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Abstract

We present information-theoretic definitions and results for analyzing symmetric-key en-
cryption schemes beyond the perfect secrecy regime, i.e. when perfect secrecy is not attained.
We adopt two lines of analysis, one based on lossless source coding, and another akin to rate-
distortion theory. We start by presenting a new information-theoretic metric for security, called
ǫ-symbol secrecy, and derive associated fundamental bounds. This metric provides a parame-
terization of secrecy that spans other information-theoretic metrics for security, such as weak
secrecy and perfect secrecy. We then introduce list-source codes (LSCs), which are a general
framework for mapping a key length (entropy) to a list size that an eavesdropper has to resolve
in order to recover a secret message. We provide explicit constructions of LSCs, and show that
LSCs that achieve high symbol secrecy also achieve a favorable tradeoff between key length and
uncertainty list size. We also demonstrate that, when the source is uniformly distributed, the
highest level of symbol secrecy for a fixed key length can be achieved through a construction
based on minimum-distance separable (MDS) codes. Using an analysis related to rate-distortion
theory, we then show how symbol secrecy can be used to determine the probability that an eaves-
dropper correctly reconstructs functions of the original plaintext. More specifically, we present
lower bounds for the minimum-mean-squared-error of estimating a target function of the plain-
text given that a certain set of functions of the plaintext is known to be hard (or easy) to infer,
either by design of the security system or by restrictions imposed on the adversary. We illustrate
how these bounds can be applied to characterize security properties of symmetric-key encryp-
tion schemes, and, in particular, extend security claims based on symbol secrecy to a functional
setting. Finally, we discuss the application of our methods in key distribution, storage and
privacy.
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1 Introduction

The security properties of a communication scheme can, in general, be evaluated from two funda-

mental perspectives: information theoretic and computational. For a noiseless setting, uncondi-

tional (i.e. perfect) information-theoretic secrecy can only be attained when the communicating

parties share a random key with entropy at least as large as the message itself [3]. Consequently,

usual information-theoretic approaches focus on physically degraded models [4], where the goal is

to maximize the secure communication rate given that the adversary has a noisier observation of

the message than the legitimate receiver. On the other hand, computationally secure cryptosys-

tems have thrived both from a theoretical and a practical perspective. Such systems are based on

yet unproven hardness assumptions, but nevertheless have led to cryptographic schemes that are

widely adopted (for an overview, see [5]). Currently, computationally secure encryption schemes

are used millions of times per day, in applications that range from online banking transactions to

digital rights management.

Computationally secure cryptographic constructions do not necessarily provide an information-

theoretic guarantee of security. For example, one-way permutations and public-key encryption can-

not be deemed secure against an adversary with unlimited computational resources. This is not to

say that such primitives are not secure in practice – real-world adversaries are indeed computation-

ally bounded. There are, however, cryptographic schemes that are believed to be computationally

secure and simultaneously provide some security guarantee against computationally unbounded

adversaries, albeit such guarantee is not absolute secrecy. This was noted by Shannon [3] and later

by Hellman [6] in a companion paper to his and Diffie’s work “New directions in Cryptography”

[7].

Our goal in this work is to characterize the fundamental information-theoretic security prop-

erties of cryptographic schemes when perfect secrecy is not attained. We follow the footsteps of

Shannon and Hellman and study symmetric-key encryption with small keys, i.e. when the length

of the key is smaller than the length of the message. In this case, the best a computationally

unrestricted adversary can do is to decrypt the ciphertext with all possible keys, resulting in a list

of possible plaintext messages. The adversary’s uncertainty regarding the original message is then

represented by a probability distribution over this list. This distribution, in turn, depends on both

the distribution of the key and the distribution of the plaintext messages.

We evaluate the information-theoretic security in this setting through two complementary lines

of analysis: (i) one based on lossless source coding, where the security properties of the uncertainty

list are measured using mutual information-based metrics and secure communication schemes are

provided based on linear code constructions, and (ii) another akin to rate-distortion theory, where

the mutual information-based metrics are translated into restrictions on the inference capabilities

of the adversary through converse results. We describe each approach below.
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1.1 Lossless Source Coding Approach

If perfect secrecy is not achieved, then meaningful metrics are required to quantify the level of

information-theoretic security provided by a cryptographic scheme. We define a new metric for

characterizing security, ǫ-symbol secrecy, which quantifies the uncertainty of specific source sym-

bols given an encrypted source sequence. This metric subsumes traditional rate-based information-

theoretic measures of secrecy which are generally asymptotic [4]. However, our definition is not

asymptotic and, indeed, we provide a construction that achieves fundamental symbol secrecy

bounds, based on maximum distance separable (MDS) codes, for finite-length sequences. We note

that there has been a long exploration of the connection between coding and cryptography [8], and

our work is inscribed in this school of thought.

We also introduce a general source coding framework for analyzing the fundamental information-

theoretic properties of symmetric-key encryption, called list-source codes (LSCs). LSCs compress a

source sequence below its entropy rate and, consequently, a message encoded by an LSC is decoded

to a list of possible source sequences instead of a unique source sequence. We demonstrate how any

symmetric-key encryption scheme can be cast as an LSC, and prove that the best an adversary can

do is to reduce the set of possible messages to an exponentially sized list with certain properties,

where the size of the list depends on the length of the key and the distribution of the source. Since

the list has a size exponential in the key length, it cannot be resolved in polynomial time in the key

length, offering a certain level of computational security. We characterize the achievable ǫ-symbol

secrecy of LSC-based encryption schemes, and provide explicit constructions using algebraic coding.

1.2 Rate-Distortion Approach

While much of information-theoretic security has considered the hiding of the plaintext, crypto-

graphic metrics of security seek to hide also functions thereof [9]. More specifically, cryptographic

metrics characterize how well an adversary can (or cannot) infer functions of a hidden variable, and

are stated in terms of lower bounds for average estimation error probability. This contrasts with

standard information-theoretic metrics of security, which are concerned with the average number of

bits that an adversary learns about the plaintext. Nevertheless, as shown here, restrictions on the

average mutual information can be mapped to lower bounds on average estimation error probability

through rate-distortion formulations.

Using a rate-distortion based approach, we extend the definition of ǫ-symbol secrecy in order to

quantify not only the information that an adversary gains about individual symbols of the source

sequence, but also the information gained about functions of the encrypted source sequence. We

prove that ciphers with high symbol secrecy guarantee that certain functions of the plaintext are

provably hidden regardless of computational assumptions. In particular, we show that certain

one-bit function of the plaintext (i.e. predicates) cannot be reliably inferred by the adversary.

We illustrate the application of our results both for hiding the source data and functions thereof.

We provide an extension of the one-time pad [3] to a functional setting, demonstrating how certain

classes of functions of the plaintext can be hidden using a short key. We also consider the privacy
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against statistical inference setup studied in [10], and show how the analysis introduced here sheds

light on the fundamental privacy-utility tradeoff.

From a practical standpoint, we investigate the problem of secure content caching and distribu-

tion. We propose a hybrid encryption scheme based on list-source codes, where a large fraction of

the message can be encoded and distributed using a key-independent list-source code. The infor-

mation necessary to resolve the decoding list, which can be much smaller than the whole message,

is then encrypted using a secure method. This scheme allows a significant amount of content to be

distributed and cached before dealing with key generation, distribution and management issues.

1.3 Related work

Shannon’s seminal work [3] introduced the use of statistical and information-theoretic metrics

for analyzing secrecy systems. Shannon characterized several properties of conditional entropy

(equivocation) as a metric for security, and investigated the effect of the source distribution on the

security of a symmetric-key cipher. Shannon also considered the properties of “random ciphers”,

and showed that, for short keys and sufficiently long, non-uniformly distributed messages, the

random cipher is (with high probability) breakable: only one message is very likely to have produced

a given ciphertext. Shannon defined the length of the message required for a ciphertext to be

uniquely produced by a given plaintext as the unicity distance.

Hellman extended Shannon’s approach to cryptography [6] and proved that Shannon’s random

cipher model is conservative: A randomly chosen cipher is likely to have small unicity distance,

but does not preclude the existence of other ciphers with essentially infinite unicity distance (i.e.

the plaintext cannot be uniquely determined from the ciphertext). Indeed, Hellman argued that

carefully designed ciphers that match the statistics of the source can achieve high unicity distance.

Ahlswede [11] also extended Shannon’s theory of secrecy systems to the case where the exact source

statistics are unknown.

The problem of quantifying not only an eavesdropper’s uncertainty of the entire message but

of individual symbols of the message was studied by Lu in the context of additive-like instanta-

neous block ciphers (ALIB) [12–14]. The results presented here are more general since we do not

restrict ourselves to ALIB ciphers. More recently, the design of secrecy systems with distortion

constraints on the adversary’s reconstruction was studied by Schieler and Cuff [15]. We adopt

here an alternative approach, quantifying the information an adversary gains on average about the

individual symbols of the message, and investigate which functions of the plaintext an adversary

can reconstruct. Our results and definitions also hold for the finite-blocklength regime.

Tools from algebraic coding have been widely used for constructing secrecy schemes [8]. In

addition, the notion of providing security by exploiting the fact that the adversary has incomplete

access to information (in our case, the key) is also central to several secure network coding schemes

and wiretap models. Ozarow and Wyner [16] introduced the wiretap channel II, where an adversary

can observe a set k of his choice out of n transmitted symbols, and proved that there exists a code

that achieves perfect secrecy. A generalized version of this model was investigated by Cai and
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Yeung in [17], where they introduce the related problem of designing an information-theoretically

secure linear network code when an adversary can observe a certain number of edges in the network.

Their results were later extended in [18–21]. A practical approach was presented by Lima et al. in

[22]. For a survey on the theory of secure network coding, we refer the reader to [23].

The list-source code framework introduced here is related to the wiretap channel II in that a

fraction of the source symbols is hidden from a possible adversary. Oliveira et al. investigated in

[24] a related setting in the context of data storage over untrusted networks that do not collude,

introducing a solution based on Vandermonde matrices. The MDS coding scheme introduced in

this paper is similar to [24], albeit the framework developed here is more general.

List decoding techniques for channel coding were first introduced by Elias [25] and Wozencraft

[26], with subsequent work by Shannon et al. [27, 28] and Forney [29]. Later, algorithmic results

for list decoding of channel codes were discovered by Gurusuwami and Sudan [30]. We refer the

reader to [31] for a survey of list decoding results. List decoding has been considered in the context

of source coding in [32]. The approach is related to the one presented here, since we may view a

secret key as side information, but [32] did not consider source coding and list decoding together

for the purposes of security.

The use of rate-distortion formulations in security and privacy settings was studied by Ya-

mamoto [33] and Reed [34]. Information-theoretic approaches to privacy that take distortion into

account were also considered in [10,35–37].

1.4 Notation

Throughout the paper capital letters (e.g. X and Y ) are used to denote random variables, and

calligraphic letters (e.g. X and Y) denote sets. All the random variables in this paper have a

discrete support set, and the support set of the random variables X and Y are denoted by X and

Y, respectively. For a positive integer j, k, n, j ≤ k, [n] , {1, . . . , n}, [j, k] , {j, j + 1, . . . , k}.
Matrices are denoted in bold capital letters (e.g. H) and vectors in bold lower-case letters (e.g.

h). A sequence of n random variables X1, . . . ,Xn is denoted by Xn. Furthermore, for J ⊆ [n],

XJ ,

(
Xi1 , . . . ,Xi|J |

)
where ik ∈ J and i1 < i2 < · · · < i|J |. Equivalently, for a vector

x = (x1, . . . , xn), xJ ,

(
xi1 , . . . , xi|J |

)
. For two vectors x, z ∈ Rn, we denote by x ≤ z the

set of inequalities {xi ≤ zi}ni=1. Furthermore, we denote by In(t) the set of all subsets of [n] of size

t, i.e. J ∈ In(t) ⇔ J ⊆ [n] and |J |= t.

All the logarithms in the paper are in base 2. We denote the binary entropy function as

hb(x) , −x log x− (1− x) log(1− x).

The inverse of the binary entropy function is the mapping h−1
b : [0, 1] → [0, 1/2] where

h−1
b (h(x)) =




x, 0 ≤ x ≤ 1/2

1− x, otherwise.
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The set of all unit variance functions of a random variable X with distribution pX (denoted by

X ∼ pX) is given by

L2(pX) , {φ : X → R such that ‖φ(X)‖2= 1, X ∼ pX} ,

where ‖φ(X)‖2,
√
E [φ(X)2].

The operators TX and TY denote conditional expectation and, in particular, (TX ◦ g)(x) =

E [g(Y )|X = x] and (TY ◦ f)(y) = E [f(X)|Y = y], respectively. For two random variables X and

Y , the minimum-mean-squared error (MMSE) of estimating X from an observation of Y is given

by

mmse(X|Y ) , min
X→Y→X̂

E
[
(X − X̂)2

]
.

1.5 Communication and threat model

A transmitter (Alice) wishes to transmit confidentially to a legitimate receiver (Bob) a sequence

of length n produced by a discrete source X with alphabet X and probability distribution pX .

We assume that the communication channel shared by Alice and Bob is noiseless, but is observed

by a passive, computationally unbounded eavesdropper (Eve). Both Alice and Bob have access

to a shared secret key K drawn from a discrete alphabet K, such that H(K) < H(Xn), and

encryption/decryption functions Enc : X n ×K → M and Dec : M×K → X n, where M is the set

encrypted messages. Alice observes the source sequence Xn, and transmits an encrypted message

M = Enc(Xn,K). Bob then recovers Xn by decrypting the message using the key, producing

X̂n = Dec(M,K). The communication is successful if X̂n = Xn. We consider that the encryption

is closed [3, pg. 665], so Dec(c, k1) 6= Dec(c, k2) for k1, k2 ∈ K, k1 6= k2. We assume Eve knows the

functions Enc and Dec, but does not know the secret key, K. Eve’s goal is to gain knowledge about

the original source sequence.

1.6 Organization of the paper

1.6.1 Symbol secrecy

We introduce the definitions of absolute and ǫ-symbol secrecy in Section 2. Symbol secrecy quan-

tifies the uncertainty that an eavesdropper has about individual symbols of the message.

1.6.2 Encryption with key entropy smaller than the message entropy

We present the definition of list-source codes (LSCs), together with fundamental bounds, in Section

3. Practical code constructions of LSCs are introduced in Section 4. We then analyze the symbol

secrecy properties of LSCs in Section 5.
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1.6.3 A Rate-Distortion View of Symbol Secrecy

In Section 6 we introduce results for characterizing the information leakage of a security system

in terms of functions of the original source data. In particular, we derive converse bounds for

the minimum-mean-squared error (MMSE) of estimating a target function of the plaintext given

that certain functions of the plaintext are known to be hard (or easy) to infer. We illustrate the

application of these bounds in a generalization of the one-time pad. We also use these results to

bound the probability of error of estimating predicates of the plaintext given that a certain level of

symbol secrecy is achieved.

1.6.4 Further applications and practical considerations

Section 7 presents further applications of our results to security and privacy, together with prac-

tical considerations of the proposed secrecy framework. Finally, Section 8 presents our concluding

remarks.

2 Symbol Secrecy

In this section we define ǫ-symbol secrecy, an information-theoretic metric for quantifying the

information leakage from security schemes that do not achieve perfect secrecy. Given a source

sequence Xn and a random variable Z dependent of Xn, ǫ-symbol secrecy is the largest fraction

t/n such that, given Z, at most ǫ bits can be learned on average from any t-symbol subsequence of

Xn. We also prove an ancillary lemma that bounds the average mutual information between Xn

and Z in terms of symbol secrecy.

Definition 1. Let Xn be a random variable with support X n, and Z be the information that leaks

from a security system (e.g. the ciphertext). Denoting XJ = {Xi}i∈J , we say that pXn,Z achieves

an ǫ-symbol secrecy of µǫ(X
n|Z) if

µǫ(X
n|Z) , max

{
t

n

∣∣∣∣
I(XJ ;Z)

|J | ≤ ǫ ∀J ⊆ [n], 0 < |J |≤ t

}
. (1)

In particular, the absolute symbol secrecy of Xn from Y is given by

µ0(X
n|Z) , max

{
t

n

∣∣∣∣ I(X
J ;Z) = 0 ∀J ⊆ [n], 0 < |J |≤ t

}
. (2)

We also define the dual function of symbol-secrecy for Xn and Z as:

ǫ∗t (X
n|Z) , inf {ǫ ≥ 0 |µǫ(Xn|Z) ≥ t/n} . (3)

The next examples illustrate a few use cases of symbol secrecy.

Example 1. Symbol secrecy encompasses other definitions of secrecy, such as weak secrecy [38],

strong secrecy [39] and perfect secrecy. For example, given two sequences of random variables

8



Xn and Zn, if µǫ(X
n|Zn) → 1 for all ǫ > 0, then I(Xn;Zn)

n → 0. The converse is not true, as

demonstrated in Example 3 below. Furthermore, I(Xn;Zn) = 0 if and only if µ0(X
n|Zn) = 1.

Finally, the reader can verify that I(Xn;Zn) → 0 if and only if there exists a sequence ǫn = o(n)

such that µǫn(X
n|Zn) → 1.

Example 2. Consider the case where X = {0, 1}, Xn is uniformly drawn from X n, and Z is the

result of sending Xn through a discrete memoryless erasure channel with erasure probability α.

Then, for any J ⊆ [n], J 6= ∅,
I(XJ ;Z)

|J | = (1− α),

and, consequently,

µǫ(X
n|Z) =




0, for 0 ≤ ǫ < 1− α,

1, ǫ ≥ 1− α.

Example 3. Now assume again that Xn is a uniformly distributed sequence of n bits, but now

Z = X1. This corresponds to the case where one bit of the message is always sent in the clear, and

all the other bits are hidden. Then, for any J ⊆ [n] such that {1} ∈ J ,

I(XJ ;Z) = 1,

and, for 0 ≤ ǫ < 1,

µǫ(X
n|Z) = 0.

Consequently, a non-trivial symbol-secrecy cannot be achieved for ǫ < 1. In general, if a symbol

Xi is sent in the clear, then a non-trivial symbol secrecy cannot be achieved for ǫ < H(Xi). Note

that I(Xn;Z)/n→ 0, so weak secrecy is achieved.

Example 4. We now illustrate how symbol secrecy does not necessarily capture the information

that leaks about functions of Xn. We address this issue in more detail in Section 6. Still assuming

that Xn is a uniformly distributed sequence of n bits, let Y be the parity bit of Xn, i.e. Z =
∏n
i=1(−1)Xi . Then, for any J ( [n],

I(XJ ;Z) = 0,

and, for 0 ≤ ǫ < 1,

µǫ(X
n|Z) = n− 1

n
,

and, for ǫ ≥ 1, µǫ(X
n|Z) = 1.

The following lemma provides an upper bound for I(Xn;Z) in terms of µǫ(X
n|Z) when Xn is

the output of a discrete memoryless source.

Lemma 1. Let Xn be the output of a discrete memoryless source X, and Z a noisy observation of

Xn. For any ǫ such that 0 ≤ ǫ ≤ H(X), if µǫ(X
n|Z) = u∗, then

1

n
I(Xn;Z) ≤ H(X)− u∗(H(X) − ǫ). (4)
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Proof. Let µǫ(X
n|Z) = u∗ , t/n, J ∈ In(t) and J̄ = [n]\J . Then

1

n
I(Xn;Z) =

1

n
I(XJ ;Z) +

1

n
I(XJ̄ ;Z|XJ )

≤ t

n

(
ǫ+

1

t
I(XJ̄ ;Z|XJ )

)

≤ u∗ǫ+
(n− t)

n
H(X)

= H(X) − u∗(H(X) − ǫ),

where the first inequality follows from the definition of symbol secrecy, and the second inequal-

ity follows from the assumption that the source is discrete and memoryless and, consequently,

I(XJ̄ ;Z|XJ ) ≤ H(XJ̄ |XJ ) = (n − t)H(X).

The previous result implies that when µǫ(X
n|Z) is large, only a small amount of information

about Xn can be gained from Z on average. However, even if I(Xn;Z) is large, as long as µǫ(X
n|Z)

is non-zero, the uncertainty about Xn given Z will be spread throughout the individual symbols

of the source sequence. This property is desirable for symmetric-key encryption and, as we shall

show in Section 6, can be extended to determine which functions of Xn can or cannot be reliably

inferred from Z. Furthermore, in Section 5 we introduce explicit constructions for symmetric-

key encryption schemes that achieve a provable level of symbol secrecy using the list-source code

framework introduced next.

3 LSCs

In this section we present the definition of LSCs and derive fundamental bounds. We also demon-

strate how any symmetric-key encryption scheme can be mapped to a corresponding list-source

code.

3.1 Definition and Fundamental Limits

We introduce the definition of list-source codes is given below.

Definition 2. A (2nR, |X |nL, n)-LSC (fn, gn,L) consists of an encoding function fn : X n 7→
[
2nR

]

and a list-decoding function gn,L :
[
2nR

]
7→ P(X n)\∅, where P(X n) is the power set of X n and

|gn,L(w)|= |X |nL ∀w ∈
[
2nR

]
. The value R is that rate of the LSC, L is the normalized list size,

and |X |nL is the list size.

Note that 0 ≤ L ≤ 1. From an operational point of view, L is a parameter that determines the

size of the decoded list. For example, L = 0 corresponds to traditional lossless compression, i.e.,

each source sequence is decoded to a unique sequence. Furthermore, L = 1 represents the trivial

case when the decoded list corresponds to X n.
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Figure 1: Rate list region for normalized list size L and code rate R.

For a given LSC, an error is declared when a string generated by a source is not contained in

the corresponding decoded list. The average error probability is given by

e(fn, gn,L) , Pr(Xn /∈ gn,L(fn(X
n))). (5)

Definition 3. For a given discrete memoryless source X, the rate list size pair (R,L) is said

to be achievable if for every δ > 0, 0 < ǫ < 1 and sufficiently large n there exists a sequence

of (2nRn , |X |nLn , n)-list-source codes {(fn, gn,Ln)}∞n=1 such that Rn < R + δ, |Ln − L|< δ and

e(fn, gn,Ln) ≤ ǫ. The rate list region is the closure of all rate list pairs (R,L).

Definition 4. The rate list function R(L) is the infimum of all rates R such that (R,L) is in the

rate list region for a given normalized list size 0 ≤ L ≤ 1.

Theorem 1. For any discrete memoryless source X, the rate list function is given by

R(L) = H(X)− L log|X | . (6)

Proof. Let δ > 0 be given and {(fn, gn,Ln)}∞n=1 be a sequence of codes with (normalized) list size

Ln such that Ln → L and for any 0 < ǫ < 1 and n sufficiently large 0 ≤ e(fn, gn,Ln) ≤ ǫ. Then

Pr

(
Xn ∈

⋃

w∈Wn

gn,Ln(w)

)
≥ Pr (Xn ∈ gn,Ln(fn(X

n))) (7)

≥ 1− ǫ (8)

where Wn = [2nRn ] and Rn is the rate of the code (fn, gn,Ln). There exists n0(δ, ǫ, |X |) where if
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n ≥ n0(δ, ǫ, |X |), then

Rn + Ln log|X | = 1

n
log
(
2nRn |X |nLn

)

=
1

n
log

(
∑

w∈Wn

|gn,Ln(w)|
)

≥ 1

n
log

∣∣∣∣∣
⋃

w∈Wn

gn,Ln(w)

∣∣∣∣∣

≥ H(X)− δ, (9)

where the last inequality follows from [40, Lemma 2.14]. Since this holds for any δ > 0, it follows

that R(L) ≥ H(X) − L log|X | for all n sufficiently large.

We prove achievability next. Let 0 < L < 1 be given, and let Ln , ⌊nL⌋. Furthermore, let Xn

be a sequence of n source symbols, and denote XnLn the first nLn source symbols and X [nLn+1,n]

the last n(1−Ln) source symbols where we assume, without loss of generality, that nL is an integer.

Then, from standard source coding results [41, pg. 552], for any ǫ > 0 and n sufficiently large, and

denoting αn , ⌈nLn(H(X)+ ǫ)⌉/n, βn , ⌈n(1−Ln)(H(X)+ ǫ)⌉/n, there are (surjective) encoding
functions

f1nL : X nLn → [2nαn ] and f2n(1−Ln)
: X n(1−Ln) → [2nβn ],

and corresponding (injective) decoding functions

g1n,1 : [2
nαn ] → X nLn and g2n,1 : [2

nβn ] → X nLn

such that Pr(g1n,1(f
1
nLn

(XnLn)) 6= XnLn) ≤ O(ǫ) and Pr(g2n,1(f
2
n(1−Ln)

(X(1−Ln)n)) 6= X(1−Ln)n) ≤
O(ǫ).

For w ∈ [2nβn ] and x ∈ X n, let the list-source coding and decoding functions be given by

fn(x) , f2n(1−Ln)
(x[nLn+1,n]) and

gn,L̃n
(w) , {x ∈ X n : ∃v ∈ [2nαn ] such that (f1nL(x

[nL]), f2n(1−L)(x
[nL+1,n])) = (v,w)},

respectively. Then

Pr
(
Xn ∈ g

n,L̃n
(fn(X

n))
)
≥ Pr

(
g1n,1(f

1
nL(X

Ln)) = XLn ∧ g2n,1(f2n(1−L)(X(1−L)n)) = X(1−L)n
)

≥ 1−O(ǫ).

Observe that the rate-list pair achieved by (fn, gn,L̃n
) is (Rn, L̃n) = (βn, αn/log|X |)). Conse-

quently,

Rn ≤ (1− Ln)(H(X) + ǫ) + n−1

≤ H(X) + ǫ− αn
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= H(X) + ǫ− L̃n log|X |,

where the second inequality follows from αn ≤ Ln(H(X) + ǫ) + n−1. Observe that Rn → n(1 −
L)H(X) + ǫ , R. Since L̃n → L(H(X) + ǫ)/log|X |, L̃ as n→ ∞, by choosing n sufficiently large

the rate-list pair (R, L̃) can be achieved, where R and L̃ satisfy

R ≤ H(X) + ǫ− L̃ log|X |.

Since ǫ is arbitrary and L̃ can span any value in [0,H(X)/log|X |], it follows that R(L) ≤ H(X)−
L log|X |.

3.2 Symmetric-Key Ciphers as LSCs

Let (Enc,Dec) be a symmetric-key cipher where, without loss of generality, M = [2nR] and Enc :

X n × K → M and Dec : M × K → X n. Then an LSC can be designed based on this cipher by

choosing k′ from K and setting the encoding function fn(x) = Enc(x, k′), where x ∈ X n, and

gn,L(fn(x)) = {z ∈ X n : ∃k ∈ K such that Enc(z, k) = fn(x)},

where L satisfies |K|= |X |nL. If the key is chosen uniformly from K then the decoded list corre-

sponds set of possible source sequences that could have generated the ciphertext. The adversary’s

uncertainty will depend on the distribution of the source sequence Xn.

Alternatively, symmetric-key ciphers can also be constructed based on an (2nR, |X |nL, n)-list-
source code. Let (fn, gn,L) be the corresponding encoding/decoding function of the LSC, and

assume that the key is drawn uniformly from K = [|X |nL], where the normalized list size L deter-

mines the length of the key. Without loss of generality, we also assume that Alice and Bob agree on

an ordering of X and, consequently, X n can be ordered using the corresponding dictionary ordering.

We denote pos(x) the position of the source sequence x ∈ X in the corresponding list gn,L(fn(x)),

where pos : X n → [|X |nL].
The cipher can then be constructed by letting the message set be M′ = [2nR]× [|X |nL] and, for

x ∈ X n and k ∈ K,

Enc(x, k) = (fn(x), (pos(x) + k) mod |K|).

For (a, b) ∈ M′, the decryption function is given by

Dec((a, b), k) = {x : fn(x) = a, pos(x) = (b− k) mod |K|}.

In this case, an eavesdropper that does not know the key k cannot recover the function pos(x) and,

consequently, her uncertainty will correspond to the list gn,L(fn(x)).
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4 LSC design

In this section we discuss how to construct LSCs that achieve the rate-list tradeoff (6) in the

finite block length regime. As shown below, an LSC that achieves good rate-list tradeoff does

not necessarily lead to good symmetric-key encryption schemes. This naturally motivates the

constructions of LSCs that achieve high symbol secrecy.

4.1 Necessity for code design

Assume that the source X is uniformly distributed in Fq, i.e., Pr(X = x) = 1/q ∀x ∈ Fq. In this

case R(L) = (1− L) log q. A trivial scheme for achieving the list-source boundary is the following.

Consider a source sequence Xn = (Xp,Xs), where Xp denotes the first p = n−⌊Ln⌋ symbols of Xn

and Xs denotes the last s = ⌊Ln⌋ symbols. Encoding is done by discarding Xs, and mapping the

prefix Xp to a binary codeword Y nR of length nR = ⌈n−⌊Ln⌋ log q⌉ bits. This encoding procedure

is similar to the achievability scheme used in the proof of Theorem 1.

For decoding, the codeword Y nR is mapped to Xp, and the scheme outputs a list of size qs

composed by Xp concatenated with all possible combinations of suffixes of length s. Clearly, for n

sufficiently large, R ≈ (1− L) log q, and we achieve the optimal list-source size tradeoff.

The previous scheme is inadequate for security purposes. An adversary that observes the

codeword Y nR can uniquely identify the first p symbols of the source message, and the uncertainty

is concentrated over the last s symbols. Assuming that all source symbols are of equal importance,

we should spread the uncertainty over all symbols of the message. Given the encoding f(Xn), a

sensible security scheme would provide I(Xi; f(X
n)) ≤ ǫ ≪ log q for 1 ≤ i ≤ n. We can naturally

extend this notion for groups of symbols or functions over input symbols, which is what symbol

secrecy captures.

4.2 A construction based on linear codes

Let X be an i.i.d. source with support X and entropy H(X), and (sn, rn) a source code for X with

encoder sn : X n → Fmn
q and decoder rn : Fmn

q → X n. Furthermore, let C be a (mn, kn, d) linear

code1 over Fq with an (mn − kn)×mn parity check matrix Hn (i.e. c ∈ C ⇔ Hnc = 0). Consider

the following scheme, where we assume

kn , nLn log|X |/log q

is an integer, 0 ≤ Ln ≤ 1 and Ln → L as n→ ∞.

Scheme 1. Encoding : Let xn ∈ X n be an n-symbol sequence generated by the source. Compute

the syndrome σn through the matrix multiplication

σn , Hnsn(xn)

1For an overview of linear codes an related terminology, we refer the reader to [42].
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and map each syndrome to a distinct sequence of nR = ⌈(mn − kn) log q⌉ bits, denoted by ynR.

Decoding : Map the binary codeword ynR to the corresponding syndrome σn. Output the list

gn,Ln(σn) =
{
rn(z)

∣∣z ∈ Fmn
q , σn = Hnz

}
.

Theorem 2. If a sequence of source codes {(sn, rn)}∞n=1 is asymptotically optimal for source X,

i.e. mn/n → H(X)/log q with vanishing error probability, scheme 1 achieves the rate list function

R(L) for source X.

Proof. Since the cardinality of each coset corresponding to a syndrome σn is exactly

|gn,Ln(σn)|= qkn ,

the normalized list size is

Ln = log|X | q
kn = (kn log q)/(n log|X |).

By assumption, Ln → L as n → ∞. Denoting mn/n = H(X)/log q + δn, where δn → 0 since the

source code is assumed to be asymptotically optimal, it follows that the rate of the LSC is

Rn = ⌈(mn − kn) log q⌉/n
= ⌈(H(X) + δn log q)n− Lnn log|X |⌉/n
→ H(X)− L log|X |,

which is arbitrarily close to the rate in (6) for sufficiently large n.

The source coding scheme used in the proof of Theorem 2 can be any asymptotically optimal

scheme. Note that if the source X is uniformly distributed in Fq, then Ln = kn/n and any message

in the coset indexed by σn is equally likely. Hence, Rn = (n − k) log q/n = H(X) − L log q, which

matches the upper bound in (6). Scheme 1 provides a constructive way of hiding information, and

we can take advantage of the properties of the underlying linear code to make precise assertions

regarding the security of the scheme.

With the syndrome in hand, how can we recover the rest of the message? One possible approach

is to find a kn × n matrix Dn that has full rank such that the rows of Dn and Hn form a basis of

Fmn
q . Such a matrix can be easily found, for example, using the Gram-Schmidt process with the

rows of Hn as a starting point. Then, for a source sequence xn, we simply calculate tn = Dnxn

and forward tn to the receiver through a secure channel. The receiver can then invert the system

(
Hn

Dn

)
xn =

(
σn

tn

)
, (10)

and recover the original sequence xn. This property allows list-source codes to be deployed in
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practice using well known linear code constructions, such as Reed-Solomon [42, Chap. 5] or Random

Linear Network Codes [43, Chap. 2].

Remark 1. This approach is valid for general linear spaces, and holds for any pair of full rank

matrices Hn and Dn with dimensions (mn − kn) × mn and kn × mn, respectively, such that

rank([HT
n DT

n ]
T ) = mn. However, here we adopt the nomenclature of linear codes since we make

use of known code constructions to construct LSCs with provable symbol secrecy properties in the

next section.

Remark 2. The LSC described in scheme 1 can be combined with other encryption methods,

providing, for example, an additional layer of security in probabilistic encryption schemes ([5, 9]).

A more detailed discussion of practical applications is presented in Section 7.

5 Symbol Secrecy of LSCs

We next present fundamental bounds for the amount of symbol secrecy achievable by any LSC

considering a discrete memoryless source. Since any encryption scheme can be cast as an LSC,

these results quantify the amount of symbol secrecy achievable by any symmetric-key encryption

scheme that encrypts a discrete memoryless source.

Lemma 2. Let {(fn, gn)}∞n=1 be a sequence of list-source codes that achieves a rate-list pair (R,L)

and an ǫ-symbol secrecy of µǫ
(
Xn|Y nRn

)
→ µǫ as n→ ∞. Then 0 ≤ µǫ ≤ min

{
L log|X |
H(X)−ǫ , 1

}
.

Proof. We denote µǫ(X
n|Y nR) = µǫ,n. Note that, for J ⊆ [n] and |J |= nµǫ,n,

I(XJ ;Y nRn) = H(XJ )−H(XJ |Y nRn)

= nµǫ,nH(X)−H(XJ |Y nRn)

≤ nµǫ,nǫ,

where the last inequality follows from the definition of symbol secrecy and I(XJ ;Y nRn) ≤ |J |ǫ =
nµǫ,nǫ. Therefore

µǫ,n(H(X) − ǫ) ≤ 1

n
H(XJ |Y nRn)

≤ Ln log|X |.

The result follows by taking n→ ∞.

The previous result bounds the amount of information an adversary gains about particular

source symbols by observing a list-source encoded message. In particular, for ǫ = 0, we find a

meaningful bound on what is the largest fraction of input symbols that is perfectly hidden.

The next theorem relates the rate-list function with ǫ-symbol secrecy through the upper bound

in Theorem 2.
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Theorem 3. If a sequence of list-source codes {(fn, gn,Ln)}∞n=1 achieves a point (R′, L) with

µǫ(X
n|Y nRn) → L log|X |

H(X)−ǫ , cǫ for some ǫ, where R′ = limn→∞
1
nH(Y nRn), then R′ = R(L).

Proof. Assume that {(fn, gn,Ln)}∞n=1 satisfies the conditions in the theorem and δ > 0 is given.

Then for n sufficiently large, we have from (4):

1

n
H(Y nRn) =

1

n
I(Xn;Y nRn)

≤ H(X)− cǫ(H(X) − ǫ) + δ

= H(X)− L log|X |+δ.

Since this holds for any δ, then R′ ≤ H(X) − L log|X |. However, from Theorem 1, R′ ≥ H(X) −
L log|X |, and the result follows.

5.1 A scheme based on MDS codes

We now prove that for a uniform i.i.d. source X in Fq, using scheme 1 with an MDS parity check

matrix H achieves µ0. Since the source is uniform and i.i.d., no source coding is used.

Proposition 1. If H is the parity check matrix of an (n, k, d) MDS code and the source Xn is

uniform and i.i.d., then Scheme 1 achieves the upper bound µ0 = L, where L = k/n.

Proof. Let C be the set of codewords of an (n, k, n − k + 1) MDS code over Fq with parity matrix

H, and let x ∈ C. Fix a set J ∈ In(k) of k positions of x, denoted xJ . Since the minimum

distance of C is n − k + 1, for any other codeword in z ∈ C we have zJ 6= xJ . Denoting by

CJ = {xJ ∈ Fkq : x ∈ C}, then |CJ |= |C|= qk. Therefore, CJ contains all possible combinations of

k symbols. Since this property also holds for any coset of H, the result follows.

6 A Rate-Distortion View of Symbol Secrecy

Symbol secrecy provides a fine-grained metric for quantifying the amount of information that leaks

from a security system. However, standard cryptographic definitions of security are concerned not

only with what an eavesdropper learns about individual symbols of the plaintext, but also which

functions of the plaintext an adversary can reliably infer. In order to derive analogous information-

theoretic metrics for security, in this section we take a step back from the symmetric-key encryption

setup and study the general estimation problem of inferring properties of a hidden variable X from

an observation Y . More specifically, we derive lower bounds for the error of estimating functions of

X from an observation of Y . By using standard converse results (e.g. Fano’s inequality [41, Chap.

2]), symbol secrecy guarantees are then translated to guarantees on how well certain functions of

the plaintext can or cannot be estimated.

We first derive converse bounds for the minimum-mean-squared-error (MMSE) of estimating a

function φ of the hidden variable X given Y . We assume that the MMSE of estimating a set of
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functions Φ , {φj(X)}mi=1 given Y is known, as well as the correlation between φj(X) and φ(X).

Bounds for the MMSE of φ(X) are then expressed in terms of the MMSE of each φj(X) and the

correlation between φ(X) and φj(X). We also apply this result to the setting where φ and φj are

binary functions, and present bounds for the probability of correctly guessing φ(X) given Y . These

results are of independent interest, and are particularly useful in the security setting considered

here.

The set of functions Φ can be used to model known properties of a security system. For example,

when X is a plaintext and Y is a ciphertext, the functions φj may represent certain predicates of

X that are known to be hard to infer given Y . In privacy systems, X may be a user’s data and Y a

distorted version ofX generated by a privacy preserving mechanism. The set Φ could then represent

a set of functions that are known to be easy to infer from Y due to inherent utility constraints of

the setup. In particular, as will be shown in Section 6.4, we will consider the functions in Φ as the

individual symbols of the plaintext. In this case, the results introduced in this section are used to

derive bounds on the MMSE of reconstructing a target function of the plaintext in terms of the

symbol-secrecy achieved by the underlying list-source code given by the encryption scheme. This

result extends symbol secrecy to a broader setting.

6.1 Lower Bounds for MMSE

The results introduced in this section are based on the following Lemma.

Lemma 3. Let zn : (0,∞)n × [0, 1]n → R be given by

zn(a,b) , max
{
aTy

∣∣y ∈ Rn, ‖y‖2≤ 1,y ≤ b
}
. (11)

Let π be a permutation of (1, 2, . . . , n) such that bπ(1)/aπ(1) ≤ . . . ≤ bπ(n)/aπ(n). If bπ(1)/aπ(1) ≥
1, zn(a,b) = ‖a‖2. Otherwise,

zn(a,b) =

k∗∑

i=1

aπ(i)bπ(i)

+

√√√√
(
‖a‖22−

k∗∑

i=1

a2π(i)

)(
1−

k∗∑

i=1

b2π(i)

)
(12)

where

k∗ , max




k ∈ [n]

∣∣∣∣∣∣∣∣

bπ(k)

aπ(k)
≤

√√√√√

(
1−∑k−1

i=1 b
2
π(i)

)+

‖a‖22−
∑k−1

i=1 a
2
π(i)




. (13)

Proof. The proof is given in the appendix.

Throughout this section we assume Φ ⊆ L2(pX) and E [φi(X)φj(X)] = 0 for i 6= j. Furthermore,
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let Y be an observed variable that is dependent of X, and for a given φi the inequality

max
ψ∈L2(pY )

E [φi(X)ψ(Y )] = ‖E [φi(X)|Y ] ‖2≤ λi

is satisfied, where 0 ≤ λi ≤ 1. This is equivalent to mmse(φi(X)|Y ) ≥ 1− λ2i .

Theorem 4. Let |E [φ(X)φi(X)] |= ρi > 0. Denoting ρ , (|ρ1|, . . . , |ρm|), λλλ , (λ1, . . . , λm),

ρ0 ,
√

1−∑k
i=1 ρ

2
i , λ0 = 1 ρ0 , (ρ0,ρ) and λλλ0 , (λ0,λλλ), then

‖E [φ(X)|Y ] ‖2≤ B|Φ|(ρ0,λλλ0), (14)

where

B|Φ|(ρ0,λλλ0) ,




z|Φ|+1 (ρ0,λλλ0) , if ρ0 > 0,

z|Φ|(ρ,λλλ), otherwise.
(15)

and zn is given in (11). Consequently,

mmse(φ(X)|Y ) ≥ 1−B|Φ|(ρ0,λλλ0)
2. (16)

Proof. Let h(X) , ρ−1
0 (φ(X) −∑i ρiφi(X)) if ρ0 > 0, otherwise h(X) = 0. Note that h(X) ∈

L2(pX). Then for ψ ∈ L2(pY )

|E [φ(X)ψ(Y )]| =
∣∣∣∣∣ρ0E [h(X)ψ(Y )] +

m∑

i=1

ρiE [φi(X)ψ(Y )]

∣∣∣∣∣

≤ ρ0 |E [h(X)ψ(Y )]|+
m∑

i=1

|ρiE [φi(X)ψ(Y )]|

= ρ0 |E [h(X)(TXψ)(X)]|+
m∑

i=1

|ρiE [φi(X)(TXψ)(X)]| .

Denoting |E [h(X)(TXψ)(X)] |, x0, |E [φi(X)(TXψ)(X)] |, xi, x , (x0, x1, . . . , xm), and ρ ,

(ρ0, |ρ1|, . . . , |ρm|), the last inequality can be rewritten as

|E [φ(X)ψ(Y )]| ≤ ρ
T
0 x. (17)

Observe that ‖x‖2≤ 1 and xi ≤ λi for i = 0, . . . ,m, and the right hand side of (17) can be

maximized over all values of x that satisfy these constraints. We assume, without loss of generality,

that ρ0 > 0 (otherwise set x0 = 0). The left-hand side of (17) can be further bounded by

|E [φ(X)ψ(Y )]| ≤ zm+1(ρ0,λλλ0), (18)

where λλλ = (1, λ1, . . . , λm) and zm+1 is defined in (11). The result follows directly from Lemma 3

and noting that maxψ∈L2(pY ) E [φ(X)ψ(Y )] = ‖E [φ(X)|Y ] ‖2.
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Denote ψi , TY φi/‖TY φi‖2 and φ0(X) , (φ(X) −∑m
i=1 ρiφi(X))/ρ−1

0 . The previous bound

can be further improved when E [ψi(Y )φj(X)] = 0 for i 6= j, j ∈ {0, . . . ,m}.

Theorem 5. Let |E [φ(X)φi(X)] |= ρi > 0 for φi ∈ Φ. In addition, assume E [ψi(Y )ψj(Y )] = 0

for i 6= j, i ∈ [t] and j ∈ {0, . . . , |Φ|}, where 0 ≤ t ≤ |Φ|. Then

‖E [φ(X)|Y ] ‖2≤

√√√√
t∑

k=1

λ2i ρ
2
i +B|Φ|−t

(
ρ̃, λ̃λλ

)2
, (19)

where ρ̃ = (ρ0, ρt, . . . , ρm), λ̃λλ = (1, λt, . . . , λm) and Bm is defined in (15) (considering B0 = 0). In

particular, if t = m,

‖E [φ(X)|Y ] ‖2≤

√√√√ρ20 +

|Φ|∑

k=1

λ2i ρ
2
i , (20)

and this bound is tight when ρ0 = 0. Furthermore,

mmse(φ(X)|Y ) ≥ 1−
t∑

k=1

λ2i ρ
2
i −B|Φ|−t

(
ρ̃, λ̃λλ

)2
. (21)

Proof. For any ψ ∈ L2(pY ), let αi , E [ψ(Y )ψi(Y )] and ψ0(Y ) , (ψ(Y )−∑t
i=1 αiψi(Y ))α−1

0 , where

α0 = (1 −∑t
i=i α

2
i )

−1/2. Observe that ψ0 ∈ L2(pY ) and E [φi(X)ψj(Y )] = E [ψi(Y )ψj(Y )] = 0 for

i 6= j, i ∈ {0, . . . , |Φ|} and j ∈ [t]. Consequently

E [φ(X)ψ(Y )] = E






|Φ|∑

i=0

ρiφi(X)






t∑

j=0

αjψj(Y )






=

|Φ|∑

i=0

t∑

j=0

ρiαjE [φi(X)ψj(Y )]

≤

∣∣∣∣∣∣
α0

|Φ|∑

i=0,i/∈[n]

ρiE [φi(X)ψ0(Y )]

∣∣∣∣∣∣
+

t∑

i=1

|λiρiαi|

≤ |α0|B|Φ|−t

(
ρ̃, λ̃λλ

)
+

t∑

i=1

|λiρiαi| (22)

≤

√√√√
t∑

i=1

λ2i ρ
2
i +B|Φ|−t

(
ρ̃, λ̃λλ

)2
. (23)

Inequality (22) follows from the bound (14), and (23) follows by observing that
∑t

i=0 α
2
i = 1 and

applying the Cauchy-Schwarz inequality.

Finally, when ρ0 = 0, (23) can be achieved with equality by taking ψ =
∑

i
λiρi√∑
i λ

2

i ρ
2

i

ψi.

20



The following three, diverse examples illustrate different usage cases of Theorems 4 and 5.

Example 5 illustrates Theorem 5 for the binary symmetric channel. In this case, the basis Φ can

be conveniently expressed as the parity bits of the input to the channel. Example 6 illustrates how

Theorem 5 can be applied to the q-ary symmetric channel, and demonstrates that bound (20) is

sharp. Finally, Example 7 then illustrates Theorem 4 for the specific case where all the values ρi

and λi are equal.

Example 5 (Binary Symmetric Channel). Let X = {−1, 1} and Y = {−1, 1}, and Y n be the result

of passing Xn through a memoryless binary symmetric channel with crossover probability ǫ. We

also assume that Xn is composed by n uniform and i.i.d. bits. For S ⊆ [n], let χS(X
n) ,

∏
i∈S Xi.

Any function φ : X → R can then be decomposed in terms of the basis of functions χS(X
n) as [44]

φ(Xn) =
∑

S⊆[n]

cSχS(X
n),

where cS = E [φ(Xn)χS(X
n)]. Furthermore, since E [χS(X

n)|Y n] = (1 − 2ǫ)|S|, it follows from

Theorem 5 that

mmse(φ(Xn)|Y n) = 1−
∑

S⊆[n]

c2S(1− 2ǫ)2|S|. (24)

This result can be generalized for the case where Xn = Y n ⊗ Zn, where the operation ⊗ denotes

bit-wise multiplication, Zn is drawn from {−1, 1}n and Xn is uniformly distributed. In this case

mmse(φ(Xn)|Y n) = 1−
∑

S⊆[n]

c2SE [χS(Z
n)]2 . (25)

This example will be revisited in Section 6.3, where we restrict φ to be a binary function.

Example 6 (q-ary symmetric channel). For X = Y = [q], an (ǫ, q)-ary symmetric channel is defined

by the transition probability

pY |X(y|x) = (1− ǫ)1y=x + ǫ/q. (26)

Any function φi ∈ L2(pX) such that E [φi(X)] = 0 satisfies

ψi(Y ) = TY φ(X) = (1− ǫ)φ(Y ),

and, consequently, ‖TY φ(X)‖2= (1−ǫ). We shall use this fact to show that the bound (20) is sharp

in this case.

Observe that for φi, φj ∈ L2(pX), if E [φi(X)φj(X)] = 0 then E [ψi(Y )ψj(Y )] = 0. Now let

φ ∈ L2(pX) satisfy E [φ(X)] = 0 and E [φ(X)φi(X)] = ρi for φi ∈ Φ, where |Φ|= m, Φ satisfies the

conditions in Theorem 5, and
∑

i ρ
2
i = 1. In addition, ‖ψi‖2= (1− ǫ) = λi. Then, from (20),

‖TY φ(X)‖2 ≤

√√√√
m∑

i=1

λ2i ρ
2
i
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= (1− ǫ)

√∑

i

ρ2i

= 1− ǫ,

which matches ‖TY φ(X)‖2, and the bound is tight in this case.

Example 7 (Equal MMSE and correlation). We now turn our attention to Theorem 4. Consider

the case when the correlations of φ with the references functions φi are all the same, and each φi

can be estimated with the same MMSE, i.e. λ1 = · · · = λm = λ and ρ21 = · · · = ρ2m = ρ2, ρ ≥ 0 and

λ2 ≤ ρ2 ≤ 1/m. Then bound (14) becomes

‖E [φ(X)|Y ] ‖2≤ mλρ+
√

(1−mρ2)(1−mλ2).

6.2 One-Bit Functions

Let X be a hidden random variable and Y be a noisy observation of X. Here we denote Φ = {φi}mi=1

a collection of m predicates of X, where Fi = φi(X), φi : X → {−1, 1} for i ∈ [m] and, without

loss of generality E [Fi] = bi ≥ 0.

We denote by F̂i an estimate of Fi given an observation of Y , where Fi → X → Y → F̂i. We

assume that for any F̂i ∣∣∣E[FiF̂i]
∣∣∣ ≤ 1− 2αi

for some 0 ≤ αi ≤ (1−bi)/2 ≤ 1/2. This condition is equivalent to imposing that Pr{Fi 6= F̂i} ≥ αi,

since

E
[
FiF̂i

]
= Pr{Fi = F̂i} − Pr{Fi 6= F̂i}

= 1− 2Pr{Fi 6= F̂i}.

In particular, this captures how well Fi can be guessed based solely on an observation of Y .

Now assume there is a bit F = φ(Y ) such that E [FFi] = ρi for i ∈ [m] and E [FiFj ] = 0 for

i 6= j. We can apply the same method used in the proof of Theorem 4 to bound the probability of

F being guessed correctly from an observation of Y .

Corollary 1. For λi = 1− 2αi,

Pr(F 6= F̂ ) ≥ 1

2

(
1−B|Φ|(ρ,λλλ)

)
. (27)

Proof. The proof follows the same steps as Theorem 4, φ(Y ) ∈ L2(pY ).

In the case m = 1, we obtain the following simpler bound, presented in Proposition 2, which

depends on the following Lemma.
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Lemma 4. For any random variables A,B and C

Pr(A 6= B) ≤ Pr(A 6= C) + Pr(B 6= C).

Proof.

Pr(A 6= B) = Pr(A 6= B ∧B = C) + Pr(A 6= B ∧B 6= C)

= Pr(A 6= C ∧B = C) + Pr(B 6= C) Pr(A 6= B|B 6= C)

≤ Pr(A 6= C) + Pr(B 6= C).

Proposition 2. If Pr(F1 6= F̂1) ≥ α for all F̂1 and E [FF1] = ρ ≥ 0. Then for any estimator F̂

Pr(F 6= F̂ ) ≥
(
1− ρ

2
− α

)+

. (28)

Proof. From Lemma 4:

Pr(F 6= F̂ ) ≥
(
Pr(F1 6= F )− Pr(F1 6= F̂ )

)+

≥
(
1− ρ

2
− α

)+

.

6.3 One-Time Pad Encryption of Functions with Boolean Inputs

We return to the setting where a legitimate transmitter (Alice) wishes to communicate a plaintext

message Xn to a legitimate receiver (Bob) through a channel observed by an eavesdropper (Eve).

Both Alice and Bob share a secret key K that is not known by Eve. Alice and Bob use a symmetric

key encryption scheme determined by the pair of encryption and decryption functions (Enc,Dec),

where Y n = Enc(Xn,K) and Xn = Dec(Y n,K). Here we assume that both the ciphertext and the

plaintext have the same length.

We use the results derived in the previous section to assess the security properties of the one-

time pad with non-uniform key distribution when no assumptions are made on the computational

resources available to Eve. In this case, perfect secrecy (i.e. I(Xn;Y n) = 0) can only be achieved

when H(K) ≥ H(Xn) [3], which, in turn, is challenging in practice. Nevertheless, as we shall show

in this section, information-theoretic security claims can still be made in the short key regime, i.e.

H(K) < H(Xn). We first prove the following ancillary result.

Lemma 5. Let F be a Boolean random variable and F → X → Y → F̂ , where |Y|≥ 2. Further-

more, Pr{F 6= F̂} ≥ α for all Y → F̂ . Then I(F ;Y ) ≤ 1− 2α.
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Proof. The result is a direct consequence of the fact that the channel with binary input and finite

output alphabet that maximizes mutual information for a fixed error probability is the erasure

channel, proved next. Assume, without loss of generality, that Y = [m] and pF,Y (−1, y) ≥ pF,Y (1, y)

for y ∈ [k] and pF,Y (−1, y) ≤ pF,Y (1, y) for y ∈ {k + 1, . . . ,m}, where k ∈ [m]. Now let Ỹ be a

random variable that takes values in [2m] such that

p
F,Ỹ

(b, y) =





pF,Y (b, y) − pF,Y (1, y) y ∈ [k],

pF,Y (b, y) − pF,Y (−1, y) y ∈ {k + 1, . . . ,m},
pF,Y (1, y) y −m ∈ [k],

pF,Y (−1, y) y −m ∈ {k + 1, . . . ,m}.

.

Note that F → Ỹ → Y , since Y = Ỹ − m1{Ỹ >m} and, consequently, I(F ; Ỹ ) ≥ I(F ;Y ).

Furthermore, the reader can verify that

min
Y→F̂

Pr{F 6= F̂} = min
Ỹ→F̂

Pr{F 6= F̂} = α.

In particular, given the optimal estimator Ỹ → F̂ , a detection error can only occur when Ỹ ∈
{k + 1, . . . ,m}, in which case F̂ = F with probability 1/2.

Finally,

H(F |Ỹ ) = −
∑

b∈{−1,1}
y∈[2m]

p
Ỹ
(y)p

F |Ỹ
(b|y) log p

F |Ỹ
(b|y)

=
∑

y∈{m+1,2m}

p
Ỹ
(y)

≥ 2α.

Consequently, I(F ; Ỹ ) = H(F )−H(F |Ỹ ) ≤ 1− 2α. The result follows.

Let Xn be a plaintext message composed by a sequence of n bits drawn from {−1, 1}n. The

plaintext can be perfectly hidden by using a one-time pad: A ciphertext Y n is produced as Y n =

Xn ⊗ Zn, where the key K = Zn is a uniformly distributed sequence of n i.i.d. bits chosen

independently from Xn. The one-time pad is impractical since, as mentioned, it requires Alice and

Bob to share a very long key.

Instead of trying to hide the entire plaintext message, assume that Alice and Bob wish to hide

only a set of functions of the plaintext from Eve. In particular, we denote this set of functions as

Φ = {φ1, . . . , φm} where φi : {−1, 1}n → {−1, 1}, E [φi(X
n)] = 0 and E [φi(X

n)φj(X
n)] = 0. The

set of functions Φ is said to be hidden I(φi(X
n);Y n) = 0 for all φi ∈ Φ. Can this be accomplished

with a key that satisfies H(K) ≪ H(Xn)?
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The answer is positive, but it depends on Φ. We denote the Fourier expansion of φi ∈ Φ as

φi =
∑

S⊆[n]

ρi,SχS .

The following result shows that φi is perfectly hidden from Eve if and only if I(χS(X
n);Y n) = 0

for all χS such that ρi,S > 0.

Lemma 6. If I(φi(X
n);Y n) = 0 for all φi ∈ Φ, then I(χS(X

n);Y n) = 0 for all S such that

ρi,S > 0 for some i ∈ [m].

Proof. Assume that I(χS(X
n);Y n) > 0 for a given ρi,S > 0. Then there exists b : Yn → {−1, 1}

such that E [b(Y n)χS(X
n)] = λ > 0. Consequently, from (20), E [b(Y n)φ1(X

n)] ≥ λρi,S > 0, and

φ1(X
n) is not independent of Y n.

The previous result shows that hiding a set of functions perfectly, or even a single function,

might be as hard as hiding Xn. Indeed, if there is a φi ∈ Φ such that E [φi(X
n)XS(X

n)] > 0 for

all S ⊆ [n] where |S|= 1, then perfectly hiding this set of functions can only be accomplished by

using a one-time pad. Nevertheless, if we step back from perfect secrecy, a large class of functions

can be hidden with a comparably small key, as in the next example.

Example 8 (BSC revisited). Let Zn be a sequence of n i.i.d. bits such that Pr{Zi = −1} = ǫ, and

consider once again the one-time pad Y n = Xn ⊗ Zn. Furthermore, denote

Φk = {φ : {−1, 1}n → {−1, 1} | E [φ(Xn)χS(X
n)] = 0 ∀|S|< k} .

Let φ ∈ Φk and φ(Xn) =
∑

S:|S|≥k ρSχS(X
n). Then, from Theorem 5 and Corollary 1, for any

b̂ : Yn → {−1, 1},

Pr{φ(Xn) 6= b̂(Y n)} ≥ 1

2


1−

√∑

|S|>T

ρ2S(1− 2ǫ)2|S|




≥ 1

2

(
1− (1− 2ǫ)k

)
.

Consequently, from Lemma 5, I(φ(Xn);Y n) ≤ (1− 2ǫ)k for all φ ∈ Φk. Note that H(Zn) = nh(ǫ),

which can be made very small compared to n. Therefore, even with a small key, a large class of

functions can be almost perfectly hidden from the eavesdropper through this simple one-time pad

scheme. The BSC setting discussed in Example 5 is generalized in the following theorem which, in

turn, is a particular case of the analysis in [45].

Theorem 6 (Generalized One-time Pad). Let Y n = Xn ⊗ Zn, Xn ⊥⊥ Zn, Xn be uniformly

distributed, φ : {−1, 1}n → {−1, 1} and φ(Xn) =
∑

S⊆[n] ρSχS(X
n). We define cS , E [χS(Z

n)]

for S ⊆ [n]. Then

I(φ(Xn);Y n) ≤
√∑

S⊆[n]

(cSρS)2. (29)
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In particular, I(φ(Xn);Y n) = 0 if and only if cS = 0 for all S such that ρS 6= 0.

Proof. Let ψ : {−1, 1}n → {−1, 1} and ψ(Y n) =
∑

S⊆[n] dSχS(Y
n). Note that

∑
S⊆[n] d

2
S = 1.

Then

E [φ(Xn)ψ(Y n)] = E [φ(Xn)E [ψ(Y n)|Xn]]

= E


φ(Xn)

∑

S⊆[n]

dSE [χS(Y
n)|Xn]




= E


φ(Xn)

∑

S⊆[n]

dSE [χS(X
n ⊗ Zn)|Xn]




= E


φ(Xn)

∑

S⊆[n]

dSE [χS(X
n)χS(Z

n)|Xn]




=
∑

S⊆[n]

dSE [φ(Xn)χS(X
n)]E [χS(Z

n)]

=
∑

S⊆[n]

dSρScS (30)

≤
√∑

S⊆[n]

(cSρS)2, (31)

where (31) follows from the Cauchy-Schwarz inequality. The inequality (29) then follows from

Lemma 5. Finally, assume there exists S ⊆ [n] such that both cS 6= 0 and ρS 6= 0. Then

setting ψ(Y n) = χS(Y
n), it follows from (30) that E [φ(Xn)ψ(Y n)] = ρScS 6= 0 and, consequently,

I(φ(Xn);Y n) > 0.

6.4 From Symbol Secrecy to Function Secrecy

Symbol secrecy captures the amount of information that an encryption scheme leaks about in-

dividual symbols of a message. A given encryption scheme can achieve a high level of (weak)

information-theoretic security, but low symbol secrecy. As illustrated in Section 4.1, by sending a

constant fraction of the message in the clear, the average amount of information about the plain-

text that leaks relative to the length of the message can be made arbitrarily small, nevertheless the

symbol secrecy performance is always constant (i.e. does not decrease with message length).

When X is uniformly drawn from Fq for which an (n, k, n − k + 1) MDS code exists, then an

absolute symbol secrecy of k/n can always be achieved using the encryption scheme suggested in

Proposition 1. If X is a binary random variable, then we can map sequences of plaintext bits of

length ⌊log2 q⌋ to an appropriate symbol in Fq, and then use the parity check matrix of an MDS

code to achieve a high symbol secrecy. Therefore, we may assume without loss of generality that

Xn is drawn from {−1, 1}n. We also make the assumption that Xn is uniformly distributed. This

can be regarded as an approximation for the distribution of Xn when it is, for example, the output
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of an optimal source encoder with sufficiently large blocklength.

Theorem 7. Let Xn be a uniformly distributed sequence of n bits, Y = Encn(X
n,K), and uǫ and

ǫ∗t the corresponding symbol secrecy and dual symbol secrecy of Encn, defined in (1) and (3), respec-

tively. Furthermore, for φ : {−1, 1}n → {−1, 1} and E [φ(Xn)] = 0, let φ(Xn) =
∑

S⊆[n] ρSχS(X
n).

Then for any φ̂ : Y → {−1, 1}

Pr{φ(Xn) 6= φ̂(Y )} ≥ 1

2

(
1−B|Φ|(ρ,λλλ)

)
, (32)

where Φ = {χS : ρS 6= 0}, λ(t) , h−1
b ((1 − ǫ∗t t)

+), λλλ = {λ(|S|)}S⊆[n] and ρ = {|ρS |}S⊆[n]. In

particular,

Pr{φ(Xn) 6= φ̂(Y )} ≥ 1

2


1−

√ ∑

|S|>nµ0

ρ2S


 . (33)

Proof. From the definition of symbol secrecy, for any S ⊆ [n] with |S|= t

I(χS(X
n);Y ) ≤ I(XS ;Y ) ≤ ǫ∗t t,

and, consequently,

H(χS(X
n)|Y ) ≥ (1− ǫ∗t t)

+.

From Fano’s inequality, for any binary F̂ where Y → F̂

Pr{χS(X
n) 6= F̂} ≥ h−1

b ((1− ǫ∗t t)
+),

where h−1
b : [0, 1] → [0, 1/2] is the inverse of the binary entropy function. In particular, from the

definition of absolute symbol secrecy, if ǫ∗t = 0, then

Pr{χS(X
n) 6= F̂} = 1/2 ∀|S|≤ nµ0.

The result then follows directly from Theorem 5, the fact that φ(Xn) =
∑

S⊆[n] ρSχS(X
n) and

letting λ(t) , h−1
b ((1 − ǫ∗t t)

+).

7 Discussion

In this section we discuss the application of our results to different settings in privacy and cryptog-

raphy.

7.1 The Correlation-Error Product

We momentarily diverge from the cryptographic setting and introduce the error-correlation product

for the privacy setting considered by Calmon and Fawaz in [10]. Let W and X be two random
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variables with joint distribution pW,X . W represents a variable that is supposed to remain private,

while X represents a variable that will be released to an untrusted data collector in order to receive

some utility based on X. The goal is to design a randomized mapping pY |X , called the privacy

assuring mapping, that transforms X into an output Y that will be disclosed to a third party.

The goal of a privacy assuring mechanism is to produce an output Y , derived from X according

to the mapping pY |X , that will be released to the data collector in the place of X. The released

variable Y is chosen such that W cannot be inferred reliably given an observation of Y . Simultane-

ously, given an appropriate distortion metric, X should be close enough to Y so that a certain level

of utility can still be provided. For example, W could be a user’s political preference, and X a set of

movie ratings released to a recommender system in order to receive movie recommendations. Y is

chosen as a perturbed version of the movie recommendations so that the user’s political preference

is obscured, while meaningful recommendations can still be provided.

Given W → X → Y and pW,X , a privacy assuring mapping is given by the conditional distribu-

tion pY |X . The choice of pY |X determines the tradeoff between privacy and utility. If pY |X = pY ,

then perfect privacy is achieved (i.e. W and Y are independent), but no utility can be provided.

Conversely, if pY |X is the identity mapping, then no privacy is gained, but the highest level of

utility can be provided.

WhenW = φ(X) where φ ∈ L2(pX), the bounds from Section 6.1 shed light on the fundamental

privacy-utility tradeoff. Returning to the notation of Section 6.1, let W = φ(X) be correlated with

a set of functions Φ = {φi}mi=1. The next result is a direct corollary of Theorem 5.

Corollary 2. Let E [Wφi(X)] = ρi,
∑|Φ|

i=1 ρ
2
i = 1, ψi(Y ) = E [φi(X)|Y ] and, for i 6= j, E [φi(X)φj(X)] =

0 and E [ψi(Y )ψj(Y )] = 0. Then

mmse(W |Y ) =

|Φ|∑

i=1

mmse(φi(Y )|X)ρ2i . (34)

We call the product mmse(φi(Y )|X)ρ2i the error-correlation product. The secret variable W

cannot be estimated with low MMSE from Y if and only if the functions φi that are strongly

correlated with W (i.e. large ρ2i ) cannot be estimated reliably. Consequently, if ρi is large and

φi is relevant for the utility provided by the data collector, privacy cannot be achieved without a

significant loss of utility: mmse(φi(X)|Y ) is necessarily large if mmse(W |Y ) is large. Conversely, in

order to hide W , it is sufficient to hide the functions φi(X) that are strongly correlated with φ(X).

This no-free-lunch result is intuitive, since one would expect that privacy cannot be achieved if

utility is based on data that is strongly correlated with the private variables. The results presented

here prove that this is indeed the case.

We present next a general description of a two-phase secure communication scheme for the

threat model described in Section 1.5, presented in terms of the list-source code constructions

derived using linear codes. Note that this scheme can be easily extended to any list-source code

by using the corresponding encoding/decoding functions instead of multiplication by parity check
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matrices.

7.2 A Secure Communication Scheme Based on List-Source Codes

We assume that Alice and Bob have access to a symmetric-key encryption/decryption scheme

(Enc′,Dec′) that is used with the shared secret key K and is sufficiently secure against the adver-

sary. This scheme can be, for example, a one-time pad. The encryption/decryption procedure is

performed as follows, and will be used as components of the overall encryption scheme (Enc,Dec)

described below.

Scheme 2. Input : The source encoded sequence x ∈ Fnq , parity check matrix H of a linear code in

Fnq , a full-rank k×n matrix D such that rank([HT DT ]) = n, and encryption/decryption functions

(Enc′,Dec′). We assume both Alice and Bob share a secret key K.

Encryption (Enc):

Phase I (pre-caching): Alice generates σ = Hx and sends to Bob.2

Phase II (send encrypted data): Alice generates e = Enc′(Dx,K) and sends to Bob.

Decryption (Dec): Bob calculates Dec′(e,K) = Dx and recovers x from σ and Dx.

Assuming that (Enc′,Dec′) is secure, the information-theoretic security of Scheme 2 reduces

to the security of the underlying list-source code (i.e. Scheme 1). In practice, the encryp-

tion/decryption functions (Enc′,Dec′) may depend on a secret or public/private key, as long as

it provide sufficient security for the desired application. In addition, assuming that the source

sequence is uniform and i.i.d. in Fnq , we can use MDS codes to make strong security guarantees,

as described in the next section. In this case, an adversary that observes σ cannot infer any

information about any set of k symbols of the original message.

Note that this scheme has a tunable level of secrecy: The amount of data sent in phase I and

phase II can be appropriately selected to match the properties of the encryption scheme available,

the size of the key length, and the desired level of secrecy. Furthermore, when the encryption

procedure has a higher computational cost than the list-source encoding/decoding operations, list-

source codes can be used to reduce the total number of operations required by allowing encryption

of a smaller portion of the message (phase II).

The protocol outline presented in Scheme 2 is useful in different practical scenarios, which are

discussed in the following sections. Most of the advantages of the suggested scheme stem from

the fact that list-source codes are key-independent, allowing content to be distributed when a key

distribution infrastructure is not yet established, and providing an additional level of security if

keys are compromised before phase II in Scheme 2.

2Here, Alice can use message authentication codes and public key encryption to augment security. Furthermore,
the list-source coding scheme can be used as an additional layer of security with information-theoretic guarantees in
symmetric-key ciphers. Since we are interested in the information-theoretic security properties of the scheme, we will
not go into further details. We do recognize that in order to use this scheme in practice additional steps are needed
to meet modern cryptographic standards.
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7.3 Content pre-caching

As hinted earlier, list-source codes provide a secure mechanism for content pre-caching when a key

infrastructure has not yet been established. A large fraction of the data can be list-source coded and

securely transmitted before the termination of the key distribution protocol. This is particularly

significant in large networks with hundreds of mobile nodes, where key management protocols can

require a significant amount of time to complete [46]. Scheme 2 circumvents the communication

delays incurred by key compromise detection, revocation and redistribution by allowing data to be

efficiently distributed concurrently with the key distribution protocol, while maintaining a level of

security determined by the underlying list-source code.

7.4 Application to key distribution protocols

List-source codes can also provide additional robustness to key compromise. If the secret key is

compromised before phase II of Scheme 2, the data will still be as secure as the underlying list-source

code. Even if a (computationally unbounded) adversary has perfect knowledge of the key, until

the last part of the data is transmitted the best he can do is reduce the number of possible inputs

to an exponentially large list. In contrast, if a stream cipher based on a pseudo-random number

generator were used and the initial seed was leaked to an adversary, all the data transmitted up

to the point where the compromise was detected would be vulnerable. The use of list-source codes

provide an additional, information-theoretic level of security to the data up to the point where the

last fraction of the message is transmitted. This also allows decisions as to which receivers will be

allowed to decrypt the data can be delayed until the very end of the transmission, providing more

time for detection of unauthorized receivers and allowing a larger flexibility in key distribution.

In addition, if the level of security provided by the list-source code is considered sufficient and the

key is compromised before phase II, the key can be redistributed without the need of retransmitting

the entire data. As soon as the keys are reestablished, the transmitter simply encrypts the remaining

part of the data in phase II with the new key.

7.5 Additional layer of security

We also highlight that list-source codes can be used to provide an additional layer of security

to the underlying encryption scheme. The message can be list-source coded after encryption and

transmitted in two phases, as in Scheme 2. As argued in the previous point, this provides additional

robustness against key compromise, in particular when a compromised key can reveal a large amount

of information about an incomplete message (e.g. stream ciphers). Consequently, list-source codes

are a simple, practical way of augmenting the security of current encryption schemes.

One example application is to combine list-source codes with stream ciphers. The source-coded

message can be initially encrypted using a pseudorandom number generator (PRG) initialized with

a randomly selected seed, and then list-source coded. The initial random seed would be part of the

encrypted message sent in the final transmission phase. This setup has the advantage of augmenting
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the security of the underlying stream cipher, and provides randomization to the list-source coded

message. In particular, if the LSC is based on MDS codes and assuming that the distribution of the

plaintext is nearly uniform, strong information-theoretic symbol secrecy guarantees can be made

about the transmitted data, as discussed in Section 2. Even if the underlying PRG is compromised,

the message would still be secure.

7.6 Tunable level of secrecy

List-source codes provide a tunable level of secrecy, i.e. the amount of security provided by the

scheme can be adjusted according to the application of interest. This can be done by appropriately

selecting the size of the list (L) of the underlying code, which determines the amount of uncertainty

an adversary will have regarding the input message. In the proposed implementation using linear

codes, this corresponds to choosing the size of the parity check matrix H, or, analogously, the

parameters of the underlying error-correcting code. In terms of Scheme 2, a larger (respectively

smaller) value of L will lead to a smaller (larger) list-source coded message in phase I and a larger

(smaller) encryption burden in phase II.

8 Conclusions

We conclude the paper with a summary of our contributions. We introduce the concept of LSCs,

which are codes that compress a source below its entropy rate. We derived fundamental bounds for

the rate list region, and provided code constructions that achieve these bounds. List-source codes

are a useful tool for understanding how to perform encryption when the (random) key length is

smaller than the message entropy. When the key is small, we can reduce an adversary’s uncertainty

to a near-uniformly distributed list of possible source sequences with an exponential (in terms of the

key length) number of elements by using list-source codes. We also demonstrated how list-source

codes can be implemented using standard linear codes.

Furthermore, we presented a new information-theoretic metric of secrecy, namely ǫ-symbol

secrecy, which characterizes the amount of information leaked about specific symbols of the source

given an encoded version of the message. We derived fundamental bounds for ǫ-symbol secrecy,

and showed how these bounds can be achieved using MDS codes when the source is uniformly

distributed.

We also introduced results for bounding the probability that an adversary correctly guesses a

predicate of the plaintext in terms of the symbol secrecy achieved by the underlying encryption

scheme. These results are based on Lemma 3, which, in turn, was used to derive bounds on

the information leakage of a security system that does not achieve perfect secrecy. These bounds

provide insight on how to design symmetric-key encryption schemes that hide specific functions of

the data, where uncertainty is captured in terms of minimum-mean squared error. These results

also shed light on the fundamental privacy-utility tradeoff in privacy systems.
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Appendix A Proof of Lemma 3

For fixed a,b ∈ Rn where ai > 0 and bi ≥ 0, let zP : Rn → R and zD : Rn → R be given by

zP (y) , aTy,

zD(u) , aTb+ uTb+ ‖u‖2.

Furthermore, we define A(a) , {u ∈ Rn|u ≥ a} and B(b) , {y ∈ Rn | ‖y‖2≤ 1,y ≤ b}.
The optimal value zn(a,b) is given by the following pair of primal-dual convex programs:

zn(a,b) = max
y∈B(b)

zP (y) = min
u∈A(a)

zD(u).

Assume, without loss of generality, that b1/a1 ≤ b2/a2 ≤ . . . ≤ bn/an, and let k∗ be defined in (13).

Let cj ,

√
(1−

∑j
i=1

b2i )
‖a‖2

2
−
∑j

i=1
a2i
. Note that since

∑k∗

i=1 b
2
i < 1, we have ck∗ > 0. In addition, let

y∗ = (b1, . . . , bk∗ , ak∗+1ck∗ , . . . , anck∗)

and

u∗ = (−b1/ck∗ , . . . ,−bk∗/ck∗ ,−ak∗+1, . . . ,−an).

From the definition of k∗, y∗ ∈ B(b) and u∗ ∈ A(a). Furthermore,

zP (y
∗) = aTy∗

=

k∗∑

i=1

aibi +

n∑

i=k∗+1

ck∗a
2
i

=

k∗∑

i=1

aibi +

√√√√
(
‖a‖22−

k∗∑

i=1

a2i

)(
1−

k∗∑

i=1

b2i

)
, (35)

and

zD(u
∗) =aTb+ u∗Tb+ ‖u∗‖2
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=
k∗∑

i=1

(
aibi −

b2i
ck∗

)

+ c−1
k∗

√√√√
k∗∑

i=1

b2i + c2k∗

(
‖a‖22−

k∗∑

i=1

a2i

)

=
k∗∑

i=1

aibi + c−1
k∗

(
1−

k∗∑

i=1

b2i

)

=

k∗∑

i=1

aibi +

√√√√
(
‖a‖22−

k∗∑

i=1

a2i

)(
1−

k∗∑

i=1

b2i

)

=zP (y
∗).

Since both the primal and the dual achieve the same value at y∗ and u∗, respectively, it follows

that the value zP (y
∗) given in (35) is optimal.
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