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Abstract 

In this study, we present a collection of local models, termed geographically weighted 

(GW) models, that can be found within the GWmodel R package.  A GW model suits 

situations when spatial data are poorly described by the global form, and for some 

regions the localised fit provides a better description.  The approach uses a moving 

window weighting technique, where a collection of local models are estimated at target 

locations.  Commonly, model parameters or outputs are mapped so that the nature of 

spatial heterogeneity can be explored and assessed. In particular, we present case 

studies using: (i) GW summary statistics and a GW principal components analysis; (ii) 

advanced GW regression fits and diagnostics; (iii) associated Monte Carlo significance 

tests for non-stationarity; (iv) a GW discriminant analysis; and (v) enhanced kernel 

bandwidth selection procedures.  General Election data sets from the Republic of 

Ireland and US are used for demonstration. This study is designed to complement a 

companion GWmodel study, which focuses on basic and robust GW models. 

Keywords: Principal Components Analysis; Semi-parametric GW regression; 
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1. Introduction 

 In this study, we present a collection of local (non-stationary) statistical models, 

termed geographically weighted (GW) models (1).  A GW model suits situations when spatial 

data are poorly described by the global (stationary) model form, and for some regions a 

localised fit provides a better description.  This type of approaches uses a moving window 

weighting technique, where a collection of local models are found at target locations.  

Commonly, outputs or parameters of a GW model are mapped to provide a useful exploratory 

tool that can direct a more traditional or sophisticated statistical analysis.  For example in a 

regression context, GW regression (2-6) can be used to explore relationships in the data.  If 

relationships are deemed stationary across space, then a basic (non-spatial) regression or a 

regression that accounts for some spatial autocorrelation effect (e.g. 7) is sufficient.  

Conversely, if relationships are deemed non-stationary, the GW regression can be replaced 

with a sophisticated, spatially-varying coefficient model for improved inference, such as 

those proposed by Gelfand et al. (8) or Assunção (9). 

Other notable GW models include: GW summary statistics (1, 10, 11) ; GW 

distribution analysis (12); GW principal components analysis (GW PCA) (1, 13); GW 

generalised linear models (1, 14); GW discriminant analysis (GWDA) (15); GW-

Geostatistical hybrids (16-20); GW methods for outlier detection (21, 49); and GW methods 

for network re-design (53).  The GW modelling framework continues to evolve (22) and GW 

models have been usefully applied to data from a wide range of disciplines in the natural and 

social sciences. 

Many of the listed GW models are included in an R package GWmodel 

(http://www.r-project.org).  Notably, GWmodel provides functions to a conduct: (i) a GW 

PCA; (ii) advanced GW regression fits and diagnostics; (iii) associated Monte Carlo 

significance tests for non-stationarity; (iv) a GW DA; and (v) enhanced bandwidth selection 
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procedures; where all such functions are utilised in this study.  In this respect, our study 

complements a companion GWmodel study (23), which focused on basic and robust GW 

models.  The same companion study also presented an advance in addressing collinearity in 

the GW regression model (following the work of 6, 29, 41, 51, 52).  Our study is structured 

as follows.  Section 2 sets the scene, describing the specification of the weighting matrix in a 

GW model and the case study data sets (General Election data for the Republic of Ireland and 

the US).  Section 3 describes the use of GW summary statistics and a GW PCA, together with 

associated Monte Carlo tests.  Section 4 describes the fitting of a mixed (semi-parametric) 

GW regression.  Section 5 investigates further topics in GW regression; including: (a) 

multiple hypothesis tests, (b) collinearity diagnostics and (c) the fitting of heteroskedastic 

models.  Section 6 describes a GW DA.  Section 7 describes enhanced bandwidth selection 

procedures for any GW model.  Section 8 concludes this work.  At all stages, we provide the 

R commands so that all of the analyses presented in this study can be reproduced. 

 

2. Context, the weighting matrix and the study data sets 

2.1. Context 

 GW methods are used to investigate spatial heterogeneity, where the form of the 

heterogeneity reflects the objective of the under-lying statistic or model.  For example, a GW 

standard deviation (from GW summary statistics) investigates spatial change in data 

variability; a GW regression investigates spatial change in response and predictor data 

relationships; a GW variogram (16) investigates spatial change in spatial dependence.  In all 

cases, a moving window weighting technique is used, where local models are calibrated at 

(sampled or un-sampled) locations (i.e. the window's centre).  For an individual model at 

some calibration location, all neighbouring observations are weighted according to the 
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properties of a distance-decay kernel function, and the model is locally-fitted to this weighted 

data.  Thus the geographical weighting solely applies to the data in all GW methods, where 

each local model is fitted to its own GW data (sub-) set.  The size of the window over which 

this localised model might apply is controlled by the kernel function's bandwidth.  Small 

bandwidths lead to more rapid spatial variation in the results, while large bandwidths yield 

results increasingly close to the global model solution.  The GW modelling paradigm 

encompasses many methods; each locally-adapted from a global form. 

2.2. Building the weighting matrix 

 Key to GW modelling is the weighting matrix, which sets the spatial dependency in 

the data.  Here ( ),i iu vW  is a n n×  diagonal matrix (where n  is the sample size) denoting 

the geographical weighting attached to each observation point, for any model calibration 

point i  at location ( ),i iu v .  Thus a different weighting matrix is found at each calibration 

point.  This matrix is determined according to the following three key elements: (i) the type 

of distance metric; (ii) the type of kernel weighting function; and (iii) the kernel weighting 

function's bandwidth.  For the distance metric, GWmodel permits the Minkowski family of 

distance metrics, where the power of the Minkowski distance p , needs to be specified.  For 

example, if 2p =  (the default), then the usual Euclidean distance metric results; or if 1p = , 

then the Manhattan (or Taxi cab) distance metric results.  As an example, Lu et al. (24) fit 

GW regressions using Euclidean and non-Euclidean distance metrics. 

Four of the five kernel weighting functions available in GWmodel are defined in 

Table 1.  Each function includes the bandwidth parameter ( r  or b ), which controls the rate 

of decay.  All functions are defined in terms of weighting the sample data, where j  is the 

index of the observation point and ijd  the distance between the points indexed by i  and j .  
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For the box-car and bi-square functions, the bandwidth r  can be specified beforehand (i.e. a 

fixed distance) or specified as the distance between the point i  and its thN  nearest neighbour, 

where N  is specified beforehand (i.e. an adaptive distance).  The bi-square function gives 

fractional decaying weights according to the proximity of the data to each point i , up until a 

fixed distance or a distance according to a specified thN  nearest neighbour.  The local search 

strategy for this and the box-car function is simply N  neighbours within a fixed radius r  or 

N  nearest neighbours for an adaptive approach.  Both functions can suffer from 

discontinuity, although the bi-square function can be defined with a bandwidth that uses all of 

the data to minimise such problems. 

The Gaussian and exponential functions are continuous and use all the data.  Their 

weights decay according to a Gaussian or exponential curve.  According to the bandwidth set, 

data that are a long way from the point i  receive virtually zero weight.  The key difference 

between these functions is their behaviour at the origin.  Usually these continuous functions 

are defined with a fixed bandwidth b , but can be constructed to behave in an adaptive 

manner.  The bi-square function is useful as it can provide an intermediate weighting between 

the box-car and the Gaussian functions.  To get similar weights from the bi-square and 

Gaussian functions, the bandwidths r and b  can be approximately related by ( )br 223≅ .  

For all functions, if r  or b  is set suitably large enough, then all of the data can receive a 

weight of one and the corresponding global model or statistic is found. 

Table 1 Four kernel weighting functions. 

Box-car 1=ijw    if rd ij ≤  0=ijw    otherwise 

Bi-square ( )( )221 rdw ijij −=  if rd ij ≤  0=ijw    otherwise 

Gaussian ( )22 2exp bdw ijij −=   

Exponential ( )bdw ijij −= exp   
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Bandwidths can be: (a) user-specified, when there exists some strong prior belief to 

do so; (b) optimally- (or automatically-) specified using cross-validation and related 

approaches, provided there exists an objective function (i.e. the method can be used as a 

predictor); or (c) user-specified, but guided by (b) where an automated approach is not 

viewed as a panacea for bandwidth selection (25).  In GWmodel, automated bandwidths can 

be found for GW regression, GW regression with a locally compensated ridge term (to 

address local collinearity problems), generalised GW regression, GW DA and GW PCA. 

2.3. Study data sets 

 GWmodel comes with five example data sets, these are: (1) Georgia, (2) 

LondonHP, (3) DubVoter, (4) EWHP and (5) USelect.  For this article’s presentation of 

GW models, we use as case studies, the DubVoter and USelect data sets. 

2.3.1.  Dublin 2004 voter turnout data 

 The DubVoter data is the main study data set and is used throughout sections 3 to 5 

and section 7.  This data is composed of nine percentage variables1

322=n

, measuring: (A) voter 

turnout in the Irish 2004 Dáil elections and (B) eight characteristics of social structure 

(census data); for  Electoral Divisions (EDs) of Greater Dublin.  Kavanagh et al. (26) 

modelled this data using GW regression; with voter turnout (GenEl2004), the dependent 

variable (i.e. the percentage of the population in each ED who voted in the election).  The 

eight independent variables measure the percentage of the population in each ED, with 

respect to: 

•  one year migrants (i.e. moved to a different address one year ago) (DiffAdd); 

•  local authority renters (LARent); 

                                                           
1 Observe that none of these variables constitute a closed system and as such, do not need to be treated as 
compositional data. 
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•  social class one (high social class) (SC1); 

•  unemployed (Unempl); 

•  without any formal educational (LowEduc); 

•  age group 18-24 (Age18_24); 

•  age group 25-44 (Age25_44); and 

•  age group 45-64 (Age45_64). 

 

The independent variables reflect measures of migration, public housing, high social class, 

unemployment, educational attainment, and three broad adult age groups. Other GW model 

studies using versions of this data include that of Harris et al. (13) and  Gollini et al. (23). 

2.3.2. US 2004 election data 

 The USelect data is only used in section 6, for demonstrating a GW DA.  It consists 

of the results of the 2004 US presidential election at the county level ( 3111=n ), together 

with a collection of socio-economic (census) variables (27).  A variant of this data has been 

used for the visualisation of GW DA outputs in Foley and Demšar (28).  In terms of the 

election results, Bush or Kerry was always the winner within a county; while in some 

counties, the supporting ratio for a candidate ranged from 45% to 55%, which for our 

purposes is viewed as an 'unclear-winner' or a 'borderline' result.  Thus for our version of this 

data set, we produce a categorical dependent variable with three classes: (i) Bush winner, (ii) 

Kerry winner and (iii) Borderline.  If we proceed with just two classes: (a) Bush winner and 

(b) Kerry winner; then an issue arises in that a GW logistic regression may provide a simpler 

approach to the local modelling of this data, than that found with a GW DA (55) (although 

observe that both methods can be applied to categorical dependent data with more than two 

classes (43)).  For the USelect data, the five independent variables are taken the same as 



8 
 

that used in Foley and Demšar (28), as follows: 

•   percentage unemployed (unemployed) 

•   percentage of adults over 25 with 4 or more years of college education (pctcoled) 

•   percentage of persons over the age of 65 (PEROVER65) 

•   percentage urban (pcturban) 

•   percentage white (WHITE). 

 

3. Exploration with GW summary statistics and GW PCA 

 This first section on GW modelling presents case studies on the use of GW summary 

statistics and a GW PCA.  For demonstration, we investigate the DubVoter data. 

3.1. GW summary statistics 

 Although simple to calculate and map, GW summary statistics can act as a vital pre-

cursor to an application of a subsequent GW model.  For example, GW standard deviations 

will highlight areas of high variability for a given variable; areas where a subsequent 

application of a GW PCA or a GW regression may warrant close scrutiny.  For attributes x  

and y  at any location i  where ijw  accords to a kernel function of section 2, definitions for a 

GW mean, GW standard deviation and GW correlation coefficient are respectively 

 ( )
1 1

n n

i ij j ij
j j

x w x wµ
= =

=∑ ∑  (1) 

 ( ) ( )( )2

1 1

n n

i ij j i ij
j j

s x w x x wµ
= =

= −∑ ∑  (2) 

and 
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 ( ) ( ) ( ) ( )( )iiiiii ysxsyxcyx ,, =ρ  (3) 

with the GW covariance 

 ( ) ( )( ) ( )( ){ }
1 1

,
n n

i i ij j i j i ij
j j

c x y w x x y y wµ µ
= =

= − −∑ ∑ . (4) 

 

3.2. GW PCA 

 In a PCA, a set of m  correlated variables are transformed in to a new set of m  

uncorrelated variables called components.  Components are linear combinations of the 

original variables that can allow for a better understanding of sources of variation and trends 

in the data.  Its use as a dimension reduction technique is viable if the first few components 

account for most of the variation in the original data.  In a GW PCA, a series of localised 

PCAs are computed, where the local component outputs (variances, loadings and scores) are 

mapped, permitting a local identification of any change in structure of the multivariate data.  

This local exploration can pinpoint locations where results from a PCA are inappropriate.  

This in turn, allows for better-informed model decisions for any analysis that may follow, 

such as a clustering or regression analysis when orthogonal input data are required.  GW PCA 

can assess: (i) how (effective) data dimensionality varies spatially and (ii) how the original 

variables influence each spatially-varying component. 

More formally, if an observation location j  has coordinates ( )vu, , then a GW PCA 

involves regarding a vector of observed variables jx  as having a certain dependence on its 

location j , where ( )vu,μ  and ( )vu,Σ  are the local mean vector and the local variance-

covariance matrix, respectively.  The local variance-covariance matrix is 

 ( ) ( )XWXΣ vuvu ,, T=  (5) 
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where X  is the mn ×  data matrix; and ( )vu,W  is a diagonal matrix of geographic weights, 

generated by a kernel function of section 2.  The kernel's bandwidth can be user-specified or 

found optimally via cross-validation (13).  To find the local principal components at location

( )jj vu , , the decomposition of the local variance-covariance matrix provides the local 

eigenvalues and local eigenvectors (or loading vectors) with 

 ( ) ( ) ( ) ( )jjjjjjjj vuvuvuvu ,,,, T ΣLVL =  (6) 

where ( )jj vu ,L  is a matrix of local eigenvectors; ( )jj vu ,V  is a diagonal matrix of local 

eigenvalues; and ( )jj vu ,Σ  is the local covariance matrix.  A matrix of local component 

scores ( )jj vu ,T  can be found using 

 ( ) ( )jjjj vuvu ,, XLT = . (7) 

If we divide each local eigenvalue by ( )( )jj vu ,tr V , then we find the local proportion of the 

total variance (PTV) in the original data accounted for by each component.  Thus at each 

location j  for a GW PCA with m  variables, there are m  components, m  eigenvalues, m  

sets of component loadings (with each set mm × ), and m  sets of component scores (with 

each set mn × ).  We can obtain eigenvalues and their associated eigenvectors at un-observed 

locations, but as no data exists for these locations, we cannot obtain component scores. 

3.3. Monte Carlo tests for non-stationarity 

 For GW summary statistics and GW PCA, Monte Carlo tests are possible that test for 

non-stationarity  (1, 13). Tests confirm whether or not the GW summary statistic or aspects of 

the GW PCA are significantly different to that found by chance or artefacts of random 

variation in the data.  Here the sample data are successively randomised and the GW model is 
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applied after each randomisation.  A basis of a significance test is then possible by comparing 

the true result with results from a large number of randomised distributions.  The 

randomisation hypothesis is that any pattern seen in the data occurs by chance and therefore 

any permutation of the data is equally likely. 

As an example for GW correlation, the test proceeds as follows: (i) calculate the true 

GW correlation at all locations; (ii) randomly choose a permutation of the data where the 

coordinates are kept in the same pairs, as are the chosen attribute pairs; (iii) calculate a 

simulated GW correlation at all locations using the randomised data of (ii); (iv) repeat steps 

(ii) and (iii), say 99 times; (v) at each location i , rank the one true GW correlation with the 

99 simulated GW correlations; (vi) at each location i , if the true GW correlation lies in the 

top or bottom 2.5% tail of the ranked distribution then the true GW correlation can be said to 

be significantly different (at the 95% level) to such a GW correlation found by chance.  The 

results from this Monte Carlo test are mapped. 

For a GW PCA, a similar procedure is followed where the test evaluates whether the 

local eigenvalues vary significantly across space.  Here the paired coordinates are 

successively randomised amongst the variable data set and after each randomisation, GW 

PCA is applied (with an optimally re-estimated bandwidth) and the standard deviation (SD) 

of a given local eigenvalue is calculated.  The true SD of the same local eigenvalue is then 

included in a ranked distribution of SDs.  Its position in this ranked distribution relates to 

whether there is significant (spatial) variation in the chosen local eigenvalue.  The results 

from this Monte Carlo test are presented via a graph. 

3.4. Examples: GW correlations 

 For a demonstration of an analysis using a GW summary statistic, we calculate GW 

correlations to investigate the local relationships between: (a) voter turnout (GenEl4004) and 
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LARent and (b) LARent and Unempl.  In the former case, the correlations provide a 

preliminary assessment of relationship non-stationarity between the dependent and an 

independent variable of a GW regression of sections 4 and 5.  In the latter case, the 

correlations provide an assessment of local collinearity between two independent variables of 

such a GW regression (29).  In both cases, we specify a bi-square kernel.  Furthermore, as the 

spatial arrangement of the EDs in Greater Dublin is not a tessellation of equally sized zones, 

it makes sense to specify an adaptive bandwidth, that we user-specify at 48=N .  This 

entails that the bi-square kernel will change in radius, but will always include the closest 48 

EDs for each local correlation.  Bandwidths for GW correlations cannot be found optimally 

using cross-validation (although see 53, for an alternative).  We also conduct the 

corresponding Monte Carlo tests for the two GW correlation specifications.  Commands to 

conduct our GW correlation analysis are as follows, where we use the function gwss to find 

GW summary statistics and montecarlo.gwss to conduct the Monte Carlo tests.  Commands 

include those to visualise the outputs (Figure 1). 

 
R > library(GWmodel) 
R > library(RColorBrewer) 
R > data(DubVoter) 
 
R > gwss.1 <- gwss(Dub.voter,vars = c("GenEl2004", "LARent", "Unempl"),  
kernel="bisquare", adaptive=TRUE, bw=48) 
 
R > gwss.mc <- montecarlo.gwss(Dub.voter,vars = c("GenEl2004", "LARent",  
"Unempl"), kernel="bisquare", adaptive=TRUE, bw=48) 
 
R > gwss.mc.data <- data.frame(gwss.mc) 
R > gwss.mc.out.1 <-ifelse(gwss.mc.data$Corr_GenEl2004.LARent < 0.975 &  
R > gwss.mc.data$Corr_GenEl2004.LARent > 0.025 , 0, 1) 
R > gwss.mc.out.2 <-ifelse(gwss.mc.data$Corr_LARent.Unempl < 0.975 &  
R > gwss.mc.data$Corr_LARent.Unempl > 0.025 , 0, 1) 
R > gwss.mc.out <- data.frame(Dub.voter$X, Dub.voter$Y, gwss.mc.out.1,  
gwss.mc.out.2) 
 
R > gwss.mc.out.1.sig <- subset(gwss.mc.out, gwss.mc.out.1==1, select =  
c(Dub.voter.X, Dub.voter.Y, gwss.mc.out.1)) 
R > gwss.mc.out.2.sig <- subset(gwss.mc.out, gwss.mc.out.2==1, select =  
c(Dub.voter.X, Dub.voter.Y, gwss.mc.out.2)) 
R > pts.1 <- list("sp.points", cbind(gwss.mc.out.1.sig[,1],  
gwss.mc.out.1.sig[,2]), cex=2, pch="+", col="black") 
R > pts.2 <- list("sp.points", cbind(gwss.mc.out.2.sig[,1],  
gwss.mc.out.2.sig[,2]), cex=2, pch="+", col="black") 
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R > mypalette.gwss.1 <-brewer.pal(5,"Blues") 
R > mypalette.gwss.2 <-brewer.pal(6,"Greens") 
 
R > map.na <- list("SpatialPolygonsRescale", layout.north.arrow(), 
offset = c(329000,261500), scale = 4000, col=1) 
R > map.scale.1 <- list("SpatialPolygonsRescale", layout.scale.bar(),  
offset = c(326500,217000), scale = 5000, col=1, fill =  
c("transparent", "green")) 
R > map.scale.2  <- list("sp.text", c(326500,217900), "0", cex=0.9, 
col=1) 
R > map.scale.3  <- list("sp.text", c(331500,217900),"5km", 
cex=0.9,col=1) 
R > map.layout.1 <-list(map.na,map.scale.1,map.scale.2,map.scale.3,pts.1) 
map.layout.2 <- list(map.na,map.scale.1,map.scale.2,map.scale.3,pts.2) 
 
R > X11(width=10,height=12) 
R > spplot(gwss.1$SDF,"Corr_GenEl2004.LARent",key.space = "right", 
col.regions = mypalette.gwss.1,at=c(-1,-0.8,-0.6,-0.4,-0.2,0), 
par.settings = list(fontsize=list(text=15)), main = list(label="GW 
correlations: GenEl2004 and LARent", cex=1.25), sub=list(label="+ 
Results of Monte Carlo test", cex=1.15), sp.layout=map.layout.1) 
 
R > X11(width=10,height=12) 
R > spplot(gwss.1$SDF,"Corr_LARent.Unempl",key.space = "right", 
col.regions=mypalette.gwss.2,at=c(-0.2,0,0.2,0.4,0.6,0.8,1), 
par.settings=list(fontsize=list(text=15)), main=list(label="GW  
correlations: LARent and Unempl", cex=1.25), sub=list(label="+  
Results of Monte Carlo test", cex=1.15), sp.layout=map.layout.2) 

 

(a) (b) 

Figure 1 GW correlations and associated Monte Carlo tests for: (a) GenEl2004 and LARent; and (b) LARent and 
Unempl.  Global correlations are -0.68 and 0.67, respectively. 
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From Figure 1(a), the relationship between turnout and LARent appears non-

stationary, where this relationship is strongest in areas of central and south-west Dublin.  

Here turnout tends to be low, while local authority renting tends to be high.  The associated 

Monte Carlo test suggests many instances of unusual relationships, such as those found in the 

north that are unusually weak.  From Figure 1(b), consistently strong positive correlations 

between LARent and Unempl are found in three distinct areas of Greater Dublin; areas where 

local collinearity effects in the GW regression of sections 4 and 5 are likely to be a cause for 

concern (see also 23). 

 

3.5. Examples: PCA to GW PCA 

 For applications of PCA and GW PCA, we investigate these eight variables: DiffAdd, 

LARent, SC1, Unempl, LowEduc, Age18_24, Age25_44 and Age45_64.  We standardise the 

data and specify the PCA with the covariance matrix.  The same (globally) standardised data 

is also used in the GW PCA calibration, which is similarly specified with (local) covariance 

matrices.  The effect of this standardisation is to make each variable have equal importance in 

the subsequent analysis (at least for the PCA case) 2

 

.  The PCA results (PTV data and 

loadings) are found using scale and princomp functions, as follows: 

R > Data.scaled <- scale(as.matrix(Dub.voter@data[,4:11])) 
R > pca <- princomp(Data.scaled, cor=F) 
R > (pca$sdev^2/sum(pca$sdev^2))*100 
 
Comp.1 Comp.2 Comp.3 Comp.4  Comp.5 Comp.6 Comp.7 Comp.8 
36.084 25.586 11.919 10.530  6.890  3.679  3.111  2.196 
 
R > pca$loadings 
 
 
 
 
 
 
 

                                                           
2 The use of un-standardised data, or the use of locally-standardised data with GW PCA is a subject of current 
research. 
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Loadings: 
         Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 
DiffAdd  -0.389 -0.444        -0.149  0.123  0.293  0.445  0.575 
LARent   -0.441  0.226  0.144  0.172  0.612  0.149 -0.539  0.132 
SC1       0.130 -0.576        -0.135  0.590 -0.343        -0.401 
Unempl   -0.361  0.462         0.189  0.197         0.670 -0.355 
LowEduc  -0.131  0.308 -0.362 -0.861 
Age18_24 -0.237         0.845 -0.359 -0.224               -0.200 
Age25_44 -0.436 -0.302 -0.317        -0.291  0.448 -0.177 -0.546 
Age45_64  0.493  0.118  0.179 -0.144  0.289  0.748  0.142 -0.164 

 

From the PTV data, the first two components collectively account for 61.6% of the 

variation in the data.  From the loadings, components one and two mainly represents older 

(Age45_64) and affluent (SC1) residents, respectively.  However, these results may not 

reliably represent local social structure, and an application of GW PCA may be useful.  Here 

a bandwidth for GW PCA is found using cross-validation, where it is necessary to decide a 

priori on the number of components, k  to retain, provided km ≠ .  Thus we choose to find 

an optimal adaptive bandwidth using a bi-square kernel, with 3=k .  Here the bw.gwpca 

function is used within the following set of commands: 

 
R > Coords <- as.matrix(cbind(Dub.voter$X,Dub.voter$Y)) 
R > Data.scaled.spdf <- SpatialPointsDataFrame(Coords,  
as.data.frame(Data.scaled)) 
R > bw.gwpca.1 <-bw.gwpca(Data.scaled.spdf,vars =  
colnames(Data.scaled.spdf@data), k=3, adaptive=TRUE) 

 

Inspecting the bw.gwpca.1 object indicates a bandwidth of 131=N  will be used to 

calibrate the GW PCA fit.  Observe that we now specify all 8=k  components, but we will 

focus our investigation on only the first two components.  This specification ensures that the 

PTV data is estimated correctly.  The GW PCA fit is conducted using the gwpca function: 

 

R > gwpca.1 <- gwpca(Data.scaled.spdf, vars =  
colnames(Data.scaled.spdf@data), bw=bw.gwpca.1, k=8, adaptive=TRUE) 

 
 

The GW PCA outputs are visualised and interpreted, focusing on: (1) how data 

dimensionality varies spatially and (2) how the original variables influence the components.  
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For the former, the spatial distribution of local PTV for the first two components can be 

mapped.  For the latter, we look at the change in size and sign of the eight local loadings 

together, for a given component, at each of the 322 EDs.  In this respect, we map multivariate 

glyphs that have spokes around a central hub in which the length of the spoke corresponds to 

the size of the local loading, and its colour corresponds to the sign (in this case, blue signifies 

positive and red signifies negative).  The glyphs are scaled relative to the spoke with the 

largest absolute loading.  The variable corresponding to each local loading is always in the 

same place on the glyph, as follows: DiffAdd is at 0o (north); LARent is 45o (north-east); SC1 

is 90o (east); Unempl is 135o (south-east), LowEduc is 180o (south), Age18_24 is 225o (south-

west), Age25_44 is 270o (west) and Age45_64 is 315o (north-east).  Commands to conduct 

these visualisations are as follows: 

 

R > prop.var <- function(gwpca.obj, n.components) { 
return((rowSums(gwpca.obj$var[,1:n.components])/rowSums(gwpca.obj$var 
))*100)} 
R > var.gwpca <- prop.var(gwpca.1,2) 
R > Dub.voter$var.gwpca <- var.gwpca 
 
R > mypalette.gwpca.1 <-brewer.pal(8,"YlGnBu") 
R > map.layout.3 <- list(map.na,map.scale.1,map.scale.2,map.scale.3) 
  
 
R > X11(width=10,height=12) 
R > spplot(Dub.voter,"var.gwpca",key.space = "right", col.regions =  
mypalette.gwpca.1, cuts=7, par.settings =list(fontsize=list(text=15)), 
main=list(label="GW PCA: PTV for local components 1 to 2", cex=1.25), 
sp.layout=map.layout.3) 
 
R > loadings.1 <- gwpca.1$loadings[,,1] 
 
R > X11(width=10,height=12) 
R > plot(Dub.voter) 
glyph.plot(loadings.1,Coords,r1=20,add=T,alpha=0.85) 
title(main=list("GW PCA: Multivariate glyphs of loadings", cex=1.75,  
col="black", font=1), sub=list("For component 1", cex=1.5,  
col="black", font=3)) 

 

Figure 2(a) presents the local PTV map, where there is clear spatial variation in the 

PTV data.  Higher percentages are located in the south and in central Dublin, whilst lower 

percentages are located in the north.  The PTV data is also generally higher in the local case, 
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than in the global case (at 61.6%).  Figure 2(b) presents a multivariate glyph map for the 

loadings on the first component, where a spatial preponderance of glyphs of one colour or 

another, or larger spokes on the same variables provide a general indication of the structures 

being represented at each of the 322 EDs.  This map is not intended to be scrutinised in detail, 

but clearly indicates strong local trends in social structure across Greater Dublin. 

 

(a) (b) 

(c) 

Figure 2 GW PCA results: (a) PTV data for the first two components; (b) multivariate glyphs of the loadings for 
all eight components; and (c) Monte Carlo test for first component only. 
 

 

To provide support for our chosen GW PCA specification, the associated Monte Carlo 

test evaluates whether the local eigenvalues for the first component vary significantly across 
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space.  The results are given in Figure 2(c), where the p-value for the true SD of the 

eigenvalues is calculated at 0.02.  Thus an application of GW PCA is considered worthy as 

the null hypothesis of local eigenvalue stationarity is firmly rejected at the 95% level, for the 

dominant first component.  Commands to conduct this test are as follows: 

 

R > gwpca.mc <-montecarlo.gwpca.2(Data.scaled.spdf, vars =  
colnames(Data.scaled.spdf@data), k=3, adaptive=TRUE) 
 
R > X11(width=8,height=5) 
R > plot.mcsims(gwpca.mc) 

 

 

4. Mixed model building for GW regression 

 The first and most commonly applied GW model is GW regression (3, 4).  This model 

enables an exploration of spatially-varying data relationships, via the visualisation and 

interpretation of sets of local regression coefficients and associated estimates.  For 

GWmodel, a range of GW regression models are included: (i) basic; (ii) robust; (iii) 

generalised; (iv) mixed; (v) heteroskedastic and (vi) locally compensated ridge.  The use of 

basic, robust and locally compensated ridge GW regression functions is presented in the 

companion paper of Gollini et al. (23).  For this paper, we present the use of basic and mixed 

GW regression functions; together with the further GW regression topics of section 5. 

4.1. Basic and mixed GW regression 

 The basic form of the GW regression model is 

 0
1

m

i i ik ik i
k

y xβ β ε
=

= + +∑  (8) 

where iy  is the dependent variable at location i; ikx is the value of the kth independent 

variable at location i; m is the number of independent variables; 0iβ  is the intercept parameter 
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at location i; ikβ is the local regression coefficient for the kth independent variable at location 

i; and iε is the random error at location i.  A key assumption for this basic (and related forms 

of) GW regression is that the local coefficients vary at the same scale and rate across space 

(depending on the particular kernel weighting function that is specified). However, some 

coefficients (and relationships) may be expected to have different degrees of variation over 

the study region.  In particular, some coefficients (and relationships) are viewed as constant 

(or stationary) in nature, whilst others are not.  For these situations, a mixed GW regression 

can be specified (1, 2).  This semi-parametric model treats some coefficients as global (and 

stationary), whilst the rest are treated as local (and non-stationary), but with the same rate of 

spatial variation.  This model's general form can be written as 

 
1, 1,

y a x (a) b ( , )x (b)ε
a b

i j ij l i i il i
j k l k

u v
= =

= + +∑ ∑  (9) 

where {a ,....., a }
al k  are the ka global coefficients; 1{b ( , ),....., b ( , )}

bi i k i iu v u v are the kb local 

coefficients; 1{x (a),....., x (a)}
ai ik are the independent variables associated with global 

coefficients; and 1{x (b),....., x (b)}
bi ik are the independent variables associated with local 

coefficients.  In a vector-matrix notation, equation (9) can be rewritten as 

 a by X X ε= + +a b  (10) 

where y is the vector of dependent variables; Xa is the matrix of globally-fixed variables; a is 

the vector of ka global coefficients; Xb is the matrix of locally-varying variables; and b is the 

matrix of local coefficients. To calibrate this model in GWmodel, we follow that of 

Brunsdon et al. (2), where a back-fitting procedure is adopted (30). If we define the hat 

matrix for the global regression part of the model, as Sa; and that for the GW regression part, 

as Sb; then equation (9) can be rewritten as 
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 a by y y= +
� � �  (11) 

where the two components, ay
�  and by

�  can be expressed as 

 a ay S y=
�  (12) 

 b by S y=
�  (13) 

and thus the calibration procedure can be briefly described in the following six steps: 

Step 1. Supply an initial value for ay
� , say (0)

ay
�

, practically by regressing Xa on y 

using ordinary least squares (OLS). 

Step 2.  Set i=1. 

Step 3.  Set ( ) ( 1)i i
b b ay S y y −� �= −� �

� � . 

Step 4. Set ( ) ( )i i
a a by S y y� �= −� �

� � . 

Step 5. Set  i=i+1. 

Step 6. Return to Step 3 unless ( ) ( ) ( )ˆ ˆ ˆy y yi i i
a b= +  converges to ( 1)ŷ i− . 

An alternative mixed GW regression fitting procedure is given in Fotheringham et al. (1), that 

uses a method from Speckman (31).  This alternative is not as computationally intensive as 

that presented here, and is under consideration for future mixed model in GWmodel. 

4.2. Monte Carlo tests for regression coefficient non-stationarity 

 For a mixed GW regression, difficulties arise when deciding whether a relationship 

should be fixed globally or allowed to vary locally.  Here Fotheringham et al. (32) adopt a 

stepwise procedure, where all possible combinations of global and locally-varying 

relationships are tested, and an optimal mixed model is chosen according to a minimised AIC 

value.  This approach is comprehensive, but computationally expensive, and is utilised in the 
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GW regression 4.0 executable software (33).  Alternatively, a Monte Carlo approach can be 

used to test for significant (spatial) variation in each regression coefficient (or relationship) 

from the basic GW regression model, where the null hypothesis is that the relationship 

between dependent and independent variable is constant (1, 3, 4).  The procedure is 

analogous to that presented for the local eigenvalues of a GW PCA in section 3.3, where for 

the basic GW regression the true variability in each local regression coefficient is compared 

to that found from a series of randomised data sets.  If the true variance of the coefficient 

does not lie in the top 5% tail of the ranked results, then the null hypothesis can be accepted 

at the 95% level; and the corresponding relationship should be globally-fixed when 

specifying the mixed GW regression.  Observe, that if all relationships are viewed as non-

stationary, then the basic GW regression should be preferred.  Conversely, if all relationships 

are viewed as stationary, then the standard global regression should be preferred.  Advances 

on the mixed GW regression model, where the relationships can be allowed to vary at 

different rates across space can be found in Yang et al. (50). 

4.3. Example: mixed GW regression model specification 

 We now demonstrate modelling building for mixed GW regression using the 

DubVoter data.  First we calibrate a basic GW regression.  We then conduct the Monte 

Carlo test on this model's outputs, to gauge for significant variation (or non-stationarity) in 

each coefficient, including the intercept term.  Finally, we fit a mixed GW regression 

according to the results of the Monte Carlo test.  Our regressions investigate the local/global 

relationships between the response: GenEl2004 and these eight predictors: DiffAdd, LARent, 

SC1, Unempl, LowEduc, Age18_24, Age25_44 and Age45_64.  For both GW regressions, we 

specify a bi-square kernel with an adaptive bandwidth. 
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Table 2 Monte Carlo test for the basic GW regression. 

Variable Intercept DiffAdd LARent SC1 Unempl 

p-value 0.35 0.17 0.28 0.02 0.00 

Variable LowEduc Age18_24 Age25_44 Age45_64  

p-value 0.19 0.04 0.29 0.19  

 

 The optimal bandwidth for the basic GW regression is found at N = 109 in 

accordance to an automatic AICc approach via the function bw.gwr.  This bandwidth is then 

used calibrate the basic GW regression via the function gwr.basic.  We then conduct the 

Monte Carlo test where the results are presented in Table 2.  The results suggest (say, at the 

95% level) that the Intercept term together with the DiffAdd, LARent, LowEduc, Age25_44 

and Age45_64 variables, should all be fixed as global in the mixed model.  Accordingly, the 

mixed model is calibrated using the function gwr.mixed with the same adaptive bandwidth as 

that found for the basic model.  Observe that the geographically varying coefficients in the 

mixed model are less variable than the corresponding coefficients from the basic model, 

although the same bandwidth is used.  Commands to conduct these operations are as follows, 

where the print function imitates the output of the GW regression 3.0 executable software 

(34): 

 
R > bw.gwr.1 <- bw.gwr(GenEl2004 ~ DiffAdd + LARent + SC1 + Unempl  
+ LowEduc + Age18_24 + Age25_44 + Age45_64, data = Dub.voter, 
approach = "AICc",kernel = "bisquare", adaptive = TRUE) 
R > bgwr.res <- gwr.basic(GenEl2004 ~ DiffAdd + LARent + SC1 + Unempl +  
LowEduc + Age18_24 + Age25_44 + Age45_64, data = Dub.voter, 
bw = bw.gwr.1, kernel = "bisquare", adaptive = TRUE) 
R > print(bgwr.res) 
 
 
   *************Summary of GWR coefficient estimates:************** 
                     Min.    1st Qu.     Median    3rd Qu.     Max. 
   Intercept   53.2300000 73.3200000 81.6600000 95.0700000 116.8000 
   DiffAdd     -0.7281000 -0.3338000 -0.1584000  0.1586000   0.5465 
   LARent      -0.1949000 -0.1206000 -0.0844400 -0.0369200   0.0940 
   SC1         -0.1578000  0.0352800  0.3088000  0.4201000   0.8796 
   Unempl      -2.3180000 -1.1440000 -0.7649000 -0.4753000  -0.0925 
   LowEduc     -7.6750000 -0.7369000  0.5332000  1.8100000   3.4140 
   Age18_24    -0.3970000 -0.2529000 -0.1457000  0.0007642   0.3669 
   Age25_44    -1.0950000 -0.7209000 -0.4536000 -0.3048000   0.2184 
   Age45_64    -0.9236000 -0.4098000 -0.1102000  0.0467900   0.4931 
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R > bgwr.mc <- montecarlo.gwr(GenEl2004 ~ DiffAdd + LARent + SC1 + 
Unempl + LowEduc + Age18_24 + Age25_44 + Age45_64, data = Dub.voter, 
bw = bw.gwr.1, kernel = "bisquare", adaptive = TRUE) 
 
 
R > mgwr.res <- gwr.mixed(GenEl2004 ~ DiffAdd + LARent + SC1 + Unempl + 
LowEduc + Age18_24 + Age25_44 + Age45_64, data = Dub.voter, 
bw = bw.gwr.1, fixed.vars = c("DiffAdd", "LARent", "LowEduc", "Age25_44", 
"Age45_64"), intercept.fixed = TRUE, kernel = "bisquare", adaptive = 
TRUE) 
R > print(mgwr.res) 
 
 
 
****Summary of mixed GWR coefficient estimates:********************* 
Estimated global variables :  Intercept  DiffAdd   LARent  LowEduc 
Age25_44 Age45_64 
Estimated global coefficients:  86.31399 -0.15299 -0.11481  0.12894 -
0.53151  -0.2579 
Estimated GWR variables : 
            Min.  1st Qu.   Median  3rd Qu.    Max. 
SC1       0.01948  0.10360  0.19820  0.42970  0.7112 
Unempl   -1.03400 -0.77250 -0.65630 -0.52440 -0.0668 
Age18_24 -0.40890 -0.20600 -0.12650 -0.06580  0.1139 

 
 

As an example, Figures 3(a-b) present the coefficient surfaces corresponding to 

Unempl found from the basic and mixed GW regressions, respectively.  The spatial variation 

in this coefficient is clearer greater when using the basic GW regression.  Differences in the 

coefficient surfaces primarily occur in the north-west and south-west areas of Dublin.  

Commands for these maps are as follows: 

 
R > mypalette.gwr <- brewer.pal(6, "Spectral") 
 
R > X11(width=10,height=12) 
R > spplot(bgwr.res$SDF, "Unempl", key.space = "right", col.regions =  
mypalette.gwr, at = c(-3, -2.5, -2, -1.5, -1, -0.5, 0), main = "Basic  
GW regression coefficient estimates for Unempl", 
sp.layout=map.layout.3) 
 
R > X11(width = 10, height = 12) 
R > spplot(mgwr.res$SDF, "Unempl_L", key.space = "right", col.regions =  
mypalette.gwr, at = c(-3, -2.5, -2, -1.5, -1, -0.5, 0), main = "Mixed  
GW regression coefficient estimates for Unempl", 
sp.layout=map.layout.3) 
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(a) (b) 

(c)  
 

Figure 3 (a) Basic; (b) mixed; and heteroskedastic GW regression coefficients estimates for Unempl. 

 
 

5. Further GW regression topics 

 In this section, we present the use of GW regression functions to conduct: (i) multiple 

hypothesis tests, (ii) collinearity diagnostics and (iii) heteroskedastic fits. 
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5.1. Multiple hypothesis tests with GW regression 

 For GW regression, pseudo t-values can be used to test, in a purely informal sense, for 

evidence of local coefficient estimates that are significantly different from zero (e.g. 49).  For 

each coefficient estimate, 훽��(푢,푣) at location i, the pseudo t-value can be calculated using: 

 
( )

( )( ),

,

,
k i i

k i

k i i

u v
t

SE u v

β

β
=

�

�  (14) 

where ( )( ),k i iSE u vβ
�

 is the standard error of  훽��(푢푖,푣푖).  For details on the standard error 

calculations, see (1).  However, as GW regression yields a separate model at each location i, 

(where each model is calibrated with the same observations but with different weighting 

schemes), we need to conduct a large number of simultaneous t-tests.  This operation is likely 

to result in high order multiple inference problems, where the likelihood of increased type I 

errors needs to be controlled.  In this respect, various standard approaches are available that 

adjust each test's p-value; these include: (a) Benjamini-Hochberg (36), (b) Benjamini-

Yekutieli (37), and (c) Bonferroni (38) approaches.  All three approaches can be used with 

GW regression, but a fourth, the Fotheringham-Byrne (35) approach is specifically designed 

for this purpose.  This Bonferroni-style adjustment can be briefly described as follows.  Let 

the probability of rejecting one or more true null hypothesis (i.e. the family-wise error rate, 

FWER) be denoted by 휉푚  (with m the number of tests).  Then the FWER for testing 

hypotheses about GW regression coefficients can be controlled at  휉푚 or less, by selecting 

 ��
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where 훼 is the probability of a type I error in the ith test; 푝� is the effective number of 

parameters in the GW regression; np is the number of parameters in each individual local 
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regression (i.e. the same as that found in the global regression); and n is the sample size. 

 To demonstrate this topic, the results from the basic GW regression of section 4 are 

investigated.  Here all four adjustment approaches are provided in the function gwr.t.adjust, 

which simply needs to be specified with the results from the GW regression run.  

Accordingly, we can map the competing test results, where as an example, Figure 4(a) 

displays the surface of the original (un-adjusted) p-values for the Unempl coefficient; and 

Figures 4(b-c) and 5(a-d) present the surfaces for the corresponding adjusted p-values (all 

significant results are coloured red).  Observe that the standard (Benjamini-Hochberg, 

Benjamini-Yekutieli, Bonferroni) approaches adjust the p-values to zero or one (i.e. in-

significant and significant), whilst the Fotheringham-Byrne approach provides outputs from 

zero to one.  From the five maps, it can be observed that: (1) the un-adjusted p-values are 

similar to that found from Benjamini-Hochberg and Benjamini-Yekutieli adjustments; and (2) 

the Bonferroni and Fotheringham-Byrne adjustments provide similar results.  Commands to 

conduct all these operations are as follows: 

 
R > gwr.t.adj <- gwr.t.adjust(bgwr.res) 
 
R > mypalette.gwr.mht <- brewer.pal(4, "Spectral") 
 
R > X11(width=10,height=12) 
R > spplot(gwr.t.adj$SDF, "Unempl_p", key.space = "right", col.regions =  
mypalette.gwr.mht, at = c(0, 0.025, 0.05, 0.1, 1.00), main = 
"Original p-values for Unempl", sp.layout=map.layout.3) 
 
R > X11(width=10,height=12) 
R > spplot(gwr.t.adj$SDF, "Unempl_p_bh", key.space = "right", 
col.regions = mypalette.gwr.mht, at = c(0, 0.025, 0.05, 0.1, 1.0000001), 
main = "p-values adjusted by Benjamini-Hochberg for Unempl", sp.layout =  
map.layout.3) 
 
R > X11(width=10,height=12) 
R > spplot(gwr.t.adj$SDF, "Unempl_p_by", key.space = "right", 
col.regions = mypalette.gwr.mht, at = c(0, 0.025, 0.05, 0.1, 1.0000001), 
main = "p-values adjusted by Benjamini-Yekutieli for Unempl", sp.layout 
= map.layout.3) 

 
R > X11(width=10,height=12) 
R > spplot(gwr.t.adj$SDF, "Unempl_p_bo", key.space = "right", 
col.regions = mypalette.gwr.mht, at = c(0, 0.025, 0.05, 0.1, 1.0000001), 
main = "p-values adjusted by Bonferroni for Unempl", 
sp.layout=map.layout.3) 
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R > X11(width=10,height=12) 
R > spplot(gwr.t.adj$SDF, "Unempl_p_fb", key.space = "right", 
col.regions = mypalette.gwr.mht, at = c(0, 0.025, 0.05, 0.1, 1.0000001), 
main = "p-values adjusted by the Fotheringham-Byrne approach for Unempl",  
sp.layout = map.layout.3) 

 
 

 
(a) (b) 

(c)  
 

Figure 4 The p-values associated with Unempl from the basic GW regression of section 4: (a) un-adjusted; (b) 
adjusted by Benjamini-Hochberg; and (c) adjusted by Benjamini-Yekutieli. 
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 (a) (b) 

Figure 5 The p-values associated with Unempl from the basic GW regression of section 4: (a) adjusted by 
Bonferroni; and (b) adjusted by Fotheringham-Byrne. 
 

5.2. Local collinearity diagnostics for a basic GW regression 

 The problem of collinearity amongst the predictor variables of a regression model has 

long been acknowledged and can lead to a loss of precision and power in the coefficient 

estimates (42).  This issue is heightened in GW regression since: (A) its effects can be more 

pronounced with the smaller samples that are used to calibrate each local regression; and (B) 

if the data is spatially heterogeneous in terms of its correlation structure, some localities may 

exhibit collinearity when others do not.  In both cases, (local) collinearity may cause serious 

problems in GW regression, when none are found in the corresponding global regression (6, 

29).  Diagnostics to investigate local collinearity in a GW regression model, include finding: 

(i) local correlations amongst pairs of independent variables; (ii) local variance inflation 

factors (VIFs) for each independent variable; (iii) local variance decomposition proportions 

(VDPs); and (iv) local (design matrix) condition numbers (CNs) (see 6, 29).  Accordingly, 

the following rules of thumb can be taken to indicate likely local collinearity problems in the 

GW regression model: (a) absolute correlation values greater than 0.8 for a given independent 
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variable pair; (b) VIFs greater than 10 for a given independent variable; (c) VDPs greater 

than 0.5; and (d) CNs greater than 30.  Observe that all diagnostics are found at the same 

spatial scale as each local regression of the GW regression model and can thus be mapped.  

Observe also that local correlations and local VIFs cannot detect collinearity with the 

intercept term; thus are considered inferior diagnostics to the combined use of VDPs and CNs 

(6).  All four diagnostics are however, considered an integral part of an analytical toolkit that 

should always be employed in any GW regression analysis.  Figure 6a depicts the levels of 

complexity associated with such investigations (excluding the use of VDPs).  Details on the 

use and merit of these diagnostics, possible model solutions, and critical discussions on this 

issue with GW regression, can be found in (6, 23, 29, 39-41, 51, 52).  For this study, our 

objective is to simply demonstrate some of the collinearity diagnostics used.  The application 

of a (possible) model solution with GWmodel, for example, via a locally-compensated ridge 

GW regression, is demonstrated in Gollini et al. (23) using the function gwr.lcr.  Alternative 

functions for addressing collinearity in GW regression are found in the gwrr R package (56). 

 For a given GW regression specification, local correlations, local VIFs, local VDPs 

and the local CNs can be found using the function gwr.collin.diagno.  The same local CNs 

can also be found using the function gwr.lcr.  Example maps presenting local correlations, 

local VIFs and local CNs are given in Figures 6(b-d), reflecting diagnostics for same the 

basic GW regression of section 4.  Scales of each map are chosen to highlight our critical 

thresholds.  Commands to construct these maps are given below.  Clearly, significant 

collinearity is present in our study GW regression model, where DiffAdd appears to be a 

major cause with respect to its relationship to Age25_44 in central areas of Dublin.  As the 

local CNs are large everywhere, the simple removal of one variable from the analysis may go 

some way in alleviating this problem; before proceeding to a more locally-focused analysis 
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with some locally-compensated model.  This of course brings into question the validity of the 

results of Kavanagh et al. (26), where basic GW regression was applied to this data. 

 

(a) (b) 

 

(c) (d) 

Figure 6 (a) Levels of complexity for different localised collinearity diagnostics; (b) local correlations; (c) local 
VIFs; and (d) local CNs. 
 

 
R > gwr.coll.data <- gwr.collin.diagno(GenEl2004 ~ DiffAdd + LARent + 
SC1 + Unempl + LowEduc + Age18_24 + Age25_44 + Age45_64, 
data = Dub.voter, bw = bw.gwr.1, kernel = "bisquare", adaptive = TRUE) 
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R > mypalette.coll.1 <-brewer.pal(8,"PuBuGn") 
R > X11(width=10,height=12) 
R > spplot(gwr.coll.data$SDF,"Corr_DiffAdd.Age25_44",key.space = "right", 
col.regions=mypalette.coll.1,at=c(0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1), 
par.settings=list(fontsize=list(text=15)), 
main=list(label="Local correlations: DiffAdd and Age25_44", cex=1.25), 
sp.layout=map.layout.3) 
 
R > mypalette.coll.2 <-brewer.pal(6,"PuBuGn") 
R > X11(width=10,height=12) 
R > spplot(gwr.coll.data$SDF,"DiffAdd_VIF",key.space = "right", 
col.regions=mypalette.coll.2,at=c(7,8,9,10,11,12,13), 
par.settings=list(fontsize=list(text=15)), 
main=list(label="Local VIFs for DiffAdd", cex=1.25), 
sp.layout=map.layout.3) 
 
R > mypalette.coll.3 <-brewer.pal(8,"Reds") 
R > X11(width=10,height=12) 
R > spplot(gwr.coll.data$SDF,"local_CN",key.space = "right", 
col.regions=mypalette.coll.3,cuts=7, 
par.settings=list(fontsize=list(text=15)), 
main=list(label="Local condition numbers", cex=1.25), 
sp.layout=map.layout.3) 

 

5.3. Heteroskedastic GW regression 

 Basic GW regression assumes that the error term is normally distributed with zero 

mean and constant (stationary) variance over the study region (휀푖~푁(0,휎2 )).  An extension 

of GW regression is possible, which allows a non-stationary error variance 

(휀푖~푁�0,휎2(푢푖,푣푖)�).  This (possibly more realistic) model was first proposed in 

Fotheringham et al. (1) and has been further extended to a predictive form in Harris et al. 

(18).  Details of such heteroskedastic GW regressions can be found in (1,18), where an 

iterative modelling technique is used, requiring the model to converge to some pre-specified 

level of tolerance.  An alternative (parametric) heteroskedastic GW regression can be found 

the work of Paez et al. (54). 

 For GWmodel, the function gwr.hetero allows the non-parametric version to be 

specified.  Currently, the model is only given in a very rudimentary form, where the kernel 

function used to control the coefficient estimates is also used to control the local error 
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variances; which are themselves approximated by the squared residuals (풆2).  Outputs from 

gwr.hetero are the regression coefficients only, which can be compared to the corresponding 

coefficients found using a basic GW regression (gwr.basic).  As an example, Figure 3(c) 

displays the coefficient surface for Unempl from the heteroskedastic model.  Clearly, there is 

little difference from the coefficient surface of the basic model (Figure 3(a)).  Thus modelling 

with a stationary error variance appears reasonable.  The use of a non-stationary error 

variance can be useful, however, for improved measures of uncertainty (18) and for outlier 

detection (49).  Commands to fit our heteroskedastic model are as follows, noting that the 

function gwr.hetero is specified with the same bandwidth, as that found for the basic model. 

 
R > hgwr.res <- gwr.hetero(GenEl2004 ~ DiffAdd + LARent + SC1 + Unempl  
+ LowEduc + Age18_24 + Age25_44 + Age45_64, data = Dub.voter, bw =  
bw.gwr.1, kernel = "bisquare", adaptive = TRUE) 
 
R > X11(width=10,height=12) 
R > spplot(hgwr.res, "Unempl", key.space = "right", col.regions =  
mypalette.gwr, at = c(-3, -2.5, -2, -1.5, -1, -0.5, 0), main =  
"Heteroskedastic GW regression coefficient estimates for Unempl",  
sp.layout=map.layout.3) 
 
 

6. GW Discriminant Analysis 

 Discriminant analysis (DA) allows the modelling and prediction of a categorical 

dependent variable explained by a set of independent variables.  As with GW regression, the 

relationships between the dependent and independent variables may vary across space.  In 

such a cases, a GW discriminant analysis (GW DA) (15) provides a useful investigative tool, 

where the discrimination rule is localised.  DA (and in turn, GW DA) provides an alternative 

to logistic regression (and in turn, GW logistic regression); a useful comparison of which can 

be found in the simulation study of Pohar et al. (43), where guidelines to choosing one 

method in preference to the other are presented. 
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6.1. GW discriminant analysis 

 The theoretical context for DA is briefly described. Suppose a population, of which 

each object belongs to k possible categories; and a training set X , where each row vector 풙풊 

indicates an observation belonging to category l (푙∈ {1,⋯ ,푘}); then for an observation 

vector x, the discrimination rule is to assign x to the lth category with the maximum 

probability that  x  belongs to this category, say 

 푃�(풙) =  max푗∈{1,⋯,�}�푃푗(풙) = 푝푗푓푗(풙)�. (16) 

Here ( )xfp jj  is proportional to the posterior probability of an observation arising from 

population j once the value of x is known.  Now a linear DA (LDA) assumes that the 

distribution for each category is multivariate normal with a discrimination rule of 

 푃�(풙) =  max푗∈{1,⋯,�} �푃푗(풙) = 푝푗
1

(2휋|∑| )� �⁄ 푒
−

�
�
�풙−���

�
∑ �풙−�����

 � (17) 

where ∑ is the covariance matrix, q is the number of independent variables in x, and 휇푗 is the 

mean for population  j.  This function can be simplified by taking logs and changing signs 

퐿푃�(풙) =  min푗∈{1,⋯,�} �퐿푃푗(풙) =
1

2
�풙�휇푗�

푇
∑ �풙�휇푗�
− 1
 +

푞

2
log(|∑| ) � log�푝푗�� .  (18) 

LDA assumes that ∑ is identical for each category, whilst an alternative, quadratic DA (QDA) 

assumes that ∑ is different for each category j, where its discrimination rule replaces ∑ in 

equation (18) with ∑풋 . 

 GW DA is a direct local adaption of DA, with the chosen discrimination rule varying 

across space.  Here the stationary mean and covariance estimates of DA are replaced with 

respective GW mean estimates (equation (1)) and GW covariance estimates (equation (4)) in 

the discrimination rules for both LDA and QDA.  Thus a local LDA or QDA can be found at 
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any location (풖,풗) using GW DA.  Bandwidth selection follows a cross-validation approach, 

where an optimum bandwidth is identified by minimising this score: 

 퐶푉퐺푊퐷퐴(푏) = ∑ 푃≠푖(푏)푖  (19) 

where 푃≠푖 is the proportion of incorrect assignments when the observation i is removed from 

the sample data. 

6.2. Example: GW discriminant analysis 

 To demonstrate a GW DA, we use the USelect data described in section 2.  Here 

we calibrate a GW DA using the function gwda in GWmodel, together with a standard DA 

(LDA) using the function lda from the MASS R package (44).  The GW DA is conducted 

with an adaptive bandwidth (bi-square kernel) with its optimum found using the function 

bw.gwda.  The resultant confusion matrices are presented in Table 3.  Here, the DA 

classification accuracy is 72.5%, whilst GWDA provides a slightly improved classification 

accuracy of 74.0%.  An interesting feature is that the global model predicts only one county 

in the ‘Borderline’ category.  Results of the actual presidential election are mapped at the 

county level in Figure 7(a), where Bush was a clear winner in most counties, while the 

election was more competitive in areas like Wisconsin and Maine.  The classification results 

using DA and GW DA are mapped in Figures 7(b-c), where the spatial pattern in the GW DA 

classifications appears marginally closer to the true results than that found with the DA.  

Commands to conduct all these operations and visualisations are given below. 
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Table 3 DA and GW DA confusion matrices. 

 Borderline Bush Kerry Total 

DA: 

Borderline 1 1 4 6 

Bush 543 2099 166 2808 

Kerry 92 49 156 297 

Total 636 2149 326 3111 

GW DA: 

Borderline 29 15 12 56 

Bush 522 2103 145 2770 

Kerry 85 31 169 285 

Total 636 2149 326 3111 

 
 
 
R > library(MASS) 
R > data(USelect) 
 
R > lda.res <- 
lda(winner~unemploy+pctcoled+PEROVER65+pcturban+WHITE,USelect2004) 
R > lda.pred <- predict(lda.res, USelect2004) 
R > lda.SDF <- SpatialPolygonsDataFrame(Sr = polygons(USelect2004), 
data = data.frame(lda.pred), match.ID = F) 
R > CM.lda <- confusion.matrix(USelect2004$winner, lda.pred$class) 
R > CM.lda 
R > lda.cr <- length(which(USelect2004$winner ==  
lda.pred$class))/nrow(USelect2004@data) 
R > lda.cr 
 
R > Dmat <- gw.dist (dp.locat = coordinates (USelect2004)) 
 
R > bw.gwda.ab <- 
bw.gwda(winner~unemploy+pctcoled+PEROVER65+pcturban+WHITE,  
USelect2004, kernel= "bisquare", adaptive=T, dMat=Dmat)  
R > gwda.ab <- gwda(winner~unemploy+pctcoled+PEROVER65+pcturban+WHITE,  
USelect2004, bw=bw.gwda.ab, kernel= "bisquare", adaptive=T, dMat=Dmat) 
R > print(gwda.ab) 
R > CM.gwda.ab <- confusion.matrix(USelect2004$winner, 
gwda.ab$SDF$group.predicted) 
R > CM.gwda.ab 
R > gwda.cr <- length(which(USelect2004$winner ==  
gwda.ab$SDF$group.predicted))/nrow(USelect2004@data) 
R > gwda.cr 
 
R > mypalette.gwda <- brewer.pal(3, "Spectral") 
R > xy <- coordinates(USelect2004) 
 
R > X11(width=16,height=8) 
R > USelect2004$winner <- factor(USelect2004$winner, levels =  
c("Borderline","Bush", "Kerry")) 
R > spplot(USelect2004, "winner", key.space = "right", 
col.regions = mypalette.gwda, 
par.settings=list(fontsize=list(text=20)), 
main = list(label="Results of the 2004 US presidential election", 
cex=1.25)) 
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(a) 

(b) 

(c) 

Figure 7 (a) Results of 2004 US presidential election.  Classification results using: (b) DA; and (c) GW DA. 
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R > X11(width=16,height=8) 
R > pts.lda.correct <- list("sp.points", xy[which(USelect2004$winner ==  
lda.pred$class),],  cex=1, pch="+", col="black") 
R > lda.SDF$class <- factor(lda.SDF$class, 
levels = c("Borderline","Bush", "Kerry")) 
R > spplot(lda.SDF, "class", key.space = "right", 
col.regions = mypalette.gwda, 
par.settings=list(fontsize=list(text=20)), 
main = list(label="Classification results using DA ", cex=1.25), 
sub=list(label="+ the correct classification", cex=1), 
sp.layout=pts.lda.correct) 
 
 
R > X11(width=16,height=8) 
R > pts.gwda.ab.correct <- list("sp.points", xy[which(USelect2004$winner  
== gwda.ab$SDF$group.predicted),],  cex=1, pch="+", col="black") 
R > gwda.ab$SDF$group.predicted <- factor(gwda.ab$SDF$group.predicted,  
levels = c("Borderline","Bush", "Kerry")) 
R > spplot(gwda.ab$SDF, "group.predicted", key.space = "right",  
col.regions = mypalette.gwda, 
par.settings=list(fontsize=list(text=20)), 
main = list(label="Classification results using GW DA", cex=1.25), 
sub=list(label="+ the correct classification", cex=1), 
sp.layout=pts.gwda.ab.correct)  
 
 

7. Enhanced kernel bandwidth selection 

 In GWmodel, a number of functions are provided to aid bandwidth selection.  These 

include: bw.ggwr, bw.gwda, bw.gwpca, bw.gwr and bw.gwr.lcr for automatic bandwidth 

selection when calibrating a generalised GW regression, a GW DA, a GW PCA, basic GW 

regression and GW regression with a local compensated ridge term, respectively.  However, 

it is not always recommended to simply plug the resultant (optimal) bandwidth into the given 

GW model, without first checking the behaviour of the full bandwidth function.  Here we 

demonstrate how to: (i) investigate for multiple minima in this function and (ii) assess if 

(outlying) observations adversely affect the behaviour of this function.  In this respect, 

GWmodel provides the following functions for constructing a cross-validation (CV) 

bandwidth function (i.e. bandwidth vs. the CV score): ggwr.cv, gwpca.cv, gwr.cv and 

gwr.lcr.cv (with gwda.cv still to be coded).  Similarly, GWmodel provides the following 

functions for finding the CV score data at each observation location, for a given bandwidth: 
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ggwr.cv.contrib, gwpca.cv.contrib, gwr.cv.contrib and gwr.lcr.cv.contrib (with 

gwda.cv.contrib still to be coded).  Observe that the CV score data is summed to provide the 

CV score for a given bandwidth.  As an example of using these functions, we further 

investigate the GW PCA conducted in section 3.  Here we use the bw.gwpca, gwpca.cv and 

gwpca.cv.contrib functions.  Thus the CV bandwidth function, and a histogram and map of 

the CV score data for an optimal bandwidth of 131=N , are found as follows (and presented 

in Figures 8(a-c)). 

 
R > library(classInt) 
 
R > sample.n <- 322 
R > bwd.range.adapt <- c(seq(40,sample.n,by=20)) 
R > cv.score <- matrix(nrow=length(bwd.range.adapt),ncol=1) 
R > for(i in 1:length(bwd.range.adapt)) cv.score[i] <- 
gwpca.cv(bwd.range.adapt[i],Data.scaled,Coords,k=3,robust=F, 
kernel="bisquare",adaptive=TRUE,p=2,theta=0,longlat=F) 
 
R > X11(width=6,height=6) 
R > plot(bwd.range.adapt,cv.score,ylab="",xlab="",cex=1,pch=19) 
R > title(ylab = list("CV score", cex=1.25, col="black", font=1)) 
R > title(xlab = list("No. of nearest neighbours", cex=1.25, col="black", 
font=1)) 
R > title(main = list("GW PCA: Bandwidth function", cex=1.5, col="black", 
font=1)) 
 
R > cv.score.data.opt <- 
gwpca.cv.contrib(Data.scaled,Coords,bw=131,k=3,robust=F,kernel="bisquare",a
daptive=TRUE,p=2,theta=0,longlat=F) 
 
R > X11(width=6,height=6) 
R > hist(cv.score.data.opt,ylab="",xlab="",main="") 
R > title(ylab = list("Frequency", cex=1.25, col="black", font=1)) 
R > title(xlab = list("CV score data", cex=1.25, col="black", font=1)) 
R > title(main = list("GW PCA: CV score data for a bandwidth of 131", 
cex=1.5, col="black", font=1)) 
 
R > Dub.voter$cv.score.data.opt <- cv.score.data.opt 
R > mypalette.cv.score <- brewer.pal(9,"Spectral") 
R > b1 <- classIntervals(cv.score.data.opt,n=9,style="quantile") 
b1$brks[length(b1$brks)] <- b1$brks[length(b1$brks)] * 1.001 
 
R > X11(width=10,height=12) 
R > spplot(Dub.voter,"cv.score.data.opt",key.space = "right", 
col.regions=mypalette.cv.score, cuts=8, 
par.settings=list(fontsize=list(text=15)), 
main=list(label="GW PCA: CV score data for a bandwidth of 131", cex=1.25), 
sub=list(label="Quantile intervals",cex=1.05), 
sp.layout=map.layout.3) 
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(a) (b) 

 

(c) 

Figure 8 GW PCA calibration: (a) adaptive CV bandwidth function; (b) map and (c) histogram of the CV score 
data for the optimal bandwidth of  N = 131. 
 
 

It is clear from Figures 8(a-c), that the CV bandwidth function is well-behaved, 

reaching a clear minimum at 131=N ; and thus provides re-assurance in this bandwidth's use.  

At this specific bandwidth, the CV score data is heavily positively skewed, with one extreme 

value at 98.4 that corresponds to an ED in the south-west of Greater Dublin.  The census data 

at this ED warrants additional scrutiny and maybe in error. 
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8. Concluding remarks 

 This study, together with its companion study (23), demonstrates the application of a 

wide range of techniques for investigating spatial heterogeneity, using functions provided by 

the GWmodel R package.  Topics include that of (i) GW summary statistics, (ii) GW 

principal component analysis, (iii) GW regression, and (iv) GW Discriminant Analysis.  The 

GW modelling paradigm provides a simple, yet powerful analytical toolkit for exploring 

change in a statistical model's parameters and outputs across space; a paradigm that continues 

to evolve (e.g. 16, 21, 24, 45, 46, 47, 48, 52, 53).  Functions for these more recent advances 

in GW modelling will be incorporated into GWmodel in due course. 
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