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1 Introduction

Control systems, despite often being ‘invisibly’ incorporated within products,
devices and vehicles, are ubiquitous. They are prevalent within the automotive
and aerospace industries and form part of the vanguard of technologies in in-
creasing performance, improving fuel economy and increasing safety. One of the
most appealing aspects of incorporating control technology in many systems is
that the addition of extra control functionality can usually be achieved merely
through the addition of extra software code though, in many cases, additional
sensors and actuators may be required.

This relatively simple implementation modality masks both the capability
of control systems and the high level of engineering underpinning the devel-
opment of a suitable control algorithm. For example, many high-performance
model-based control design methods require an accurate mathematical model
of the system to be controlled and a significant number of man-hours can be
absorbed in modelling. Nevertheless, there is usually a good case to be made
for the incorporation of control technology to improve the performance (both
technical and economic), reliability and safety of a system. In this chapter, we
will examine the role that control engineering can play in making ocean energy
technology more competitive.

In an ideal world, one should consider the design of a complete system from
the top down. However, convention has it that physical systems are usually
designed by the discipline-specific experts and the control problem is then ad-
dressed in a subsequent step by control engineers, working in collaboration with
the discipline-specific experts. Such an approach, though prevalent in the bulk
of industrial applications of control, is non-optimal. There are some notable
exceptions, though, with a notable one being in the design of flight control sys-
tems. In the 1970’s, aircraft were designed to be open-loop unstable with the
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result that, in the absence of a closed-loop control system, such aircraft could
not be flown by human pilots. While this put complete reliance on the control
system, the advantage was that significant gains in aircraft manouverability and
economy of flight could be achieved. Some preliminary studies [23] have been
carried out which examine the interaction between the optimal design (geome-
try) of a wave energy device and an accompanying control system. The results
suggest a strong interaction between the type of control system used and the
optimal device geometry, with optimal energy capture as an objective.

For ocean energy applications, control systems can offer performance bene-
fits. Assuming that the prime energy converter is designed first, the addition of
control can offer significant energy capture enhancement. While the area of tidal
turbine control is not so well established, there are close similarities with wind
turbine control, one notable difference being that the density of the medium is
about 1000 times greater in the case of tidal turbines. A general study on wind
turbine control [50] suggests that a variable-speed turbine, requiring torque and
speed control, can absorb 2.3% more energy that a fixed-speed counterpart,
where the speed if fixed by the electrical grid frequency. In the case of wave
energy, the numbers are more dramatic. A study on latching control [4], which
is a relatively simple implementation of the more ideal complex-conjugate con-
trol, suggests that energy capture can increase by as much as a factor of 2 with
control in irregular waves and by up to a factor of 4 in regular waves.

We also need to consider if the addition of a control system may drive the
system more aggressively in an attempt to increase energy capture, perhaps
leading to shortened device lifetimes. While the addition of control to a (tidal)
turbine is likely to be relatively benign, the use of motion-exaggerating control
for a reciprocating wave energy device can have a dramatic effect on device mo-
tion. Consequently, the balance between increased energy capture (income) and
increased device wear (cost) needs to be carefully considered. Some formula-
tions are now appearing which attempt to balance such quantities [11], though
explicit enumeration of the cost of increased wear remains an open issue.

While potentially effecting more aggressive device motion, there are some
redeeming features of control which may help the designer in practical appli-
cation. For example, physical constraints can be explicitly included in many
control formulations [24], resulting in a control action that respects (and is op-
timal within) the physical system constraints. In addition, most optimal control
formulations allow some explicit trade-off between control action and the main
objective (e.g. setpoint tracking, energy maximisation, etc), which provides a
design handle on the level of aggressiveness of the control [37]. Control science
also provides a body of knowledge relating to the design of control systems
which are tolerant (in some respect, but usually with reduced performance) to
device, actuator or sensor failure [47].

Finally, one might consider the various ‘levels’ of control that might be re-
quired in an ocean energy application. Clearly, there is a top level of supervisory
control which assesses the incident energy resource and may curtail the opera-
tion of the device in the face of extreme conditions. Such curtailment may be
requirement in order to preserve the device integrity, ensure safe operation, or
be required by legislation, as in the case of wind turbines. For the tidal energy
case (unlike wind energy), the extremes of current flow are known and the tidal
current device will be designed to operate in energy capture model over this rel-
atively narrow operating range. Wave energy devices, however, will frequently
encounter sea states which are outside their normal operational envelope and
some supervisory strategy may be necessary to ensure that device integrity is
retained. While such supervisory control is important, it is beyond the scope of
this chapter (or book ?).
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2 What is control ?

While the reader might like to peruse the 1548 page excellent ‘encyclopedia’ of
[36] in an effort to understand the essence of control, it is pertinent to try to
articulate the fundamental utility of control that makes it useful in the context
of ocean energy. In general, control attempts to devise algorithms that force a
system to follow a desired path, objective, or behaviour modality. Tradition-
ally, the control problem is defined by a tracking problem, as shown in Fig.1,
where the objective is for the system output to follow the reference input. While
problems of these type do occur in ocean energy applications, for example speed
control of a tidal turbine, it is more useful to broaden the set of problem descrip-
tions and potential solutions a little, in order to assess the potential of control
engineering in an ocean energy context.

Σ Controller Actuator System

Sensor

Output

+

-

Desired output

r

e u

y

Figure 1: Typical tracking problem for a control system

In general, control problems are usually defined by some subset of the fol-
lowing:

Definition 1: General control problem definition

Maximise/minimise Performance objective (max. energy, min. error)

subject to: System constraints (amplitudes, rates, forces, etc)

i.e. a constrained optimisation problem. The definition above is not inconsistent
with the purpose of the system in Fig.1 where the objective function is usually
some measure (e.g. a quadratic measure) of the difference between the output
and its desired value i.e. the tracking error.

The desired performance of the tracking system in Fig.1 can be specified in
a variety of ways:

1. Desired transient response e.g. [32]

2. Desired steady-state response e.g. [52]

3. Desired closed-loop poles (roots of the closed-loop transfer function) e.g.
[9]

4. Trade-off between control energy (u2) and tracking error (e2) [1]

5. Minimisation of the sensitivity of the closed-loop system to variations in
the system description [55]

6. Minimisation of the sensitivity of the closed-loop system to external dis-
turbances [55]

Items 5 and 6 in the list above relate to the system robustness and specific
control methodologies to address these objectives have been developed since the
late 1970s.

In most cases, control design methods provide an explicit solution for the
controller in Fig.1, while some methods solve the more general optimisation
problem defined above at each time step. In the next section, we will see how
such specific or general solutions can be useful in the control of ocean energy
devices.
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Finally, some control methods require a mathematical model of the sys-
tem in order to determine the control algorithm and such methods are termed
model-based. The requirement for an accurate mathematical system model of-
ten involves considerably more work than the calculation of the controller itself,
though system identification techniques [38] can be employed to determine a
black-box model i.e. a model which has no structural relationship to the phys-
ical system. The combination of system identification techniques with a math-
ematical procedure for controller determination can be used to develop adap-
tive controllers, which have the capability to adapt to unknown (in ‘self-tuning
mode) or time-varying systems. Adaptive control schemes based on linear sys-
tem models also have the capability to track variations in a linear model due to
the presence of nonlinearity, though nonlinear systems are best controlled with
a dedicated fixed-parameter nonlinear controller. Significant care and attention
must also be paid to adaptive schemes to ensure stability and convergence over
all operating regimes [45].

For ocean energy systems, the modelling effort can be considerable, since
hydrodynamic modelling is involved. While a variety of comprehensive nonlinear
modelling methodologies are available for hydrodynamic modelling, including
smooth particle hydrodynamics (SPH) or computational fluid dynamics (CFD)
approaches, the difficult of incorporating such models into a control formulation
require the use of more compact and structurally simple models. In addition,
the very significant computational complexity of SPH or CFD models preclude
their direct use for real-time controller implementation. Instead, model-based
control strategies usually use compact linear models, which are based on either
local linearisation about an operating point (see, for example, [35, 8]) for the
turbine case, or linear boundary-element models [13, 15] for the wave energy
case. Even modest nonlinear extensions to linear boundary element methods
can result in models which are computationally intractable for real-time control
[43], while some specific parameterisations (e.g. to include viscosity effects [7])
give nonlinear parametric forms that may be possible to incorporate in model-
based control schemes.

2.1 Varieties of control algorithms

With a view to an examination of the spectrum of control methodologies avail-
able, the diagram of Fig.1 is now slightly re-configured to that of Fig.2 for
convenience of notation. The operators K, G and H are purposely free of
continuous-time/discrete-time or linear/nonlinear classification, with the inten-
tion of keeping the discussion as broad as possible. It is hoped that any loss
of mathematical rigour is compensated by the increased scope of the diagram’s
use!

r Σ K G

H

Σ

Σ

d

ξ

y
ue∗ z+

−

+

+

+
+

Figure 2: Feedback system specification

In Fig.2, the ‘system’ and ‘actuator’ blocks of Fig.1 have been combined into
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G, while the additional inputs, d and ξ, represent disturbances (deterministic
and/or stochastic) and measurement noise, respectively. The ’*’ designation is
used to denote that e∗ is not necessarily an exact calculation of e = r− y, since
H may be non-unitary.

2.1.1 PID control

One of the most ubiquitous control methods and has been a mainstay of process
control and many other application areas for over 7 decades. In this paradigm,
the control signal is formed as a linear combination of error, integral of error
(which aids good steady state control) and 1st derivative of error (which aids
good transient response), expressed in continuous-time form as:

u(t) = kpe
∗(t) + ki

∫
e∗(t)dt+ kdde

∗(t)/dt (1)

Various other forms, including the reduced PI and PD forms, are also possible,
while a number of embellishments, including velocity forms, bumpless transfer,
derivative on output only and derivative filtering make the PID controller more
use in many practical applications. The proportional, integral and derivative
gains (kp, ki and kd respectively) can be determined from a variety of model-
based design rules, or can be tuned by hand. The strong intuitive relationship
between the controller parameters and (particularly) the closed-loop step re-
sponse gives the opportunity to tune, or fine-tune, the parameters of the PID
controller by observing the resulting changes to the closed-loop response and has
been largely responsible for the widespread appeal of PID control. A compre-
hensive treatment of PID tuning rules in given in [48]. PID controllers are best
suited to systems with predominantly linear dynamics, though gain-scheduled
versions can be used to control non-linear systems [30].

2.1.2 Pole placement

The controller K can also be determined by defining the positions of the de-
sired closed-loop poles, which are strongly related to the closed-loop transient
response. Such calculations can be easily done in either discrete- or continuous-
time, though transient response specifications are more easily specified in the
(continuous-time) s-plane. Designs performed in continuous-time can be eas-
ily transformed to discrete-time versions using discretization based on pole-zero
mapping [28]. Pole placement required a model of the system, but is easily
performed for both models described by transfer functions [3] or in state-space
form [18]. For systems described in transfer function form, some design free-
dom (choice of observer polynomial) is available beyond achievement of the
closed-loop poles, while pole placement for multivariable systems (systems with
multiple inputs and outputs) normally results in a nonunique solution for the
feedback gains, allowing some extra design freedom which can be used to address
robustness issues, etc.

2.1.3 Optimal control

There are many varieties of optimal control, which has its origins in the birth
of the ‘modern control’ era of the 1960s. It can be used with both state-space
[1] and transfer function [25] models and is equally applicable to continuous-
and discrete-time models. Traditionally, the (continuous-time) linear quadratic
regulator (LQR) optimal control problem is formulated as:

min
u

J =

∫ t∗

0

(eTQe+ uTQu)dt (2)

where e = r − y and Q and R are weighting matrices which define the trade-
off between error minimisation and reduction of the control energy used. For
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example, in high accuracy servomechanism problems, the choice of Q � R is
usually made, while in satellite control applications, where fuel is limited, a
choice of R � Q is more appropriate. Since there is an emplicit relationship
between Q,R and the closed-loop poles, traditional optimal control can be seen
as an alternative way of determining the closed-loop poles. The solution to the
problem in (2), however is not simple, requiring the solution to a Ricatti equation
for systems described in state-space form [1] and a Diophantine equation for the
transfer function form [25]. However, a range of computer-based tools are now
available to assist with the solution to these equations.

In general, the formulation in (2) is for linear models and can be specified
either as a finite-horizon (t∗ is finite) problem, or as an infinite horizon ((t∗ →
∞). A particular evolution of the finite horizon optimal control problem which is
formulated in discrete time and uses a future prediction of the system output is
model-based predictive control (MPC) [56], which has seen significant adoption
in the process, and other, industries, rivalling PID control in popularity.

The basic problem formulation for MPC is:

min
u(0),...,u(hc)

hp∑
k=0

e(k)TQe(k) +

hc∑
k=0

∆u(k)TR∆u(k) (3)

where ∆u(k) = u(k)−u(k−1), e(k) = r(k)−y(k) and hp and hc are the predic-
tion and control horizons, respectively. Using a model of the system, the future
output is predicted up to hp steps ahead and the optimal control sequence,
u(0), . . . , u(hc), calculated so that the system output follows a reference trajec-
tory. The next control input, u(0) is then applied to the system and the optimal
future control sequence recalculated. This ‘receeding horizon’ procedure allows
the system to effectively counteract output disturbances (d in Fig.2) and gives
the control paradigm good robustness properties.

MPC is flexible and can deal with a number of practical system character-
istics. For example, if the system contains pure delay (of, say, nd steps) then
the performance function in (3) is recast with nd as the lower limit on the first
summation term. This effectively implements a Smith predictor [41], placing the
delay component outside the control loop. An extension which is very useful
in many applications is the possibility to implement constraints on the system
inputs, outputs and states. This can be used to implement an optimal control
which respects physical limits on system variables, such as velocities, positions,
forces, currents, voltages, etc. The constrained formulation [40] includes (3)
together with a set of constraints:

ymin ≤ y ≤ ymax

umin ≤ u ≤ umax

|∆u| ≤ umax

etc

MPC can use both linear and nonlinear models. For the basic MPC formulation,
an algebraic solution for the u(k) in terms of y(k) and r(k). For MPC formu-
lations involving constraints and/or a nonlinear system model [29], the general
(numerical) optimisation problem in Definition 1 above must be solved. How-
ever, the subject of efficient optimisation algorithms for constrained/nonlinear
MPC has received considerable attention [53].

Finally, one very useful exploitation of the general MPC framework is the
possible substitution of the quadratic regulation penalty (e.g. eT e) in (3) with
an energy related term, such as current x voltage or force x velocity,
coupled with a change from minimisation to maximisation of the performance
function. Such a possibility has particular relevance to ocean energy and will
be further discussed in Section 3.

6



2.1.4 Robust control

Robust control theory developed rapidly from the 1970s as a paradigm that ex-
plicity tried to synthesise controllers which were optimally robust to variations
in the system (due to time variance, nonlinearity, etc) and disturbances. For
robust control design, both a system model and a measure of the uncertaintly
in the model. The uncertainty can be expressed in both structured (leading to
µ-synthesis [49]) or unstructured (leading to H∞ design [51]) forms. For illus-
tration, the robust control formulation for H∞ design will be briefly outlined.
The performance function for the classical H∞ control design problem can be
specified as:

J∞ =

∥∥∥∥ W1(s)S(s)
W2(s)T (s)

∥∥∥∥
∞

(4)

where

S(s) = (1 +GKH(s))−1 , T (s) = GKH(s)(1 +GKH(s))−1 (5)

are the sensitivity and complementary sensitivity functions (with reference to
Fig.2) respectively, and we not that S(s) + T (s) = 1. S(s) specifies the closed-
loop sensitivity to variations in G(s) and K(s) and also is the transfer function
relating the disturbance, d, to the system output, y. T (s) specifies the relation-
ship between the measurement noise, ξ, and the output, y and also determines
robust stability.

Robust stability is guaranteed by ensuring that the weight W2(s) overbounds
the plant (multiplicative) perturbation in the maximum singular value sense as:

σ̄[W2(jω)] ≥ σ̄[∆(jω)]∀ω ≥ 0 (6)

where:
G(s) = Go(s)(1 + ∆(s)) (7)

with Go being the nominal system model. In general, the weighting function
W1(s) is chosen to:

• Penalise sensitivity, S(s), at low frequency, giving good low frequency dis-
turbance rejection, and

• Ensure that system performance (dynamic response) is maintained in spite
of parameter variations in G(s) at low frequency.

W2 is chosen to:

• Ensure robust stability by covering ∆(s) i.e. that condition (6) is met,
and

• Attenuate high-frequency measurement noise in ξ, by driving T(s) down
at high frequency.

In addition, the relative positions of W1(s) and W2(s) determine the closed-loop
bandwidth, controlling the dynamic response to setpoints (r) and disturbances
(d).

One of the issues with early robust control was that, while robustness was
explicitly handled, no specifications on performance (e.g. tracking) could be
explicitly made. One solution is to design an LQR regulator and then re-
inforce controller robustness using the loop transfer recovery (LTR) method
[42]. Robust version of predictive control, including the possibility to deal with
constraints are also available [33] and H∞ design methods have also been ex-
tended to nonlinear systems [27]. While robust control presents the possibility
to deal with nonlinear systems using a linear robust control approach, where
the nonlinearity is reflected in the uncertainty in the linear model, this is not a
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recommended approach, since the performance will be degraded across the oper-
ational spectrum (in order to ensure robust stability), compared to a dedicated
nonlinear design.

In general, the optimisation problems resulting from minimisation of cost
functions such as (4) are complex, but formulation of robust control problems
as a set of linear matrix inequalities (LMIs) allows the application of efficient
numerical tools [22].

2.1.5 Nonlinear control

While control algorithms developed for linear systems apply to the vast bulk of
such systems (with some exceptions relating to open-loop stability/instability,
non-minimum phase zeros, presence of time delay, etc), there is no general theory
of nonlinear systems and most nonlinear control design methods are for specific
nonlinear forms, e.g. Hammerstein, Volterra, etc. A number of generic nonlinear
control formulations, and using artificial neural network (ANN) system models,
are presented in [46] and [29] and include methods inspired by model-reference
adaptive control, internal-model control (IMC) and MPC. An alternative is to
try to apply feedback linearisation [31] to the nonlinear system, followed by
linear design. Other popular nonlinear control approaches include backstepping
[34] and sliding-mode control [57], which is a form of variable strucutre control
using high gain and a switching control strategy to implement robust feedback
control.

3 Control systems for ocean energy

While Section 2 has focussed mainly on the classical control problem of regula-
tion of some variable to a desired value, and indeed such problems are encoun-
tered in ocean energy applications, there is a broader set of problems which can
also be addressed by control system technology. The purpose of this section is
to present this broad problem definition and examine how this problem may be
addressed, or broken down into smaller parts which may be more easily solved.

3.1 Problem specification

In the case of both tidal and wave energy, the general problem is to maximise
energy capture, subject to grid and environmental constraints. However, we
might modify the objective of energy capture maximisation to that of maximi-
sation of economic return [11], which requires a balance to be achieved between
maximising energy capture and minimising wear on components. However, the
move to an economic performance function also requires the accurate articula-
tion of capital and operational costs, which is quite onerous for the relatively
immature field of ocean energy, and significantly complicates the optimisation
problem. Instead, for the current analysis, in order to retain a focus on the
fundamental control issues, we will limit ourselves to the general problem of
energy capture maximisation.

There are two broad approaches which may be taken to solve the energy
maximisation problem:

(a) Overall extremum seeking control [2], with little use of a detailed model of
the system, or

(b) Determination of an optimal setpoint for the system, which gives maxi-
mum energy capture, followed by a regulatory to make sure this setpoint is
achieved.

Option (a) is attractive from the point of view of the lack of requirement for a
detailed model, but may have dynamic performance limitations in convergence
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rates and may have difficulty finding a global maximum over a non-convex per-
formance surface. For example, in a wave energy application, the controller may
not converge to the appropriate setting before the instantaneous wave frequency
changes.

Interestingly, a common framework for both wave and tidal energy may be
adopted for option (b), as shown in Fig.3. The particulars for tidal and wave
devices are detailed in Sections 3.2 and 3.3. For the standard feedback regulation

Optimal

calculation

Controller

External
variables

+

-

Optimal
setpoint

Σ

Controlled
variable

Device

Manipulated
variable

Figure 3: Sequential optimal calculation and regulation

section of Fig.3, any one of the techniques mentioned in Section 2 can be chosen,
based on the particular system description, the level of control fidelity required
and the appetite for computational complexity. Since both tidal turbine and
wave energy device dynamics are relatively slow (with the possible exception
of the power converter section), there is much scope for the implementation of
complex control strategies.

3.2 Tidal energy

in the case of a tidal turbine, optimal blade pitch, β, and rotor velocity (via
the tip/speed ratio, λ) are set based on the incident flow velocity in order to
maximise the power coefficient, Cp. Standard feedback loops are then used to
control the pitch actuators and the torque in the rotor in order to achieve the
desired pitch angle and rotor speed. The manipulated variable for the pitch
control is the power to the pitch actuators (voltage and/or current). For torque
control, either the back-to-back (B2B) power converter (where one is used) or
the generator excitation can be used as control actuators.

It is important to note that the relationship between β, λ and Cp is specific
to each tidal turbine and must be determined for each particular case. However,
this relationship is then fixed, though some slight variation may occur due to
component wear, or possible water density variations. We also note that when a
tidal turbine reaches its rated power, the turbine must be ‘depowered’ in order
to avoid exceeding any rated specifications. In this situation, it is not required
to maximise power conversion and, for variable pitch turbines, blade pitch can
be adjusted in order to limit power converted.

Control system for wind turbines are now well developed [35, 8, 50] and many
of these schemes can be successfully exploited in tidal turbine control. However,
some important differences between wind and tidal turbines are articulated in
[14].Section XXXX of this chapter exmamines the detail of control
strategies for marine current turbines

3.3 Wave energy

For the wave energy case, the optimal velocity profile needs to be determined
from the excitation force experienced by the device and the power take-off
(PTO) system is then manipulated by the feedback controller to achieve this
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velocity profile. The optimisation problem in Fig.3, for the wave energy case,
is effectively an impedance matching problem, since the input to the system is
broadly sinusoidal and the wave energy device can be represented by it’s (com-
plex) intrinsic impedance, as represented in Fig.4. For optimum power transfer

Zi

∼ ZPTO

PTODevice

Fe

Figure 4: Impedance matching problem for wave energy device

from the device to the PTO, we can use the well-known result:

ZPTO = Z∗i (8)

where ( )∗ denotes the complex conjugate. In order to see the typical form of
Zi we can use the simple wave energy device model, originally proposed in [13]:

mẍ(t) +m∞ẍ(t) +

∫ +∞

0

hr(τ)ẋ(t− τ)dτ +Kvẋ(t) + kbx(t) = fex(t) (9)

where

fex(t) =

∫ t

−∞
he(τ)η(t− τ)dτ (10)

with η(t) being the free surface elevation, he(t) and hr(t are the kernels associ-
ated with the excitation force and radiation damping convolutions, respectively,
m is the device mass, m∞ is infinite frequency component of added mass and Kv

and Kb are the coefficients of viscous loss and restoring force (buoyancy/gravity)
respectively. With:

B(ω) = F
[∫ +∞

0

hr(τ)ẋ(t− τ)dτ

]
(11)

we can identify the intrinsic impedance, Zi, of the device as:

Zi(ω) = Fex(ω)/V (ω) = B(ω) + kv + jω

[
m+m∞ −

kb
ω2

]
(12)

If the wave excitation is monochromatic, i.e. ω) has a single value and is known,
then (8) is straightforward to calculate, with the optimal velocity profile:

vopt =

∫ t

−∞
hv(τ)fex(t− τ)dτ (13)

with hv(t) = F−1{1/2b(ω)}. However, real (irregular) sea conditions present
some difficulties:

• Reactive power must be supplied by the PTO,

• The calculation in (13) is non-causal, and

• There are no constraints on the motion.
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With regard to constraints, Budal[17] and Evans [16] considered optimal power
absorbtion under motion constraints. As discussed previously, MPC provides a
mechanism to allow motion constraints to be explicitly specified in the control
problem formulation. The obvious difficulty with MPC is that it’s normally
used for quadratic regulation problems (see (3), but reformulation of the cost
function to address a suitable energy maximisation problem, as:

min
u(0),...,u(hc)

Ts

hp∑
k=0

[v(k)fex(k)− v(k)fr(k)] (14)

where available mechanical energy (i.e. the difference between excitation and
radiation energy, assuming no losses) is maximised, gives the opportunity of
using standard MPC tools. In (3), Ts is the sampling period, noting that power
is the product of force and velocity, while energy is the integral (or discrete-
time summation) of power over time. Relatively standard MPC formulations for
wave-energy device control have been considered in [26] and [12], while an MPC
problem which parameterises the system variables in terms of basis functions
[6] results in the computationally straightforward solution of a set of linear
equations. It would be reasonable to suggest that MPC implicitly implements
complex-conjugate control, since the performance function is the same as that
for impedance matching, albeit with the optimum obtained within the envelope
of constraints. Finally, a particularly simple sub-optimal controller, but with
the capability of implementing amplitude constraints, is reported in [21].

With regard to the causality problem, a number of causal approximations to
complex conjugate control are available, including latching [10, 4], declutching
[5] and other methods, e.g. [39]. One causal approach, which uses the broad
LQR strategy of Section 2.1.3, is reported in [54]. An alternative way of dealing
with non-causal control is to attempt to predict the future free-surface elevation
or the excitation force, as required in (13). While (13) suggests that a forecast
of fex for t→∞ is required, [20] evaluates the realistic forecasting requirements
in terms of the device and the typical seas in which such a device might operate
find that, in general, there is a strong positive correlation between forecast-
ing requirements and likely ease of forecasting. Some forecasting methods for
excitation force and free surface elevation are described in [19].

Section XXXX of this chapter exmamines the detail of control
strategies for wave energy devices

4 Conclusions

Control technology, which includes significant components of system identifica-
tion (black-box modelling) and optimisation, has a significant role to play in
increasing the functionality, performance and economic viability of ocean en-
ergy systems. While the more traditional control problem of output regulation
appears to a significant extent in ocean energy application, some of the primary
issues (such as converted energy maximisation) are more difficult to address
using standard control methods. However, some control methods which solve
more general optimisation problems (as articulated in Definition 1), such as
MPC, can be adapted to address the energy maximisation objectives.

Other aspects of control technology which, to date, have not seen applica-
tion in the ocean energy area include fault-tolerant control [44] which could be
important in ocean energy systems which typically have very limited access for
maintenance. Fault-tolerant control could also be applied to arrays of devices,
in order to maintain grid compliance and smooth energy output of an ocean
energy farm if one or more devices develop faults.
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