Decentralized Constraint Satisfaction

K.R.Duffy!, C.Bordenavg D.J.Leith

Abstract—Constraint satisfaction problems (CSPs) lie at the solution. These restrictions come framformation constraints
heart of many modern industrial and commercial tasks. An  on variables, namely: (i) each variable does not know the
important new collection of CSPs has recently been emerging number or nature of clauses that contain it; (ii) each véeiab

that differ from classical problems in that they impose congraints . N
on the class of algorithms that can be used to solve them. knows only if all the clauses that do constrain it are prdgent

In computer network applications, these constraints ariseas Satisfied or if at least one is not satisfied; and (iii) based
the variables within the CSP are located at physically distict solely on this information, variables must themselves make
devices that cannot communicate. At each instant, every vaable g decision on whether to change their value without recourse
only knows if all its constraints are met or at least one is 4 megsage-passing to each other or an omniscient ceattaliz
not. Consequently, the CSP’s solution must be found using a troller. | ficul h iable d t i
decentralized approach. Existing algorithms for solving GPs controlier. In particular, eac_ variable aoes no expy O_W_

are either centralized or distributed, both of which fundamen- the value of any other variables. These constraints eli@ina
tally violate these algorithmic constraints. In this article we centralizedalgorithms where a single controller is cognizant
present the first algorithm for solving CSPs that satisfies tese of all variable values and can dictate changes to them and

new constraints. It is fully decentralized, making no use of isyihytedalgorithms where decisions are made more locally
a centralized controller or message-passing between vahées. but with ina bet iabl
We prove that this algorithm converges with probability one to ut with message passing between variables.

a satisfying assignment whenever one exists. Surprisinglyve Information constraints such as these arise naturally in
experimentally demonstrate that the time the algorithm takes to  many modern resource allocation problems. Examples in-
find a satisfying assignment is competitive with both WalkSeand  clude: resource allocation in the Internet, where scatgbil
Survey Propagation, two popular and efficient CSP solvers. fiat  raquirements cause the overhead incurred by messageassi
is, desp_lte its decentralized nhature the algonthm is rgmd{ably to be unacceptable: in security problems where firewalls
fast. This raises new questions about the relationship beten ! o ’ . !
information sharing and algorithm performance. for example, block communication; and in wireless networks
where variables are located at distinct devices that may not
be able to communicate (see examples below). Note that
|. INTRODUCTION sometimes a limited amount of message-passing between

variables may be feasible, but we leave consideration of how

Constraint satisfaction problems lie at the heart of marB/ T .
. . . est to exploit limited inter-change of variable valuesutufe
modern industrial and commercial tasks. The archetypal con

st probles .- SAT,whih consits of variales 7% O6USO here on he o halergng o where
21,2y @nd M constraints, each variable taking one of i, sceng']o\rios we ex e(lt that our regsults will have
d values and each constraint being{& 1} valued function . g sce ' P o
- . S . _wider application to other types of self-organising system
binding at mostk of the variables by forbidding certain o . . ;
2 . Existing algorithms for solving:-SAT are centralized or
combinations of values. The speci@, 2)-SAT case where . . o . . :
. ) . distributed, violating these information constraints asal
variables are binary valued and constraints are booleaseta

is abbreviated as-SAT. An example of a 2-SAT constraint iScannot be used to solve this class of problems. In this articl
(1 V 22) A (—21 V ﬁxg') which forbids combinations where "V present the first decentralized algorithm for solMiRGAT.

21 = 22, Any (k, d)-SAT problem withd > 2 can be reduced We show that th!s algontr_\m converges with probab!llty one
. o whenever a feasible solution exists. We show experimgntall
to an equivalent-SAT problem, although it is often more

natural to express problems in terms(&f d)-SAT rather than that the time the algorithm takes to find a satisfying assigmm

k-SAT. The constraint satisfiability problem is to find oné> close tq that of WaIkSat! a popylar and eflicigpBAT
Solver, whilst also possessing desirable features of Surve

or more combinations of values that simultaneously Sad;iSf'Bropagation. That is, despite its decentralized nature, th

all constraints. Since the 1970s, thousands of probleme h%\\fgorithm is remarkably fast. This raises new questionsiabo

been shown to be equivalent t8SAT, from resource allo- . . : . : .
SR : . . the relationship between information sharing and algorith
cation in wireless networks, through protein folding, géne
g?rformance.

fingerprinting and supply chain management. Many popul
puzzle games such as Suduko, Solitaire and Tetris can alsoAt.’el\/Iotivating Example

formulated ask-SAT problems [1]. Mod h hold woicall ted to the Int i
An important class of problems that can be cast within odern housenolds are typically connected fo Ine Interne

the k-SAT framework has been emerging recently. Problenj& proadl_aand modem that .ha.s an mtegrate(_j WIFI router
in this class differ from classicat-SAT in that they have to_pr_owde er(_eless coverage W|th|n_the home. erelessst{an_
constraints on the nature of the algorithm used to find the]p>S'ons are mhere_ntly br_oadcast n natu_re a_md transonissi
power leaks into neighboring homes causing interferende an
IHamilton Institute, NUI Maynooth, Ireland? Dept of Mathematics, degra}dlng network perfolrmance; this IS '!lUStrated scitema
University of Toulouse, France cally in Fig. 1. To reduce interference, WiFi technologyuais



pates is satisfied in aggregate or not. In other words, byirsgns

the local environment each router is ableetmluatewhether

' the entire collection of constraints which affect its vata
are satisfied or if at least one is not, but it otherwise lables t

ability to co-ordinate its choice of channel with that of eth
routers. We will return to this example later, demonstiatin

» that it can be solved in practice despite its decentratimati
‘ requirement.

B. Existing Algorithms Require Centralization

The literature on general purpogeSAT solvers is vast,

. . . L L but they can be broadly classified into those based on: (i) the
Fig. 1. [lllustrating overlapping interference regions mighboring wireless . . |
networks. Black dot indicates location of a wireless rqushaded area Davis-Putnam-Logemann-Loveland (DPLL) algorithm, which
indicates region within which communication with routencake place; outer employs a backtracking search; (ii) Survey Propagatiod; an
circle indicate regions within which transmissions inéeet (iii) on Stochastic Local Search. Algorithms based on DPLL

are centralized in nature, while those based on Survey Prop-

the router within each home to select the radio channel It Wﬁgatlon use explicit and extensive sharing of variable aglu

operate on. For example, the IEEE 802.11b/g variants of Wi (|) 'C;?esszz?ceh pgsigigztﬁfseon gsrlsggeihfgéﬂggtjltw:a;
support 11 distinct radio channels [2]. The task of the Wi 9 P y up

routers within an apartment block or group of houses is Léye exchange of information, mostly in an explicit manner

select their radio channels such that interference is kelptb t_)asmg_update deCISIOF_'IS on reIaU_ve r_af""“gs. of the con
straint variables but also in a more implicit fashion. To see
an acceptable threshold. L ; . . X
; this implicit requirement, consider the following algduit
This system can be formulated as(/a d)-SAT problem. . T o :
. . ; originally proposed by Papadimitriou [4]. Initially pick a
With 7t routers andd channels, a variable; taking values random assignment of values for the constraint variables
in {1,...,d} is colocated with each router € {1,..., R} g ©

and records the channel selected by that router. Based on'the {1’.2’ - N Repe.at the following: pick an u_nsat|sf|ed
physical topology of the network, constraints are intragtiic constraint clause and flip the value of one of the variablegp S

. . .. when all clauses are satisfied or a specified time limit espire
that forbid channel selections that would cause transonissi : : . o
. : ; Although simple, this forms the basic building block for all
to interfere. These will be described further when we retu

. ‘Stochastic Local Search algorithms, including the weldgtd
to this example later.

We also have the following information constraints tha\{valkSat algorithm which is competitive for some of the laige

. . . and least-structurekt SAT problems and which we will revisit
are not present in classicatSAT and restrict the class of o . - )
Jater. It is important that a single unsatisfied clause isctetl

algorithm that can be practically used for this problem’s . . - :
) . . : . at each step and that a single variable within the clause is
solution. Firstly, note that in a wireless network each aale, . o . . .
. L .ad]]usted as it is this that leads to the algorithm behaving
the channel to be selected, is located at a distinct physical o : .
. e o .as a random walk [5]. Achieving this, however, requires co-
device. Secondly, in wireless networks the range withincwhi =~ = "~ . L
T o . ordination across variables and clauses that amounts ficitnp
transmissions can be decoded, and so within which communiz . : .
. . : . information-sharing and the existence of a central coletrol
cation take place, is typically much smaller than the distan
over which transmissions interfere [3]. Moreover, segurit
measures such as firewalls typically prevent communication . .
between routers via their wired Internet connections. ldend. Decentralized Algorithm
when solving thek-SAT problem we cannot rely on message- An instance of the Communication-Free Learning (CFL)
passing between the set of routers, and hence the variabiggorithm is run in parallel for every variable;, i <
involved in each constraint. Thirdly, it is not possible ity  {1,2, ..., N}. The CFL algorithm is given in pseudocode as
router to explicitly enumerate the full set bfSAT constraints follows:
nor for a router to identify the subset of constraints in whic ;. nitialise p;, = 1/d, j € {0,1,....d— 1}.
it participates. This is a direct consequence of the ingbiti . loop
reliably pass messages between interfering routers c@ubin ;. Toss a weighted coin and choasg= j with probabil-
with a lack of a priori information due to the unstructured ity p;. ..
nature of a network with no common administrative control. ,. Evallﬁ'ﬂe the subset of constraint clauses involving
It follows that a router cannot know the number or identities variable i, returning satisfiedif all are satisfied and
of the routers patrticipating in any constraint and so, folyrt unsatisfiedotherwise.
evaluation of constraints must be carried out in a decenéal . Update:
manner. The latter can be achieved by each router monitoring ¢ satisfied
the signal-to-noise ratio of received transmissions temeine L
whether the level of interference is acceptable or net, pi; _{ 1 ifj= i
whether the subset of constraints in which the router gartic 0 otherwise

II. RESULTS



If unsatisfied E. Convergence Analysis - Theory

it The CFL algorithm forms a Markov Chain (or Iterated
Pik = {(1 —bpik+a/(d=1+a/b) ifj= i Function System) with place dependent probabilities [6],
’ (L =b)pik +b/(d—1+a/b) forall j# i where the state space corresponds to each variable’s viadue a
wherea, b € (0,1] are design parameters probability vector. The convergence time of the algorittsn i
’ ’ ' the stopping time defined by the first time the chain enters an

6: end loop absorbing state representing a valid solution to the CSE. Th

The affect of the final step is that if a variable experiencggjiowing theorem provides an upper bound to this stopping
success in all clauses that contain it, it continues to s&f&c {jme.

same value; if one or more clauses in which it is containdd fai

it decreases its probability of making the same variablécgho Theorem 1. Givene € (0,1), for any satisfiable CSP the
again. Note that the only information known to algorithm i§umber of iterations for the CFL algorithm to find a satisfyin
whether all clauses that involve its variable are satisfied o a@ssignment with probability greater than- e is of order less

one or more are not. than
NN -1) min(a, b)

N _una,5)_
eXp( 2 d—1+a/b

For a CSP corresponding to graph coloring, a satisfying

If all variables are simultaneously satisfied in all clausegssignment will be found with probability greater than-
the algorithm automatically stays indefinitely with thatista jn 5 number of iterations of order less than

solution to the problem. This is an important feature of the . .

algorithm, that the “stickiness” in update step 5 of the CFL N exp(2N log(y™ ")) log(e™").

algorithm means that any variable selection, ...,z that Proof: The method of proof for both statements is similar:
satisfies all of the constraint clauses is an absorbing,staig create a sequence of events ovér 1 iterations that,
i.e. the algorithm instances collectively cannot leave thaestaegardless of the initial configuration, lead to a satigfyin
once they enter it and so will remain in that state indefipitelassignment with a probability that we find a lower bound
This has the important consequence that there is no needdp Due to the Markovian nature of the algorithm and the
explicitly terminate the algorithm instances, or to pemioa independence of the probability of this event on its initial
co-ordinated restart of the instances if there is a subsgqugonditions, if this events does not occur M — 1 iterations,
change in the constraint clauses. Co-ordinating terninair it has the same probability of occurring in the ne¥t— 1
restart of the parallel algorithm instances would be pnolaiec jterations. This is what leads to the exponential naturenef t
with the information constraints required by decentrdi@a pounds.

The difference between a general CSP and those corre-
sponding to coloring is that for the latter we can construct
a more complex sequence of events that improves the bound.

From here on we will assume that the update step 5\ige give a sketch of both, details are omitted due to space
performed in a synchronized fashion across variables.ath constraints. First consider a general CSP and select any
synchronization, the fundamental character of the algorit satisfying assignment as a target solution for it. We either
doesn’t change, but the analysis becomes more involve@& Nhtive started with a satisfying assignment or have at least
that synchronization solely requires that algorithm ins&s one unsatisfied variable. The likelihood that it takes itgéa
each have access to a shared sense of time and that this cagsB®inment is lower bounded by At each iteration, either a
achieved without information-sharing or other commurn@at solution (not necessarily the target solution) is foundtdeast
between variables, i.e. algorithm instances. A suitabtelkcl one more variable is dissatisfied. Newly dissatisfied véemb
is, for example, available to any Internet connected devige then take their target value and repeatedly select it until a
the Network Time Protocol (NTP). solution is found. In the worst case, in each/éf— 1 steps
one more variable becomes dissatisfied, triggering nevsekau
that keep all previously unsatisfied variables dissatisfidnlis
in N — 1 steps, the likelihood a satisfying solution is found is

The CFL algorithm provably identifies satisfying assigniower bounded byy¥ (V—1)/2,
ments for all values of its two design parametetsand For CSPs corresponding to graph coloring, the advantage
b. The value ofa determines the algorithm’s aversion tds that variables cannot be dissatisfied indefinitely by gewl
variable values for which clause failure has been expee@ncdissatisfied variables. Instead we can generate a flame-fron
The value ofb impacts on the speed of convergence of thef dissatisfied variables. Those variables sufficientlyfihin
algorithm. For simplicity, we set = b in all examples here. the interior of this flame-front can select their final value
We useb = 0.2 for random 3-SAT,b = 0.1 for random 4- without further disturbance. Details are omitted, but te-c
SAT andb = 0.05 for random 5-SAT. We usé = 0.1 for struction is a generalization of that found in [7][Theorein 3
our wireless networks example, a value which we have found ]
to yield good performance across a range of practic8IAT Note that the above proof means that for fixdd the
problems. tail of the distribution of the stopping time of the algonth

10%(’7_1)> log(e™!), wherey =
B. Algorithm Termination

C. Synchronization

D. Parameterization
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CURRENT BEST UPPER.OWER BOUNDS ON THE PHASE TRANSITION exist3— T
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Fig. 2. Median normalized stopping time of CFL algorithm wsfor

; ; iotri ; itlandom 3-SAT andV = 100. Each point is derived from at least 1000 runs
is bounded by a geometric distribution and so all of It(% the algorithm; algorithm terminated aftén? iterations if no satisfying

moments exist. Empirical evidence suggests that both ®uRgsignment found. For comparison, stopping time measunisnfier WalkSat
are extremely loose, particularly the former, but they dovpr taken from [9, Fig 2a] are also indicatedhge) CFL algorithm measurements

that if a solution exists the CFL algorithm will almost surel for random 4-SAT and 5-SAT. Measurements shown are for sabfe- up
9 o to 4.20 (3-SAT), 9.90 (4-SAT), 21.10 (5-SAT); close to the current best

find it. estimates forr.;4; , and well abover; gs 5 -

F. Convergence Analysis - Experiment

We present experimental data evaluating the performarigéss.» at which so-called “one-step replica symmetry break-
of the CFL algorithm for randonk-SAT, a class oft-SAT mg” (1RSB) |nst.ab|I|t_y occurs [11]. Currgnt best estinwafer
problems that continue to be much studied. We demonstrifii$ value are given in Table I. Fdr> 8, it has been proven
that the theoretical bounds underestimate algorithm perf@nalytically that the set of satisfying assignments is geali
mance, which we show to be competitive with centralized a@to Widely separated clusters, which lends strong supfeort
distributed solvers. this conjecture [12]. For values @&f < 8 the situation is less

Before proceeding we briefly review current knowledg€!€ar with experimental evidence indicating thgl,, x lies
regarding randormk-SAT. In randomk-SAT, the constraint @00Verirss k for k = 3,4 and5 [13].
clauses are drawn uniformly at random from the possible Armed with this background information on rand@rBAT,
sets of M clauses of sizé: and N variables, e.g. [4]. The we now consider performance data for the CFL algorithm. Fig.
behavior of randonk-SAT is known to depend strongly onZ2 gives median measurements of normalized stopping fie (
the parameter = M /N with, in particular, phase transi- stopping time divided byV) of the CFL algorithm vs-=M/N
tions and associated thresholds.;s: x and regist. k. When when the number of variable§ = 100. Fig. 3 gives median
7 > T-ezist ;. the constraint problem is unsatisfiable with higiineasurements of normalized stopping time/Nvswith r held
probability while whenr < Tewist k satisfying assignments constant. Data is shown for randdmSAT with & = 3,4 and
exist with high probability. Evidentlyye,isix < Toeist.k 5. We immediately observe two striking features from this
and it is conjectured that.,istr = r-cxist [8]. A simple data. Firstly, the median normalized stopping time inogsas
argument gives s 1 < 2% log 2 and this upper bound canexponentially withr, with N held constant (see Fig. 2, noting
be refined to obtain the values in the second row of Tablethat a log scale is used on theaxis). Secondly, the median
Also shown in row four of this table are estimated values férormalized stopping time v&, with r held constant, is upper
T—exist., derived from statistical physics considerations. Theg@unded by a constant (see Fig. 3). That is, a satisfying
latter estimates are strongly supported by experimentalfda assignment is found in a time with median value that increase
k = 3 e.g.[9], although there are fewer experimental studiggo more than linearly withV. This linearity holds even when
for k > 3. It can be seen that the theoretical boundifqr,;.; 7 iS Close tore,;s:, (data is shown in Fig. 3 for 3-SAT with
and the estimated values are in good agreemerit for5, and 7 = 4) and is of great practical importance as it implies that
that both approach” log 2 for large k. Recent mathematical With high probability the CFL algorithm finds a satisfying
results have established that,;.; , > 2¥log2 — k [10] and assignment in polynomial time.
this lower bound can be tightened to obtain the theoreticalComparing the performance of the CFL algorithm with
values shown in the third row of Table I. the popular WalkSat algorithm, we note that the WalkSat

There also exists a thresholg,;, , below which a sat- algorithm also exhibits an exponential-like dependence of
isfying assignment can be found in polynomial time witlstopping time on and linearity inV [9], [14], [13]. To allow
high probability. This threshold has been the subject of mucomparison in more detail, median stopping time data taken
interest and the current best analytic lower boundrigy, . from [9, Fig 2a] is marked on 2. For < 3.9, the median
is also indicated in Table I. Statistical physics consiters stopping time is similar for CFL and WalkSat. Above this
have led to the conjecture tha},, » is equal to the value value, however, the stopping time for WalkSat diverges, in-



Each station, and hence variable in the CSP, selects a target

O 3-SATh=1 e 5-SATir=5 Signal to Interference plus Noise Ratio (SINR) of 15dB withi
0] O e o oA ] a 5m radius. This SINR is sufficient to sustain a data rate
| Lo a-saTi=s of 36Mbps when the connection is line of sight and channel
g" Lo 0 © 2 ° ° 0 g noise is Gaussian [2], [3]. In the IEEE 802.11 standard [2],
%10' w0 ° ] the maximum transmit power is 18dBm and may be adjusted
s 19 in 3dBm increments up to this maximum value, yielding 6
£ b DS ] selectable power levels. As per the 802.11 standard and FCC
= ;CC; ; fteeceee o . U regulations, each AP can select from one of 11 radio channels
] . .. N : °00 o o o o in the 2.4GHz band. These radio channels are 20MHz wide
%0055 o O ° e and overlapping in frequency so that only 3 orthogonal/non-
102 ‘ ‘ ‘ ‘ overlapping channels are available.
0 200 400 600 800 1000

N As we do not have a physical radio-propagation model for
the area where the APs are, we approximate this system by
Fig. 3. Normalized stopping time of CFL algorithm ¥ andr for 3-SAT  calculating the SINR at thé’th AP using the well-known
Zptljegs??-(l;bgt?&??g time is normalized By and each point is derived from Gaussian formula SINR= Gii—Pi/ (02 i Zj# Gjipj) [3]
In this formula, Gj; denotes the radio attenuation between
AP j and i, P; is the transmit power of AP and o2
creasing super-exponentially in This divergence is a featuredenotes the noise power. The radio attenuation is modeled
not only of WalkSat but also of other local search algorithmy G;; = 7|ci‘cj|/d%, whered,; is the distance in meters
algorithmse.g.ChainSat [13]. It is not exhibited by the Surveybetween AP and APj, « is the path loss exponent for which
Propagation algorithm [9], [15], which has been the subjeste usex = 4, ¢; is the index of the radio channel used by AP
of considerable interest as it creates the ability to operatnd~y = —28dB is the attenuation between adjacent channels
close to the.,;s: . threshold. Observe that the CFL algorithmas per the IEEE 802.11 standard [2]. The radio channels are
also doesnot exhibit divergence as approaches..is; . consecutively indexet, ..., 11 and the noise power? is taken
These comparisons are encouraging as they indicate that ase-90dBm.
CFL algorithm is competitive with some of the most efficient As the transmission power of neighboring APs combines
general-purposé-SAT algorithms currently available. It is additively to create interference, this task cannot betécba
also unexpected as information sharing is a key componentsf a graph coloring problem, but must instead be formulated
both WalkSat and Survey Propagation, whereas CFL makgsk-SAT. The task possesses the information constraints: (i)
local decisions simultaneously with no use whatsoever gfessage passing between APs, i.e. of variable values,ds ina
information-sharing, raising fundamental questions asht® missible due to security and physical wireless commurdaati
role of message passing, the relationship between infesmatconstraints; (i) each AP does not know the number or idgntit
exchange and algorithm performance and, in particulartwhg all interfering APs and so cannot identify or enumerate
performance cost, if any, is imposed by constraining attent constraints in which it participates; (iii) for a given cheiof
to decentralized operation. channel and transmit power, each AP can only determine if all
of its constraints are met or if at least one is failing (namel
by measuring whether its SINR is above the target value or
G. A Wireless Network Example not). A decentralized algorithm is therefore mandated.

Real-world applications often exhibit distinct structtirem Running an instance of the CFL algorithm at all APs, Fig.
randomly drawnk-SAT instances. It is therefore instructive to4 shows an example satisfying assignment of radio channels
revisit one practical, motivating example that requiresea dand transmit powers obtained using the CFL algorithm. The
centralized approach: power and channel selection in eggel complexity of the topology generated by the physical lanati
networks. of the APs, and the non-uniformity of the clauses it causes, i

From the online database WIGLE [16] we obtained thapparent.
locations of WiFi wireless Access Points (APS) in an approx- Fig. 5 shows the measured distribution of number of itera-
imately 150m? area at the junction of 5th Avenue and 59thions required to find a satisfying assignment, whereupen th
Street in Manhattan. This area contains 108 APs utilizirg tlalgorithm natural halts in a decentralized fashion. Theiared
IEEE 802.11 wireless standard. value is 26 iterations and the 95% centile is 110 iterations.

Imagine a worst-case scenario where, after a power-outaijete that during this convergence period, although the ortw
all these APs are switched back on. The aim of each APigsoperating sub-optimally, it does not cease to functional
to select its radio channel and transmit power in such a whkab set-up [17] we have shown that a CFL update interval of
as to ensure that its transmissions can be received sufficiemess than 10 seconds is feasible on current hardware. Thus
clearly within a specified radius. In other words, to ensutbe median time to convergence is under 5 minutes. This is
that the signal power within this radius exceeds, by a sgekifia reasonable time-frame for practical purposes and thus the
margin, the combined interference power from transmissio@FL algorithm offers a pragmatic solution to this difficult
by other APs plus the power due to background noise. decentralized k-SAT problem for which existing solversIidou
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Fig. 4. A satisfying assignment of radio channels and trangowers.

Each dot marks the location of a WiFi wireless access poidtiarbased on
measurements taken at the junction of 5th Avenue/59th tStiedanhattan.
The color of a dot indicates the radio channel and the size&cates the
transmit power. To avoid interference between transmissioearby access
points need to operate on radio channels that are spacetientffi far apart.
There are 11 radio channels available to choose from, bufréla@iencies of
these channels overlap so that only 3 orthogonal/non-apeihg channels
are available; there are 108 wireless access points in total
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Fig. 5. Log of the empirical complementary cumulative dlsttion of
convergence time in iterations, based on 12,000 runs of Qgirithm for 5th

Avenue data. Median 265% percentile 110 iterations. In current hardware,

one iteration can be performed in under 10 seconds, leadiagniedian time
to convergence of less than 5 minutes.

not be employed.

IIl. DISCUSSION

In this article we have introduced a fully decentralizett4]

algorithm for solving CSPs. We prove that it will almost dyre
find a satisfying solution if one exists, but believe our badsin
on speed of convergence for a general CSP are far from ti
and conjecture that the real bound should be closer to the

we have for the specific case of CSPs corresponding to gra
[

coloring.

Given how much information decentralization is sacrificp g

ing, quite surprisingly an experimental investigation ofvs

ing random k-SAT instances suggests that the algorithm is
competitive with two of the most promising centralized k-
SAT solvers: WalkSat and Survey Propagation. This raises
the question: what, if anything, is the performance cost of
decentralized operation? This is particularly pertinemtttze
decentralized nature of the CFL algorithm lends itself to
parallelized computation, with a fixed memory requiremeant p
variable, making it suitable for use in circumstances wtaere
centralized algorithm could also be used, but would be diffic

to implement in a distributed fashion.

The observation that the CFL algorithm performs so well
with the most challenging of constraints is why we leave as
an open question how one could exploit limited inter-change
of variable values, as might be possible in certain pralktica
cases. In particular, if we have such partial informaticam c
we use this to do better? Given the strong performance of the
fully decentralized algorithm, are there gains to be made?
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