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Abstract

Conditions for thermodynamic stability of asymptotically anti-de Sitter ro-
tating black holes in D-dimensions are determined. Local thermodynamic
stability requires not only positivity conditions on the specific heat and the
moment of inertia tensor but it is also necessary that the adiabatic compress-
ibility be positive. It is shown that, in the absence of a cosmological constant,
neither rotation nor charge is sufficient to ensure full local thermodynamic
stability of a black hole.

Thermodynamic stability properties of anti-de Sitter Myers-Perry black
holes are investigated for both singly spinning and multi-spinning black holes.
Simple expressions are obtained for the specific heat and moment of inertia
tensor in any dimension. An analytic expression is obtained for the boundary
of the region of parameter space in which such space-times are thermody-
namically stable.

PACS nos: 04.50.Gh; 04.60.-m; 04.70.Dy



1 Introduction

Ever since Hawking’s discovery [1] that black holes have a temperature asso-
ciated with them, and will radiate thermal energy when isolated, the fascinat-
ing topic of black hole thermodynamics has been a major focus of research.
Schwarzschild black holes have a negative specific heat and are therefore
thermodynamically unstable but, for anything other than very small mass
black holes, the life-time is so large that the black hole persists for time
scales greater than or of the order of the age of the Universe and thermo-
dynamic concepts can still be applied. It is possible to make a black hole
thermodynamically stable by introducing a negative cosmological constant
Λ and considering asymptotically anti-de Sitter (AdS) black holes, provided
the magnitude of Λ is large enough, [2].1

The specific heat for an asymptotically flat black holes can also be ren-
dered positive by rotating the black hole or by giving it an electric charge,
but this does not in itself ensure full thermodynamic stability as the moment
of inertia can, and indeed does, become negative. This phenomenon persists
to space-times of higher dimension [4]. In dimension D > 4 there is more
than one angular momentum and the moment of inertia is a tensor but this
tensor develops a negative eigenvalue in any region of parameter space for
which the corresponding specific heat is positive [4], [5].

The situation for asymptotically AdS black holes inD dimensions is some-
what different and, with the current interest in the AdS/CFT correspondence
[6], such space-times are of considerable importance. The literature here
is not as comprehensive as for the asymptotically de Sitter case, though
there has been significant progress in specific cases [7]-[10]. In this paper a
full description is given of the local thermodynamic stability properties of
asymptotically AdS black holes in any dimension. It is shown in §2 that all
isolated black holes suffer from a local thermodynamic instability unless a
negative cosmological constant is introduced. In §3 a well known class of
rotating asymptotically AdS black holes, asymptotically AdS Myers-Perry
black holes, is studied in detail and the thermodynamically stable region of
parameter space is mapped out for all space-time dimensions. Finally §4
summarises our results.

1They can also be stabilised by putting them in a finite volume cavity, [3].
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2 General criteria for stability

When a cosmological constant is present it was argued in [10] that the ADM
mass of a black hole should be viewed, in a thermodynamic context, as the
enthalpy H of the thermodynamic system, rather than the heretofore more
common interpretation of internal energy U , and this will be the philosophy
adopted here. The natural thermodynamic control parameters for the en-
thalpy are entropy S, angular momentum J , pressure P and electric charge
Q, so we write

M = H(J, S, P,Q). (1)

The thermal energy U(J, S, V,Q), which depends not only on S, J , Q but
also on the volume V , is the Legendre transform of the enthalpy

U = H − PV. (2)

There are subtleties associated with the definition of the volume of a black
hole, [11] - [14], but thermodynamically volume can be defined as the variable
thermodynamically conjugate to the pressure [10, 15],

V =
∂M

∂P

∣∣∣∣
J,S,Q

, (3)

where the pressure is produced by the cosmological constant

P = −
Λ

8π
. (4)

The introduction of a thermodynamic pressure and volume in black hole
physics has generated a lot of activity on the black hole equation of state
recently, for a review of the current situation see [16].

Local thermodynamic stability requires that the internal energy U be a
convex function [17]. Equivalently the Legendre transform of U ,

E(Ω, T, P,Φ) := U − ΩiJ
i − TS + PV − ΦQ = M − ΩiJ

i − TS − ΦQ, (5)

should be a concave function.2 We shall refer to (J i, S, V,Q) as extensive
variables and (Ωi, T, P,Φ) as intensive variables. This classification is moti-
vated by the canonical dimensions of these variables, as the dimensions of

2In D space-time dimensions there is more than one angular momentum, labelled by
the index i which runs from 1 up to N , where N is the dimension of the Cartan sub-algebra
of SO(D − 1).
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(J, S, V,Q) depend on D while those of (Ωi, T, P,Φ) do not, as shown in the
table below (with Newton’s constant and the speed of light set to unity),

Thermodynamic Variable Dimension
Mass, M D − 3
Entropy, S (area) D − 2
Angular momenta, J i D − 2
Volume, V D − 1
Electric Charge, Q D − 3
Temperature, T −1
Angular velocity, Ωi −1
Pressure, P (Λ) −2
Electric potential, Φ 0

Let

xA =
∂U

∂XA
= (Ωi, T,−P,Φ), (6)

with A = 1, . . . , N + 3, denote the intensive variables and

XA = −
∂E

∂xA

= (J i, S, V,Q) (7)

denote the extensive variables.
In the grand canonical ensemble the volume is usually kept fixed and the

other thermodynamic control parameters are the intensive ones. In ordinary
thermodynamics scaling arguments would imply that Legendre transforming
to make all control parameters intensive results in a vanishing thermody-
namic potential, E = 0, [17] (this is essentially the content of the Gibbs-
Duhem relation). For black holes however this is not the case and E(xA) is
not trivial, in fact E is related to the Euclidean action IE by [18]

E = TIE. (8)

We shall call the ensemble with thermodynamic potential E the extended
canonical ensemble and E the extended free energy.

For asymptotically flat black holes P = 0 and the grand canonical and
extended canonical ensembles coincide, but for asymptotically AdS black
holes they do not. (The relation between the microcanonical, the canonical
and the grand canonical ensembles for asymptotically flat black holes was
elucidated in [5].)
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A full analysis of local thermodynamic stability requires determining the
region of parameter space in which all of the the eigenvalues of the Hessians,
either

WAB =
∂2U

∂XA∂XB
(9)

or

KAB = −
∂2E

∂xA∂xB

, (10)

are positive. It does not matter which one is used, since it is a standard fact
of Legendre transforms that K = W−1, we shall start by focusing on WAB.

It was shown in [4] that all asymptotically flat, electrically neutral black
holes are unstable. We present here a different derivation of this result which
has the advantage of generalising it to include electric charge. Using the
above dimensions in the Smarr relation [10, 19] gives

(D − 3)M = (D − 2)Ω.J+ (D − 2)TS − 2PV + (D − 3)QΦ. (11)

With M = U + PV this can be re-arranged, for D ≥ 4, as

U =
(D − 2)

(D − 3)
Ω.J+

(D − 2)

(D − 3)
TS −

(D − 1)

(D − 3)
PV +QΦ

=
∑

B

cBX
BxB, (12)

with cA the appropriate D-dependent constants. Differentiating this

xA =
∂U

∂XA
= cAxA +

∑

B

cBWABX
B

⇒
∑

B

WAB

(
cBX

B
)

= (1− cA)xA, (13)

(there is no sum over A here, for the rest of this section we suppress the
summation convention and explicitly show all summations). The vector on
X-space with components DA = cAX

A essentially represents the response of
the system to a re-scaling. Using (13) we can construct the quadratic form

∑

A,B

WABD
ADB =

∑

A

cA(1− cA)xAX
A

=
(D − 2)

(D − 3)2

(
−Ω.J− TS + 2

(D − 1)

(D − 2)
PV

)
. (14)
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Clearly
∑

AB WABD
ADB < 0 if P = 0, heralding a thermodynamic instabil-

ity for any asymptotically flat black hole in D > 3 space-time dimensions,
regardless of charge or rotation. However, provided V > 0, a positive P
(negative Λ) can remove this particular instability if the PV term is of suf-
ficient magnitude to outweigh the TS and Ω.J terms on the right-hand side
of (14).3 This is a very powerful result, it shows that the only way of mak-
ing an isolated black hole locally thermodynamical stable, without imposing
constraints by fixing variables, is to introduce a positive pressure. Rotation
and/or electric charge alone cannot do the job unless they are fixed and not
allowed to vary,4 but with no constraints there cannot be local thermody-
namical stability unless P > 0. The case P = Q = 0 was explored in [5],
and the P > 0 scenario will be analysed in some detail in this work, but still
with Q = 0.

It is shown in appendix A that, for Q = 0, the mathematical require-
ment of positivity of W is equivalent to following three perfectly reasonable
physical statements (assuming that the temperature and the thermodynamic
volume are positive):

• the specific heat at constant Ωi is positive,

CΩ = T
∂S

∂T

∣∣∣∣
Ω,P

> 0; (15)

• the isentropic moment of inertia tensor

Iij =
∂J i

∂Ωj

∣∣∣∣
S,P

=
∂J j

∂Ωi

∣∣∣∣
S,P

(16)

is a positive matrix;

3The quadratic form WAB can be interpreted as a metric on configuration space, the
Ruppeiner metric, [20], and stability requires that this metric be positive definite, or
at least non-negative. In ordinary thermodynamics, the Gibbs-Duhem relation implies
cA = 1, for all A, and DA is always a null vector, indicating a direction of neutral stability.

4Stabilising the black hole by fixing J and/orQ can lead to very interesting phenomena,
for example there is a phase transition between large and small black holes when Q is fixed
[21] or when J is fixed [22]. The equation of state leads to van der Waals type critical
points, with mean field exponents [23, 24] and there can even be a triple point [25] and
re-entrant phase transitions [26].
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• the adiabatic compressibility is positive,

κ = −
1

V

∂V

∂P

∣∣∣∣
Ji,S

> 0. (17)

All perfectly reasonable physical requirements.
In the next section we shall examine these conditions in the specific case of

asymptotically AdS Myers-Perry black holes in D-dimensions and determine
the region of parameter space for which these space-times are thermodynam-
ically stable.

3 Asymptotically anti-de Sitter Myers-Perry

black holes.

3.1 The metric and thermodynamic variables

Rotating black holes in D-dimensions must be treated slightly differently for
even and odd D because the rotation group SO(D− 1), acting on the event
horizon which is assumed to have the topology of a (D − 2)-dimensional
sphere, has different characterisations of angular momenta in the even and
odd dimensional cases. The Cartan sub-algebra has dimension D−2

2
for even

D and D−1
2

for odd D so a general state of rotation is specified by D−2
2

independent angular momenta in even D and D−1
2

in odd D. Let N =
⌊
D−1
2

⌋
,

the integral part of D−1
2

, be the dimension of the Cartan sub-algebra of
SO(D−1), then there are N independent angular momenta J i, i = 1, . . . , N .

It is notationally convenient to define ǫ = 1+(−1)D

2
, so ǫ = 1 for even D and

ǫ = 0 for odd D, and then

N =
D − 1− ǫ

2
. (18)

In this notation the unit (D− 2)-dimensional sphere can be described in
terms of Cartesian co-ordinates xα in RD−1 by

D−1∑

α=1

x
2
α = 1, (19)
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and we write this as
N∑

i=1

ρ2i + ǫy2 = 1, (20)

where x2i−1 + ix2i = ρie
iφi, i = 1, . . . , N , are complex co-ordinates for both

the even and odd cases while y = xD−1 is only necessary for even D. ρi, φi

and y are then (over complete) co-ordinates that can be used to parameterise
the (D − 2)-sphere and, for the black hole, J i are angular momenta in the
(x2i−1, x2i)-plane.

The first rotating black solutions to Einstein’s equations in dimension
greater than four were the asymptotically flat solutions of Myers and Perry
[27]. Rotating black holes in 5-dimensions with a cosmological constant, Λ,
were constructed in [28] and the generalisation to the D-dimensional metric
was found in [29]: these are solutions of Einstein’s equations with Ricci tensor

Rµν =
2Λ

(D − 2)
gµν . (21)

We shall focus on Λ ≤ 0 here, as the thermodynamics is then better under-
stood, and for notational convenience we define

λ = −
2Λ

(D − 1)(D − 2)
≥ 0. (22)

The line element in [29] can then be expressed, in Boyer-Linquist co-ordinates,
as5

ds2 = −W (1 + λr2)dt2 +
2µ

U

(
Wdt−

N∑

i=1

aiρ
2
i dφi

Ξi

)2

+

(
U

Z − 2µ

)
dr2 + ǫ r2dy2 +

N∑

i=1

(
r2 + a2i

Ξi

)
(dρ2i + ρ2i dφ

2
i ) (23)

−
λ

W (1 + λr2)

(
N∑

i=1

(
r2 + a2i

Ξi

)
ρidρi + ǫr2ydy

)2

,

where
Ξi = 1− λa2i (24)

5The form given here differs slightly from that in [29] in that our ordinates, t and φi,
are related to those of [29], τ and ϕi, by dτ = dt and dφi = dϕi − λaidt.
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and the functions W , Z and U are

W = ǫy2 +

N∑

i=1

ρ2i
Ξi

Z =
(1 + λr2)

r2−ǫ

N∏

i=1

(r2 + a2i ) (25)

U =
Z

1 + λr2

(
1−

N∑

i=1

a2i ρ
2
i

r2 + a2i

)
.

The ai are rotation parameters in the (x2i−1, x2i)-plane, restricted to

a2i < 1/λ, (26)

and µ is a mass parameter.
Many of the properties of the space-time with line element (24) were

described in [29]. There is an event horizon at rh, the largest root of Z−2µ =
0, so

µ =
(1 + λr2h)

2r2−ǫ
h

N∏

i=1

(r2h + a2i ), (27)

with area

Ah =
̟

r1−ǫ
h

N∏

i=1

r2h + a2i
Ξi

, (28)

where ̟ is is the volume of the round unit (D − 2)-sphere,

̟ =
2π

(D−1)
2

Γ
(
D−1
2

) . (29)

The Bekenstein-Hawking entropy is

S =
̟

4r1−ǫ
h

N∏

i=1

r2h + a2i
Ξi

(30)

and the Hawking temperature is, with h̄ = 1,

T =
rh
2π

(1 + λr2h)

N∑

i=1

1

r2h + a2i
+

(2− ǫ)(ǫλr2h − 1)

4πrh
. (31)
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The angular momenta and the ADM mass, M , of the black hole are
related to the metric parameters via

Ji =
µ̟ai

4πΞi

∏
j Ξj

, (32)

M =
µ̟

8π
∏

j Ξj

(
D − 2 + 2λ

N∑

i=1

a2i
Ξi

)
(33)

=
S

4πrh
(D − 2)(1 + λr2h) + λ

N∑

i=1

Jiai,

while the angular velocities are

Ωi =
(1 + λr2h)ai
(r2h + a2i )

. (34)

3.2 Thermodynamic potentials

Following [10] the ADM mass of the black hole (33) is identified with the
enthalpy

M = H(J, S, P ). (35)

The Legendre transform to purely intensive variables, the extended free en-
ergy

E(Ω, T, P ) = H − TS −Ω.J = U + PV − TS −Ω.J, (36)

then has a simple form for asymptotically AdS Myers-Perry black holes.

E =
S

4πrh
(1− λr2h). (37)

The observation that this is negative for λr2h > 1, and hence less than the
corresponding potential for pure AdS space-time with S = 0 and no black
hole, is the origin of the Hawking-Page phase transition [2].

Using the Smarr relation (11) one finds that, for any electrically neutral
black hole, the internal energy, U = M − PV , is related to the Euclidean
action E = M − TS −Ω.J

U =
(D − 2)E +M

2
, (38)

and this is easily checked explicitly for AdS Myers-Perry solutions.
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3.3 Thermodynamic volume

The thermodynamic volume, V , is defined as the variable thermodynamically
conjugate to P ,

V =
∂M

∂P

∣∣∣∣
S,J

=
16π

(D − 1)(D − 2)

∂M

∂λ

∣∣∣∣
S,J

. (39)

This was evaluated for electrically neutral asymptotically AdS Myers-Perry
black holes in [31], using the Smarr relation (11) with Q = 0, and the expres-
sions given in §3.1 for M , T , S, Ωi and J i. Alternatively one can use (39)
directly, [5]. In either case the result is

V =
rhAh

D − 1

{
1 +

(1 + λr2h)

(D − 2)r2h

N∑

i=1

a2i
Ξi

}
(40)

=
rhAh

D − 1
+

8π

(D − 2)(D − 1)

N∑

i=1

aiJi.

Clearly V > 0, since ai and J i are always of the same sign.
With the substitution λ → −g2 (40) also agrees with the black hole ther-

modynamic volume quoted in [32] for Λ > 0, again determined by assuming
the Smarr relation holds.

3.4 Temperature

To discuss the various other thermodynamic quantities it will prove useful to
work with dimensionless variables

ãi =
ai
rh

and λ̃ = λr2h, (41)

in terms of which the Hawking temperature (31) can be re-expressed as

T =
D − 3− 2Σ1 + λ̃(D − 1− 2Σ1)

4πrh
, (42)

where Σ1 :=
∑N

i=1
ã2i

1+ã2i
. There is of course a restriction on ãi and λ̃ that

defines the region of parameter space where T > 0. In general T will vanish
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on a N -dimensional hypersurface in (ãi, λ̃)-space given by the zero locus of
the polynomial

(D−3)

N∏

i=1

(1+ã2i )−2

N∑

i=1

ã2i
∏

j 6=i

(1+ã2j)+λ̃
{
(D−1)

N∏

i=1

(1+ã2i )−2

N∑

i=1

ã2i
∏

j 6=i

(1+ã2j)
}
.

(43)
Rather than performing the most general analysis, which would get in-

creasingly involved for larger and larger D, the discussion here will be limited
to special configurations in which n of the ãi are non-zero and equal and the
remaining ãi vanish, this will prove sufficient to gain a good understanding
of the thermodynamics. So we choose

ã1 = · · · = ãn = ã, ãn+1 = · · · = ãN = 0. (44)

The case n = 1 is called singly-spinning and the cases n > 1 will be called
multi-spinning.

In these configurations, the T = 0 hypersurface is given by

D − 3 + (D − 3− 2n)ã2 +
(
D − 1 + (D − 1− 2n)ã2

)
λ̃ = 0 (45)

on which

ã2 =
D − 3 + (D − 1)λ̃

2n− (D − 3) +
(
2n− (D − 1)

)
λ̃
. (46)

We thus see that demanding positivity of T puts the following restrictions
on ã:

1. If n ≤ D−3
2

, no restriction on ã2.

2. Even D, if n = N = D−2
2

and λ̃ < 1, then ã2 < D−3+(D−1)λ̃

1−λ̃
.

3. Odd D, if n = N = D−1
2

, ã2 < D−3+(D−1)λ̃
2

.

Thus positivity of T is only an issue for the configurations (44) when the
black hole is spinning in all possible planes and n = N .
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3.5 Specific Heat

CΩ can be evaluated straightforwardly and the details are left to appendix
B. Here we just quote the result,

CΩ = −
4πrhTS

(
D − 2 + 2Σ1

)
(
D − 3 + 2Σ1 − λ̃(D − 1 + 2Σ1)

) , (47)

where Σ1 :=
∑p

i=1
ã2i

1−ã2i
. In asymptotically flat Myers-Perry space times this

reduces to the result

CΩ = −
16π2r2hMT (D − 2 + 2Σ1)

(D − 2)(D − 3 + 2Σ1)
,

in [5].
Local thermodynamic stability requires that CΩ be positive and this only

holds in a restricted region of the (N+1)-dimensional parameter space (ãi, λ̃).
Assuming that the metric parameter µ is chosen so that there is a black hole
and rh > 0, and that the condition (26) is satisfied so that S > 0, then, from
(47),

CΩ

S
≥ 0 ⇔

(
D − 3− 2Σ1 + λ̃(D − 1− 2Σ1)

)(
D − 2 + 2Σ1

)
(
D − 3 + 2Σ1 − λ̃(D − 1 + 2Σ1)

) ≤ 0. (48)

The boundary between regions of opposite sign is the locus of points where
either the numerator is zero or the denominator vanishes and CΩ has a pole.
Introducing the notation

CD,s = (D − s)

N∏

i

(1 + ã2i )− 2

N∑

k=1

(
ã2k

N∏

i 6=k

(1 + ã2i )

)

CD,s = (D − s)
N∏

i

(1− ã2i ) + 2
N∑

k=1

(
ã2k

N∏

i 6=k

(1− ã2i )

)
, (49)

the zeros of CΩ lie on hypersurfaces characterised by

CD,2 = 0, (50)

or
CD,3 + λ̃ CD,1 = 0 (51)
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(the latter is the T = 0 hypersurface). There are poles in CΩ on the hyper-
surface characterised by

CD,3 − λ̃ CD,1 = 0. (52)

It is curious that the zeros of T and the poles of CΩ are characterised by the
same polynomial but with ã2 → −ã2 and λ̃ → −λ̃.

The relevant surfaces for D = 5 are shown in figure 1.
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1 2
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2

-3
0

-2

a2

-1 0

0.5

1 2
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Figure 1: Surfaces on which CΩ changes sign in 5-dimensions. The left-hand
figure shows the locus of zeros and the right hand figure the locus of poles.
The left-hand cylinder lies everywhere outside the central pillar in the right-
hand figure and everywhere inside the four wings of the right-hand figure,
touching all the right-hand figure surfaces tangentially along the vertical lines
ã21 = ã22 = 1. CΩ is negative at ã1 = ã2 = λ̃ = 0 and changes sign every time
one of these surfaces is crossed.

For the symmetric configurations (44)

Σ1 =
nã2

1− ã2
(53)

and, in the region where T > 0, (48) requires

D − 2− (D − 2− 2n)ã2

D − 3− (D − 1)λ̃− [(D − 3− 2n)− (D − 1− 2n)λ̃]ã2
< 0. (54)
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CΩ can change sign either by passing through zero when the numerator van-
ishes, on the λ̃-independent hypersurface

ã2 =
D − 2

D − 2− 2n
, (55)

or by passing through a pole when the denominator vanishes, on the hyper-
surface

ã2 =
D − 3− (D − 1)λ̃

D − 3− 2n− (D − 1− 2n)λ̃
. (56)

There are no singularities in the range

D − 3− 2n

D − 1− 2n
< λ̃ <

D − 3

D − 1
(57)

The regions in which CΩ is positive are shown in figure 2. For singly spinning
black holes, n = 1, thermodynamic stability was examined in [9] and the
upper left figure is essentially the same as figure 2 in that reference, expressed
in slightly different variables. The analysis here extends this to multiply
spinning black holes.

For ãi = 0 (or equivalently n = 0) a negative cosmological constant

of sufficient magnitude, λ̃ > D−3
D−1

, can render CΩ positive, but when ã2 is

increased the value of λ̃ necessary to ensure CΩ > 0 must also increase at
first, until ã2 = D−2

D−2−2n
(for n ≤ D−3

2
) at which point CΩ becomes positive

even for λ̃ = 0.
The symmetric configurations (44) do not reveal all of the structure, how-

ever. In D = 5, for example, in addition to the singular branch shown in
the bottom right panel of figure 2 the denominator of CΩ also vanishes for
ã21 = ã22 = 1 for any λ̃, because there is a factor (1 − ã2) in the polynomial
(52). This is cancelled by a similar factor in the numerator of CΩ (55) and

CΩ is in fact finite on ã21 = ã22 = 1, for any λ̃ 6= 1. Away from the symmet-

ric plane ã1 = ã2 however the singular surface bifurcates and, if λ̃ > 1
2
(or,

more generally, λ̃ > D−3
D−1

), there are more regions where CΩ changes sign. In

D = 5, if λ̃ > 1
2
is fixed and we come out from ã1 = ã2 = 0 in a general direc-

tion in the ã1 − ã2 plane, we start with CΩ > 0, pass through a singularity,
then a zero and then a second singularity, so CΩ changes sign three times
and eventually emerges with a negative sign. In the direction ã1 = ã2 = ã
however one of the singular surfaces and the zero surface meet so CΩ only
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Figure 2: Regions in the ã2 − λ̃ plane where CΩ > 0 are coloured yellow,
regions where it is negative are blue (the generic case is the top-left figure,
the other three panels are for special values of n, the black regions are where
T < 0). CΩ is zero on the horizontal lines in the upper two figures and
diverges on the red curves. The geometrical constraint (26) requires that

only the area below the hyperbola λ̃ ã2 = 1 (magenta) is allowed.

changes sign once, going straight from positive to negative. The full phase
diagram is therefore more involved than shown in figure 2. However when
the restrictions arising from positivity of the moment of inertia tensor con-
sidered in the next subsection are folded into the analysis, the symmetric
configurations (44) still prove to be sufficient for a good understanding of
the topology of the local thermodynamically stable region of phase space.
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3.6 Isentropic moment of Inertia

The isentropic moment of inertia tensor is defined as Iij =
(

∂Ji

∂Ωj

)
S,P

, which

is derived in appendix C. It has the form

Iij =
rhS

2πΞiΞj

(1 + ã2i )(1 + ã2j )

(1− ã2i )(1− ã2j)

{
Ξi(1− ã2i )δ

ij −
2(1 + λ̃)ãiãj

(D − 2 + 2Σ1)

}
, (58)

where
Ξi := 1 + λa2i . (59)

The determinant of I is

det I =

(
rhS

2π

)N

(
D − 2− 2λ̃

∑
k

ã2
k

Ξk

)

(
D − 2 + 2Σ1

)
N∏

i=1

(
1 + ã2i

)2
Ξi(

1− ã2i
)
Ξ2
i

. (60)

Hence at least one eigenvalue has a pole on the hypersurface (55), where CΩ

has a zero, and there are also possible poles whenever any ã2i = 1 or λ̃ã2i = 1,
though these last are never really achieved due to the constraint (26). The
same constraint shows that the determinant never vanishes, since it implies

that
∑

k

λ̃ã2
k

Ξk
< N

2
so

D − 2− 2λ̃
∑

k

ã2k
Ξk

> D − 2−N > 0. (61)

The location of the poles of det I are determined purely by ãi and are inde-
pendent of λ̃, and these have already been studied for λ̃ = 0 in [5].

The eigenvalues do however depend on λ̃, even thought the locus of poles
of det I does not. In the symmetric configurations of the from (44) the
moment of inertia tensor (58) has three distinct eigenvalues, stripping off the
positive pre-factor rhS

2π
these are

λ1 =
(1 + ã2)2

(
D − 2 + (D − 2− 2n)λ̃ã2

)

Ξ2
(
D − 2− (D − 2− 2n)ã2

)

λ2 =
(1 + λ̃ã2)(1 + ã2)2

Ξ2(1− ã2)
, (62)

λ3 = 1,
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with λ2 being (n − 1)-times degenerate (and hence only present for n ≥ 2)
and λ3 being (N − n)-times degenerate (and only present for n < N). Both
λ1 and λ2 are positive for small ã2, but λ2 has a pole and changes sign at
ã2 = 1 while λ1 has a pole and changes sign at ã2 = D−2

D−2−2n
.

Hence the moment of inertia tensor is positive if and only if one of the
following conditions holds:

1. n = 0;

2. n = 1 and 0 ≤ ã2 < D−2
D−4

(this excludes the region above the horizontal
lines in the upper two plots in figure 2);

3. 2 ≤ n ≤ N , positivity of λ2 requires 0 ≤ ã2 < 1;

For all 1 ≤ n ≤ N , positivity of the moment of inertia tensor combined with
positivity of CΩ effectively constrains parameter space to lie in the yellow
region below the line ã2 = 1 in figure 2.

4 Conclusions

Necessary and sufficient conditions for local thermodynamical stability of
rotating black holes in asymptotically anti-de Sitter D-dimensional space
time have been explored. In asymptotically flat space-time no amount of
rotation and/or charge can completely stabilise the system, but a positive
pressure, in the form of a negative cosmological constant can make black
holes locally thermodynamically stable.

General conditions for local thermodynamical stability of an electrically
neutral black hole are:

• the specific heat at constant Ωi and P is positive,

CΩ,P = T
∂S

∂T

∣∣∣∣
Ω,P

> 0; (63)

• the isentropic moment of inertia tensor

Iij =
∂J i

∂Ωj

∣∣∣∣
S,P

=
∂J j

∂Ωi

∣∣∣∣
S,P

(64)

is a positive N ×N matrix, where N is the rank of SO(D − 2);
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• the adiabatic compressibility is positive,

κ = −
1

V

∂V

∂P

∣∣∣∣
Ji,S

> 0. (65)

P = − Λ
8π

here is the pressure associated with the cosmological constant and
the thermodynamic volume is defined by

V =
∂H

∂P

∣∣∣∣
J,S

,

where the enthalpy H(J, S, P ) is equated with the black hole ADM mass, M .
For electrically neutral black holes there is a simple relation between the

thermal energy, U , the enthalpy, M , and the extended free energy, E , given
by equation (38).

These conditions have been analysed in detail for asymptotically AdS
Myers-Perry black holes. Given the complexity of the metric the relevant
thermodynamic quantities have remarkably simple expressions when expressed

in terms of the dimensionless variables ãi = ai

rh
and λ̃ =

2|Λ|r2
h

(D−1)(D−2)
. The ex-

tended canonical potential (the Euclidean action times the temperature) has
the very simple expression (37) in terms of the entropy.

For symmetric configurations of the form (44) the region of parameter

space (ãi, λ̃) for which such black holes are locally thermodynamically stable
is the bright yellow region in the bottom right of figure 3. For asymptot-
ically AdS Myers-Perry space-times it is already known that the adiabatic
compressibility is always positive, [33]. The singularity structure of the isen-

tropic moment of inertia is independent of λ̃, once the constraint (26) had
been taken in to account, and positivity of the eigenvalues merely demands
that ã2i < 1, except for singly spinning black holes, n = 1, in which case this
is relaxed to ã2 < D−2

D−4
(in D = 4 the isentropic moment of inertia is always

positive, though the isothermal moment of inertia is not [34]). The remain-
ing requirements for local thermodynamic stability come from demanding
positivity of the specific heat, CΩ.

When the condition for stability against Hawking-Page phase transition
are folded in, the region of stability is restricted further to the bright yellow
region in figure 3, lying to the right of λ̃ = 1.

These thermodynamic constraints must of course be supplemented by
possible further constraints required to avoid the super-radiant instability of
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Figure 3: Region of thermodynamic stability for asymptotically AdS Myers-
Perry black holes, for symmetric configurations (44) with 1 < n ≤ D−3

2
. The

thermodynamically stable region is the bright yellow region at the bottom
right-hand part of the figure of the figure: to the left of the vertical line at
λ̃ = 1 the black hole is unstable against the Hawking-Page phase transition
and the region above the hyperbola (magenta) is excluded by the geometric
constraint (26). The isentropic moment of inertia tensor develops a negative
eigenvalue above the horizontal line ã2 = 1 (green) and CΩ diverges on the
red curve. (For n = 1 the horizontal green line is moved up to the horizontal
blue line at ã2 = D−2

D−4
.) For multi-spinning black holes with n = N the region

of stability is the same, though some of the other curves change shape.

the classical solutions themselves, discussed in [9] and [35]-[37]. The super-
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radiant curve for n = 1 is Ω2λ = 1, which translates in our variables to

ã2 =
1

λ̃
or ã2 = λ̃, (66)

and the local thermodynamic stability conditions ã2 < 1/λ̃ with λ̃ > 1 ensure
that the black hole will not super-radiate.

It would be of interest to extend this analysis to include electrically
charged black holes, although from the discussion in section §2 this cannot
change the fact that such black holes are locally thermodynamically unsta-
ble for Λ = 0 when unconstrained, the Λ < 0 case would introduce another
dimension into the phase diagram. One should also not forget that the ther-
modynamic stability of various constrained ensembles would be of interest,
while there has already been a substantial amount of work on this for Q 6= 0
and J i = 0 a complete analysis including both in any D is not yet available.
The considerations here could also be applied to other rotating solutions
in higher dimensions with event horizon topologies that differ from spheres,
such as black rings and black saturns [38]-[44], although there are no exact
solutions of this form currently known in the asymptotically AdS case there
are approximate solutions in certain regimes of parameter space.

A General stability criteria

In this appendix we examine the criteria for thermodynamic stability for
electrically neutral black holes in some detail. We first show that the Hessian
(9) can be partially diagonalised by changing variables from XA = (J i, S, V ),
with A = 1, . . . , N + 2, to

XA′

= (X1, . . . , XN+1, xN+2), (67)

so, in particular, XN+2′ = xN+2 = ∂U
∂V

∣∣
Xa = −P and Xa′ = Xa for a =

1, . . . , N + 1. The stability properties can equally well be explored in these
co-ordinates: although the magnitude of the eigenvalues of the Hessian may
change under this co-ordinate transformation, the signature does not, so
WAB = ∂2U

∂XA∂XB is a positive matrix if and only if WA′B′ is, provided the
co-ordinates transformation is not singular.

Let a, b = 1, . . . N + 1 and

ξa =
∂2U

∂Xa∂XN+2
=

∂xN+2

∂Xa

∣∣∣∣
XN+2

=
∂xa

∂XN+2

∣∣∣∣
~X

, (68)
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where ~X = (X1, . . . , XN+1). Then

WAB =

(
Wab ξa
ξb WN+2,N+2

)
. (69)

Changing variables from XA to XA′

,

∂XA′

∂XB
=



δij 0 0

0t 1 0
ξj ξN+1 − ∂P

∂V

∣∣
J,S


 (70)

with i, j = 1, . . . , N and 0 an N -component column of zeros, results in

WABdX
AdXB = WA′B′dXA′

dXB′

(71)

where

WA′B′ =

(
Wab −

(
WN+2,N+2

)−1
ξaξb 0

0
(
WN+2,N+2

)−1

)
. (72)

This expression can be further simplified by noting that

Wab =
∂xb

∂Xa

∣∣∣∣
XN+2

=
∂xb

∂Xa

∣∣∣∣
xN+2

+
∂xb

∂xN+2

∣∣∣∣
~X

∂xN+2

∂Xa

∣∣∣∣
XN+2

=
∂xb

∂Xa

∣∣∣∣
xN+2

+
∂xb

∂XN+2

∣∣∣∣
~X

∂XN+2

∂xN+2

∣∣∣∣
~X

∂xN+2

∂Xa

∣∣∣∣
XN+2

=
∂xb

∂Xa

∣∣∣∣
xN+2

+
(
WN+2,N+2

)−1
ξaξb , (73)

thus

Wab −
(
WN+2,N+2

)−1
ξaξb =

∂xb

∂Xa

∣∣∣∣
xN+2

. (74)

Denote this (N + 1)× (N + 1) matrix by W̃ , with components

W̃ab =
∂xb

∂Xa

∣∣∣∣
xN+2

=
∂2H

∂Xa∂Xb

∣∣∣∣
xN+2

(75)

where H = U + PV = M is the enthalpy. Then W is partially diagonalised
in the XA′

co-ordinates

WA′B′ =

(
W̃ab 0

0
(
WN+2,N+2

)−1

)
. (76)
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Now

WN+2,N+2 = −
∂P

∂V

∣∣∣∣
Ji,S

(77)

which is related to the adiabatic compressibility

κJ,S = −
1

V

∂V

∂P

∣∣∣∣
Ji,S

(78)

by

WN+2,N+2 =
1

κJ,SV
(79)

so

WA′B′ =

(
W̃ab 0
0 κJ,SV

)
. (80)

Assuming that adiabatic compressibility and the volume are positive (which
is known to be the case for asymptotically AdS Myers-Perry black holes in
D-dimensions, [33]), the question of thermodynamic stability has now been

reduced to the question of positivity of W̃. In terms of familiar thermody-
namic quantities W̃ decomposes as

W̃ =

(
(I−1

S )ij ζi
ζj

1
βCJ,P

)
, (81)

where Iij
S = ∂Ji

∂Ωj

∣∣∣
S,P

is the isentropic moment of inertia tensor, β = 1
T
, CJ,P

is the heat capacity at constant angular momentum and pressure and

ζi =
∂T

∂J i

∣∣∣∣
S,P

=
∂Ωi

∂S

∣∣∣∣
J,P

(82)

(equation (82) is a Maxwell relation).
We can try to continue the process of partial diagonalisation and make a

further coordinate transformation to

XA′′

= (X1, X2, . . . , XN , xN+1, xN+2) (83)

with xN+1 = T , xN+2 = −P and X i′′ = X i′ = X i for i = 1, . . . , N .

∂XA′′

∂XB′
=



δij 0 0

σj σN+1 σN+2

0t 0 1


 (84)
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where

σi =
∂T

∂J i

∣∣∣∣
S,P

=
∂Ωi

∂S

∣∣∣∣
J,P

, σN+1 =
∂T

∂S

∣∣∣∣
J,P

and σN+2 = −
∂T

∂P

∣∣∣∣
J,S

.

(85)
In these variables

WA′′B′′ =



˜̃
W ij 0 0

0t βCJ,P −βCJ,P σN+2

0t −βCJ,P σN+2 κJ,SV + βCJ,P σ2
N+2


 (86)

with
˜̃
W ij = W̃ij − βCJ,P σiσj . (87)

In fact
˜̃
W is the inverse of the isothermal moment of inertia tensor, IT . To

see this note that
(
IT

)ij
=

∂J i

∂Ωj

∣∣∣∣
T,P

, (88)

and Ωi(X
A′′

) = Ωi(J, T, P ) so

W̃ij =
∂Ωi

∂J j

∣∣∣∣
S,P

=
∂Ωi

∂J j

∣∣∣∣
T,P

+
∂Ωi

∂T

∣∣∣∣
J,P

∂T

∂J i

∣∣∣∣
S,P

=
∂Ωi

∂J j

∣∣∣∣
T,P

+
∂Ωi

∂S

∣∣∣∣
J,P

∂S

∂T

∣∣∣∣
J,P

∂T

∂J i

∣∣∣∣
S,P

= (I−1
T )ij + βCJ,Pσiσj , (89)

since

CJ,P = T
∂S

∂T

∣∣∣∣
J,P

, (90)

and the result follows from (87).
So we can write (86) as

WA′′B′′ =



(I−1

T )ij 0 0

0t βCJ,P −βCJ,P σN+2

0t −βCJ,P σN+2 κJ,SV + βCJ,P σ2
N+2


 . (91)

The physical conditions for complete local thermodynamic stability are
now clear: the isothermal moment of inertia tensor IT must be a positive ma-
trix, which of course ensures that its inverse is also positive; and in addition
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the 2× 2 matrix
(

βCJ,P −βCJ,P σN+2

−βCJ,P σN+2 κJ,SV + βCJ,P σ2
N+2

)
(92)

must be positive. The determinant of this matrix is just βκJ,SCJ,PV , so
positivity is ensured by demanding that the isentropic compressibility κJ,S is
positive and that the heat capacity CJ,P is positive.

The final conclusion is that local thermodynamic stability holds if and
only if the following three perfectly reasonable conditions hold (assuming
that β and V are positive):

• κJ,S > 0;

• CJ,P > 0;

• IT is a positive matrix.

At fixed pressure positivity of CJ and IT is equivalent to positivity of the
specific heat at constant angular velocity, CΩ, and positivity of the isentropic
moment of inertia tensor, IS. This was proven in [5] for P = 0 and the same
analysis goes through for any P ≥ 0. The essential idea of the proof is to
Legendre transform H(J1, . . . , JN , S, P ) to

G(Ω1, . . . ,ΩN , T, P ) = H − TS −Ω.J (93)

Now (I−1
S )ij =

∂2H
∂Ji∂Jj and 1

βCJ,P
= ∂2H

∂S2 are components of the Hessian of H

while (IT )ij = − ∂2G
∂Ωi∂Ωj

and βCΩ,P = −∂2G
∂T 2 are components of the Hessian of

−G. As matrices these Hessians are inverses of each other, so positivity of
one ensures positivity of the other. Indeed the identity

βCJ det(IT ) = βCΩ det(IS), (94)

proven in [5] for P = 0, also holds for P > 0.
An equivalent set of conditions for complete local thermodynamic stabil-

ity is therefore that the following conditions hold (again assuming that β and
V are positive):

• κJ,S > 0;

• CΩ,P > 0;
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• IS is a positive matrix.

In the text the example of asymptotically anti-de Sitter Myers-Perry black
holes is treated in detail and it transpires that it is much easier to calculate IS

and CΩ,P for these metrics in D-dimensional space-time than it is to calculate
IT and CJ,P . In the text we therefore focus on the former, in particular only
IS is considered and the subscript S is dropped, I = IS.

B Specific heat at constant angular velocity

The specific heat at constant Ω is straightforward to determine, using the
same kind if calculations as those in [5] for the asymptotically flat case. In
terms of the dimensionless quantities

ãi :=
ai
rh

(95)

and
Ξi := 1− λa2i = 1− λ̃ã2i (96)

we have

S =
̟rD−2

h

4

N∏

i=1

(1 + ã2i )

Ξi

, (97)

T =
1

4πrh

{
D − 3− 2Σ1 + λ̃(D − 1− 2Σ1)

}
(98)

Ωi =
(1 + λ̃)ãi
rh(1 + ã2i )

. (99)

where Σ1 :=
∑N

i=1
ã2i

1+ã2i
.

The specific heat at constant angular velocity and pressure is defined as

CΩ = T

(
∂S

∂T

)

Ω,λ

. (100)

From (99) we find

Ωi = const ⇒ dãi|Ω,λ =

(
1− λ̃

1 + λ̃

)(
1 + ã2i
1− ã2i

)
ãi
drh
rh

∣∣∣∣∣
Ω,λ

(101)
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and from (96)

dΞi

Ξi

∣∣∣∣
Ω,λ

= −
4λ̃ã2i

(1 + λ̃)(1− ã2i )

drh
rh

∣∣∣∣
Ω,λ

. (102)

Using these it is straightforward to show that

∂T

∂rh

∣∣∣∣
Ω,λ

= −
1

4πr2h

{
D − 3 + 2Σ1 − λ̃(D − 1 + 2Σ1)

}
, (103)

where Σ1 :=
∑N

i=1
ã2i

1−ã2
i

, and

∂S

∂rh

∣∣∣∣
Ω,λ

=
S

rh
(D − 2 + 2Σ1). (104)

Combining these we immediately arrive at equation (47) in the text,

CΩ = −
4πrhTS(D − 2 + 2Σ1)

D − 3 + 2Σ1 − λ̃(D − 1 + 2Σ1)
. (105)

This generalises the asymptotically anti-de Sitter D = 4 case derived in [7]
to arbitrary D. It also generalises the asymptotically flat D-dimensional case
derived in [5] to asymptotically AdS.

C Isentropic moment of inertia

To calculate the isentropic moment of inertia we can first use (97) to obtain

drh
∣∣
S,λ

= −
2rh(1 + λ̃)

(D − 2 + 2λ̃X)

N∑

j=1

ãj dãj
(1 + ã2j)Ξj

∣∣∣∣
S,λ

⇒
1

rh

∂rh
∂ãj

∣∣∣∣
S,λ

= −
2(1 + λ̃)

(D − 2 + 2λ̃X)

ãj
(1 + ã2j)Ξj

(106)

with X :=
∑N

k=1
ã2
k

Ξk
. Then

Ωi =
ãi

rh(1 + ã2i )
(107)
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results in

∂Ωi

∂ãj

∣∣∣∣
S,λ

=
(1 + λ̃)

rh(1 + ã2i )(1 + ã2j)

[
(1− ã2i )δij + 2

(1− λ̃)ãiãj

(D − 2 + 2λ̃X)Ξj

]
. (108)

This can be inverted as a matrix to give

∂ãi
∂Ωk

∣∣∣∣
S,λ

=
rh

(1 + λ̃)

(1 + ã2i )(1 + ã2k)

(1− ã2i )(1− ã2k)

[
(1− ã2i )δik − 2

(1− λ̃)ãiãk

(D − 2 + 2Σ1)Ξk

]
.

(109)
Furthermore

Ji = (1 + λ̃)
S

2π

ãi
Ξi

(110)

yields

∂Ji

∂ãk

∣∣∣∣
S,λ

= (1 + λ̃)
S

2πΞ2
i

[
Ξiδik −

4λ̃

(D − 2 + 2λ̃X)

ãiãk(1 + ã2i )

Ξk(1 + ã2k)

]
. (111)

Equations (109) and (111) can now be combined to give the result quoted in
the text,

Iij =
rhS

2π

1

ΞiΞj

(1 + ã2i )(1 + ã2j )

(1− ã2i )(1− ã2j )

{
Ξi(1− ã2i )δij −

2(1 + λ̃)ãiãj

(D − 2 + Σ1)

}
. (112)

This extends the asymptotically flat result in [33] to λ 6= 0.
The determinant is

det(I) =

(
rhS

2π

)N
(D − 2− 2λ̃X)

(D − 2 + 2Σ1)

N∏

k=1

(1 + ã2k)
2Ξk

(1− ãk)Ξ2
k

, (113)

where

X :=

N∑

k=1

ã2k
Ξk

. (114)

Finally we note that there is a cancellation of factors in the combination

βCΩ det(I) = −8π2

(
rhS

2π

)N+1
(D − 2− 2λ̃X)[

D − 3 + 2Σ1 − λ̃(D − 1 + 2Σ1)
]

N∏

k=1

(1 + ã2k)
2Ξk

(1− ãk)Ξ
2
k

.

(115)
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