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SUMMARY

Cellular barcoding and other single-cell lineage-
tracing strategies form experimental methodologies
for analysis of in vivo cell fate that have been instru-
mental in several significant recent discoveries. Due
to the highly nonlinear nature of proliferation and
differentiation, interrogation of the resulting data for
evaluation of potential lineage pathways requires a
new quantitative framework complete with appro-
priate statistical tests. Here, we develop such a
framework, illustrating its utility by analyzing data
from barcodedmultipotent cells of the blood system.
This application demonstrates that the data require
additional paths beyond those found in the classical
model, which leads us to propose that hematopoietic
differentiation follows a loss of potential mechanism
and tosuggest further experiments to test this deduc-
tion. Our quantitative framework can evaluate the
compatibility of lineage trees with barcoded data
from any proliferating and differentiating cell system.

INTRODUCTION

Cell lineage-tracing techniques are powerful tools to study

development, tissue maintenance, and repair. They aim to deci-

pher lineage pathways and to understand cell-fate decisions.

Cellular barcoding is an in vivo lineage tracing technique for

simultaneously determining the fate of the progeny of multiple

initial cells. Extending pioneering approaches that rely on retro-

viral tagging (Lemischka et al., 1986; Lemischka, 1992), it labels

cells with a unique and heritable genetic barcode enabling the

identification of familial relationships in progeny (Figure 1A).

Fluorescent markers and cell surface markers have also been

utilized to follow the output of individual cells (Kretzschmar and

Watt, 2012; Livet et al., 2007; Snippert et al., 2010; Buchholz

et al., 2013). Cellular barcoding has recently led to significant dis-

coveries in fields such as immunology, hematopoiesis, and can-

cer (Schepers et al., 2008; van Heijst et al., 2009; Gerrits et al.,

2010; Lu et al., 2011; Kreso et al., 2013; Naik et al., 2013). Data

from continuously self-renewing stem cells typically reveal domi-

nance of a small number of stem cells, providing little information

on the downstream structure of the lineage pathway (Lu et al.,

2011; Naik et al., 2013; Grosselin et al., 2013; Verovskaya

et al., 2013). In contrast, cellular barcoding data frommultipotent

progenitors (MPPs) have revealed substantial heterogeneity in

the proliferation and differentiation outcomes of apparently iden-

tical cells (Naik et al., 2013) and have greater utility for lineage

pathway inference.

Although substantial development of the experimental

methodology has taken place, a framework for mathematical

modeling and statistical testing is required to draw quantitative

inferences about the underlying proliferation and differentiation

processes. In particular, identification of lineage pathways

from cellular barcoding data is fraught with difficulty because

the nonlinear dynamics of proliferation and differentiation

mislead intuitive deductions. We developed such a quantitative

framework for multipotent cells based on transient multitype

branching processes, which enabled us to capture the heteroge-

neity of individual cell fates. The framework identifies the best-fit

parameters for any given lineage pathway structure and queries

whether the resulting model is statistically consistent with the

data. Pathways that are inconsistent with the data are identified

and rejected.

We applied this framework to our previously published data

from the hematopoietic system (Naik et al., 2013), which has

emerged as a model system to study stem cell development

(Orkin and Zon, 2008). Hematopoiesis describes the continuous

formation of blood cells, which are grouped into two broad line-

ages: the lymphoid and myeloid lineage. Results from hemato-

poietic research have been applied in stem cell transplantation

to cure blood cell deficiencies caused by irradiation, chemo-

therapy, and genetic defects (Weissman, 2000). Despite its clin-

ical successes, the hematopoietic pathway of cell differentiation

remains poorly understood.

In themost commonly held model of hematopoiesis, which we

call the classical model, hematopoietic stem cells (HSCs) self-

renew and generate progenitors that differentiate and produce
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all blood cells. Immediate progenitors of a HSC lose their self-

renewal capacities but remain multipotent (Adolfsson et al.,

2001; Morrison et al., 1997). These MPPs commit to two sepa-

rate branches, becoming either common lymphoid progenitors

(CLPs) or common myeloid progenitors (CMPs) (Akashi et al.,

2000; Kondo et al., 1997; Reya et al., 2001). CLPs give rise to

further committed progenitors that produce lymphoid cells,

such as T and B lymphocytes and natural killer (NK) cells,

whereas CMPs give rise to progenitors that produce granulo-

cytes and monocytes (GMPs), among others, and progenitors

that only produce megakaryocytes and erythrocytes (MEPs).

Dendritic cells, another group of blood cells, derive from both

CLPs and GMPs (Manz et al., 2001; Traver et al., 2000). Not all

available data, however, appear consistent with the classical

model (Graf, 2008; Kawamoto and Katsura, 2009). For example,

in contrast to the presumed myeloid and lymphoid origin of den-

dritic cells, our recent cellular barcoding data (Naik et al., 2013)

from lymphoid-primed multipotent progenitors (LMPPs) (Adolfs-

son et al., 2001, 2005) established that many LMPPs produced

dendritic cells without generating detectable lymphoid and

myeloid output, leading us to propose that dendritic cells should

be considered a separate lineage of hematopoiesis.

As an illustration of the power of our framework, we used it to

test potential hematopoietic lineage pathways for consistency

with barcode-labeled LMPPs (Naik et al., 2013). We found that

the distribution of cell types generated by LMPPs was statisti-

cally consistent across mice, suggesting that the hematopoietic

pathway is mouse independent. Furthermore, we found that the

data are incompatible with a quantitative interpretation of the

classical model. Rather, this analysis provides evidence for addi-

tional differentiation paths beyond those found in the classical

model, leading us to propose a revised model of the hematopoi-

etic pathway. In this model, hematopoietic differentiation follows

a loss of potential mechanism that is proportionally equal at

every step of differentiation.

More generally, the quantitative framework is suitable for the

analysis of transient multipotent, proliferating, and differentiating

cells utilizing any single-cell lineage tracing methodology.

RESULTS

The Quantitative Framework
The framework includes binarization of the cellular barcoding

data as well as the development and analysis of a stochastic

model for drawing inference on lineage pathways. For each line-

age pathway, best-fit model results are compared to data with a

statistical test. Lineage pathways that are consistent with the

data are simulated to garner information on the dynamic proper-

ties of proliferation and differentiation and to test for confidence

in parameter fits.

The quantitative framework for drawing inferences on lineage

pathways begins with recording the presence or absence of

each barcode in each cell type, a process that we call binariza-

tion (Figure 1A). The reasons for this binarization are 3-fold: (1)

due to nonlinearities in PCR amplification for the low-abundant

barcodes (see Figure S2 of Naik et al., 2013), cell counts are at

best semiquantitative; (2) not all cells in the animal are investi-

gated for their barcodes, and the binarized data are more robust

to this sampling; and (3) binarization has the advantage that the

proliferation of the final cell types need not be modeled.

A B

C

Figure 1. Binarizing Cellular Barcoding Data

and Possible Lineage Pathways

(A) In cellular barcoding experiments, progenitors

are transduced so that each receives a unique,

heritable DNA barcode. After proliferation and dif-

ferentiation, progeny of the barcoded progenitors

are isolated from the bone marrow and the spleen

and analyzed for their barcode repertoire by deep

sequencing. The myeloid cell group consisted of

neutrophils and monocytes measured in the bone

marrow and the spleen, the dendritic cell group

consisted of CD8+ dendritic cells and plasmacy-

toid dendritic cells measured in the spleen, and the

B cells were measured in the bone marrow and the

spleen. The data obtained from deep sequencing

are then binarized to identify the cell types in which

the barcode was recovered.

(B) In the general tree, multipotent progenitors can

divide or differentiate by losing the potential to

generateoneor twocell types,asshownby thearrow

associated with the name of the probability of the

event. The letters of their name encode their cell type

potentials; for example, anMDBcell has thepotential

to generatemyeloid cells, dendritic cells, andB cells.

(C) Theclassical tree isaquantitative interpretationof

the classical model and is a restriction of the general

tree with the probability to lose the dendritic cell

potential at the MDB stage and the probability of

losing two potentials simultaneously set to zero. MD

and DB represent respectively the myeloid and

lymphoid branches.
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Because the output from apparently identical cells consis-

tently exhibits heterogeneity (Snippert et al., 2010; Kaech and

Wherry, 2007; Gerlach et al., 2013; Buchholz et al., 2013; Duffy

et al., 2012; Gomes et al., 2011; Rieger and Schroeder, 2008;

Hasbold et al., 2004; Shortman and Naik, 2007), a stochastic

approach was chosen to encapsulate this diversity. Random-

ness acts as a proxy for the uncertainty in outcome regardless

of whether the source is the execution of truly stochastic prolif-

eration and differentiation programs or due to an unidentified

heterogeneity in the initial barcoded cohort. The stochastic

model is based on a multitype, transient branching process

that captures potency restrictions due to differentiation (see

Experimental Procedures).

The model begins with the definition of a lineage pathway

structure that encodes the differentiation outcomes that are

possible. When cells differentiate, they lose the potential to

make one or more cell types. Within the model, each cell is

assumed to proliferate or differentiate independently of all other

cells with a probability that depends upon its current potential-

ities. This process of division and differentiation from a barcoded

progenitor ends when each of its progeny are left with the poten-

tial to produce only one cell type. With regards to both intuition

and mathematical analysis, it is this proliferation that is the

primary confounding factor.

The model quantifies a given lineage pathway by a set of

probabilistic parameters. From this we determined explicit math-

ematical expressions for the probability that a barcoded progen-

itor produces a given binarized output, which facilitates the fitting

of the model to the data. The maximum likelihood best-fit model

to data is identified by computer-optimization and compared

to the cellular barcoding data via a statistically consistent like-

lihood-ratio multinomial test that determines if the pathway is

rejected by the data. If a lineage pathway with its best-fit param-

eters is statistically inconsistent with the data, then it is rejected.

Although the mathematical model provides explicit formulae

for any finite number, N, of final cell types, the ability to reject a

network depends on the quantity and nature of the data. If

cellular barcoding experiments were performed for N cell types,

then each barcode can be recovered in one of 2N � 1 combina-

tions. Due to the nonlinear dynamics of the model, the statistical

power is, however, a function not only of N but also of the struc-

ture of the empirical multinomial obtained from the data. As a

result, we advocate that for a given pathway structure of interest,

random sets of binarized outcomes should be independently

simulated from the data and the model refit to each set to deter-

mine the consistency of parameter estimates.

A typical limitation of cellular barcoding experiments is that an-

imals must be sacrificed, so there is no time-course data. For the

best-fit model parameters, a simulation of the lineage pathway

can identify timescales within the model in terms of generations

(rounds of proliferation). This quantifies the dynamics of events

within the model, which can be compared with what is physio-

logically known.

Cellular Barcoded LMPPs
As application of the framework is most readily understood by

example, we consider its use for data from the hematopoietic

system. From the data that we published in (Naik et al., 2013)

for barcoded LMPPs, we categorized the final cell types as

being of the myeloid (M), dendritic (D), or B cell (B) families

and binarized the output of individual barcodes (Figure 1A).

The general tree (Figure 1B) encapsulates the lineage pathway

of a barcoded LMPP, which has the potential to make M, D,

and B cells, with all possible links. Within this framework, our

quantitative interpretation of the classical model of hematopoi-

esis, which we call the classical tree, is a restriction of the gen-

eral tree such that the initial progenitors are incapable of losing

dendritic cell potential (Figure 1C). This restriction is consistent

with the early separation between lymphoid and myeloid

branches, and the myeloid and lymphoid origin of dendritic cells

in the classical model (Akashi et al., 2000; Kondo et al., 1997;

Traver et al., 2000; Manz et al., 2001). The framework assumes

that individual cell fates are chosen independently so that no

feedback mechanism exists between a cell’s state and any

other’s. In addition, we assume that the cellular barcoding

data are the result of final differentiation events. This hypothesis

seems sound because the heterogeneity of LMPPs has been re-

ported not to dramatically change when assessed on different

days (Naik et al., 2013).

Progeny of 978 distinct barcoded LMPPs were identified in

four wild-type mice. As reported previously, individual LMPPs

were not all multioutcome, but instead LMPPs produced hetero-

geneous patterns of limited types of blood cells (Figure 2A). The

offspring of a single barcoded LMPP cell can be found in one of

seven possible combinations of cell categories (M, D, B, M+D,

M+B, D+B, or M+D+B), depending on the cell types it produced.

The proportion of barcodes recovered in each combination

of cell types did not show statistically significant differences

between mice (Figure 2B and multinomial test in Table 1). This

consistency across mice suggests that the lineage pathway

is not a mouse-specific property and justifies pooling the data

when considering model fits. Thus, it was appropriate to use

our quantitative framework to identify hematopoietic lineage

pathways that can explain this data.

Inferring LMPP Lineage Pathways
We first assessed whether the classical tree (Figure 1C) was

consistent with the data. When the six best-fit probabilities of

division and differentiation of the classical tree were determined,

we obtained visual similarity between the cellular barcoding data

and the fit (Figure 2C). The multinomial test, however, showed

significant differences (Table 1), strongly rejecting the hypothesis

that the classical tree can account for the heterogeneous out-

comes observed. The best-fit model to the pooled data was

checked against the barcodes taken from each individual mouse

and was also rejected as being inconsistent (Table 1). The clas-

sical tree does not describe the cellular barcoding data because

the prevalence of progenitors producing both myeloid and

lymphoid cells without producing dendritic cells (M+B) cannot

be made consistent with the number that generate only one of

the cell types B or M without D (Table S1). Note that in the clas-

sical tree, few progenitors can give rise to myeloid and lymphoid

cells without producing dendritic cells. If a progenitor divides at

least once before engaging in both the lymphoid (DB) and

myeloid (MD) branches, it will most likely produce dendritic cells

due to the large numbers of progenitors producing only dendritic
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cells. This property of the classical tree can be establishedmath-

ematically for any paramerization of its links (Supplemental

Experimental Procedures).

To test the robustness of our conclusions to potential contam-

ination or detection issues, we applied a range of barcode

abundance thresholds for the binarization. As a consequence,

a barcode that had a read-count below the threshold in a given

cell type is not recorded as present in that cell type (Supple-

mental Experimental Procedures). The percentage of barcodes

in each category is not dramatically changed upon application

of these different thresholds (Figure S1). When refitted to the

new thresholded data, the classical model is only no longer re-

jected after the least-abundant 37% barcodes are eliminated

(Figure S2), adding confidence that our conclusions are robust

to potential contamination or detection issues.

Another possible caveat to our rejection of the quantitative

interpretation of classical model is that we cannot exclude that

the high proportion of progenitors that produce only dendritic

cells was due to the effect of irradiation and may not represent

the physiological situation. This, however, doesn’t change our

deduction, because the classical model was itself derived from

experiments in irradiated recipient mice (e.g., for the identifica-

tion of the lymphoid and myeloid progenitor [Akashi et al.,

2000; Kondo et al., 1997]).

Removing the restrictions of the classical tree (Figure 1B) and

repeating the fitting procedure for the general tree produces a

fit that is consistent with the cellular barcoding data (Table 1),

indicating that additional differentiation paths are necessary

to explain the data. Importantly, no other lineage pathway struc-

ture than the general tree is consistent with the cellular barcoding

data, because deleting any of the links of the general tree and

refitting the corresponding pathway resulted in significant

statistical differences (Table 2). Nevertheless, the general tree,

which has 12 parameters (4 proliferation and 8 differentiation

Figure 2. Application of the Framework to

Barcoded Multipotent Progenitors Data

(A) For one representative mouse, the heatmap

shows the binarized output of individual barcoded

multipotent progenitors (LMPP in the rows) to

the three different cell types (in the columns). The

clustering is done using complete linkage and

Manhattan distance. Red indicates the presence of

the barcode in the cell type and black its absence.

(B) Proportions of progenitors in each of the seven

possible combinations of cell types for each of the

four mice (with, respectively, 292, 273, 244, and

169 individual barcoded LMPPs).

(C) Sameas (B) but for the pooled data from the four

mice, for the maximum-likelihood fit values of the

classical tree and the equal loss of potential (ELP)

model. Using a multinomial test, the best-fit clas-

sical tree is rejected (p = 10�10), but not the ELP

model (p = 1). The 95%confidence intervals, based

onanormal approximation, areshownaserror bars.

probabilities), is overparameterized, with

several equally good combinations found

during fitting. Consequently, we looked

for a biologically plausible alternative that includes all the links

but reduces the number of parameters.

Equal Loss of Potential
Several aspects of hematopoietic differentiation have already

been modeled using branching processes, such as self-renewal

of stem cells (Till et al., 1964; Nakahata et al., 1982; Macken and

Perelson, 1988) and proliferation and differentiation of MPPs

(Tsuji and Nakahata, 1989; Kurnit et al., 1985), although not for

the purpose of lineage pathway identification. While studying

hematopiesis with in vitro assays, Ogawa and coworkers

(Ogawa et al., 1983; Tsuji and Nakahata, 1989) proposed a

model where each cell loses each potential with a fixed probabil-

ity, irrespective of its current cell type. Based on that intuitive

biological principle, we developed a parameterization of the

general tree, which we call the equal loss of potential (ELP),

that is suitable for the additional difficulties of binarized in vivo

cellular barcoding data where proliferation is not directly

observed and proliferation rates of different cell types are al-

lowed to be distinct.

In the ELP model, the lineage pathway retains all of the tran-

sitions of the general model (Figure 1B) but strictly couples the

transition probabilities by insisting that the probability of losing

a potential to produce a certain cell type (M, B, or D) remains

proportionally equal at every step of differentiation (Figure 3A;

Experimental Procedures). The number of parameters is thus

reduced to seven: four division probabilities and three loss-of-

potentiality rates. The fit obtained from this model didn’t

show significant differences with the data (Figure 2C; Table 1;

Table S1) and is not rejected with a multinomial test. Interest-

ingly, the by-far most probable paths obtained from the ELP

fit, starting from MDB cells, are to the lymphoid (DB) and

myeloid (MD) branches, drawing a lineage pathway whose

main initial routes are akin to those of the classical tree
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(Figure 3B). The primary quantitative differences between the

best-fit classical tree and the best ELP model are the addition

of a rare MB progenitor and the infrequent loss of two potenti-

alities simultaneously. The small contribution of the additional

transitions is a possible explanation for their rareness in the

data that led to the classical model.

Simulation of Cellular Barcoding Data
As is typically the case with cellular barcoding data, we have no

time-course data and so no estimates of cell lifetimes. Monte

Carlo simulation of the best-fit lineage pathway showed that

the number of rounds of proliferation until barcoded LMPPs pro-

duce their committed cell types is of the order of 20, a value that

would allow the process to be completed before the mice were

sacrificed after 2 weeks. An example of the generational time

course of one such simulated experiment is shown in (Figure 3C).

The stochastic nature of the framework leads to significant het-

erogeneity in repeated simulations with a single LMPP, but pop-

ulation level consistency through the law of large numbers.

To test if the 978 barcodes are sufficient for the population-

level consistency, we generated simulated sets of four mice us-

ing the best-fit equal loss of potential model, mimicking the

experimental data. These simulated data are statistically indis-

tinguishable from their experimental counterpart (Figure 3D).

The ELP model was fitted to these simulated data and the

best-fit parameters were consistent across fits, giving an indica-

tion of their robustness (Figure S3). We repeated this procedure

with different numbers of recovered barcodes (Figure S3). The

results indicate that for the seven categories of barcoded LMPPs

outcome, recovery of approximately 500 barcodes is sufficient

to build a clear statistical image in the quantitative framework.

DISCUSSION

The application of our quantitative framework to data from

the hematopoietic development reveals surprising features that

result in experimentally testable predictions. The statistical con-

sistency that was found acrossmice, despite per-progenitor het-

erogeneity, suggests that the lineage pathway is a robust feature

(Figure 2B). Repeating these experiments in other mouse strains

would aid in the identification of genetic sources of variability

in hematopoietic development. If the distributions between the

categories of progenitors are statistically indistinguishable in

distinct strains, then it would suggest that much of the lineage

pathway is determined from conserved or intrinsic properties

of the progenitors and not heavily influenced by the environment.

If, instead, the distribution is inconsistent across mouse strains

but identical within them, then this would aid in the identification

of significant fate factors. These perturbing factors would need

to be described and characterized and would inform further

experimentation.

Lineage pathway inference establishes that additional links

beyond those in the classical model are necessary to explain

the data from Naik et al. (2013). Due to the prevalence of sin-

gle-outcome dendritic cell progenitors in Naik et al. (2013), we

previously deduced that dendritic cells form a separate lineage.

Results from the quantitative framework suggest that many of

the single-outcome dendritic cell progenitors arise through inter-

mediate MPPs (MD or DB) that only give rise to dendritic cells.

Motivated by a biologically meaningful process, the equal loss

of potential at every step, we propose a hematopoietic lineage

pathway that includes all possible links. Note that the best-

fit pathway subject to that constraint possesses the strong

myeloid-lymphoid split of the classical model but with essential,

albeit less frequently observed, links that could have proved diffi-

cult to observe in experiments on populations of cells.

Even though the ELP model gives results in accordance with

the cellular barcoding data, one cannot deduce that proliferation

and differentiation are genuine stochastic processes, because

the results from the ELP model can be interpreted in at least

two ways. If the model reflects truly stochastic proliferation

and differentiation, then it predicts that all the intermediate cell

states of differentiation described in the general tree should be

identifiable downstream of LMPPs. The identification of single-

outcome progenitors for the lymphoid lineage in the population

of MPPs (Medina et al., 2001; Lai et al., 2005) is consistent

with this prediction. Other types of progenitors that derive

Table 2. Multinomial Test Result for the Pathway with Each

Single Link Removed

Link p Value Likelihood Ratio

pMDB 0 infinity

pMDB/M 7.5 3 10�11 58.89

pMDB/D 7.5 3 10�11 58.89

pMDB/B 7.5 3 10�11 58.89

pMDB/MD 0 118.1

pMDB/MB 7.5 3 10�11 58.89

pMDB/DB 0 91.36

pMD 0 118.1

pMB 7.5 3 10�11 58.89

pDB 0 91.36

pMD/M 0 117.9

pMD/D 0 117.9

pMB/M 7.5 3 10�11 58.89

pMB/B 7.5 3 10�11 58.89

pDB/D 0 89.56

pDB/B 0 90.81

Table 1. Multinomial Test Result for the Data and the Different

Model Tested

Mouse Multinomial

Multinomial with

5% CIs Holm-

Bonferroni

Correction

Classical

Tree

General

Tree

ELP

Model

Pooled

mice

NA 7.5 3 10�11 1 1

Mouse 1 0.19 0.02 0.0008 0.19 0.19

Mouse 2 0.71 0.05 0.0399 0.71 0.70

Mouse 3 0.53 0.03 0.0280 0.53 0.53

Mouse 4 0.04 0.01 6 3 10�7 0.04 0.04

NA, not applicable.
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directly from MPPs, such as single-outcome dendritic cells and

bioutcome MB progenitors, could then also be identified. If

instead the ELP were to encapsulate lineage priming in the initial

barcoded cohort that is already present before major clonal

expansion, then the model predicts the frequency of occurrence

of each unidentified primed state. Another way to test the ELP

model further would be to increase the number of cell types

recovered, for example by adding erythrocytes. One could

then reuse the framework to determine whether the extended

data are still consistent with the ELP model.

Although the application of our framework to barcoded he-

matopoietic MPPs demonstrates the method’s utility and power,

it is suitable for the study of any single-cell lineage tracing meth-

odology, from multipotent, transient, proliferating, and differenti-

ating cells. Our framework may prove instrumental for lineage

pathway inference in other systems of tissue development, such

as those found in the development of the breast and intestine

in homeostasis or cancer (Barker et al., 2008; Visvader, 2009).

EXPERIMENTAL PROCEDURES

Introduction

The framework is suitable for initially multipotent cells that have any finite num-

ber of potential fates, but for clarity we present it for three final fates. This

setting reveals all of the complexity of the approach while being sufficient for

the analysis of the experimental data described in the main text.

Consider a cohort of initially multipotent cells that can produce cells of type

M, D, and B (shorthand for myeloid, dendritic, and B cells). Each initial cell is of

type MDB, indicating it has all three potentials, whereas subsequent cells can

be of type MDB, MD, MB, DB, M, D, or B. For example, a cell of type MD could

produce cells of types M and D but has lost the B potential. A barcode initially

placed in an MDB cell can ultimately be found in one of seven combinations:

cells of only one type (M, B, D), cells of two types (M+B, M+D, D+ B), or cells

of all three types (M+B+D). For the application to hematopoiesis, because the

mice have been irradiated and are being reconstituted, we assume that cells

proliferate and differentiate but do not die before becoming final cell types.

For alternate applications, one can readily include an additional state corre-

sponding to dead cells.

Overview of the Stochastic Model

As depicted in Figure 1B, the general tree allows the loss of any number or

combination of potentials at any stage. For example, a cell of type MD can

become a cell of type M or D. Starting with an initial cell of type MDB, letting

NM, ND, and NB denote the number of offspring of each type produced by

that cell, we are interested in knowing properties of the joint probability

mass function P(NM = m, ND = d, NB = b) for all m, d, b in {0,1,2,...}. For any

parameterization of the general tree, Equation S2 in Supplemental Experi-

mental Procedures identifies an explicit expression for the Laplace transform

of this probability mass function, its probability-generating function (PGF):

9ðsM; sD; sBÞ=
X

m;d;b

smM sdD sbB PðNM =m; ND =d; NB =bÞ;

(Equation 1)

where sM, sD, and sB are elements of the real line. From this, we deduce explicit

expressions for the likelihood that a given barcode appears in cells of type M,

D, B, M+D, M+B, D+B, or M+D+B, which is crucial in enabling us to find the

parameters that provide the best fit to data.

Maximum-Likelihood Fitting Procedure

Denote the vector of 12 transition probabilities of the model by

p= ðpMDB; pMD; pMB; pDB; pMDB/MD; pMDB/MB; pMDB/DB;

pMDB/M; pMDB/D; pMDB/B; pMD/M; pMB/B; pDB/DÞ:

Using the expressions for the probabilities of barcoded outcomes in

Table S2 and the function fmincon from the Optimization Toolbox of Matlab

R2011a, we determine the maximum likelihood parameters of the model by

solving the following optimization problem

pmax = arg maxpðnM+D+B log pM+D+BðpÞ+ nM+D log pM+DðpÞ
+ nM+B log pM+BðpÞ+ nD+B log pD+BðpÞ
+ nM log pMðpÞ+ nD log pDðpÞ+ nB log pBðpÞÞ;

(Equation 2)

where nM+D+B is the number of barcodes observed to produce M+D+B and

pM+D+B(p) is the probability that, given the lineage pathway is parameterized

with p, a barcode results in cells of all three types, and so forth for the other six

potential outcomes (see Table S2). In this fitting procedure, we can restrict to

A B

C D

Figure 3. The Equal Loss of Potential Model

(A) The equal loss of potential (ELP) model has all of

the links of the general model, but its transition

probabilities are constrained: the probability of

losing a potential to produce a certain cell type

(M, red; B, blue; or D, green) remains proportionally

equal at every step of differentiation, which is illus-

trated by use of the same color. The probability to

lose two potentials at the same time is the product of

the probability of losing each of the potentials.

(B) The best-fit value of the probabilities computed

from the seven parameters of the ELP model.

(C) Using the best-fit values from (B), a mouse

with 300 barcoded MDB cells was simulated. The

number of barcodes at each stage of the pathway at

each round of division (generation) is shown.

(D) Similar to Figure 2B, the proportions of pro-

genitors in each of the seven possible combinations

of cell type are shown for four simulated mice with

the same number of individual barcoded pro-

genitors detected (292, 273, 244 and 169 respec-

tively). Standard deviations are shown as error bars.

These simulated mice are statistically consistent

with the experimental mice, indicating the suffi-

ciency of the data.

622 Cell Reports 6, 617–624, February 27, 2014 ª2014 The Authors



any pathway by insisting that the probability of disallowed transitions are set to

zero.

Evaluating Fits via a Multinomial Test

Having identified the best-fit parameters for a given pathway, pmax, in Equation

2, we use a consistent multinomial test based on a log likelihood ratio to deter-

mine whether the pathway is inconsistent with the data. Namely, letting

n= nM+D+B + nM+D + nM+B + nD+B + nM + nD + nB

be the total number of barcodes recovered, we evaluate twice the log likeli-

hood ratio,

2ðnM+D+B=n logðnM+D+B=ðn pM+D+BðpmaxÞÞÞ
+ nM+D=n logðnM+D=ðn pM+DðpmaxÞÞÞ
+ nM+B=n logðnM+B=ðn pM+BðpmaxÞÞÞ
+ nD+B=n logðnD+B=ðn pD+BðpmaxÞÞÞ
+ nM=n logðnM=ðn pMðpmaxÞÞÞ
+ nD=n logðnD=ðn pDðpmaxÞÞÞ+ nB=n logðnB=ðn pBðpmaxÞÞÞÞ;

where the p are the probabilities in Table S2 for the best-fit parameters deter-

mined from Equation 2. For a sufficiently large number of recovered barcodes,

n, because the model has seven mutually exclusive potential outcomes, we

use a c2 test with six degrees of freedom. Note that the maximum likelihood

fit to the data minimizes this c2 value, so that the best-fit parameter for a given

pathway structure is the one that minimizes the likelihood we will reject the

pathway given the data.

The ELP Model

The ELP model retains all links of the general tree but reduces the number of

parameters from 12 to seven by strictly coupling transition probabilities

through a biologically motivated means. We assume that irrespective of

current cell type there is a rate of loss of each of the three potentialities a =

(aM, aD, aB), which are all nonnegative real numbers. The transition probabili-

ties of the models are written in terms of these so that, for example, the

probability that an MDB cell loses its B potential is

pMDB/MDðaÞ= aB=ðaM +aD + aB +aMaD +aMaB +aDaBÞ;
whereas the probability that an MDB cell loses both its D and B potentials is

pMDB/MðaÞ= ðaB +aDÞ=ðaM +aD + aB +aMaD +aMaB +aDaBÞ
and the probability that an MD cell loses both its D potential is

pMD/MðaÞ=aD=ðaM +aDÞ:

These rules are consistently applied across all cell types and correspond to

a notion of approximately autonomous processes underway in each cell lead-

ing to the loss of each potential.

Simulation

Given the best-fit ELP model, we implemented a stochastic simulation in

MATLAB that follows precisely the rules of the model. Although themathemat-

ical fits are determined by the final outcome of the proliferation and differenti-

ation processes, the simulation enables us to investigate the per-generation

(i.e., per-division) transient process, giving an indication as to the consistency

of themodel time frame with the data time frame. One typical sample of the cell

types produced by 300 barcodes as a function of generation is presented in

Figure 3C, illustrating that the process completes within a biologically reason-

able number of generations.
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