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Abstract—This work examines the temporal dynamics of 

cellular load in four Irish regions. Large scale underutilisation 

of network resources is identified both at the regional level and 

at the level of individual cells. Cellular load is modeled and 

prediction intervals are generated. These prediction intervals 

are used to put an upper bound on usage in a particular cell at 

a particular time. Opportunities for improvements in network 

utilization by incorporating these upper bounds on usage are 

identified and discussed in the areas of spectrum sharing and 
green networks.  

Keywords—cellular usage, traffic prediction, cellular 

networks, temporal dynamics, spectrum sharing, green networks. 

I.  INTRODUCTION  

In the past two decades mobile phones and devices 
utilising the mobile phone network have become ubiquitous 
in modern society. Mobile phone penetration has approached 
and in some nations exceeded 100% [1]. Cellular networks 
are undergoing, and will continue to experience, a large and 
sustained increase in demand for network resources [2]. As 
operators move to add capacity, a detailed understanding of 
the underlying dynamics of resource usage is increasingly 
important. To this end, some recent works have begun to 
make use of large scale data sets provided by network 
operators to identify important facets of network usage [3-9]. 
Understanding traffic patterns and predicting load in 
individual cells and groups of cells is becoming ever more 
important with the emergence of Self-Organising Networks 
(SON). For example, if it can be predicted that traffic in a 
particular cell or group of cells falls below a certain 
threshold at certain times then SON algorithms can use this 
information to alter the network to save energy [10-12]. 
Also, if low demand by primary users of valuable licensed 
spectrum can be predicted in certain cells/areas at for 
example off-peak times this can provide opportunities for 
secondary usage in these bands [13, 14]. Fault detection 
algorithms can also use atypical traffic patterns to indicate 
potential network problems.  

The rest of this paper is organized as follows: section II 
discusses our data set and the regions we selected for 
examination. In section III we assess the temporal traffic 
dynamics present in our regions and identify opportunities 
presented by underutilisation of network resources. Section 
IV introduces the model we used to identify underutilisation 

ahead of time while section V presents our results. Finally 
our main conclusions are outlined in section VI.  

II. DATA SET & REGION SELECTION 

Our data set consists of one year of nationwide usage 
data from one of the Republic of Ireland’s cellular phone 
networks. The data set includes information on all calls, 
SMS and cellular data usage of over one million people 
communicating on a network comprised of over ten thousand 
cells. Where appropriate, both voice calls and SMS are 
treated as an equivalent data service expressed in bytes and 
added to cellular data to get the Total Equivalent Data 
(TED). Voice is encoded in mobile phone networks using 
adaptive multirate (AMR) codecs.  In GSM and wCDMA, a 
narrowband AMR scheme is used with a typical data rate of 
12.2 kbps.  A higher quality wideband AMR is used in LTE 
and offers superior quality at a data rate of 12.5 kbps [15, 
16].  Higher and lower data rates are possible, but for this 
paper a rate of 12.5 kbps will be used in converting voice 
channels to an equivalent data session.  Text messages will 
be treated as a 200 byte message with 1 second duration. The 
privacy of individual subscribers is paramount, thus all 
personal information in the dataset is anonymised and cannot 
be used to identify individual customers. No information was 
provided relating to the content of any call, SMS or data 
session. 

       In this work we present actual network measurements to 

quantify and qualify the diversity of traffic load in both time 

and space across our network. From these results we 

highlight important features and how these can be used for 

improved network planning and emerging applications such 
as SON for green networks or spectrum sharing in cognitive 

radio applications. We used data collected in four diverse 

regions of our national network. The planning and 

organisation of cellular networks varies greatly by 

population density, topography etc. Thus it is more 

instructive to examine sub networks within the whole that 

are representative of particular planning features such as 

population density etc. To this end the four regions we 

selected are outlined in Table 1. Note: unless otherwise 

stated all city/county boundary information is taken from 

[17] while demographic information is taken from the 2011 

Irish census [18]. 
 



 

Table 1: Information on the four regions under 

investigation 

 
 Region 

1 
Region 2 Region 3 Region 

4 

Area (km2) 118 127 458 1720 

Number of 
Cells 

1627 512 696 177 

Population 527612 206261 273991 80559 

Pop/km2 4471 1624 598 46.8 

Classification Urban Suburban Suburban 
-Semi 
Rural 

Rural 

 

 

Figure 1 shows the approximate cell coverage areas of the 

four different regions. Region 1 consists of Dublin city. This 

is the most densely populated region with a population 

density of 4471 people/km2. Apart from having a large 

residential population it also has a broad mix of 

commercial/industrial and cultural sights which result in a 

large inflow of daily commuters. Region 2 is the 

administrative county of Dún Laoghaire-Rathdown which is 

a largely suburban area to the south east of region 1 with a 

population density of 1624/km2. Region 3 is the 

administrative county of Fingal which is a suburban and 

semi-rural area on the northern border of region 1 with a 
population density of 598/km2. Region 4 is county Laois 

which is a mainly rural county in the midlands of Ireland 

with a population density of just 46.8/km2 which is below 

the national average of 65/km2 [18]. 

 

Figure 1 Cell coverage zones in the four regions. Each square corresponds to 1km
2
. White coverage zones have one cell covering that area, green have two, 

yellow have three and red have four or more cells covering that zone. Region 3 is further subdivided into a suburban area around Blanchardstown and a rural area 
to the north west of the county. 



III. TEMPORAL DIVERSITY 

 
        In Figure 2 we plot the normalised aggregate traffic 

load for each of the four regions. We observe strong diurnal 

patterns in each of the four regions with a large gap between 

peaks and troughs. Interestingly different regions tend to 

exhibit somewhat different patterns. For example the peaks 

and troughs in region 1 (city) seem to occur at different 

times to those observed in the rural region (4) etc.  Also the 

rural region for example tends to deviate from the urban and 

suburban regions to the greatest extent on Sundays.   

 

 
Figure 2: One week of total traffic in each region starting at 00:00 on 

Monday running to 23:59 on Sunday 

 

A. Temporal Traffic Dynamics: 

To quantify the diurnal temporal traffic variation we 
compute the ratio of the mean maximum to minimum traffic 
load of each cell for the four regions. For each cell we 
calculate the aggregate load for every hour of the day giving 
us 24 hourly loads per day. The maximum load of a cell is 
defined as the load on the cell during the hour hmax when load 
was highest (between 6 PM and 1 AM in about 70% of 
cells). The minimum load of a cell is defined as the load on 
the cell during the hour hmin when load was smallest 
(between 1 AM and 7 AM in over 90% of all cells). 

 In Figure 3 we present the Complementary Cumulative 
Distribution Function (CCDF) of the maximum to minimum 
traffic ratio for all cells in the four regions. Interestingly the 
maximum to minimum ratio is greater than ten for more than 
80% of cells in all regions. This indicates that there is a high 
degree of temporal diversity in almost every cell. Such 
strong temporal diversity indicates large underutilisation of 
both network infrastructure and spectrum in the time domain. 
This network infrastructure inefficiency indicates that there 
are large savings to be made from a move towards networks 
where the power consumption is dependent on traffic load. 
Also, the inefficient use of spectrum shows the real 
possibility for large scale secondary usage of licensed 
spectrum with minimum impact on primary usage.  

Unsurprisingly the sparsely populated rural region 4 
deviates from the more densely populated urban regions.  In 

fact it appears that the four regions maximum to minimum 
load ratios appears to be positively related to population 
density. This is further borne out by examining smaller sub 
regions such as those identified in region 3 as shown in 
Figure 1. This is interesting as it indicates that the wastage 
due to peak provisioning is greatest in densely populated 
urban environments. These densely populated urban 
environments with higher maximum to minimum load ratios 
are where spectrum is most limited and also most valuable. 

 
Figure 3: Maximum to Minimum Traffic Load Ratio 

 

 

B. Regional Underutilisation: 

        The aggregate traffic load in a given region is found to 

be only a fraction of the aggregate traffic capacity in that 
region. To verify this we calculate the percentage of the 

total regional capacity X(h) used during each hour (h). X(h) 

is defined as the ratio of the aggregate traffic load during 

hour h in a region to the sum of the peak observed load in 

each cell in that region over the entire period (a lower bound 

estimate of the cells capacity): 

 

       
∑        

   

∑          
 
   

 

 

where n is the number of cells in a region, L(i,h) is the 

traffic load of cell i during hour h and L(i,hmax) is the largest 

load observed on cell i during the observation period. The 

percentage of regional traffic being used during each hour of 

one week is presented in Figure 4. This shows that at no 

point during the week in any region is the aggregate traffic 
demand greater than 45% of the total regional capacity. 

Furthermore, in the urban/suburban regions where spectrum 

and space are most limited the regional utilisation peaks at 

approximately 20-25% and drops into single digits for 

approximately the first 12 hours of each day.  

        One reason for the large underutilisation is that all the 

cells in a region do not peak simultaneously. The operator 

deploys infrastructure to service peak demand at each 

location even though this only lasts for a small period of the 

day. As this peak hour is location dependant the aggregate 
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deployed capacity (the sum of all cells capacity in an area) 

is much greater than the actual traffic demand at any given 

time. The degree to which peak hour varies within a region 

influences the amount of underutilisation. For example, 

region 4 is a rural area where most cells have similar 

profiles and peak at the same time. In contrast regions 1-3 
are a more complex mixture of residential/business/semi-

rural areas with diverse profiles.  

    

 

 
Figure 4: The percentage of total regional capacity being used over the 

course of a week. 

C. Local Underutilisation 

       To further investigate the cell level temporal dynamics 

present in the network we plot in Figure 5 the percentage of 

the hours in a month where the traffic load in a cell falls 

below 25% of that cell’s maximum observed load. Here the 

maximum load is defined as the maximum hourly load 

observed in the cell during the month under investigation 

(i.e. the lower bound on the cells actual capacity as the cells 

are overprovisioned to deal with future network growth). 

Figure 5 helps underline the large underutilisation of both 

network hardware and licensed spectrum discussed above.  

        From Figure 5 we see that for the three 
Urban/Suburban regions (Regions 1-3) 90% of cells spend 

at least 66% of the hours in a month with a load of less than 

25% of their maximum observed hourly load. Figure 5 again 

like Figure 3 and Figure 4 shows a difference between the 

more densely populated regions and the sparser region 4. 

The greater underutilisation and consequent opportunity is 

again present in the more densely populated regions. This is 

possibly a result of larger daily flows in and out of these 

urban regions resulting in a larger peaking problem for 

network planners compared to the more static nature of rural 

areas. However, even in the rural region half of cells spend 

80% of their time with a load below 25% of their maximum 
observed load. 

 
Figure 5: The percentage of hours in a month where each cells load falls 

below 25% of the maximum hourly load observed in that cell during the 

month. 

 

 
Figure 6: Normalised Frequency of hours with a load below 25% of max 

    
        In Figure 6 we see the normalised relative distribution 

of hours of the day where traffic falls below 25% of 

capacity for all cells in all regions. We see that the hours 
between 2 AM and 8 AM are approximately twice as likely 

to have load fall below 25% of capacity compared to the 

hours from 6 PM to 11 PM. Of course this is a general result 

for all regions; as discussed in section III.B the local 

distribution depends on the local profile (urban, suburban, 

rural, commercial etc.). 

 

D. Medium-term traffic stability 

        Although the traffic load on individual cells fluctuate 

over time, the traffic at the same time on consecutive days is 

relatively stable. We assess the medium term traffic stability 

by calculating the medium term traffic variation V(i,h) at 

hour h for cell i as: 

 

        
                            

              
 

 

where T(i,hcurrent) is the traffic load on cell i at hour h on the 

current day and T(i,hprevious) is the traffic load on cell i at 
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hour h on the previous day. Max(T(i,hall)) is the maximum 

hourly traffic experienced by cell i during the period. 

        Figure 7 plots the CDF of the near term traffic 

variation V(i,h) for all cells for all hours and also just the 

hours of low load (differences between regions are small 

and consequently omitted). We see that for 90% of hours the 
variation is less than 30% of cellular capacity between 

consecutive days. This falls to approximately 18% of 

cellular capacity if we only examine those hours where 

traffic falls below 25% of capacity. Thus, the hours of low 

traffic are particularly suited to prediction.  

 

 
Figure 7: Medium term traffic variation v(i,h) for all hours and hours where 

the load falls below 25% of max. 

 

IV. FORECASTING MODEL 

       We use a Seasonal Auto Regressive Moving Average 

(SARMA) model [19] to predict the traffic load on a cell i at 

hour h as a linear function of prior load values and forecast 

errors. Seasonality is considered by including additional 

predictors at a fixed prior period. A model SARMA(p,q) x 
(P,Q)s has autoregressive (AR) order p and moving average 

(MA) order q plus a seasonal component with a cycle of s 

time steps with AR order P & MA order Q. In this work we 

employ a restricted class of SARMA model without a MA 

component and hence q = 0 and Q = 0. This gives the 

following model for a time-series x(t): 

 

 

      ∑           ∑                 
   

 
     

 

It is assumed that ε(t) ∼ N(0,σ2) is iid and values of p ≥ 4 are 

discouraged as it may cause overfitting [20]. Seasonality is 

set to s = 24 hours with an AR order of P = 3. The model is 

adaptive and relearns both θ and Ø while keeping p, P, and s 

fixed.  

V. RESULTS & DISCUSSION 

      Each cell is modeled and a 95% prediction interval is 

generated [21] as in the representative case of the cell 

modeled in Figure 8. This process is carried out for every 

cell with the upper prediction limit providing a tunable 

buffer to meet different network quality of service restraints. 

Figure 9 shows the percentage of hours over one month for 

each cell that are predicted with accuracy 95% to fall below 

25% of the maximum monthly load. This can be compared 

directly with Figure 5 which can be seen as the optimum 
case. We see that using the predictive model the median cell 

in regions 1-3 spend approximately 85%-90% of their time 

with loads below 25% of the maximum. The rural region 

again behaves differently with the equivalent figure being 

60%. 

       Considering that we chose several conservative metrics 

such as: using max load observed in a cell as max capacity 

(this understates the capacity in many cells), we endeavored 

to stay below 25% of max capacity and we used 95% 

prediction intervals it seems clear that there is potential to 

predict large periods of underutilisation at a fine grained 

level in our cellular network. This is found to be particularly 
true in more densely populated urban areas. This provides 

opportunities for improved resource usage, energy savings 

and secondary spectrum usage.  

       For example, a common approach to energy 

conservation in green networks is to dynamically switch on 

and off cells depending on the load [10, 22]. Another cell 

either already covers the shut off cell or a neighbour boosts 

its transmission power to fill the coverage gap left by the 

switched off cell. However, most work in the area simply 

uses historical static load profiles or assumes that switching 

decisions can be made instantaneously. However, real world 
measurement results such as presented in [22] show that 

switching can take up to 30 minutes due to the heating 

systems. Thus, predictions of the need to perform a switch 

ahead of time are important. Similar principles apply to 

spectrum sharing. For example, consider region 1 in Figure 

1. Almost the entire region is covered by at least two cells 

and in many cases more than two. In low load conditions if 

some of overlapping cells could be turned off their spectrum 

would be freed up for secondary usage.  

 

 
Figure 8: Predicted load for a representative cell over one day. The cutoff 

point represents the 95% prediction interval for each particular hour.  
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Figure 9: The percentage of hours in a month where each cells load falls 

below 25% of the maximum hourly load observed in that cell during the 

month. A particular hour for a particular cell is only counted if its 95% 

prediction interval falls below 25% of the cells monthly peak load. 

 

VI. CONCLUSION 

       In this work we identified large scale underutilisation of 

both network hardware and spectrum in four different Irish 

regions. We found that the underutilisation is present for 
protracted periods of time at both the regional and 

individual cell level. We found that the underutilisation and 

consequent opportunity’s for improvement is greatest in 

densely populated urban environments. We examined the 

temporal dynamics of the traffic load on cells and proposed 

a model to predict future loads with a desired level of 

accuracy. Finally we suggested how this model may be used 

in the future in relation to spectrum sharing and green 

networks. 
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