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Abstract

In 1998, Giuseppe Bianchi introduced a mean field Markov model of the fundamental
medium access control protocol used in Wireless Local Area Networks (WLANs). Due to
the model’s intuitive appeal and the accuracy of its predictions, since then there has been
a vast body of material published that extends and analyzes models of a similar character.
As the majority of this development has taken place within the culture and nomenclature
of the telecommunications community, the aim of the present article is to review this
work in a way that makes it accessible to probabilists. In doing so, we hope to illustrate
why this modeling approach has proved so popular, to explain what is known rigorously,
and to draw attention to outstanding questions of a mathematical nature whose solution
would be of interest to the telecommunications community. For non-saturated WLANs,
these questions include rigorous support for its fundamental decoupling approximation,
determination of the properties of the self-consistent equations and the identification of
the queueing stability region.

MSC: (primary) 60K35; 90B15; (secondary) 68M12.

1 Introduction

Imagine that you have devices such as laptop computers, mobile phones or people that are
operating at a distance from each other and are not connected by a wired network. The
devices wish to exchange information through using a shared wireless medium, but how can
you regulate access to their wireless communication channel? There are, effectively, two
distinct paradigms available to you:

• The first approach is to empower a centralized controller that periodically decides a
schedule of use of the medium. The centralized controller then broadcasts this schedule
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to all devices who, upon hearing it, adhere to it and only transmit their communication
when the schedule dictates that it is their turn.

• The second approach is to equip each device with a random access algorithm so that
they do not interrupt an ongoing communication, but when no communication is taking
place a stochastic outcome determines which device gets to use the medium next. This
is a decentralized mechanism where no one device has authority to control access to the
medium.

Each approach has advantages and disadvantages in terms of efficient use of the medium,
robustness with regards inaccurate or incomplete knowledge of the network, and intrinsic
adaptability to a potentially changing environment. For example, the former methodology is
employed in mobile phone networks with a Base Station acting as the centralized controller.
As the owners of the Base Station wish to regulate access to their communication resource
and also account for its usage, it is a natural candidate for this approach.

It is the important application of this second paradigm in Wireless Local Area Networks
(WLANs) and the mean field Markov model introduced to predict its performance that
are the objects of interest in the present article. The IEEE 802.11 wireless communication
protocol was ratified as an international standard in 1997 [29] and clarified in 1999. It has
become pervasive, with network cards based on 802.11 technology in all new laptop computers
and many new mobile phones. There are, effectively, two distinct aspects of the standard.
One determines physical layer characteristics, such as micro-wave radio frequency choice,
radio power-control and physical layer coding schemes. The other aspect is the Medium
Access Control (MAC), which is of concern to us. The IEEE 802.11 Distributed Coordination
Function (DCF) is the decentralized algorithm that dictates the rules of the stochastic game
whose outcome determines access to the shared wireless communication channel in a WLAN.
It is the object of our study.

In a seminal paper published in 1998 [6] that employed a decoupling assumption, Giuseppe
Bianchi introduced what would be recognized by those familiar with many-body systems
as a mean field model of the IEEE 802.11 DCF. His approach revolutionized the analytic
study of networks employing this protocol and by April 2010 the longer version of his work
[7], published in 2000, has accumulated over 1,400 citations according to the ISI Web of
Knowledge. Many of these citing articles expand upon the remit of the original model,
with most of this development taking place within the culture and nomenclature of the
telecommunications community. Here our aim is to describe this protocol as well as Bianchi’s
mean field Markov model of it and its extensions. In the process, we hope that unanswered
questions of a mathematical nature will become apparent.

One significant attitude of the engineering culture persists in this article. The 802.11 DCF,
and its subsequent MAC development in 802.11e [28], performs, in many senses, sub-optimally.
It is, therefore, tempting to disregard the IEEE 802.11 DCF and propose for study an alterna-
tive, provably better MAC. For example, even quite old MACs, such as the STACK algorithm
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[50], outperform the DCF. Due to engineering complications, such as fair operating compat-
ibility with existing devices, and corporate-level political difficulties (the first working group
took 9 years to reach consensus on the original 802.11 standard), no protocol is likely to
supplant the incumbent technology. Therefore, despite its drawbacks, the 802.11 DCF and
its more sophisticated counterpart, the IEEE 802.11e Enhanced Distributed Channel Access
(EDCA), is a stochastic protocol of ongoing telecommunications interest, including analytic
results that aid in understanding and optimizing its performance within the constraints of
the ratified standards.

Mathematically, two natural classes of questions arise.

1. On the appropriateness of the decoupling approximation.

2. On the nature of solutions of the self-consistent equations.

In addition, in the presence of finite load sources of traffic, there are issues of incorporating
queueing dynamics into the model and determining the queue stability region due to the
coupling of stations’ service processes.

Within the remit of Bianchi’s original model where every station is assumed to always have a
packet to send, there are results regarding both of these classes of questions. We will review
these contributions as well as highlighting possible complications that arise in the extensions
to Bianchi’s model.

The rest of the article is organized as follows. In Section 2 the stochastic game that is 802.11
DCF is described. In Section 3 Bianchi’s original decoupled model for stations that always
have packets to send (the saturated assumption) is introduced and what is known about
it regarding 1. and 2. above is reviewed. Questions regarding the existence of metastable
solutions in the large number of stations limit, which have been observed in the decoupled
model, are highlighted.

In Section 4, extensions of the decoupled model to finite-load sources are discussed. It seems
fair to say that less is rigorously known in this setting. The additional complication of
determining the queue stability region is raised. In Section 5, significantly more complex
self-consistent equations are introduced when we consider non-saturated multi-hop mesh net-
works. As far as we are aware, nothing is known in terms of either of the points 1. or 2. with
regards to that model. Finally, in Section 6 we finish with a summary of proposed questions
of interest and a discussion of remaining issues.

2 The 802.11 MAC

The stochastic game, the 802.11 DCF, employed to regulate access to the wireless commu-
nication medium in WLANs is, lamentably, called a Binary-Exponential-Backoff algorithm.
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The fundamental object observed by all players of the game (all stations) is the state of the
medium, whether is it busy or idle. The medium is idle if no stations are transmitting and
busy otherwise. Idle periods are discretized into idle slots of fixed length (20µs intervals in
the 802.11b physical later and 9µs in the 802.11a physical layer) and the game takes place
in the embedded time where it is only these idle slots that matter to the MAC protocol in
determining the next medium access. Busy slots, which occur when stations are transmitting,
are of arbitrary real-time length. For efficient use of the communication channel, busy slots
are typically at least an order of magnitude longer in real-time than idle slots.

After a successful transmission, a station initializes a counter, called the back-off counter, to
a random number selected uniformly in the range {0, 1, . . . ,W0 − 1}. The back-off counter
is decremented once during each idle slot. The count-down pauses if the medium becomes
busy and resumes once the medium becomes idle again, which is why only idle slots matter
to the outcome of the stochastic game. When the counter reaches zero, the station transmits.
If two or more stations transmit simultaneously, a collision occurs. To reduce the likelihood
that colliding stations do so again, colliding stations increase their contention window to
a new value, which we denote Wj after j consecutive collisions, and select a new back-off
counter uniformly in the range {0, 1, . . . ,Wj−1}. The process repeats until either the packet
is successfully transmitted or it is discarded due to it experiencing a pre-defined number of
collisions, M , called the retry-limit.

After the successful transmission of a packet or a packet discard due to retry limit exceedance,
the contention window is reset to its initial value, W0, and a new count-down starts regardless
of the presence of a packet at the MAC. If a packet arrives at the MAC after the count-down
is completed, the station senses the medium. If the medium is idle, the station attempts
transmission immediately; if it is busy, another back-off counter is chosen from the minimum
interval. This bandwidth saving feature is called post-back-off and is largely ignored in the
modeling community due to its negligible impact on performance metrics. Instead authors
assume all packets experience a back-off period.

The minimum contention window in the 802.11b standard is W0 = 32 and W0 = 16 in the
802.11a standard. After a packet experiences j successive collisions, Wj = 2min(j,m)W0 for
j ∈ {0, . . . ,M}. In 802.11b the doubling limit is m = 5 and the retry limit is M = 11, after
which the packet is discarded by the device. These numbers were chosen, in part, due to
their ease of implementation in hardware as they must be performed on a per-packet basis.

Note that this description of the DCF is implicitly assuming at least two things. Firstly, that
the only event that causes a transmission to be unsuccessful is for two or more stations to
transmit simultaneously; this is called the clean (or clear) channel assumption. In WLANs
it is also possible that noise on the wireless medium can cause a communication to fail. We
will not include this possibility in our considerations, although there have been attempts to
address it in the modeling literature, e.g. [40]. Secondly, we are assuming that all stations
observe the medium’s state (busy or idle) correctly. In deployed WLANs this is not always
the case and can lead to one of two issues, called the hidden and exposed node problems. We
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do not consider either of these problems further here as to do so requires a departure from
Bianchi’s modeling approach.

There are a large number of amendments to the IEEE 802.11 standard that are both existing
and proposed (these are labeled a, b, d, e, g, h, i, j, k, n, p, r, s, u, v, w, y, z, mb, ac, ad).
These amendments improve upon physical-layer and coding rates, dictate rules for inter-
operability, manage country-specific issues and so forth. With the exception of 802.11e, they
do not modify the MAC apart from changing of the basic parameters for all stations.

The IEEE 802.11e Quality of Service protocol [28] changes the MAC to enable traffic dif-
ferentiation. In 802.11e equipped devices, the IEEE 802.11e Enhanced Distributed Channel
Access (EDCA) replaces the IEEE 802.11 DCF. Every station can be equipped with four
different queues, each of which is treated as a virtual wireless 802.11 device. These queues
can have their own minimum contention window W0 (so long as it is a power of 2, for com-
putational reasons), doubling limit m and and retry limit M . In the 802.11 DCF a station is
allowed to transmit a single packet once it wins access to the channel. In 802.11e, if the first
packet sent on the medium by a station is successfully received, it can send a burst of packets
(of length TXOP) in succession without the medium appearing idle to any other stations in
the WLAN.

From a modeling point of view, the most challenging change to the 802.11 DCF in the 802.11e
EDCA is a parameter called AIFS. In the 802.11 DCF there is a period of time called DIFS
(50µs in 802.11b) after the end of a transmission (be it successful or a collision) before stations
regard the medium as idle. This time is the same for all stations, so that they all observe the
same busy/idle embedded time sequence. In 802.11e, AIFS can be set for each station to be
DIFS ± kσ where σ is the real-time idle slot length and k ∈ {−2,−1, . . .}. The effect of this
is that stations with different AIFS values see different embedded time sequences.

We will not consider the IEEE 802.11e EDCA further in this article, apart from to comment
briefly on its impact on modeling in Section 6.

3 Modeling Saturated WLANs

3.1 Bianchi’s model

Let us begin by assuming that we have a WLAN consisting of n stations that are parame-
terized identically and that every station always has packets to send. The latter is called the
saturated assumption. We consider the system in embedded time, clocked with idle slots,
only rescaling to real-time to estimate system performance at the end of our considerations.

To model this system the natural state for each station at each embedded time t is a pair of
variables (s(t), b(t)), where s(t) ∈ {0, . . . ,M} records how many collisions the present packet
has experienced (it is discarded after M consecutive collisions) and b(t) ∈ {0, . . . ,Ws(t) − 1}



6

m

0,20,10,0

1,1 1,21,0

p

p

m,1m,0 m,2

p

M,1M,0 M,2

1 1 11

1 1 1 1

111 1

1 1 11

m,W−1

1,W−1

0,W−1

m

1

0

1

1−p

1−p

1−p

M,W−1

Figure 1: Embedded time Markov chain describing the state of a saturated station’s back-off counter (s(t), b(t))

records how many more idle slots must be observed before the next transmission of the present
packet.

In a WLAN consisting of n stations, based on the definition of the 802.11 DCF in Section 2
the system of pairs {(si(t), bi(t)) : i ∈ {1, . . . , n}} for all stations clearly forms an aperiodic,
irreducible Markov chain. The main difficulty in analyzing its characteristics is that the
state-space grows quickly with the number of stations in the WLAN, n. Bianchi’s [6] solution
to this modeling difficulty was to decouple stations through the following approximation. For
a station i ∈ {1, . . . , n} in the WLAN, define Ck := 1 if the kth transmission by station i
results in a collision and Ck := 0 if it results in a success.

Assumption 1 (Bianchi’s Decoupling Approximation) For each station i ∈ {1, . . . , n},
the collision sequence {Ck} is i.i.d. with P (Ck = 1) = pi.

This assumption says that for each station i, conditioned on that station attempting trans-
mission (i.e. b(t) = 0), there is a fixed probability pi that it experiences a collision irrespective
of its past experience. In particular, station i’s conditional collision probability, pi, is assumed
to be independent of the station’s back-off stage s(t).

Omitting the station label i, the aperiodic Markov chain describing the evolution of (s(t), b(t))
is depicted in Figure 1, assuming that the conditional collision probability p is known. We
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are interested in the stationary probability that the station is attempting transmission, τ(p),
given the conditional collision probability is p:

τ(p) =
M∑

j=0

π(j, 0),

where π(i, j) is the stationary distribution of the Markov chain. With a little elementary
algebra, π(i, j) can be determined explicitly [7]. Providing more insight, as observed inde-
pendently by Kumar, et al. [32][33] and Bianchi and Tinnirello [8], τ(p) can be identified
directly as a deduction from the renewal reward theorem. Let Uj denote the uniform distri-
bution on {1, . . . ,Wj}, so that this variable counts how many idle slots a station observes
before transmission rather than its back-off counter. Then we have that

τ(p) =
E(1 + C0 + C0C1 + · · ·+ C0 · · ·CM−1)

E(U0 + C0U1 + C0C1U2 + · · ·+ C0 · · ·CM−1UM )

=
1 + p + p2 + · · ·+ pM

W0/2 + pW1/2 + · · ·+ pMWM/2
, (1)

where the renewal epoch is the number of idle slots a packet spends being processed in the
MAC and the reward is the number of attempted transmissions during an epoch.

The use of the renewal reward theorem makes it clear that the decoupled model is insensitive
to the back-off distribution at any given back-off stage. The uniform distributions {Uj} only
enter into the formula in equation (1) through their expectation, so that - for example - any
other collection of back-off distributions with the same mean number of slots to be counted
down, Wj/2, at each stage, j, will give rise to the same stationary attempt probability τ(p).
For 802.11-like parameters, with Wj = 2min(j,m)W0 for j ∈ {0, . . . ,M}, equation (1) gives

τ(p) =
2(1− pM+1)

W0(1− p− p(2p)m)/(1− 2p)−W02mpM+1
, (2)

where the case of p = 1/2 is obtained by taking the limit p → 1/2. For 802.11b with W0 = 32,
m = 5 and M = 11, τ(p) defined in equation (2) is plotted in Figure 2 as a function of p.

The self-consistent equation in this mean field model then arises after assuming that every
station in the WLAN is small relative to the entire WLAN. With this in mind, observe that
the probability a station does not experience a collision given it is attempting transmission
is the probability that no other station is transmitting:

1− p = (1− τ(p))n−1. (3)

As τ(p) defined for 802.11b in equation (2) is a strictly monotone decreasing function on
[0, 1], there is a unique solution, p∗, of the fixed point equation (3). This solution can be
readily found numerically and p∗ is interpreted as the “real” collision probability for a station
in the WLAN.
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Figure 2: Stationary transmission probability τ(p) as a function of the conditional collision probability p for
the IEEE 802.11b parameterization

Armed with p∗ and τ∗ := τ(p∗), we are now in a position to determine performance metrics.
For simplicity, assume that idle slots are of real-time length σ and that all transmissions take
time T on the medium regardless of whether they correspond to a collision or a successful
transmission. The latter is not true in practice, but the distinction in times between collisions
and successful transmissions can be readily incorporated if necessary. Let R denote the physi-
cal layer transmission rate in Mbps. As a consequence of ergodicity, the long run throughput,
S, of each station can be determined, almost surely, from the stationary probabilities τ∗ and
p∗:

S =
τ∗(1− p∗)TR

(1− τ∗)(1− p∗)σ + (1− (1− τ∗)(1− p∗))T
=

τ∗(1− τ∗)n−1TR

(1− τ∗)nσ + (1− (1− τ∗)n)T
, (4)

where the numerator is the stationary probability of successful transmission times the amount
of data sent per transmission and the denominator is stationary average real time between
counter decrements.

Throughput predictions from Bianchi’s model are remarkably accurate. For example, Figure
3∗ plots measured throughput from a real test-bed WLAN as well as the model’s predictions.
Lines are used for the theoretical predictions, as otherwise one cannot distinguish the theory
from experiment.

If one believes that the decoupling approximation, Assumption 1, is reasonable, then one
could plausibly expect the model to be good for large n. However, note that the model is
exact when n = 1 as the self-consistent equation (3) gives p = 0. Even for n = 2, which one

∗The data used to generate this figure was donated by Malone, Dangerfield and Leith [38].
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Figure 3: Measured and predicted throughput per station in a WLAN consisting of n stations using the 802.11
DCF and the 802.11b 11Mbps physical rate – data from [38]

might believe to be the worst case for the approximation, predictions are precise. Thus, due
to the intuitive appeal of the model’s structure, as well as its predictive success, Bianchi’s
basic paradigm has been widely adopted for models that expand on its original range of
applicability, which is something we shall return to in Section 4.

3.2 On the appropriateness of the decoupling approximation

The fundamental decoupling hypothesis in Bianchi’s approach is that collisions form an i.i.d
process for each station. As the primary aim of increasing the contention window after a
collision is to reduce the likelihood of repeated collisions, one might suspect that this ansatz
is dubious. One way to provide support for this approximation is to perform an asymptotic
analysis of the fully-coupled system as the number of stations in the WLAN tends to infinity.

Independently of each other and using distinct methodologies, Bordenave, McDonald and
Proutière [9][11] and Sharma, Ganesh and Key [44][45], followed by further analysis by Vve-
denskaya and Suhov [52], studied similar models in asymptotic limiting regimes†. One aim
of these papers is to provide a theoretical justification of the decoupling approximation, As-
sumption 1. These authors study the full system described by the 802.11 DCF, albeit with
the following simplifying approximation that is distinct from Assumption 1.

†Benaim and Le Boudec [4] have also introduced a general mean field model that touches upon the veracity
of Bianchi’s throughput formula.
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Assumption 2 (Full System Analysis Approximation) At each back-off stage j, the
back-off counter is chosen from a geometric distribution with mean (Wj − 1)/2.

The mean of the geometric distribution is chosen to match the mean of the uniform distri-
bution in the 802.11 DCF protocol. Both sets of authors state that they believe that this
assumption is not crucial to their arguments, but it does simplify the analysis. In particular,
in the notation of [44][45], in a WLAN with n identically parameterized stations, a natural
description of the system is the vector

Xn(t) = (Xn0(t), . . . , XnM (t)) ∈ ZM+1
+ (5)

denoting the number of stations in each of the back-off stages 0 through M . With Assumption
2 in force, the process (5) is Markovian; without Assumption 2, in addition one would need to
record the back-off counter of each station. In order to obtain a meaningful limit, the natural
fluid scaling is to look at sample path of the fraction of stations in each back-off stage

1
n

Xn([nt]), where [t] is the integer part of t,

and to reduce the access probability at each back-off stage with the number of stations in the
WLAN by scaling up the contention window, nWj .

Let us first make a few definitions so that we can state one of the main results of Sharma et
al. before turning to the results of Bordenave et al. Let x = (x0, . . . , xM ) ∈ ZM+1

+ be such
that

∑M
j=0 xj = n and define ||x|| :=

∑M
j=0 |xj |. The conditional expected change in the state

of the WLAN consisting of n stations given that the system is currently in state x is

f (n)(x) := E (Xn(t + 1)−Xn(t)|Xn(t) = x) .

The following functional law of large numbers appears as [45, Theorem 5].

Theorem 1 (Sharma, Ganesh & Key) For every t > 0,

lim
n→∞

sup
0≤s≤t

∣∣∣∣∣∣∣∣ 1nXn([nt])− Y (t)
∣∣∣∣∣∣∣∣ = 0 almost surely,

where Y (t) is the unique solution of the differential equation

dY (t)
dt

= F (Y (t)) (6)

and F (x) = limn→∞ f (n)(nx).

The method of proof employed is relatively direct. It follows primarily through astute bounds
on the stationary probability that the medium is observed idle and the development of uniform
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bounds to show that F (x) is Lipschitz. In addition to this result, inter alia, the authors prove
that the equation F (x) = 0 has a unique solution and that if M = 1 then the differential
equation (6) converges to a unique equilibrium point satisfying F (y) = 0 from all possible
initial states [45, Proposition 3]. Simulation evidence is presented to support a conjecture
that this holds true also for M > 1. Vvedenskaya and Suhov [52] raise the possibility of
the existence of metastable solutions in this model with [52, Theorem 2] providing a simple
methodology to determine how many solutions exist. They also provide an example where
{E(Uj)} is not a monotone decreasing sequence and metastability appears.

The Poisson approximation analysis of the Sharma et al. model by Vvedenskaya and Suhov
[52] reveals that in this limit the number of stations that transmit in a given slot is a Poisson
random variable. In particular, this is true with an unchanged Poisson rate if we tag any finite
collection of stations and condition on them being in given back-off stages. Thus this fluid
limit analysis of the fully coupled model provides evidence that the decoupling Assumption
1 holds for any given finite sub-collection of stations in the WLAN during a transient time
interval.

The independent, and practically simultaneous, analysis of a similar model performed by
Bordenave, McDonald and Proutière employs, arguably, more sophisticated tools. It is based
on the notion of propagation of chaos due to Mark Kac, where the marginals of a coupled sys-
tem that is started appropriately are almost independent in the limit as the system becomes
large. In particular, the authors use a method developed by Sznitman [48] and extended by
Graham [22].

We require a few definitions to describe two of their main results. The state of the system is
the vector of back-off stages of each of the n stations at each embedded time, (s1(t), . . . , sn(t)).
Because of Assumption 2, the individual back-off values need not be recorded as part of the
system state. Note that the state-space is growing as a function of the number of stations in
the WLAN, n. As with Sharma et al., the attempt probabilities are scaled down by scaling
up the window size linearly with n to nWj . The scaling employed for the state vector is

s
(n)
i (t) := si([nt]),

where the time rescaling corrects for the fact that the expected time between attempted
transmissions for each station is decreasing linearly in n. Let D denote the space right-
continuous functions having left-hand limits over R+ taking values in the set of possible
back-off stages, {0, . . . ,M}, equipped with the Skorohod (J1) topology [47]. Let P(X ) denote
the set of probability measures on a set X . The following is a sub-result of the more general
[9, Theorem 1].

Theorem 2 (Bordenave, McDonald and Proutière) Assume that the initial values si(0),
i = 1, . . . , n, are exchangeable and that the system is initially chaotic. That is, that there
exists Y (0) ∈ P({0, . . . ,M}) such that the sequence of random variables Xn(0)/n (where
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Xn(t) is defined in equation (5)) converges weakly to δY (0) when n →∞. Or, equivalently‡,
with L denoting the law of the process, that

lim
n→∞

L(s(n)
i (0), i ∈ I) = Y (0)⊗|I| weakly in P({0, . . . ,M}|I|)

for all finite subsets I ⊂ N \ {0}. Then we have propagation of chaos: there exists Y ∈ P(D)
such that the sequence of random variables Xn([nt])/n converge weakly to δY or, equivalently,
that for all finite subsets I ⊂ N \ {0},

lim
n→∞

L(s(n)
i (·), i ∈ I) = Y ⊗|I| weakly in P(D|I|).

Furthermore the marginals of Y satisfy

dY

dt
= F (Y (t)),

as in equation (6).

Due to the topologies employed, both Theorem 1 and Theorem 2 are results solely concerned
with compact time intervals. In order to justify Bianchi’s decoupling assumption in terms of
stationary behavior one requires a result in the stationary, rather than the transient, regime.
Having identified the dynamical system describing the evolution of the empirical measure,
assuming it is globally stable§, this is the subject of the following theorem of Bordenave,
McDonald and Proutière [9, Theorem 4].

Theorem 3 (Bordenave, McDonald and Proutière) In equilibrium, for all subsets I ∈
N of finite cardinality |I|,

lim
n→∞

Lst((s
(n)
i (·))i∈I) = Y

⊗|I|
st weakly in P(D|I|),

where the subscript st indicates the stationary behavior of the system.

Modulo a rigorous justification that replacing uniform distributions with geometric distribu-
tions in Assumption 2 has no bearing on the deductions, in this limiting regime these results
support Bianchi’s decoupling assumption Assumption 1. That does not mean, however, that
there are no more interesting questions to be addressed within this asymptotic model.

The following open problem was proposed by Charles Bordenave¶: in a WLAN of n stations,
let Nn(t) count the total number of packets successfully transmitted by all stations prior to

‡The equivalence is due to Sznitman [48].
§See [11, §5] for more on global stability of the empirical measure dynamical system.
¶Private communication.
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Figure 4: Normalized auto-covariances and empirical collision probabilities as a function of back-off stage for
a simulated collision sequence, C1, . . . , CK – data from [26]

time t. What is the appropriate scaling tn such that the random variable Nn(tn)/n converges
to a non-trivial distribution and what are the characteristics of this distribution?

Moreover, in the following section we state results of Ramaiyan, Kumar and Altman [42]
regarding Bianchi’s decoupled model that show that for appropriately chosen contention
window size sequence, {Wj}, metastable states can exist. It would be interesting to know if
this metastability translates to metastability in the fluid limit model.

Before we leave this section, we note that it is possible to check the veracity of Assumption
1 from a statistical perspective by testing long sequences C1, . . . , CK recorded from either
simulation or experiment in conjunction with the back-off stage at which each transmission
took place. This is the procedure pursued by Huang et al. [26][25]. For the saturated WLAN,
this work supports Assumption 1, even though the approximation is not precisely true. Figure
4 was created with data from [26]. It reports on the empirically observed auto-covariances
for C1, . . . , CK from a station in a WLAN consisting of N stations. Assuming that the
sequence {Ck} is wide sense stationary, it suggests near pairwise independence. To check for
identical distributions, Figure 4 also reports a scatter-plot for all stations in the WLAN of the
maximum likelihood estimator for collision probabilities conditioned on the station being in
a particular back-off stage. This plot shows some structure, where the likelihood of collision
at the first back-off stage is lower than at the zeroth back-off stage, which is a reasonable
consequence of the doubling of the back-off window. Collision probabilities then rise as a
function of back-off stage, presumably as selecting from a large back-off window results in
the system being in statistical equilibrium by the next attempted transmission. For reference,
the predicted collision probability from Bianchi’s model is also plotted.
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3.3 On the nature of solutions of the self-consistent equations

For a saturated WLAN with 802.11 DCF parameters, it is clear that the fixed point equation
(3) in Bianchi’s model admits only a single solution. Is this sufficient to ensure that the
solution of that equation determines the equilibrium of the decoupled system? No, is the
obvious (and correct) answer. In the decoupled model, we should at least be looking at
solutions of the system of n equations

1− pi =
∏
j 6=i

(1− τ(pj)) for i ∈ {1, . . . , n}. (7)

That is, we should not restrict ourselves solely to considering symmetric solutions.

In [42] Ramaiyan, Kumar and Altman investigate the fixed point equations (7) in detail.
Ruining the surprise somewhat, they show that for the 802.11 DCF parameterization, the
equations (7) admit only a symmetric solution (see the remark after [42, Theorem 5.2]). That
is, the unique solution to (7) is (p1, . . . , pn) = (p, . . . , p), where p is the solution to equation
(3). However, they do provide examples of back-off window mean sequences {E(Uj)} where
this is not the case and the equations (7) admit non-symmetric solutions. As all stations
are parameterized in the same way, this gives rise to metastability (which the authors call
multistable solutions) and predictions based on a symmetric solution to (3) do not agree with
results from simulation. Instead the simulated observations correspond to time-averages of
the metastable states.

Here we summarize some of their deductions and highlight questions raised in relation to the
analysis in Section 3.2. The following result, [42, Theorem 5.1], which first appeared in [33],
provides a sufficient condition for the uniqueness of a symmetric solution.

Theorem 4 (Kumar, Altman, Miorandi & Goyal) If {E(Uj) : j = 0, . . . , n} is a non-
decreasing sequence (so that τ(p) is non-increasing), then the symmetric fixed point equation
(3) admits a unique solution.

Let us rewrite the full equations (3) as a vector equation in [0, 1]n:

p = Γ(T(p)), (8)

where, for x ∈ [0, 1]n,

T(x) = (τ(x1), . . . , τ(xn)) and Γ(x) =

1−
∏
j 6=1

(1− xj), . . . , 1−
∏
j 6=n

(1− xj)

 .

As both T and Γ are continuous functions, by Brouwer’s fixed point theorem, there is at
least one fixed point of the equation (8).
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In [42] a sufficient, though not necessary, condition for a unique solution of the vector fixed
point equation (8) to exist and be symmetric, is developed in terms of the probability that
the medium is observed idle. Note that for any p = (p1, . . . , pn) that is a solution to the fixed
point equation (8), the quantity

I(pi) = (1− pi)(1− τ(pi)) =
∏
j 6=i

(1− τ(pj))(1− τ(pi)) =
n∏

j=1

(1− τ(pj))

is the same for all i. Physically, this lack of dependence on i is because I(pi) corresponds to the
probability that station i observes that the medium is idle. As all stations are continuously
observing the same medium, this is the same for all stations. Ramaiyan et al. establish that
if I(p) is one-to-one, then there is a unique symmetric fixed point, [42, remark after Theorem
5.2].

Regarding stationary attempt probabilities that arise from 802.11-like parameters, the fol-
lowing appears as [42, Theorem 5.2].

Theorem 5 (Ramaiyan, Kumar & Altman) If M ≥ 1, κ ≥ 2, E(U0) > 2κ+1, E(Uj) =
κmin(j,m)E(U0) for j = 1, . . . ,M , then the vector fixed point equation (8) admits a unique
solution p1 = (p, . . . , p), where p is the solution to the symmetric fixed point equation (3).

This result applies to 802.11b where M = 11, κ = 2 and E(U0) = 16.

Theorem 5 provides sufficient conditions for the existence of a unique solution, but the authors
also provide examples where these sufficient conditions do not hold and metastability is
observed in simulation and through the numerical solution of the equation (8). Consider a
WLAN consisting of n stations with the following parameterizations.

Example 1: n = 10, m = 4, M = ∞, E(Uj) = 1 for j = 0, . . . , 4, E(Uj) = 64 for j = 5, . . ..

Example 2: n = 20, m = 7, M = 7, E(Uj) = 3j for j = 0, . . . , 7.

Neither of these examples satisfy the conditions of Theorem 5 and both exhibit metastability.
The reason can be readily understood: in both cases, for long periods of time the system
settles into a situation where some stations can frequently transmit successfully while others
repeatedly experience collisions with a large number of idle slots between their attempted
transmissions. As all stations have the same parameters, the system has a natural symmetry
where the number of stations in each group is unchanging, but their constituent members
revolve. This is easier to see in the former example, where only a single station can be in
back-off stage 0 at any one time. The second example is presented for its appeal as appearing
similar to the parameterization of the 802.11b/a/g protocols, the important difference being
the small value of E(U0) in the example.

A consequence of this metastability is that the solution of the symmetric equations (3) gives
inaccurate predictions and the system possesses short-term unfairness. It would be interesting
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to know if scaled versions of these examples, within the models described in Section 3.2,
exhibit metastability and if the fluid limit models can shed more light on necessary and
sufficient conditions for metastability. This sort of metastability, which arises despite {E(Uj)}
being a monotone decreasing sequence, may only be visible in the system state of Bordenave
et al. as individual stations are not distinguishable in the Sharma et al. system state. The
metastability example presented in [52] is based on a non-monotone decreasing sequence
{E(Uj)}.

4 Non-saturated WLANs

A running assumption so far has been that all stations are saturated, so that they always have
packets to transmit. The motivation for this condition is to determine the long-run stable
maximum throughput of the system. It has the added benefit that it simplifies analysis as
queueing dynamics can be ignored.

However, traffic is typically bursty in nature, so that most operational WLANs are not sat-
urated. For example, voice conversations are typically low-rate, transmitting small packets
during speech and transmitting nothing during silence periods. The International Telecom-
munications Union (ITU) standard that dictates the stochastic model to be used for perfor-
mance evaluation of conversation speech, ITU-T P.59 [51], is a three state Markov Additive
Process. It is evident from the parameterization of this model that there are long silent
periods from both sources of traffic.

As Bianchi’s modeling paradigm demonstrated its value for saturated WLANs, there is a
large collection of published articles in the telecommunications literature that extends it to
the non-saturated setting. A selection of this work is [1, 21, 53, 12, 27, 17, 41, 39, 15, 54, 24]
The practical aim of these papers is to understand how the 802.11 DCF shares bandwidth as a
function of traffic load and its consequent impact on fairness. Looking forward to the 802.11e
EDCA, these models are also used to understand how setting distinct MAC parameters for
different stations can enable prioritization.

As far as we are aware, unlike the results reported in Sections 3.2 and 3.3 for saturated
WLANs, there has been no formal justification of this extension of the paradigm to non-
saturated WLANs, although these models are reported to make accurate predictions. We
would like to explore the implications of this fact and the additional complications that arise
due to the introduction of finite load traffic sources.

The primary difficulty to modeling non-saturated stations comes from the fact that the service
process in Bianchi’s model runs in embedded time. For example, consider a station as a
node in a queueing system. Packet arrivals are naturally described in real-time (packets per
second), whereas the service process as dictated by the 802.11b DCF runs in embedded time
based on idle slots on the medium.
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Figure 5: Empirical collision probabilities as a function of back-off stage for a non-saturated collision sequence,
C1, . . . , CK – data from [26]

Let us develop a non-saturated model along the lines of the work referenced above, from
which the main issues should become apparent. Our starting point is Bianchi’s decoupling
approximation, Assumption 1. Before moving on to highlight further issues, we note that the
appropriateness of this assumption is already in doubt.

For a simulated non-saturated system with where each station’s buffer is infinite, Figure 5,
created with data from [26], shows the maximum likelihood estimator for collision probabili-
ties conditioned on the station being in a particular back-off stage. There is clear structure
in the graph where the collision probability at the first back-off stage is higher than at the
zeroth. This is readily understood: in a lightly loaded system, for long periods only a single
station has a packet to send and thus it doesn’t often experience collisions at back-off stage
zero. Conditioning on a station experiencing a collision at the first back-off stage is closely
related to conditioning on at least one other station having a packet to transmit at that time,
hence the increase in collision probability. It would be interesting to know if this feature
persists in the fluid limit. Comparing this figure with the saturated equivalent, Figure 4,
reveals that the relative fluctuations in the present graph are larger than in the former.

Returning to the model, let us initially work in embedded time and start with a small modifi-
cation to the Markov chain depicted in Figure 1. Ignoring post-back-off, mentioned in Section
2, by assuming all packets experience a back-off period, let us add a single additional state,
labeled (−1, 0), corresponding to the station having no packets awaiting transmission.

We introduce two new probabilities that we will ultimately relate to the offered traffic load:
the probability a packet arrives to the MAC during an average slot time on the medium, r,
and the probability that after a successful transmission a packet is buffered and available to
the MAC, q. For a given station, define the following sequence: let Qk = 1 if after the kth

successful transmission (or packet discard due to retry limit exceedance) there is a packet
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Figure 6: Embedded time Markov chain describing the state of a non-saturated station’s back-off counter
(s(t), b(t))

waiting for service and Qk = 0 if there is no packet in the station’s queue. We make the
following assumption, which is widely used in the literature, albeit often implicitly.

Assumption 3 (Decoupled Queueing) For each station i, the sequence {Qk} is i.i.d.
with P (Q = 1) = qi.

Omitting the station label i, after each successful transmission or packet-discard, an inde-
pendent Bernoulli queue-busy random variable, Q with P (Q = 1) = q and P (Q = 0) = 1− q,
is observed. If Q = 1, then the station’s queue has at least one packet awaiting transmission
and a new back-off counter is selected. If Q = 0, there is no packet awaiting transmission
and the station remains without packets between each counter decrement with probability
1− r. These transitions are graphically represented in Figure 6.

We are not aware of the application of the renewal reward theorem to determine the stationary
probability that a station is attempting transmission in the non-saturated modeling literature,
but it can be used exactly as in the saturated case and provides the quickest mechanism for
determining the stationary probability that a station is attempting transmission. Note that
after a transmission (or packet discard), the expected number of slots until another packet
is available for transmission is the probability that there is no packet awaiting transmission,
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1− q, times the expected number of slots until a packet arrives, 1/r, so that:

τ(p, q, r) =
E(1 + C0 + C0C1 + · · ·+ C0 · · ·CM−1)

E(U0 + C0U1 + C0C1U2 + · · ·+ C0 · · ·CM−1UM ) + (1− q)/r

=
1 + p + p2 + · · ·+ pM

W0/2 + pW1/2 + · · ·+ pMWM/2 + (1− q)/r
, (9)

where the renewal epoch is the time between the MAC’s initiation of service on consecutive
packets.

Note that in the non-saturated case the use of the renewal reward theorem still demonstrates
that the only impact on the stationary attempt probability of the back-off distributions is
through their expected value. With Wj = 2min(j,m)W0 for j ∈ {0, . . . ,M}, as in the 802.11
parameterization, we have that

τ(p, q, r) =
2(1− pM+1)

W0(1− p− p(2p)m)/(1− 2p)−W02mpM+1 + 2(1− p)(1− q)/r
.

In order to obtain value from this model, it is necessary to relate the embedded time load
parameters r and q to the real-time offered load in packets per second. As with most authors,
we restrict our attention to Poisson arrival processes.

Assumption 4 (Poisson Arrivals) Station i’s packet arrivals are Poisson at rate λi.

Label the expected time between counter decrements as

E(D) =
n∏

i=1

(1− τi(pi))σ +

(
1−

n∏
i=1

(1− τi(pi))

)
T,

and the expected number of counter decrements from when a packet starts being processed
by the MAC until its successful transmission (or it is discarded) to be

E(B) =
W0(1− p− p(2p)m)

2(1− 2p)(1− p)
− W02mpM+1

2(1− p)

for the 802.11-like parameterization.

Case 1: no buffer. In the absence of buffering, the natural approximations to use are q = 0
and 1 − r = exp(−λE(D)). That is, as there is no buffering beyond the packet in the
MAC, no packets can be awaiting processing at the end of a service period and the
likelihood of not seeing a packet arrival during a slot of average length is the probability
that an inter-arrival time is longer the average slot length. The latter is clearly an
approximation, albeit a widely adopted one, as it does not take into account variability
in real-time length of slots. With this caveat, Assumption 3 requires no further defense.
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Case 2: infinite buffer. In this case the station is effectively an M/G/1 queue, e.g. [2].
Here we use a common approximation (e.g. [12, 15]): we assume that after a packet is
serviced, the probability that the queue is busy can be approximated by the stationary
probability that the corresponding M/G/1 queue has content in its buffer. That is,
from standard results in queueing theory it follows that q = min(1, λE(B)E(D)). As
in the no buffer case, we still use the approximation that 1−r = exp(−λE(D)), so that
we have q = min(1,−E(B) log(1− r))).

In both the no buffer and infinite buffer cases the function τ(p, q, r) is reduced to a function of
two variables τ(p, r): p the probability of collision conditioned on an attempted transmission
and the load parameter r which is related to the real-time arrival rate λ through λ = − log(1−
r)/E(D).

An inverse method is typically employed to solve models of this sort. One selects r ∈ [0, 1]n

and identifies the solution to the fixed point equations:

1− pi =
∏
j 6=i

(1− τ(pj , rj)) for i = 1, . . . , n. (10)

Once the solution, p∗, has been determined, one determines what real-time load corresponded
to r is by evaluating E(D) and then λ.

Let us consider each of the apparent challenges to rigor that are implicit in this approach.
Firstly, we are assuming that for each r that there is a unique solution p∗ to (10). Although
not intended for this purpose, a result of Ramaiyan, Kumar and Altman [42] provides a
sufficient condition for this to be true. With a change of notation, [42, Theorem 5.3] proves
the following.

Theorem 6 (Ramaiyan, Kumar & Altman) Assume r is given. For all i ∈ {1, . . . , n},
if the attempt probability τ(p, ri) is a decreasing function of p and (1 − p)(1 − τ(p, ri)) is
a strictly monotone function on [0, 1], then the system of equations (10) has a unique fixed
point p∗.

Secondly, in the infinite buffer model, the probability that a station’s queue is busy after
each transmission is assumed to form an i.i.d. sequence. This is a dubious approximation.
Even if a station’s queue-busy sequence {Qk} constituted independent random variables,
clearly the queue-busy probability, P (Q = 1) = q depends upon back-off stage. Higher
back-off stages correspond to longer MAC service times, which in turn lead to a significantly
higher likelihood of a packet arrival to the queue. The fallaciousness of this assumption
is demonstrated empirically in Huang et al. [26][25]. However, we note that despite this
difficulty with the model’s fundamental assumptions, models based on it appear to make
good throughput predictions and that this conundrum is partially resolved in [24]. In our
discussion here we will treat the system as a model and not fret further about the veracity
of its assumptions.
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The third and final point of concern is that we are implicitly hoping that the mapping from
the embedded time load parameter to the real-time load parameter, r 7→ λ, is one-to-one.
We will demonstrate that this is not true in general and relate it to a conjecture about
the queue stability region in the decoupled model; a conjecture that we do not believe has
been highlighted before in the literature. This lack of one-to-oneness in the map r 7→ λ is,
we suggest, related to identifying the stability region of the queueing system. That is, in
identifying the set of arrival rates λ for which the queues at all stations are stable. Note that
for stations sharing a communications channel by use of random access protocol, identifying
stability regions in a non-decoupled system is a non-trivial task (e.g. H̊astad, Leighton and
Rogoff [23], Ephremides and Hajek [20] and Bordenave, McDonald and Proutière [10]).

Let us demonstrate this feature here for a symmetrically loaded network, r = r1 and λ = λ1,
with the model we have introduced. Consider a WLAN consisting of n = 10 symmetrically
loaded stations all of which transmit 560 byte packets at R = 11Mbps and have the same
parameters: W0 = 32, m = 5 and M = ∞ so that the station normalized throughput is:

S =


λTR if λ ≤ 1

E(B)E(D)
,

TR

E(B)E(D)
if λ >

1
E(B)E(D)

,

That is, as the station has an infinite buffer, throughput is the arrival rate so long as the
arrival rate is less than the service rate and otherwise it is the service rate. Having solved
for a symmetric solution p∗ to the fixed point equations (10), Figure 7 plots the real-time
offered load λ as a function of the internal offered load parameter r. This figure shows a
range where three distinct r values give rise to the same λ. Figure 8 reveals how this impacts
on throughput predictions: there are two potential throughputs at certain offered loads.

We conjecture that where multiple solutions exist, even if r 6= r1, it is the lowest throughput
that corresponds to the stable solution. This conjecture is supported by simulation and
experimental evidence, but has not been proven rigorously.

To explain why a triple of r values giving rise to a single λ, we return to the no-buffer model
where q = 0. Solving for the same system, but with stations having no buffers, Figure 9 plots
λ versus r and per-station throughput, as determined from equation (4), versus λ. There
is clearly a one-to-one relationship between r and λ, but throughput is not a monotonic
function of λ. This pre-saturation throughput peak is a well-known property of stochastic
MAC protocols (e.g. Bertsekas and Gallager [5]). In the decoupled model, as τ(p, r) is a
continuous function of r that covers the same range for both the no buffer and infinite buffer
models, the throughput graphs must cover the same range of values. In the infinite buffer
case, this pre-saturation throughput peak appears to occur as a temporary unstable solution
of the system. While this argument supports the conjecture that where multiple solutions
exist it is the lowest throughput that corresponds to the stable solution and that the other
two are transient, a rigorous proof is lacking.
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Figure 7: Real-time arrival rate, λ, versus embedded packet arrival probability, r, in a symmetric system of
n = 10 stations with infinite buffers; second graph is a closeup of the first graph revealing lack of one-to-one
relationship
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Figure 8: Per-station throughput versus real-time arrival rate, λ, for a symmetric system of n = 10 stations
with infinite buffers; second graph is a closeup of the first graph revealing two possible throughputs for some
values of λ
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Figure 9: Symmetric system of n = 10 stations with no buffers. Real-time arrival rate, λ, versus embedded
packet arrival probability, r, and per-station throughput versus λ

5 Mesh networks

All discussion so far has considered a single WLAN; a collection of n stations all in the same
physical space wishing to communicate via a single shared wireless resource. One of the
practically important uses of 802.11 technology is to facilitate mesh networks where, as well
as communicating directly with their neighbors in the WLAN, stations communicate with
more distant stations in another WLAN by having their messages relayed by 802.11 equipped
intermediaries called mesh points. Mesh points are members of more than one WLAN and
can relay traffic between the WLANs of which they are members.

Mesh networking is the subject of the 802.11s standard, which is likely to be ratified soon.
It still employs the 802.11b DCF MAC or its more sophisticated variant the 802.11 EDCA
and standardizes packet-forwarding rules.

Mesh networking poses problems for both theory and practice. The primary practical issue is
the interaction of stations using the same frequency at distances such that they can interfere,
but not communicate with each other. This difficulty leads to the hidden and exposed node
problems. We shall not consider these problems further here as there is an engineering
solution that is employed to overcome them.

There are three non-interfering frequencies available in 802.11b/g and twelve in 802.11a.
WLANs operating on these frequencies can be in the same physical space without interfering
with each other. A practical solution to the hidden/exposed node problem in wireless mesh
networking is to equip mesh points with more than one radio. Each radio operates on a
non-interfering frequency, so that the forwarding station can relay data between two WLANs
without leading to hidden or exposed nodes in either. Note that non-saturated models are
a necessary pre-cursor to modeling mesh networks as even if initial stations are saturated,
stations relaying traffic may not be. As an aside, enabling distinct WLANs to select their
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operating frequency without direct communication leads to an issue that can be posed as a
decentralized graph colouring problem, e.g. [35][30][18].

Mesh networking is the subject of extensive mathematical analysis, worthy of a review in
and of itself, but here we focus solely on a approach in spirit of Bianchi’s original work. A
decoupled model for multi-radio mesh networks in the absence of hidden and exposed nodes
is proposed in [16]. The primary difficulty in modeling this system is that the embedded
time in each individual WLAN (collection of stations that are all operating on the same
frequency and are sharing the same embedded time channel) in the mesh network is running
at a different real-time speed. WLANs in the mesh that have a small number stations will
see many idle slots and thus run quickly, while the opposite is true for WLANs in which there
is a lot of contention for the medium.

The primary idea in [16] is to model each WLAN with an a priori assumed input of traffic from
the mesh. Solving the appropriate fixed point equations, one can then predict the throughput
for each station in the WLAN. If some of the WLAN’s traffic will be relayed through other
parts of the mesh, the WLAN’s throughput corresponds to its rate of departures and this
becomes the input to another WLAN in the mesh. Assuming the departures are Poisson,
which is reasonable if the original input is Poisson and the WLANs are not heavily loaded
[26][25], one is then looking for a solution to the entire coupled system that correctly balances
the arrival and departure rates for relayed traffic throughout the mesh.

It requires a large volume of tedious notation to explicitly write down the equations to be
solved. This can be found in [16], where examples are presented that illustrate this approach
can make good predictions of the overall network behavior. Nothing has been proven formally
about this model with regards either the appropriateness of the decoupling approximation or
the nature of the solutions of this substantially more complex set of self-consistent equations.
As mesh networks form one of the most exciting applications of 802.11 technology, any results
in this direction would be likely to be of interest to telecommunications community.

6 Summary and Discussion

Let us enumerate the questions that have arisen.

1. §3 For saturated WLANs with appropriately chosen back-off window sizes, metastability
is observed in the decoupled model. Does this metastability also appear in the fully-
coupled fluid limit model? If so, can the fluid limit model shed more light on the
phenomenon?

2. §3 In the coupled WLAN model with n stations, let Nn(t) count the total number of
packets successfully transmitted by all stations prior to time t. What is the appropriate
scaling tn such that the random variable Nn(tn)/n converges to a non-trivial distribution
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and what are the characteristics of this distribution?‖

3. §4 If a WLAN is non-saturated, is the decoupling approximation appropriate and, if so,
can a fluid limit analysis of a coupled model support it?∗∗

4. §4 Consider the non-saturated decoupled model with infinite buffers. The relationship
between the load in embedded time, r, to the real-time Poisson offered load, λ, is not
one-to-one. Can it be shown that there is a unique stable solution at all real offered
loads that corresponds to the long-run behavior of the system? If so, does this give
insight into the identification of the stability region of the fully coupled model, which
is known to be difficult to analyse?

5. §4 Driven by Markovian convenience, all of the decoupled finite load models that we
cite assume that packet arrivals follow a Poisson process. In the presence of infinite
buffers and without MAC-level packet discard (i.e. M = ∞), can this assumption be
relaxed to more general arrivals processes without changing the stability region for the
decoupled models?††

6. §5 For the decoupled, non-saturated, mesh model, what can be said about the existence
and uniqueness of a solution to the global fixed point equation? Can metastable solu-
tions exist in mesh networks for parameterizations that would not give rise to them in
WLANs?

In addition to these questions, there are a few loose ends to be tied up.

Some commentators have appealed to Transmission Control Protocol (TCP) traffic in attempt
to justify the saturated assumption by claiming it is appropriate for data networks. TCP is
the primary protocol used for reliable end-to-end transfer of data across the Internet. Each
TCP data flow uses decentralized control, where sources of traffic are unaware of network
structure, based on feedback from the data recipient that aims to match sending rates to
network bandwidth resources. This vague description supports the notion that the TCP
justifies the saturated assumption, but the argument is not completely convincing for two
reasons. Firstly, it assumes all flows are long lived, which is far from true in general. Secondly,
it omits the fact that the 802.11 DCF and TCP’s window control algorithm interact badly,
leading to long run bandwidth starvation for some sources. See Leith et al. [34][36] for a
dramatic demonstration of this fact.

In simulation and experiment, the interaction between the TCP’s transmission rate feedback
control and the 802.11 DCF leads to another form of metastability that would be worthy of
mathematical analysis. There are stochastic models that capture TCP’s feedback control, for

‖This problem was proposed by Charles Bordenave, private communication.
∗∗Alexandre Proutière, private communication, suggests that proving ergodicity in the coupled system for

each n is a key difficulty in extending the approach developed in [9][11].
††This problem was proposed by Giuseppe Bianchi, private communication.
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example by Baccelli and Hong [3] and Shorten, Leith and Wirth [46]. Designing a tractable
model that accurately captures the interaction between TCP’s feedback control and the IEEE
802.11 DCF service process poses a serious research challenge.

Returning to changes brought by the IEEE 802.11e EDCA, the impact of different W0 values
for each station on our considerations is relatively minor. Its effect is to change the sta-
tionary attempt probability function for each station τi(p, r). The impact of of the packet
bursting parameter TXOP is accommodated by most authors through a simple revision of
the throughput equation. The most difficult change to accommodate is the effect of different
AIFS values, as distinct stations no longer see the same embedded time sequences. Decoupled
mean field models of 802.11e exist that include AIFS [37, 43, 31, 19, 14, 13]. For saturated
802.11e EDCA WLANs, the fluid limit is considered by Sharma, Ganesh and Key [45] and
the nature of the fixed point equation is considered by Ramaiyan, Kumar and Altman [42].
Questions regarding non-saturated 802.11s, especially in combination with 802.11e, remain
outstanding.

Finally, we mention that Tinnirello and Bianchi [49] have recently introduced a new method-
ology to study saturated IEEE 802.11e WLANs based on a distinct decoupling approximation.
Rigorous mathematical questions of the nature suggested here could also be asked of that
approach.
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