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The physiology of voltage gated ion channels is complex and insights
into their gating mechanism is incomplete. Their function is best repre-
sented by Markov models with relatively large number of distinct states
that are connected by thermodynamically feasible transitions. On the
other hand, popular models such as the one of Hodgkin and Huxley
have empirical assumptions that are generally unrealistic. Experimental
protocols often dictate the number of states in proposed Markov mod-
els, thus creating disagreements between various observations on the
same channel. Here we aim to propose a limit to the minimum num-
ber of states required to model ion channels by employing a paradigm
to define stationary conductance in a class of ion-channels. A simple
expression is generated using concepts in elementary thermodynamics
applied to protein conformational transitions. Further, it matches well
many published channel current-voltage characteristics and parameters
of the model are found to be identifiable and easily determined from
usual experimental protocols.

1. Introduction

The electrical activity of a living system is a dynamic function of the
ionic transport across biological membranes. Ion channels are pore-
forming protein ensembles that are responsible for the task of regulat-
ing ion flows. Gating arises as conformational changes in the proteins
that comprise the channel. These conformational changes are driven by
changes in the electric field or by molecules (ligands) that bind to them.
For this reason, ion-channels are often classified into voltage-gated and
ligand-gated categories.

Voltage-gated ion channels have charged domains that make their
structure sensitive to variations in the external electric field. For a par-
ticular range of membrane potentials, they adopt a conformation with a
central hole: forming a channel for the free movement of ions. Such an
‘open’ state is further defined by certain ‘selectivity filters’ (often amino
acids) that would render specificity for the protein [6]. At other mem-
brane potentials, the flow of ionic current is blocked as a result of the
‘closed’ or ‘inactive’ conformations that the protein adopts. A channel
protein can thus adopt various conformational states with varying de-
grees of conductance, and they can spontaneously switch between these
states. The steady distribution and dynamics of such switches is central
to any study that involves an ion channel.

Equation based kinetic models are useful to interpret the behaviour
of a channel in a given situation. Starting with the model of Hodgkin
and Huxley [15], several researchers have developed theoretical frame-
works that partially explain observations made on channel activity. The
Hodgkin-Huxley formalism relies on an underlying model of average
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channel conductance and their equations describe the changes of ionic
permeability with membrane potential. The model makes use of hypo-
thetical gating particles to bring about the channel’s function, by forc-
ing their motion with respect to the electric field across the membrane.
Although this model has been used in many instances, hypothetical gat-
ing particles do not appear to be consistent with underlying molecular
mechanisms.

Further developments in the study of ion-channels made an attempt
to give a mechanistic description of the gating phenomena. Such mod-
els consist of nonlinear ordinary differential equations (ODEs), includ-
ing a current balance equation and the dynamics of conformational tran-
sitions incorporated as a ‘gating variable’ that corresponds to the state
of the ion channels. Discrete-state Markov models have been used to
describe the different states of the ion channel [20] and have the advan-
tage of providing a mechanistic description for the otherwise abstract
Hodgkin-Huxley formalism based models.

Markov chain models are developed on the assumption that ion chan-
nels exist in a finite number of significant energy states, with time-
homogeneous rates of transition between them. The model consists of a
topology of allowed transitions between these states, together with the
rates for these transitions. Fitting single-channel recording data with
a Markovian kinetic scheme has been standard in neurophysiology for
quite some time [7, 20, 26, 32]. However, for good agreement with ex-
perimental data, frequently the number of closed states needed varies
with the experimental protocol. A significant benefit of Markov mod-
els compared to the Hodgkin-Huxley formalism is that the large degree
of freedom in the model stucture allows it to fit more closely with ex-
perimental observations [12]. Thermodynamic models are a two state
Markovian description of channel flipping, the rate kinetics of which
are described by concepts in thermodynamics [10, 29].

Fractal models [22, 23] of ion channel gating provide a different de-
scription of the underlying mechanism compared to Markov models.
Such models are characterised by equations having continuous rather
than discrete states. The Diffusion models introduced by Millhauser et
al. [27], justify Fractal models at a microscopic level. Statistical anal-
ysis, however has often favored Markov models over Fractal models
[32, 28].

A major hurdle in modelling ion-channel gating using a Markov-
jump scheme is in the determination of an appropriate number of closed
states. As the topology space expands with the number of states, gener-
ating appropriate kinetic schemes can give rise to ambiguity because it
may be possible to come up with multiple schemes that are consistent
with a given set of data. Moreover, numerical simulation of such mod-
els becomes time-consuming. Thus the model has limitations from the
point of view of parameter estimation and further in its use for multi-
cellular simulations [12]. The increasing complexity of the topology
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generates a need for model reduction. Kienker [20] talks about the
existence of equivalence in topologies of models that are identifiable
within the same data set. This would imply that models with a larger
number of states are reducible. Keener [19] illustrates the possibility of
reducing the complexity to stable invariant manifolds. This approach
would reduce the dimension of the system without suffering from large
approximation errors. Furthermore, the time scale of the Markovian
transitions are much faster than the main time scales involved in the
aggregate cell voltage and ion behaviour [1, 14], which in turn offers
options for model reduction.

Another difficulty in the acceptability of ion channel models is re-
lated to parameter identifiability. A model is said to have structurally
unidentifiable parameters when multiple parameters are equally pow-
erful in explaining observed data in noise-free perfect experiments
[5, 36, 2]. Since it is well-known that a large segment of ion-channel
models in the literature lack parameter identifiability in noise experi-
ments [12], fundamental studies of structural identifiability are scarce
due to the difficulty of solving the associated symbolic set of equations
[8, 9].

It should be also noted that in usual experimental protocols optimised
to improve the signal-to-noise ratio [4, 37], provide two sets of sep-
arated data: one used to characterise the steady-state, and the other
with time constants, when dynamics are not sufficiently fast to be disre-
garded. With this in mind, Hodgkin-Huxley models employ empirical
expressions for both steps that are not always realistic [37]. On the other
hand, estimation in models based on Markov chains often make use of
other types of experimental protocols, and do not exploit the large range
of data available using the standard protocols.

In this article, we describe a voltage-gated ion-channel model of sta-
tionary conductance with three main characteristics. To begin with, the
model has a clear mechanistic motivation based on the underlying ther-
modynamics. In addition, the model is relatively simple to implement,
with a small number of easily identifiable parameters. Finally, we test
the model using experimental data from patch clamp and similar studies
reported in the literature. Our model can make use of classical exper-
imental protocols and provide a mechanistic formulation for the cal-
ibration of steady-state characteristics in the Hodgkin-Huxley setting
and, by identifying the form of the stationary distribution, constrain
the estimation process in Markov processes, where the study of global
structural identifiability is still an open problem. In addition, the simple
model proposed here can be applied to study the gating of fast ion chan-
nels, such as fast persistent and fast activated Na+ currents or transient
activated K+ current [18].

2. Background

2.1. Stable conformations of ion channels

The probability of a protein molecule adapting a particular conforma-
tion in space is largely influenced by the electrical force field surround-
ing it. When subject to an electric field, charged groups within a protein
will experience a force and may attain a new electrostatic equilibrium
by incorporating angular changes in the dipoles associated with the pep-
tide bond [24]. If the thermodynamic kinetic energy is large enough to
overcome the energy barrier, the protein takes up a new conformational
state. Proteins can hence take up a large number of conformational
states separated by small energy barriers. Despite the continuum of
intermediate states, this dynamical system would typically have only a
few stable equilibria [19] and hence a limited number of experimentally
observable states.

2.2. Transition velocities

The rate at which the protein switches between such stable states is
mainly determined by the driving forces that help in overcoming the
thermodynamic energy barrier. However, there are some conforma-
tional changes that are not regulated by either electric field or ligands.
They may be considered to have a constant energy barrier in the given
environment, and hence may be thought to have a uniform rate. Classi-
cal thermodynamics identifies the rate of transition between two reac-
tion states based on the free energy barrier between them as

k = k0e−(4G)/RT , (1)

where k is the rate of transition between the two states, k0 is a constant,
∆G is the free energy barrier between the two states, R is the universal
gas constant and T the absolute temperature.

More generally, the free energy barrier may be dependent on the elec-
tric field, that is, the membrane potential V (figure 1). In this case we
have

k(V ) = k0e−∆G(V )/RT (2)

Here ∆G(V) is the free energy barrier between the two states defined by
the voltage [26].
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Figure 1: Energy profile for the transitions between open and closed states in an
ion channel, modulated by a change in membrane potential: a change
in membrane potential brings in protein conformational changes and
thereby free energies of protein conformation. The rates of channel
closing and opening, kc and ko, are a function of the free energy bar-
riers (εc and εo) defined by structural configurations of the respective
states. The figure describes how the open probability of a channel is
enhanced by a change in the ambient voltage from V1 to V3 by virtue
of its conformational energy.

In the case of voltage based transition, the activation energy can be
expressed in a general form by using a Taylor series expansion [10, 29],
as follows:

∆G(V ) = a+bV + cV 2 + · · ·

and the rate of transition k(V) may be written as,

k(V ) = k0e−(a+bV+cV 2+···)/RT (3)

Here a corresponds to the free energy independent of the electric field
and bV corresponds to interactions between the electric field and iso-
lated charges and rigid dipoles on the protein. The higher order terms
correspond to the influence of polarization and deformation within the
protein structure as well as mechanical constraints. These effects are
usually negligible as the trans-membrane voltage variations are gener-
ally small [10].

In what follows, we are mainly interested in models where the free
energy barrier is linear in the membrane potential. The effect of temper-
ature variations may be neglected for the system under consideration,
as long as the physiological environment remains unaffected. In this
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case, the following trivial lemma, helps us derive a simple expression
for voltage regulated conformational transitions.

Lemma 1. Consider a set {∆G1(V ), . . . ,∆GM(V )} of activation en-
ergies, where each ∆Gi(V ) is affine in V. Denote the corresponding
transition rates by {k1, . . . ,kM}. Then any expression of the form

∏
P
p=1

(
kip (V )

k jp (V )

)
may be expressed as e[(V−Vh)s]

2.3. Markov Models for Conformation transitions

The series of molecular changes associated with the opening of an ion
channel is often described using Markov models with discrete states
[20, 32, 19]. To begin, consider the simple case of a transition between
an open and closed state; let O and C represent the probabilities that
the molecule is in the corresponding open and closed state at a given
time. Since the equation governing changes in probabilities for a single
molecule has a form similar to the rate equation for a large number of
molecules, the transition may be represented by a kinetic scheme, as
follows:

C
kOC // O
kCO

oo ,

where ki j represents the rate of transition from state j to state i. The
above kinetic scheme has a transition intensity matrix K[

−kCO kOC
kCO −kOC

]
and the steady state probability for the channel to be in an open state
leads

O =
1

1+ kOC
kCO

.

Using Lemma (1) we obtain,

O =
1

1+ e[(V−Vh)s]
(4)

The expression is the modified Boltzmann’s expression used in model-
ing ion-channel gating [6, 17, 39]. This sigmoidal function of voltage is
symmetric about the half-activation voltage, Vh. However, experimental
data frequently show one or both of: (i) activation and inactivation be-
haviour (ii) asymmetric behaviour, and hence it is hard to fit data with
a single Boltzmann function. This implies that the two-state Markov
chain with linear energy barriers does not ably model experimental ob-
servations.

Three possible ways to resolve this are (i) model the system as having
more than two macro-states (stable conformational states), (ii) model
the system as having transition rates that change with the dwell times,
leading to a fractal model; or, (iii) use non-linear terms in the energy
expression.

We focus on the first option here for the following reasons. The sec-
ond option (ii) would give rise to time-inhomogeneous Markov chains,
which are typically very difficult to analyse. Moreover, the identifi-
cation task becomes less tractable in this case. As mentioned previ-
ously, the last option (iii) includes higher order terms that are usually
neglected. Also, as we shall see later in section (6) the use of higher or-
der non-linear energy models does not appear to result in simpler mod-
els, nor does it give more accurate fits to experimental data.

In fact, usually models developed on the basis of Markovian dynam-
ics have more than three states [option (i)] for a good agreement with
experimental observations [20, 26]. In such models the rate constant is
often defined with an exponential or a Boltzmann function in voltage,
both obtained from a linear approximation of equation (3).

We will now analyse how best we can extend the two-state model by
option (i) to have a network with limited and identifiable macro-states.

3. A Multiple Conformation Extension of the
‘Modified Boltzmann Function’ for stationary
conductance

3.1. The Master Equation and Transition Rates

Here we consider the transition network of the ion-channel as a system
with a set of N stable states, marked i = 0,1, ...,n; with n = N − 1
closed or inactive states and 0 being the open state. In the following, we
consider models with a single open state, as this reflects the molecular
structure of many ion channels as detailed in experiments and is not a
generalization [23, 33] If Si denotes the probability for the protein to be
in state i at any time t, the system obeys the master equation

Ṡ =KS, (5)

where S = (O,S1,S2, ...,Sn) and K ∈RN×N is a transition matrix with
ki j ≥ 0 giving the rate of transit from state j to state i. The diagonal
elements satisfy, kii = −∑i 6= j ki j, to ensure the system evolves on the
probability simplex. The entry ki j 6= 0 if and only if there is a transition
from state j to state i. The stationary probability distribution S satisfies
KS = 0, 1T

N S = 1, where 1N is the column vector of size N with all
entries equal to one.

As is standard, we associated a directed graph with the Markov pro-
cess described by (5) consisting of the nodes {0,1, . . . ,n} with an edge
from state j to state i (i 6= j) if and only if ki j 6= 0.

In the following subsection, we derive explicit formulae for the form
of the stationary vector in some simple cases; emphasising that in these
cases the open state probability O takes a particularly simple form. We
also describe a general condition on the structure of the graph associated
with the Markov process that is sufficient for this simple form to hold.

3.2. Examples with similar form of solution

3.2.1. Solution for a special case: A three state linear system
with reversible transitions

A three state transition diagram for channel opening is given below

C1
k21 // C2
k12

oo
k02 // O
k20

oo .

Here O represents an open state and C1 and C2 represent closed or in-
active conformations. The steady-state probability for the channel to be
in the open state can be calculated as

O =
1(

1+ k12
k21

+ k12
k21

k20
k02

) .
By using lemma 1, there exist Vh1 ,s1,Vh2 ,s2 such that

O =
1

1+ e[(V−Vh1 )s1] + e[(V−Vh2 )s2]
. (6)

In the case of a slightly different topology,

C1
k01 // O
k10

oo
k20 // C2
k02

oo

the probability of the channel to be in an open conformation would be
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O =
1(

1+ k10
k01

+ k20
k02

)
and once again, using lemma 1, the stationary probability of being open
can be represented in the form (6).

3.2.2. Linear Networks

This scheme can be generalized for n macrostates depending on the
position of the open state in the entire topology. A topology involving
the open state on the network extremum,

O
k10 // C1
k01

oo
k21 // C2
k12

oo Ci Cn−1

kn,n−1 // Cn
kn−1,n

oo

would have an open state probability

O =
1(

1+
n

∑
j=1

j

∏
i=1

ki,i−1

ki−1,i

)

and a topology

C1
k21 // C2
k12

oo
k32 // · · ·Cp−1
k23

oo
k0,p−1 // O
kp−1,0

oo
kp+1,0// · · ·Cn−1
k0,p+1

oo
kn,n−1 // Cn
kn−1,n

oo

would yield

O =
1(

1+
p−1

∑
j=1

j

∏
i=1

ki,i+1

ki+1,i
+

n

∑
j=p

j

∏
i=1

ki+1,i

ki,i+1

) .

In either case, with respect to the argument in lemma (1), the open state
probability can be reduced and in general, a system with N macro-states
related in order of their conformational transitions would have an open
state probability

O =
1

1+
n

∑
i=1

e(V−Vh,i)si

,

where n =N −1, is the number of transitions in the linear network.

Remark 1. For the networks considered so far, rendering one of the
transitions irreversible, would make the network absorbing in nature.
In other words, the system would reach and never leave a fixed confor-
mation. Since such a possibility is not physically reasonable for ion-
channels under consideration, this case is not considered further.

3.2.3. Other networks

More generally, consider a transition network in which a unique simple
path exists from every stable state to the open state; so in the directed
graph associated with the matrix K, there is a unique path from every
j 6= 0 to the node 0. We also assume that the matrix K is irreducible
[16].

The celebrated Markov Chain Tree Theorem [21] allows us to char-
acterise the form of the steady state probability of the open state in this
case. This result is usually stated for column stochastic matrices or dis-
crete Markov chains; however, it is trivial to see that an exact analogue
also holds for continuous chains with matrices of the form K. We state a
restricted version of this result below but first introduce some notation.

For the directed graph G associated with K, a rooted spanning tree Ti
at i ∈ {0, . . . ,n} consists of the vertices {0,1, . . . ,n} and has the follow-
ing properties: (i) Ti is acyclic; (ii) for every j 6= i, there exists exactly

one outgoing edge from j; (iii) there exist no edge outgoing from i.
We denote by w(Ti) the weight of Ti, which is given by the product of
the entries of K corresponding to the edges in Ti. For 0 ≤ i ≤ n, let
Ti denote the set of all directed spanning trees rooted at i, and define
wi = ∑Ti

w(Ti). Note that each wi will be a sum of terms of the form

ki1 j1 ki2 j2 · · ·kin jn (7)

The following result is now a simple re-wording of the Markov Chain
Tree Theorem as presented in [21] and elsewhere.

Theorem 1. Assume the matrix K is irreducible. The unique stationary
probability vector associated with K, π is given by

πi =
wi

∑ j w j

where wi is defined as above for 0≤ i≤ n.

If there is a unique path from every node j 6= 0 back to the node 0,
then it follows immediately that there is exactly one directed spanning
tree T0 rooted at 0 (which represents the open state). It then follows that
the steady state probability of the channel being in the open state is of
the form

O =
w(T0)

∑ j w j
. (8)

As there is only a single term of the form (7) in the numerator, it follows
readily by combining (8) with Lemma 1 that O can will take the form

O =
1

1+
N

∑
i=1

e(V−Vh,i)si

. (9)

A few examples of network topologies for which this form is guar-
anteed by this analysis are illustrated in table 1.

4. Numerical analysis and low order approximation

We have observed so far that open-state probabilities of ion-channels
may be expressed in a similar form to the modified Boltzmann equation,
but with sum of exponentials replacing the single exponential term as
in equation (9). The value of N is generally not less than the number
of transition macro-states. The ambiguity in the value of N (which is at
large dependent on the network structure) together with computational
and identifiability issues for large N motivate us to consider models
with small N. Of course, when considering such approximations, we
potentially open up inaccuracies in the model [23], and it is therefore
important to check that any such reduction still accurately captures the
observable behaviour of the system.

A good way of approximating the model would be to search for the
minimum number of exponential terms that yields a good fit for ex-
perimentally observed ion channel current-voltage characteristic data.
Let us denote the M-vector of ionic currents obtained from patch clamp
experiments on a certain channel by Im ∈ RM . Let Vm ∈ RM be the
corresponding voltage vector. In order to fit these data to equation (9),
the distance between the experimental data and the model needs to be
minimized. The distance may be measured as square of the L2 norm:

J(Im, I(Vm)) = ‖Im− I(Vm)‖2
2 =

m

∑
j=1

(
Im

j − I(V m
j )
)2

where I(Vm)∈RM is the vector of ionic current predicted by the model
given membrane potentials in the vector Vm. Im

j and V m
j are respec-

tively the jth position in vectors Im and Vm. Let gmax be the maximal
conductance of the channel and V ∗, the equilibrium potential of the ion
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transported by the channel. Mathematically, this optimization problem
can be formulated as following:

min
{Vh,i}N

i=1,{si}N
i=1,gmax

J(Im, I(Vm)) (10)

subject to the conductance expression:

I(V j) =
gmax(V j−V ∗)

1+
N

∑
i=1

e(V−Vh,i)si

∀ j = 1, ..,m (11)

and with bounds that are physiologically justified.
This optimization problem brings forth two significant difficulties:

(i) the cost function is not convex and (ii) the number of dominant con-
formations that the protein adopts is usually unknown and hence the
order of the exponentials, N is unknown. To guarantee that the global
optimum is achieved, an initial guess should be carefully selected. It is
possible to have a calculated guess for the Vh values from the current-
voltage characteristics, positioned centrally over the range of values at
which the curve shows steady activation or inactivation. The steepness
of the tangent drawn at this estimated voltage may be used as an ini-
tial estimate of the slope value. Alternatively, the recently developed
global optimization Scatter Search based methodology, SSm GO [11],
can be used. This algorithm combines a population-based metaheuristic
method with a local optimization.

Regarding the number of exponentials, the aim is to curtail the num-
ber of conformational transitions so that it leads to minimum parameters
to fit the data. For this purpose an algorithm was implemented which
calculates the global optimum for several order of exponentials until
the confidence in the fit is accomplished. The algorithm starts by N = 1
and progressively increases until the best fit between the model and the
data has a relative error less than ε times the original data. The measure
considered is again the square of the L2 norm and mathematically, this
criterion may be formulated as:

J(Im, I(Vm))< ‖εIm‖2
2

For all the cases we have considered, a good fit is obtained by setting
ε = 0.10.

Interestingly, for all these cases we have examined, a maximum of
two exponentials, i.e. N = 2 was required. The data could be accu-
rately fitted by using a two dimensional state space (N = 1) for simple
symmetric data-plots, and for all other cases, a three dimensional state
space (N = 2) could accurately explain the data. This would imply that
to a large extent stationary distributions of voltage gated ion-channels
can be adequately modeled as dwelling predominantly among three dif-
ferent macro-states even if they are able to change between several con-
formations. The time that the protein dwells in some of these states may
be considerably smaller than that of the three dominant conformations.
The three macrostates may incorporate some of the effects of the mi-
nor conformations rather than completely negating their influences; as
reflected from the data-fits.

With the above argument we propose the following equation for the
open state probability corresponding to a three state system,

O =
1

1+ e[(V−Vh1 )s1] + e[(V−Vh2 )s2]
(12)

as a good approximation to represent the stationary probability of volt-
age gated ion-channels to remain open. The channel current may hence
be calculated with the following equation:

Ii =
gmax,i(V −V ∗i )

1+ e{V−Vh,1(i)}s1(i)+ e{V−Vh,2(i)}s2(i)
(13)

where, Ii is the channel current; V ∗i , the reversal potential of ion i; V , the

membrane potential; gmax,i, the maximal conductance of the channel
for the ion i and Vh,1(i),s1(i),Vh,2(i),s2(i) being the parameters for the
activation function as defined by equation (12).

5. Fitting of experimental data to the model

Most papers in the literature follows the voltage step protocol where
steady-state voltage-current characteristics are obtained independently
of the ion channel dynamics. Several were selected for utilizable data
on single channel studies. We collect data from both, stationary conduc-
tance obtained from peak currents (with less signal-to-noise ratio [3])
or from raw steady-state measurements. Data were extracted from the
published curves using the Enguage Digitizer 4.1. The digitized data
sets were fit by the equation (13). The global scatter search algorithm,
SSm GO [11] implemented in MATLAB was used for making the fits.
The resulting data fits are presented in figures 2,3,4 and summarized in
table 2. In all cases, with N ≤ 2, we are able to represent the observed
data well using the model structure proposed.

6. Comparison with non-linear thermodynamic
models

The estimation of the open-state probability of voltage-gated ion chan-
nels to an equation of form as (9) would rather be equivalent to a steady-
state approximation of the Hodgkin-Huxley formalism. However, as we
seek to look beyond the Hodgkin-Huxley formalism for a good mech-
anistic description, the given model need to be compared with efforts
made to represent the system on a realistic perspective. Thermody-
namic formalism comes closest to this effort. Although the fundamen-
tals are in place, such models [10] show very poor performance in even
small extrapolations from the given data (Figure 5). We would also
argue that the biophysical basis of the multiple conformation model is
much clearer than that of a Taylor’s series dual conformation model.

Ozer [29, 30] modified the non-linear model to a functional form by
lumping the different transitions in the protein to a single event. The
model which uses a sum of Gaussion distribution, seems to give the
best fits for experimental data. The steady-state open probability of
ion-channels written with respect to this model, may be arrived using
equation (8) of [30] as,

O =
1

1+

n

∑
i=1

α0,ie[(V−Vα,i)sα,i]
2

n

∑
i=1

β0,ie[(V−Vβ ,i)sβ ,i]
2

(14)

where, n was defined as the number of distinct transitions defined by
different energy barriers. It should be noted that in work [30] was also
able to get acceptable fits with two transitions. The problem with this
model however seems to be in the existence of unidentifiable parame-
ters, as is the case with majority of the existing Markov Models [12].
Further, if no manipulation is carried out to collect group of parameters
that are no identifiable only with stationary data, the model asks for fit-
ting a minimum of twelve parameters (provided two macro-transitions
(n = 2) gives acceptable fits).

A mathematical model for a biological phenomenon is assured to
have uniquely estimated parameters if the model structure ensures iden-
tifiability [36]. Conventionally, ion-channel data has limited interpre-
tations by producing indistinguishable models [20]. In-silico represen-
tation of ion-channel dynamics is yet to come up with a model for the
reason that the model structure needs to be tweaked each time to incor-
porate experimental observation. This indeed is a question of parameter
identifiability. The model that we have presented in this article, is found
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(a) Normalized current-voltage relationship of the T-type calcium channel from the
digitized data of Talavera and Nilius (2006) [35]
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(b) Normalized current-voltage relationship of the wild-type calcium channel [6]
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(c) Averaged, peak current–voltage plots of Cav1.2α L-type calcium channels [39]
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(d) Averaged, peak current–voltage plots of Cav1.3α L-type calcium channels [39]

Figure 2: Current-Volatge relationship of Voltage-gated Ca2+ channels fitted with equation (12). Voltage-gated Ca2+ channels (VGCC) can be classified into high-
voltage-activated (HVA) and low-voltage-activated (LVA) channels, which implies that LVA channels activate at 20 to 30 mV more negative potentials
than HVA channels. T-type calcium channels are LVA and show fast macroscopic inactivation where as L-Type calcium channels are HVAs.
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(a) Peak inward current vs. voltage relation for the current records of sodium channel
[34] fitted with equation (12)
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(b) Normalized current-voltage relationship of sodium channel from the macropatch
current [31] fitted with equation (12)

Figure 3: Current-Volatge relationship of Voltage-gated Na+ channels fitted with equation 12.
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(a) KCNH5
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(b) KCNH7
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(c) KCNB1

Figure 4: Current-voltage relations for KCNH5, KCNH7 and KCNB1 class of potassium channels expressed in oocytes [40] fitted with equation 12.
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(a) Calcium channel[35]
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(b) Potassium channel[40]

Figure 5: Current-voltage relationship of ion-channels obtained from the studies [35, 40] fitted with a third order non-linear model and modified model presented
in this article according to equation (12)

to have structurally output locally identifiable (s.o.l.i) parameters (see
A for formal definition), according to the following lemma.

Lemma 2. The model for ion channel open state probability described
by means of a Markov chain with three macro-states [equation (12)] is
s.o.l.i by the Taylor approximation of fourth order.

Proof: see A

7. Conclusion

In this article, we bring forth an important criterion in modelling ion
channel activity using Markov jump schemes. We propose that the be-
haviour of the system may be developed by an analytical design that
is simple and adaptable; and towards this, a minimum of three Markov
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Figure Reference Channel type Vh1 (mV ) s1 (mV ) Vh2 (mV ) s2 (mV ) gmax
2(a) Talavera and Nilius (2006) [35] Cav3.1 -47.2228 -0.22613 0.617753 0.07519 0.0069 (mV−1)
2(b) Beyl et al. (2007) [6] Cav1.2 -5.36225 -0.12598 31.7746 0.13336 0.0098 (mV−1)
2(c) Xu and Lipscombe (2001) [39] Cav1.2 -2.89138 -0.13021 38.9031 0.13943 0.002 (µA/mV )
2(d) Xu and Lipscombe (2001) [39] Cav1.3 -22.4361 -0.11182 26.4652 0.08824 0.0022 (µA/mV )
3(a) StÃijhmer et al. (1987) [34] Nav1.2 -34.1391 -0.14523 28.3072 0.10388 8.8843 (pA/mV )
3(b) Ruben et al. (1997) [31] Nav1.2a -25.6539 -0.14232 38.2236 0.088449 0.0138 (mV−1)
4(a) Zou et al. (2003) [40] Kv10.2 -64.5494 -0.17538 -29.4952 -0.02195 0.1009 (µA/mV )
4(b) Zou et al. (2003) [40] Kv11.3 -41.6897 -0.11727 -6.79872 0.053344 0.0630 (µA/mV )
4(c) Zou et al. (2003) [40] Kv2.1 40 -0.021769 3.51185 -0.13161 0.0476 (µA/mV )

Table 2: Fitted parameters of Channel current - membrane potential data of a few ion-channels using equation 12

states are necessary to model the dynamics.
To illustrate the criterion, we describe the physical transitions of

a particular class of voltage gated ion channel proteins by means of
free energy changes associated with perturbations in its environmen-
tal electric field from a thermodynamic perspective. For this class of
ion-channels we assume the existence of a unique simple path of tran-
sition, from every stable state to the open state. The resulting model is
a simple kinetic expression (equation 12) which approximates the sta-
tionary open probability of the channel for a given membrane potential
and is a generalized form of the single exponent modified Boltzmann’s
function.

The model proposed in this article, is identifiable and requires small
number of parameters compared to existing models. This would in turn
reduce the computational cost associated with regular Markov Mod-
els, without compromising much from the mechanistic viewpoint. Its
main limitation is that it has been developed for steady-state data and
may not represent ion-channel dynamics in its entirety but only fast
ion channels. Nonetheless, when dynamics are relevant, the proposed
scheme may be extended and the resulting model calibrated by using
voltage-current data from classical experimental protocols.
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A. Model Identifiability, Proof of Lemma 2

Simplicity and identifiability of ion channel model would be of ad-
vantage especially, when such models are employed to develop larger
frameworks describing metabolic activity of a cellular system, such a
pacemaking neurons [13] or cardiac cells [25]. To study the parame-
ter identifiability of model given by equation (12), let us consider the
following general mathematical structure:

M(θ) : y(θ) = f (θ ,x)

where θ ∈Rnθ is the set of parameters to be estimated and y(θ) ∈R
and x ∈ R denote the output and input of the system, respectively. In
addition, let us denote the search space of the parameter by Θ⊆Rnθ .

Definition 1. The model M(θ) is said to be structurally output globally
identifiable (s.o.g.i) , if for any θ̃ ∈ Θ, except for the points of a subset
of measure zero, and for all x ∈R:

y(θ ,x)≡ y(θ̃ ,x) =⇒ θ ≡ θ̃

If the same conditions is fulfilled only in the neighborhood of θ then the
parameters will be structurally output locally identifiable (s.o.l.i.)

This definition is quite general and is often difficult to be put into
practice. One of the usual approach in such instance is the so-called
"Taylor approach" [36] where both outputs y(θ ,x) and y(θ̂ ,x) are ap-
proximated by a Taylor expansion around a point x∗ ∈R. If we denote

10



by Un
x∗ the ball around x∗, where the Taylor approximation of order n

holds; the general identifiability definition is therefore set as:

Definition 2. The model M(θ) is said to be s.o.g.i in x ∈ Un
x∗ if the

system of equations:[
∂ iy(θ ,x)

∂xi

]
x=x0

=

[
∂ iy(θ̃ ,x)

∂xi

]
x=x0

∀i = 1, ...n (15)

has an unique solution. In the same way, the model will be s.o.l.i in
x ∈ Un

x∗ if a finite number of solution is obtained.

Proof. It has to be proved that, the ion channel open state probability
represented by the equation,

G(θ) =
1

1+ e(V−Vh1 )s1 + e(V−Vh2 )s2
(16)

is s.o.l.i for any V ∈ Un
V ∗ , by using the Taylor approximation of fourth

order. It may be noted that studying the identifiability property for G(θ)
with parameters

θ = [Vh,1,s1,Vh,2,s2] ∈R4
θ̃ = [Ṽh,1, s̃1,Ṽh,2, s̃1] ∈R4

is equivalent to studying this property for the model

M(θ) = e(aV+b)+ e(cV+d), θ = [a,b,c,d]

where
a = s1, b =−Vh1 s1, c = s2, d =−Vh2 s2

ã = s̃1, b̃ =−Ṽh1 s̃1, c̃ = s̃2, d̃ =−Ṽh2 s̃2

Therefore, the system of equations built by using (15) leads to:

eaV0+b + ecV0+d = eãV0+b̃ + ec̃V0+d̃ (17a)

aeaV0+b + cecV0+d = ãeãV0+b̃ + c̃ec̃V0+d̃ (17b)

a2eaV0+b + c2ecV0+d = ã2eãV0+b̃ + c̃2ec̃V0+d̃ (17c)

a3eaV0+b + c3ecV0+d = ã3eãV0+b̃ + c̃3ec̃V0+d̃ (17d)

with the following two solutions obtained with Mathematica software
[38]:

a = c̃, b = d̃, c = ã, d = b̃

a = ã, b = b̃, c = c̃, d = d̃

Therefore, the system is s.o.l.i in the neighbourhood of V ∗ where the
Taylor approximation holds.

Corollary 1. If the model (16) is completed with the following condi-
tion:

s1 > s2

it is trivial to see that the system (17)now has only one solution and the
model is s.o.g.i. for any V ∈ Un

V ∗ .
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