
IEE Irish Signals and Systems Conference, Dublin, June 28-30, 2006 

Design Of High Frequency Digital Phase Locked Loops 
 

Brian Danielsφφφφ and Ronan Farrell* 
 

School of Electronic Engineering, 
National University of Ireland, Maynooth  

IRELAND 
E-mail:φbdaniels@eeng.nuim.ie, * rfarrell@eeng.nuim.ie 

__________________________________________________________________________________________ 
 

This paper considers the stability of high order Charge Pump 
Phase Lock Loop (CP-PLL), proposing a novel means of 
identifying stable regions for such systems. Traditional design 
techniques are inefficient for high frequency, high order CP-
PLL systems. This paper proposes an accurate and efficient 
means of identifying stable regions for 2nd and 3rd  order high 
frequency (> 1GHz) CP-PLL. Using exact non-linear CP-PLL 
responses it is shown that the proposed stability technique is a 
significant improvement over existing linear methods. 
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I   INTRODUCTION 

PLL systems are used to create a robust and 
noiseless oscillating signal from a noisy oscillator. 
First order systems with no loop filter are the 
simplest form of PLL system, these have no 
stability concerns and lock to a signal quickly but 
are noisy. Second order systems include a loop 
filter on the output of the phase frequency detector 
(PFD) to attenuate the jitter on the output signal of 
the voltage controlled oscillator (VCO). However 
second order PLLs have stability issues and the 
designer needs to trade-off between the noise 
reduction in the loop and the stability of the system. 
Higher order systems are increasingly less stable as 
the order is increased, but provide attenuation of 
the frequency jumps inherent in the second order 
PLL as well as better attenuation of the in-band 
noise. Traditionally the second and third order CP-
PLLs are designed using linear theory to define a 
stable region of the CP-PLL, once determined ‘rule 
of thumb’ and empirical design are used to ensure 
the correct transients of this system.  

 
Figure 1: CP-PLL system 

This paper proposes a piece-wise linear technique 
to design stable high frequency CP-PLL systems by 
identifying stable regions of such systems.  
 
In the next section the traditional techniques of 
designing the CP-PLL are outlined. In section 3 the 
proposed technique is introduced. In section 4 the 
proposed technique’s stability boundaries are 
determined and, for the second a third order PLLs, 
are compared to the traditional linear stability 
boundaries. The stability boundary for the forth 
order system are also determined. It is shown that 
the proposed technique is a significant 
improvement on the traditional method.  

II   TRADITIONAL DESIGN 
TECHNIQUES  

The Digital PLL of Figure 1 is a non-linear system, 
the non-linearity lying primarily in the PFD and the 
VCO and are essential to the PLLs operation. 
Despite this linear methods such as Gardner’s 
stability criterion [1] are commonly used to identify 
stable component values of the CP-PLL. These are 
applied to the non-linear CP-PLL using the 
justification that the CP-PLL will be less non-linear 
if the cut-off frequency is restricted to no greater 
then 1/10th of the reference frequency. To insure 
the stability of the designed system, empirical 
design and simulation of the system are used 
concurrently. This design technique is a 
cumbersome process due to the initial offhand 
assumptions made to justify the application of the 
linear model to the CP-PLL. Non-linear stability 
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criteria have only occasionally been applied to low 
order analog PLLs. This is due to the fact that non-
linear methods are unwieldy and in particular are 
not suitable for the stability analysis of complicated 
high order Digital PLLs.  
As mentioned the PLL is a non-linear feedback 
system, the non-linearities exist in the voltage 
controlled oscillator, due to saturation and the CP-
PFD, due to switching in the PFD. This switching 
is due to the fact that the output of the CP-PFD 
moves between states and yields a corresponding 
output current of +Ip, zero, or -Ip amps. Simple 
transfer function analysis is not directly applicable 
to time-varying networks. This is overcome for the 
purpose of justifying the application of linear 
theory, by considering only the average behaviour 
of the system over many cycles, this is known as 
the continuous time approximation [1]. The second 
linearising assumption is that by ignoring high 
frequency components of the PFD output signal the 
PFD can be modeled as a subtractor, making the 
overall PLL system a negative feedback system, as 
shown in figure 2. 

 

Figure 2: Linear CP-PLL system 

From the block diagram of the linearised DPLL of 
Figure 2, the closed loop system transfer function is 
calculated as that of equation (1) below, where KP 
is the CP gain, KV is the VCO gain and F(s) is the 
loop filter transfer function. 
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This linearised S-domain system characteristic 
equation is used extensively in the literature to 
identify stable boundaries and stable system 
component values of the DPLL, in particular 
Gardner [1], O’Keese [2], Williamson [3] and 
Banerjee [4].  
For the second order PLL system Gardner [1] 
identifies the stability boundary as shown in 
equation (2), using the continuous time 
approximation. 
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A plot of the stability boundary from equation (2) 
for a defined filter time constant τ2, and a range of 
reference frequencies (ωi radians/second) is shown 
in Figure 3.  
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Figure 3: Second order Gardner Stability Boundary 

On its own linear stability Criterion such as 
Gardner’s do not define a definitive prediction of 
stability for the CP-PLL this is due to the 
inaccuracies introduced while linearising the 
system. However they do provide a starting point 
from which empirical design methods are used to 
choose optimum component values from those 
suggested by Gardner and to insure that the CP-
PLL will operate as expected. 
A number of ‘rules of thumb’ are commonly 
applied to the design of the DPLL, the most 
common of these are: 
1. The loop filter bandwidth must be no greater 

then one fifth the reference frequency, and is 
generally chosen to be a ratio of 1/10th, this 
will rationalise the continuous time 
approximation [2].  

2. To obtain some stability margin, the ratio of 
the reference frequency (ωi) to the system gain 
should be chosen in excess of 15 to 20[1]. 

3. For a third order PLL, the additional ripple 
capacitor C3 in figure 4, must be ten times that 
of the capacitor of the RC filter, C2, this 
ensures a loop bandwidth of approximately 
1/10th that of the reference frequency and a 
phase margin of at least 40-45 degrees [2,4]. 

 
 

 
 
 
 
 
 

 

 

Figure 4: Third and Forth order CP-PLL filter. 

III   PROPOSED STABILITY CRITERION 

If we consider the state space diagram of a typical 
stable second order DPLL as shown in Figure 5, we 
see that for a positive initial control voltage (VC) 
offset, the system moves in an anticlockwise 
direction and spirals into the origin. The system 
stability is related to the rate at which the system 
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approaches the equilibrium point (0,0). If the 
system does not approach the equilibrium then the 
system is unstable. By considering one plane of the 
state space, the stability of this system may be 
determined as long as no cycle slips occur. The 
accuracy of this model depends on the size of 
reference frequency (FREF) of the DPLL and the 
size of the initial offset of the control voltage VC. 
The larger the value of FREF the smaller the error 
will be. The occurrence of cycle slips in the PLL is 
a highly non-linear phenomenon cause by a large 
offset of the phase error generally due to noise [6].  
Using the proposed technique they are avoided by 
only considering a small initial VC offset, this keeps 
the system close to the equilibrium thereby 
reducing the chance of a slip. If the system is stable 
then a cycle slip will not cause the PLL to go 
unstable, in fact it has the effect of reducing the 
immediate phase error and pushing the loop 
towards the equilibrium. 
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Figure 5: State Space Plot of Stable System 

In any time period TTOT, the DPLL operates in the 
NULL state (or coast state) for a period of Tcoast, 
and in the UP or DOWN states (boost state) for a 
period of Tboost, where TTOT = Tboost+Tcoast. The time 
period TTOT is equal to 1/ FREF. Consider the plot of 
VC for this second order system as shown in Figure 
6, the time period Tboost is calculated as: 
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(3) 
Where Φe(tn) is the phase error at time tn. From this 
the coast time period is calculated as Tcoast = Tboost-
TTOT. Once the time periods are calculated, VC can 
be calculated from Φe using the filter difference 
equations of the DPLL. For a second order DPLL 
the control voltage VC is calculated as from 
equation (4), where IIN = IPSign(ϕe) and IP is the 
charge pump gain. 
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Figure 6: Plot of VC for period TTOT for Second Order 

DPLL 

The phase error of the DPLL at time t(n+2), where 
FFV0 is the VCO free running frequency, and KV is 
the VCO gain, is:  

( ) ( )( )1 0( ) ( ) 2e n e n TOT REF FV V Ct t T F F K V dtπ+Φ = Φ + − − ∫  (5) 

To solve the above equation an estimate of the 
integral of VC is required. For the second order 
PLL, the loop filter is first order, figure 7, therefore 
first order integration is used, and is calculated as 
the area under the line as shown in figure 8. For the 
second order system the integral of VC is 
determined as: 
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Figure 7: First order filter 

For higher order systems equations (4) and (6) need 
to be recalculated as required for the respective 
order of loop filter. Unlike the second order case 
the filter response is non-linear during both the 
boost state period and the coast state period. The 
operating can be simplified if a linear response of 
the filter is used. In charge approximation [6], first 
order approximation is used along with an iterative 
technique to accurately model the higher order 
filters. With this technique a similar method is used 
except without the iteration. In other words 
between t(n) and t(n+1) (the coast period) and 
between t(n+1) and t(n+2) (the boost period) a first 
order linear approximation of the filter is used, as 
shown in Figure 8. 
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Figure 8: Calculation of the Integral of VC 
 
This can be justified for high frequency systems 
because for large FREF we get a small TTOT. If TTOT 
is small then the linear approximation made is 
small and has little effect on the result. This 
technique is found to be accurate for frequencies of 
greater of 1GHz.  
 
The calculation of the higher order equations, 
instead of (4) and (6), may be simplified by using 
the charge approximation technique [6] with no 
iteration, this is described in more detail later. So 
the shorter the boost period of the PLL, the more 
accurate the model will be. TBoost can be reduced by 
using a large FREF and by using a small initial VC 
offset, therefore as FREF is indirectly proportional to 
the time period T, the model will be more accurate 
at higher frequencies. To determine the state space 
response of the DPLL equations (4), (5), and (6) 
need to be iterated over time. A plot of the small 
signal model (VC verses Φe) of a third order DPLL 
system iterated while the phase error is less then 
zero, is shown in Figure 9 for an initial VC offset of 
10mV, and an initial ϕe offset of 0, this is the arc of 
the state space response in one plane. In this plot 
the system is stable if ∆1 < ∆2, because the system 
spirals towards the equilibrium.  
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Figure 9: Plot of Arc in One Plane of State Space 

An important parameter of this technique is the 
initial state of the PFD. The initial state will be 
either the coast state or the boost state. For a VC 
step, the PFD state changes immediately to the 
boost state, therefore for the initial Tboost period of 
TTOT, the system is in the boost state. However for 
a Φe offset, the PFD state is not changed 
immediately and therefore for the initial Tcoast time 
period of TTOT, the system will operate in the coast 
state.  
 

 
 
 
 
 
 
 
 
 

 

Figure 10: PLL State Space Arcs for a Variety of Intial 
Offsets 

So for any CP-PLL the stability of the system can 
be quickly and accurately determined using this 
technique. This system has two properties of 
interest, firstly for a variety of initial VC offsets, as 
in Figure 10, each arc of the state space response 
does not intersect the other, this shows that the PLL 
system spirals uniformly into the equilibrium. 
Secondly the stability boundary of this system is 
independent of the initial VC. These two properties 
give the designer certainty that if one arc in state 
space of a particular system is determined, this 
gives an accurate representation of the response of 
the system regardless of the initial offset or 
subsequent path through state space. Both these 
properties are validated in the following 
subsections. 

a) State Space Curves do not Intersect 

Firstly consider the first period T of curves C1 and 
C2, starting at V1 and V2 respectively, as shown in 
Figure 11. The second order system, described by 
equations (4), (5), and (6) can be reduced down to 
the pair of summation equations (7) and (8), where 
VO is the initial VC offset and ϕ0 is the initial ϕe 
offset. 
 
 
 
 
 
 
 

Figure 11: Plot of First Period for two curves 
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These equations only apply to a second order 
system with initial phase error of 0, and some 
positive initial Vo voltage, as in the system plotted 
in Figure 5. If the slope of C1 and C2 are the same 
then it is intuitive that the curves will never 
intersect. The slope of C1 is calculated as: 
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Note that in equation (9) above the slope of C1 is 
calculated from (7) and (8) and is independent of 
the initial condition V0. Similarly the curve of C2 
can be shown to be the same as that in equation (8), 
therefore both curves are parallel to each other. 
Likewise it can be shown that any two curves with 
an equal initial condition of ϕ0, are parallel 
regardless of initial V0. From this it can be 
concluded that any two curves of a system will not 
intersect. 

b) Stability is Independent of V0 

The second order system described by (7) and (8) 
can again be simplified by substituting equation (8) 
into equation (7), this results in equation (10).  
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Where 22 / ( (4 )) / 1V P V Pm K I K I R C Cπ= − + .  

From equation (10) the system is stable if V0 -
|VC(m)| > 0, as shown in figure 12. 
 
 
 
 
 
 
 

Figure 12: State Space Plot of initial V0 and final Vm 

So the stability boundary is calculated as in 
equation (11) below. 
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Consider the first few iterations of m from 0 up to 
3, where A = KVIPT

2/C, B = 1-KVIPRT: 
0. V0=V0 
1. V1 = V0 
2. V2 = V0+AV0 
3. V3= 

V0+A(V0(B+1)+V1)=V0(1+A(B+1)+A) 
All subsequent values of m from 4 →∞ comprise of 
previous Vm. In fact any Vm can be reduced to V0 
times a set of A and B equations, such as 3 above, 
as described in equation (12). 

[ ]0 0(1 , )mV V A B V X= + + =L                                 

(12) 
It is clear that Vm is the product of V0 and some 
function of A’s and B’s. So going back to equation 
(11) it is clear that the stability boundary is 
V0X=2V0, where X is an unknown containing A’s 

and B’s. Therefore the boundary is X=2 and is 
therefore independent V0, the initial control voltage 
offset. 
 
For higher order systems it is customary to derive a 
unique difference equation for each type of filter 
architecture to replace equations (4) and (6). These 
difference equations contain differential terms and 
become increasingly complex as the order of the 
loop filter increases. Charge approximation [6] 
reduces this complexity making it possible to 
derive closed form solutions to high order DPLLs. 
This is achieved by considering the charge on each 
capacitor rather then the voltage at each node, and 
making the assumption that the average current Iave 

through a capacitor during the period ∆ is equal to 
the current at time t (Figure 13). 

 
Figure 13: Assumption that current at time t is equal to 

the average current during ∆t 

For example in equation (13), to calculate VC(t+1), 
the average current Iave during time ∆ is unknown 
and approximated as the initial current at time t, 
I(t). 
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This simplifies the calculation of Vc, as there are no 
differential terms, making it significantly easier to 
increment the model to any arbitrary order. The 
error introduced is bounded, as it tends to zero as 
the time interval ∆ tends to zero, as shown in 
Figure 14a and 14b. The time interval ∆ is 
inversely proportional to the frequency so is 
reduced as the frequency is increased. Therefore as 
mentioned earlier, the technique is more accurate 
for higher frequency systems. 

 
Figure 14: (a) Zero order hold approximation with 

large ∆t, (b) smaller ∆t smaller Error 
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IV   STABILITY BOUNDARIES OF THE 
CP-PLL 

In this section the stability boundary of the 
proposed model is compared to that of Gardner’s 
model [1] for the second order DPLL, and a 
simulink model of the DPLL. The stability 
boundaries of the proposed technique are 
determined here for a pull in rate of 1%, 20% and 
40% and are shown in Figure 15 along with 
Gardner’s boundary and the simulink defined 
boundary. The pull in rate can be determined from 
Figure 9 and is calculated as 100(∆1+∆2)/∆1. 
It is clear from Figure 15 that the simulink model 
of the ‘real’ DPLL system suggests that Gardner’s 
stability prediction is not conservative enough. In 
fact there is a significant region of contradiction 
between the two models where Gardner predicts 
stability and the simulink model predicts 
instability. The simulink model also verifies that 
the proposed technique is more accurate, producing 
more conservative results then Gardner, that are 
inside the stability region of the ‘real’ DPLL 
system. 
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Figure 15: Stability boundaries of 1GHz second order 
PLL according to Gardner and the proposed piecewise 

linear model. 

The second order CP-PLL creates a frequency jitter 
on the output of the VCO due to voltage jumps 
across the resistor when the CP current changes 
from 0 amps to +/- Ip. This is inherent to the second 
order system and is generally overcome by placing 
an additional capacitor in the loop filter. This is 
defined as C3 in figure 4 and increases the order of 
the PLL to third.  
In Figure 16, the stability boundaries for the 3rd 
order system are again compared for various values 
of b, where b = 1+C2/C3. The definition of b is not 
unique to this paper, it is similarly defined in [1]. 
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Figure 16: Third order Stability Boundaries 

It is clear from Figure 16 above that similar to the 
second order system the proposed technique 
provides a much better prediction of the ‘real’ 
stability boundary. 

V    CONCLUSION 

Traditional CP-PLL design techniques use linear 
theory and empirical methods to identify and 
design stable systems. It is shown in this paper that 
stability boundaries defined using traditional linear 
methods are too progressive, and actually identify 
regions as stable that are shown to be unstable 
when applied to a real CP-PLL system. The 
proposed technique uses piecewise linear methods 
to identify more conservative estimates of the 
stability boundary. 
Two important properties of the proposed 
technique are also proven. Firstly, that the stability 
boundary is independent of any initial control 
voltage offset. However to avoid cycle slips, that 
would invalidate this technique, and increase the 
accuracy a small initial control voltage is 
suggested. Secondly, the state space curves of the 
CP-PLL converge into the equilibrium uniformly 
and do not intersect. The above two properties 
ensures that if one arc in state space of a particular 
system is determined, this will give an accurate 
representation of the response of this system 
regardless of the initial offset or subsequent path 
through state space. 
Finally the proposed method is used to identify 2nd, 
and 3rd order stability boundaries and these are 
favourably compared to traditionally defined 
boundaries. 
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