretation based on the use
f the Wigner distribution function (WDF),21,29,30 it was
hown18 that by projecting the motion (both tilting and
ranslation) of the rigid body onto two different OFRT do-
ains, i.e., passing the reflected speckle field through two
FRT systems of different order, information about both

he tilting and in-plane translation could be extracted.
1084-7529/06/112861-10/$15.00 © 2
his theoretical prediction was also experimentally
erified.19,20 Widjaja et al.31 demonstrated that, by opti-
ally generating the WDF, information about local dis-
lacement of objects could be extracted by examining lo-
alized spatial and spatial-frequency distributions of the
eflected speckle field.

The linear canonical transform (LCT) can be used to
odel quadratic phase systems (QPSs), which include as

pecial cases the OFT, OFRT, the Fresnel transform
FST), and the effect of a thin lens or chirp modulation
ransform (CMT).21,29,32 To measure both tilting and
ranslation motion for an OFRT-based metrology system,
rojection of the motion onto two different separated
FRT domains is necessary.18 This is also the case for an
CT-based system, and thus typically two optical systems
nd two CCD cameras are required to unambiguously de-
ermine the motions. There are, however, distinct advan-
ages to using an LCT system such as increased design
exibility.
The layout for the rest of the paper is as follows: In Sec-

ion 2.A we derive a generalized Yamaguchi correlation
actor for an arbitrary LCT system. In Section 2.B we ex-
mine some of the advantages of an LCT-based analysis
n the design of metrology systems. In Section 2.C we
how that by varying the curvature of the illuminating
eld, we can change the LCT domain, allowing simulta-
eous translation and tilt motion to be measured unam-
iguously. In Section 3 we provide experimental results,
hich support our theoretical analysis.

. THEORETICAL ANALYSIS
n this section we examine three separate issues. In Sub-
ection 2.A we derive a generalized Yamaguchi correlation
006 Optical Society of America
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actor, and show that an LCT-based analysis is a useful
eans for estimating the in-plane translation and tilting
otion of a rough surface. In Subsection 2.B we show that

y using an LCT approach, it is possible to analyze, opti-
ize, and design metrology systems. Finally, in Subsec-

ion 2.C we examine the effect of varying the curvature of
he illuminating field on the characteristics of the metrol-
gy system.

. Linear Canonical Transform Metrology Systems with
imiting Aperture
he purpose of this subsection is to derive some impor-
ant properties of general bulk optical systems. We de-
cribe the complete metrology system by using two sepa-
ate LCTs as in Fig. 1. The first LCT describes the field
ncident on the aperture, and the second describes the
ropagation of the field from the aperture to the camera
lane. We assume that any optical elements, e.g., lens,
re infinite in extent and attribute any losses in the sys-
em to the single limiting aperture (see Fig. 1). In Fig. 1,
�x0� represents the speckle field at the optically rough
urface. If the optically rough surface is translated by an
mount � and rotated through an angle �, then the al-
ered field may be represented by15,18–20

ũ�x̃0� = u�x0 + ��exp�j
2�

�
�x0� , �1�

here ��2� if ��1 rad.
The field ua�xa� incident on the aperture prior to motion

an be found by applying an LCT to u�x0� (see Fig. 1). Us-
ng Ref. 32, we define and apply a one-dimensional (1-D)
CT to the field u�x0� to give

ua�xa� = � 1

�j�B1
��

−�

�

u�x0�exp� j�

�B1
�D1xa

2 + A1x0
2

− 2xax0�	dx0, �2a�

�xa

ka
� = �A1 B1

C1 D1
	�x0

k0
� , �2b�

here xa indicates the domain into which the function
�x0� is transformed and � is the wavelength of the illu-
inating light. We drop the term in the round brackets

bove from now on. The effect of this integral transform

ig. 1. Optical arrangement for a speckle-photography-based
etrology system.
n mapping between the input signal (spatial coordinate
0, spatial-frequency coordinate k0) and output signal
xa ,ka� coordinate systems can be described by using the
BCD matrix notation of Collins.33 In this matrix, A1D1
B1C1=1, indicating a lossless affine transformation. It is

mportant to note that the signal ua�xa� is in general in a
ixed spatial–spatial-frequency domain.34

Similarly the field incident on the aperture after mo-
ion is given by

ũa�x̃a� =� ũ�x̃0�exp� j�

�B1
�D1x̃a

2 + A1x̃0
2 − 2x̃ax̃0�	dx̃0,

�3a�

hich may also be written as a shifted version of the LCT
f the original field32,35:

ũa�x̃a� = ua�xa + �a�exp�j2��axa/��, �3b�

here �a=A1�+B1� and �a=C1�+D1�. We have dropped a
onstant phase factor in the above expression and will
ontinue to do so for the rest of the analysis. From Eq.
3b) we can see that ua�xa� and ũa�x̃a� are identical apart
rom a spatial shift and a linear phase term.32,35

The fields va�·� and ṽa�·� immediately after the aper-
ure, prior to and following motion, respectively, are not
he same, as the aperture ensures that some spatial and
patial-frequency information is eliminated and some
new information” introduced (see Fig. 1). As the surface
n the input plane is moved or deformed, a CCD camera
laced in the output plane (see Fig. 1) will observe a
hifted and decorrelated version of the original field inci-
ent on it (due to the effect of the aperture). By examining
he magnitude of this shift, information about the motion
f the surface at the input plane can be determined.

An imaging system can be described as a convolution of
he FT of the system’s limiting pupil function (its un-
ealed impulse response) with the ideal image predicted
y using geometrical optics.4,36 Consider a diffraction-
imited 4-f imaging system architecture where the aper-
ure is in the Fourier plane. A tilt in the input plane will
ause a spatial shift of the distribution at the aperture
Fourier) plane.37 It is pointed out in Ref. 4 that it is this
ilting that leads to a decorrelation in the output plane
etween the initial field and the field after motion or de-
ormation. A measure of this decorrelation is given by the
amaguchi correlation factor [see Eq. (11) in Ref. 4]. How-
ver, in the optical arrangement that we are considering
and unlike that in a 4-f imaging system), both tilting and
n-plane translation of the input surface contribute to a
patial shift of the distribution at the aperture plane and
ome linear phase term, and thus both effects are respon-
ible for the decorrelation of the two fields in the output
lane.
So far we expect that there will be decorrelation in the

utput plane between the initial image and the image
aptured after motion, primarily due to the aperture in
he system. We also expect that if the decorrelation is not
otal, there should be a cross-correlation peak. The posi-
ion of this peak relative to that of the auto-correlation
eak of the initial image.19,20 contains information about
he motion of the input surface. If the aperture were infi-
ite in extent, then a direct LCT-based analysis could pre-



d
e
w
l
t
e
I
q
i
a
c
s
f
v

T
w

T
fi
i

w
4
d
i

T

W
t
o

d
w

S

S

w

(
i
o
t
a
s
�
s
t
o
t
t
g

�

I

Kelly et al. Vol. 23, No. 11 /November 2006 /J. Opt. Soc. Am. A 2863
ict the location of this cross-correlation peak. A finite ap-
rture in the system means that we are no longer dealing
ith a lossless shift invariant system; however, if the re-

ationship between the input and output coordinate sys-
ems is partially preserved, despite the presence of an ap-
rture, then an LCT-based analysis may still prove useful.
deally we would like to derive an expression that can (i)
uantify the expected decorrelation due to the aperture,
.e., a generalized Yamaguchi correlation factor and (ii)
lso predict the location of the cross-correlation peak. We
ontinue with a 1-D analysis. Let the aperture be de-
cribed by the function p�·�. The undeformed and de-
ormed fields (see Fig. 1) immediately after the aperture,
a�·� and ṽa�·�, are then given by

va�·� = ua�·�p�·� ṽa�·� = ũa�·�p�·�. �4�

he field incident on the camera before motion can be
ritten as

vc�xc� =� va�xa�exp� j�

�B2
�D2xc

2 + A2xa
2 − 2xaxc�	dxa.

�5�

he field incident on the camera after motion, ṽc�xc�, is de-
ned in a similar manner. Following the approach taken

n Ref. 4, we write the normalized covariance cIĨ�s� as

cIĨ�s� =

�vc

*�r�ṽc�r + s��
2

�I�Ĩ
, �6�

here �	 is the variance defined as �	
2 = �	�2− �	2� (see Ref.

), the angled brackets � � denote ensemble average, and *

enotes the complex conjugate. The numerator in Eq. (6)
s given by

�vc
*�xc�ṽc�xc + s�� =�� �ua

*�xa�ũa�x̃a��p*�xa�p�x̃a�


exp�− j�

�B2
�D2xc

2 + A2xa
2 − 2xaxc�	


exp
 j�

�B2
�D2�xc + s�2 + A2x̃a

2 − 2x̃a�xc

+ s���dxadx̃a. �7�

he term �ua
*�xa�ũa�x̃a�� is given by

�ua
*�xa�ũa�x̃c�� =�� �u*�x0�ũ�x̃0��exp�− j�

�B1
�D1xa

2 + A1x0
2

− 2xax0�	exp� j�

�B1
�D1x̃a

2 + A1x̃0
2

− 2x̃ax̃0�	dx0dx̃0. �8�

e assume that the coherence area of the speckle field at
he scattering plane is very small compared with the size
f the illuminated region and can be approximated by a
elta function.4,8,10,38 Thus using Eq. (1) to describe ũ�x̃0�,
e write

�u*�x0�ũ�x̃0�� =�u*�x0�u�x0 + ��exp�j
2�

�
�x0��

= �u
2��x̃0 − x0 − ��exp�j

2�

�
�x̃0� . �9�

ubstituting Eq. (9) into Eq. (8), we get that

�ua
*�xa�ũa�x̃a�� = �u

2� exp�− j�

�B1
�D1xa

2 + A1x0
2 − 2xax0�	


 exp�j
2�

�
��x0 + ��	exp
 j�

�B1
�D1x̃a

2

+ A1�x0 + ��2 − 2x̃a�x0 + ����dx0. �10�

implifying Eq. (10) give

�ua
*�xa�ũa�x̃a�� = �u

2 exp
 j�

�B1
�D1�x̃a

2 − xa
2� − 2x̃a���


� exp�− j�2x0�

�B1
�dx0, �11�

here �= x̃a− �xa+A1�+B1��.
The result of calculating the integral, as written in Eq.

11), is ����. This result is correct if we integrate over an
nfinite input plane x0, although in practice we integrate
nly over the finite area of the optically rough surface
hat is illuminated. Limiting the region of integration
cts to “smear” or broaden the ���� function.37 If we as-
ume that the correlation area [which is the broadened
��� function] is very small compared with the area of the
cattering plane (region of integration) and of the aper-
ure plane (see in particular Subsections 5.6, 7.2, and 7.5
f Ref. 38), the integral in Eq. (11) is a narrow function
hat we approximate by C����, where C is an unimpor-
ant constant. Thus we substitute Eq. (11) into Eq. (7) to
et

vc
*�xc�ṽc�xc + s�� = C�u

2�� ��x̃a − xa − A1� − B1��


exp
 j�

�B1
�D1�x̃a

2 − xa
2�

− 2x̃a���p*�xa�p�x̃a�exp
 j�

�B2
�D2�s2

+ 2sxc� + A2�x̃a
2 − xa

2� − 2xc�x̃a − xa�

− 2sx̃a��dxadx̃a. �12�

ntegrating with respect to dx̃ , we get
a
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vc
*�xc�ṽc�xc + s�� = C�u

2� exp
 j�

�B1
�2D1�A1� + B1��xa

− 2xa���p*�xa�p�xa + A1� + B1��


 exp
 j�

�B2
�D2�s2 + 2sxc� + 2A2�A1�

+ B1��xa − 2xc�A1� + B1�� − 2s�xa + A1�

+ B1����dxa. �13�

he magnitude is given by


�vc
*�xc�ṽc�xc + s��
 = �C�u

2� p*�xa�p�xa + A1� + B1����

 exp� j�

�

�2D1�A1� + B1�� − 2��

B1

+
�2A2�A1� + B1�� − 2s�

B2
�xa�dxa� .

�14�

By the Schwartz inequality39 and noting that A1D1
B1C1=1,


�vc
*�xc�ṽc�xc + s��
2 
 �u

4C2�� p*�xa�p�xa + A1� + B1��dxa�2

,

�15�

nd therefore Eq. (14) has a maximum value when

s = �A1A2 + B2C1�� + �A2B1 + B2D1��. �16�

hus the shift of the distribution in the output plane is
pecifically related to the bulk optical system and the in-
lane translation and tilting of the surface.
By a similar analysis we find that


�va
*�xa�va�xa��
2 
 C�u

2� 
p�xa�
2dxa,


�ṽa
*�xa�ṽa�xa��
2 
 C�u

2� 
p�xa�
2dxa. �17�

hus the maximum value of Eq. (13) occurs when

CIĨ = �� p*�xa�p�xa + A1� + B1��dxa

� 
p�xa�
2dxa
�

2

. �18�

his equation specifically gives the expected decorrelation
n the output plane for a given system. It is dependent on
he first LCT system (see Fig. 1) only and on the auto-
orrelation of the aperture function (see Fig. 1) and as
uch can be considered the generalized Yamaguchi corre-
ation factor.

Based on these results we note three points:
1. The maximum correlation peak in the output co-

rdinate system occurs when s= �A1A2+B2C1��+ �A2B1
B2D1��. The simpler LCT-based analysis predicts ex-
ctly the same shift in the output distribution, indicating
hat it still provides a useful means for interpreting and
esigning metrology systems.40

2. We have also derived a decorrelation term, Eq.
18), equivalent to a general Yamaguchi correlation factor.
nlike the Yamaguchi correlation factor, as defined by Eq.

11) in Ref. 4, our generalized correlation factor is not de-
endent solely on tilt � but also on the �a term, where
a=A1�+B1�, which is dependent on both the in-plane
ranslation � and the tilting � of the input surface.

3. In the special case of an imaging metrology sys-
em, where the limiting aperture is located in the Fourier
lane, the parameters for LCT system 1 (see Fig. 1) are
iven by �A1 ,B1 ,C1 ,D1�= �0,1/q ,−q ,0� [see Eq. (2c)],
here q is some scaling factor. This results in a decorre-

ation factor that is dependent solely on the tilting �A1
0� of the rough surface, and thus our results are consis-

ent with the analysis presented in Ref. 4.

. Design and Optimization of Metrology Systems Using
he Linear Canonical Transform
n this subsection we would like to demonstrate the flex-
bility of an LCT approach to the design of metrology sys-
ems. Central to the flexibility of the LCT is the fact that
t can describe many different QPS optical systems and
hat even more complex systems can derived by cascading
uccessive LCT systems together33:

� 0 f

− 1/f 0
	, � cos��� f sin���

− sin���/f cos��� 	 ,

�1 z

0 1	, � 1 0

− 1/f 1	 . �19�

n Eqs. (19) we provide the ABCD matrix representations
or some of the well-known optical systems. These four
ystems are the OFT, OFRT, FST and CMT, respectively,
here � in the second matrix refers to the fractional angle
f the OFRT system, z is the distance of free-space propa-
ation (FST), and f corresponds to the focal length of the
hin lens (CMT). For completeness we note in passing
hat a more general linear transform exists that includes
xed position or phase shifts and is able to describe off-
ets with respect to the optical axis as well as the effects
f gratings and prisms.41–43

The effect of successive LCTs is given by appropriately
ombining the matrices of the individual LCTs33 together.
o give a practical example, consider the two-lens optical
ystem depicted in Fig. 2. Using the appropriate matrices
rom Eqs. (19) (only FST and CMT matrices are used) to
odel the passage of light from input plane to output

lane, we can derive the ABCD matrix for the whole
ystem:
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�A B

C D	 = �1 d3

0 1 	� 1 0

− 1/f2 1	�1 d2

0 1 	� 1 0

− 1/f1 1	�1 d1

0 1 	
= �1 −

d3 + d2�1 − d3/f2�

f1
−

d3

f2
d3 + d2 +

d1d2d3 − �d1 + d2�d3f1 − �d2 + d3 − f1�d1f2

f1f2

d2/f2 − 1

f1
−

1

f2
1 + d1�d2/f2 − 1

f1
−

1

f2
� −

d2

f2

� . �20�
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xamining Eq. (20), we see that if we set d1= f1, d3= f2,
nd d2=d1+d3, then we get �A ,B ,C ,D�= �
f2 / f1 ,0 ,0, f2 / f1�. This happens to be a 4-f imaging system
ith a magnification given by −f2 / f1, which is insensitive

o tilting motion since B=0. Alternatively setting f1= f2
f, d1=d3=2f, and d2=3f, we have the OFT system �0,
f , 1 / f , 0�. This system is insensitive to in-plane transla-

ion, since A=0.
Using this two-lens optical system, we can build scale

nvariant OFRT systems.28 In this case the ABCD matrix
s as in Eqs. (19) with A=cos��� and B= f sin���. This type
f system is thus sensitive to both tilting and in-plane
ranslation motion. By varying the fractional order of the
FRT system,19,20 the sensitivity of the system can be

hanged. Clearly the A and B parameters of an OFRT sys-
em have absolute maximum values of unity and f, re-
pectively, which limits the flexibility of the system. As
oted in Ref. 28, implementing an OFRT system imposes
estrictions on the possible values for d1, d2, etc. Relaxing
hese conditions realizes an LCT system that has a much
arger range of A and B parameter values, making it more
exible than the previous optical systems. This is illus-
rated in Fig. 2(a) in Ref. 40, where −5�A�2.5 for �d1
5 cm, 0�d2�50 cm, 0�d3�50 cm, f1=20 cm, f2
10 cm� and in Fig. 2(b) in Ref. 40, where −10�B�0 for

0�d1�50 cm, 0�d2�50 cm, d3=10 cm, f1=5 cm, f2
10 cm�.
Before closing this subsection, we add that using this

ype of design approach in conjunction with the general-
zed Yamaguchi correlation factor, Eq. (18), allows optimi-
ation of the metrology system for measurement of a par-
icular parameter. Suppose that we want to design an
FT system for measuring small surface tilting. Let us

hoose the two-lens OFT system above with f1= f2= f, d1
d3=2f, and d2=3f, which gives the overall system ma-

rix of ABCD= �0, − f , 1 / f , 0�. What is the optimum loca-
ion for the aperture plane in this system so that the gen-
ralized Yamaguchi correlation factor is a maximum?

Fig. 2. Two-lens optical LCT system with an aperture plane.
eferring back to Fig. 1, we now decompose this OFT sys-
em into two separate matrices, the first matrix, M1, de-
cribing propagation from the input plane to the aperture
lane and the second from the aperture plane to the cam-
ra plane. By placing the aperture a distance za after the
rst lens in Fig. 2, we have

M1 = �1 −
za

f
2f�1 −

za

f � + za

−
1

f
− 1 � . �21�

ince we are trying to minimize the decorrelation in the
utput plane due to tilting of the surface, we want to
inimize the B element of M1 in Eq. (21). Setting this B

lement to zero gives za=2f, so the aperture ideally
hould be located two focal lengths from the first lens (see
ig. 2). In this optical system there will be no decorrela-

ion due to the aperture for tilting motion. There are sev-
ral other potential sources of decorrelation, one of which
s the finite extent of the camera.19

. Illuminating with Fields of Varying Curvature
n this subsection we would like to describe how the re-
ected field from an optically rough surface varies as the

lluminating field is changed from a plane wave to a wave
eld with a quadratic curvature, i.e., an ideal (in the
araxial regime) converging or diverging spherical wave.
or simplicity and brevity we continue with a 1-D analy-
is and start by assuming plane wave illumination. The
eld, just after reflection from the optically rough surface,
an be described by

u�x0� = exp�jkh�x0��, �22�

here k=2� /�, and h�x0� accounts for the random phase
ccumulated by the plane wave on reflection from the
ough surface.

Changing the illumination field to a converging or di-
erging spherical wave, the illuminating field can be de-
cribed, using a quadratic phase approximation, by

usph�x,z� = exp� − jkx2

2�� − z�	 , �23�

here we have omitted an intensity scaling factor
��−z� /z. Such a spherical wave field may be produced by
lacing a lens in the path of the illuminating plane wave
t a distance z=zRS from the rough surface (see Fig. 3), in
hich case �= f, the focal length of the illuminating lens.
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After reflection from the optically rough surface this
onverging (or diverging) spherical wavefront is altered
nd can, in the paraxial case, be approximated by usw�x0�,
here

usw�x0� = exp
jk� − x0
2

2�f − zRS�
+ h�x0�	�

= u�x0�exp� − j�x0
2

��f − zRS�	 . �24�

quation (24) assumes that the random phase accumu-
ated due to the surface roughness is independent of the
hase of the incident wave field. The assumption has been
ustified by experimental results.40 The metrology system
escribed using the matrix �A ,B ,C ,D� now operates on
his reflected speckle field. The resultant field, vsw�Xc1�,
ncident on the CCD in the output plane is given by

vsw�xc1� =�
−�

�

usw�x0�exp� j�

�B
�Ax0

2 + Dxc1
2 − 2xc1x0�	dx0,

�25�

hich can be rewritten as

sw�xc2� =�
−�

�

u�x0�exp� j�

�Bsw
�Aswxc2

2 + Dswx0
2 − 2xc2x0�	dx0,

�26�

here Bsw=B, Dsw=D, and Asw=A−B / �f−zRS). By replac-
ng the field usw�x� in Eq. (25) with u�x� and changing the
BCD parameters accordingly, we see that u�x� has effec-

ively been transformed into a different LCT domain �xc2�
n the camera plane.

This result can also be derived by using the ABCD ma-
rix notation. Noting that usw�x0� can be written as u�x0�
ultiplied by a quadratic phase factor, or CMT as defined

n Eq. (24), we can write

Fig. 3. Experimental setup.
�Asw Bsw

Csw Dsw
	 = �A B

C D	� 1 0

− 1/�f − zRS� 1	
= �A −

B

f − zRS

B

C −
D

f − zRS

D� �27�

e further note that Bsw is equal to B, and thus variation
f the curvature of the illuminating field has no effect on
he measurement of small surface tilting of the optically
ough surface. To estimate the output tilting and in-plane
ranslation motion, we then solve two simultaneous
quations,18–20 giving

� =
�c1 − �c2

A − Asw
, � =

Asw�c1 − A�c2

B�Asw − A�
, �28�

here A is the system parameter under plane wave illu-
ination, Asw is the system parameter under spherical
ave illumination, B=Bsw, and the two corresponding
otions in the camera plane are �c1 and �c2, respectively.

. EXPERIMENTAL RESULTS
his section is divided into five subsections. In Subsection
.A we briefly describe the experimental setup, then in
ubsection 3.B we discuss the aperture diameter, the re-
ulting speckle size, and its implications for our experi-
ents. In Subsections 3.C and 3.D we present experimen-

al results for the estimation of in-plane translation and
mall surface tilts, respectively, illuminating with fields of
wo different curvatures, namely a diverging spherical
ave and a plane wave. In Subsection 3.E we experimen-

ally demonstrate that we can measure both tilt and
ranslation motion simultaneously provided that the mo-
ion is captured under at least two different illuminating
onditions (in two domains).

. Experimental Setup
n LCT system (as depicted in Fig. 3) was implemented
ith a rough surface (4 cm by 8 cm rectangular piece of
luminum) located a distance d=58.5 cm from the face of
he CCD camera. There is an aperture with a diameter of
0 mm in the LCT system, located at zd=35 cm from the
CD. The curvature of the illuminating field was varied
y placing a converging focal lens (see Fig. 3), with f
20 cm, in the collimated illumination beam at a distance

RS=49.5 cm from the rough target. Thus when the lens is
n place, a diverging beam is incident on the surface, and
hen the lens is removed, we revert to plane wave illumi-
ation. The target is illuminated at an angle of 15° by an
rgon-ion laser with �=488 nm. The parameters for the
wo optical systems (plane wave and diverging spherical
ave illumination) are �A ,B ,C ,D�= �1,0.585,0,1� and

Asw,Bsw,Csw,Dsw= �2.983,0.585,3.389,1�, respectively.
he CCD used was a Sony XC ES50CE,44 which has a
ixel size of 8.6 �m
8.3 �m, a sensing area of 6.5 mm
4.8 mm, and uses no additional imaging optics. After

mage acquisition the size of the grabbed image was 450
410 pixels. The auto-correlation and cross correlation of
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he images were implemented by using the MATLAB func-
ion normxcorr2.45 This produces quite a large correlation
atrix �900
820 pixels�. Because of this we display only

he relevant section of the correlation matrix in our ex-
erimental plots, with the result that sometimes the au-
ocorrelation peak is not in the center of the figure. The
urface was translated by using a translation stage
riven by an Oriel Encoder Mike actuator, controlled with
he 18113 Oriel Mike Control System. The motion stage is
ated to have a positional resolution of 0.1 �m. However,
t was found that the stage could be positioned with an
ccuracy of �±1 �m.19,20 A similar translation stage is
sed to drive the rotation stage, where a translation of
61 �m corresponds to 1° of rotation. This allows the op-
ically rough surface to be rotated with an error in angu-
ar position of 0.1 mrad.

The aim of our experimental section is to demonstrate
he effectiveness of an LCT-based approach to design, not
o produce a fully optimized metrology system. As a result
e would like to highlight the limitations in the system as

t is. We do not for example use interpolation schemes
ith our grabbed images to achieve subpixel accuracy,
ith the result that the smallest shift of the distribution

n the CCD plane that we can detect is equal to the cam-
ra pixel size of �8.3 �m.44 Also, since we are interested
nly in the location of the cross-correlation peak, we use
he normxcorr2 function from MATLAB,45 as opposed to the
ore effective covariance scheme for detecting and em-

hasizing these peaks as outlined in Chapter 2 of Ref. 6.

. Lateral Speckle Size
he lateral speckle size (for a circular scattering area) can
e calculated by using the formula 1.22��zd / l�.8,10 The
ave field incident on the rough target forms an approxi-
ately circular illumination spot with a diameter of

0 cm, so in the aperture plane we calculate a speckle size
f approximately 1.4 �m.8,10 The aperture diameter is
0 mm. Since the aperture area is thus very large com-
ared with the coherence area of the speckle field,this jus-
ifies the assumption made in Eqs. (11) and (12) that since
he width of the �ua

*�xa�ũa�x̃a�� function is “sufficiently nar-
ow to keep the other functions in the integrand constant
ithin the width,” then �ua

*�xa�ũa�x̃a�� may be expressed
s a delta function.46 Since there are approximately 5

ig. 4. Correlation results for translation of 100 �m for an LCT
ystem with plane wave illumination. Measured displacement,
9.96 �m.
107 individual speckles within the aperture area with
andom phase and amplitude, we can consider this plane
o be the effective scattering plane for the metrology sys-
em. This results in a lateral speckle size in the camera
lane of �21 �m.

. In-Plane Translation Results
he target was initially illuminated with a plane wave,
n image of the reflected speckle field was captured, the
arget was then moved, and another image of the (now
odified) speckle field was also captured. To determine

he motion of the target, the two images were correlated,
llowing both the magnitude and direction of the motion
o be determined.19,20 The result is displayed in Fig. 4,
nd two peaks are clearly visible in the plot. The first
eak, with a magnitude of unity, is the normalized auto-
orrelation of the first grabbed image with itself and
erves as the origin. The second and smaller peak is the
ross correlation of the first and second images. The direc-
ion is determined by noting to which side of the auto-
orrelation peak this secondary peak is positioned. It is
ossible to estimate the magnitude of the motion by de-
ermining the separation of the two peaks. In this case
he actual motion moved was 100 �m, and the measured
otion was 99.96 �m. As noted, the size of the secondary

eak (0.3271) is smaller than the auto-correlation, indi-
ating that decorrelation between the two captured im-
ges has occurred.
The target was then illuminated with a diverging

pherical beam. The spherical beam was produced by
lacing the converging lens of focal length of a collimated
lane wave a distance of 49.5 cm from the target (see Fig.
). Using the same procedure to grab and process the cap-
ured images and employing Eq. (16), the target, which
as again translated a distance of 100 �m but in the op-
osite direction to that before, was estimated to have
oved 100.5 �m. The results have been plotted in Fig. 5.
gain the secondary peak is smaller (0.5325) than the
uto-correlation peak, indicating that there is decorrela-
ion. We draw the reader’s attention to the location of the
econdary peak with respect to the auto-correlation peak
n Fig. 5. From this we can infer that the target has been

oved in the direction opposite to that in Fig. 4.

ig. 5. Correlation results for translation of 100 �m for an LCT
ystem with diverging wave illumination. Measured displace-
ent, 100.5 �m.
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From Eq. (20) it is expected that the metrology system’s
ensitivity to in-plane translation motion should be
hanged as the curvature of the illuminating field is var-
ed. Examining Figs. 4 and 5, it is clear that the sensitiv-
ty of the system has been altered, as the separation be-
ween the auto-correlation peak and secondary peak in
ig. 5 is greater than that in Fig. 4 even though the rough
arget has been translated by the same amount on both
ccasions. There appears to be an asymmetry in the peaks
isplayed in Figs. 4 and 5; however, this is due simply to
he different x- and y-axis scales in the plots. Indeed this
s also true of later figures.

. Small Surface Tilting Results
gain the target was illuminated by a plane wave under

he same conditions as those in Subsection 3.A. The rough
arget was tilted through a small angle �=0.54 mrad, and
he estimated motion was �0.53 mrad. The results are
lotted in Fig. 6. The separation between the two peaks is
uite large in comparison with the in-plane translation
esults (see Figs. 4 and 5), indicating that quite small
ngles can be easily measured.11 The secondary peak is,
s expected, smaller than the autocorrelation peak, with
value of 0.6506.

. Simultaneous Tilt and Translation Measurement
he optically rough target was moved by a small angle
=0.54 mrad and translated by 50 �m, this motion was
aptured under the two different illuminating conditions
plane and diverging spherical), and the grabbed images
ere processed. The result is plotted in Fig. 7. Our model
redicts that the diverging wave illumination will cause a
arger translation in the output plane, since the A param-
ter for this system is larger (see Subsection 3.A), and
his is evident in Fig. 7. Using Eqs. (28), the estimated
ranslation was 46.2 �m while the estimated rotation was
n exact 0.54 mrad. The combination of Eqs. (28) and the
hosen LCT system parameters means that the estima-
ion of the in-plane translation is sensitive to error. By
hoosing a different value for Asw, it should be possible to
ake this metrology system more robust to in-plane

ranslation measurement.

ig. 6. Correlation results for rotation of 0.55 mrad for an LCT
ystem where the target is illuminated with a plane wave. Mea-
ured rotation, 0.534 mrad.
. CONCLUSIONS
e have shown that an optical system modeled by using a

inear canonical transform (LCT) can be used to vary the
ange and sensitivity of a speckle-based metrology sys-
em. Using compact ABCD matrix notation,33 the metrol-
gy system’s sensitivity to both in-plane translation and
o tilting motion was related specifically to bulk optical el-
ments present in the system; i.e., any number of lenses
nd free-space propagation distances could be accounted
or. It was also noted18–20,34 that the magnitude and direc-
ion of both in-plane translation and tilting motion of an
ptically rough target can be discerned if that motion is
aptured in two separate LCT domains. In Subsection 2.A
e showed that an LCT-based analysis is useful in de-

igning and interpreting general metrology systems de-
pite the fact that the presence of a finite aperture vio-
ates the lossless condition assumed when using the LCT
nalysis.
A generalized form of the Yamaguchi correlation factor

as derived that explicitly relates the decorrelation be-
ween images, captured before and after motion, to both
n-plane translation and tilting of the optically rough in-
ut surface. In our derivation the rough surface was as-
umed to remain constant, i.e., there were no changes in
he surface microstructure and the surface was unaf-
ected by environmental factors such as the presence of
ondensation, as considered by other authors.4,6

It has been shown that in the paraxial approximation
lluminating a target with wavefronts of different curva-
ure can be used to effectively change the LCT domain. In
ubsection 2.C we derived expressions, which include the

lluminating field curvature with the ABCD matrix pa-
ameters that define the LCT system. By capturing the
utput intensity from an optically rough target, illumi-
ated by two fields of different curvature, both the direc-
ion and magnitude of the rigid body’s motion (tilting and
n-plane translation) can be unambiguously determined.

In Section 3 we experimentally demonstrated our abil-
ty to accurately measure in-plane translation motion by
sing illuminating fields of different curvature. It has
een shown that the sensitivity of the metrology system
an be related to the curvature of the illuminating field.

ig. 7. Correlation results for simultaneous in-plane transla-
ion of 50 �m and rotation of 0.55 mrad. Measured rotation,
.55 mrad; in-plane translation, 46.1 �m.



m
c
g
p
s
i
l
n

s
F
p
l
i
b

A
W
S
n
R
s
n

j
�

R

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

Kelly et al. Vol. 23, No. 11 /November 2006 /J. Opt. Soc. Am. A 2869
Much remains to be done, including a detailed experi-
ental verification of our proposed generalized Yamagu-

hi correlation factor.47 To achieve this, the covariance al-
orithm described in Ref. 6 must be implemented so that
recise calculation of the expected decorrelation is pos-
ible. In fact, in Refs. 4 and 6 the amount of decorrelation
s used as a means to estimate the magnitude of tilts, al-
owing measurement of translation and tilt simulta-
eously by using a single imaging system.
Furthermore, in the analysis of the quadratic phase

ystems described here, i.e., LCT systems 1 and 2 (see
ig. 1), the finite extents of the lens apertures are not ex-
licitly considered.48 Others have approached this prob-
em by using complex ABCD notation, assuming Gauss-
an apodized apertures.49,50 Clearly much also remains to
e done in this area.
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