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Abstract 

The production of academic knowledge has progressed for the past few centuries using small 

data studies characterized by sampled data generated to answer specific questions.  It is a 

strategy that has been remarkably successful, enabling the sciences, social sciences and 

humanities to advance in leaps and bounds.  This approach is presently being challenged by 

the development of big data.  Small data studies will, however, continue to be important in 

the future because of their utility in answering targeted queries.  Nevertheless, small data are 

being made more big data-like through the development of new data infrastructures that pool, 

scale and link small data in order to create larger datasets, encourage sharing and re-use, and 

open them up to combination with big data and analysis using big data analytics.  This paper 

examines the logic and value of small data studies, their relationship to emerging big data and 

data science, and the implications of scaling small data into data infrastructures, with a focus 

on spatial data examples.  The final section provides a framework for conceptualizing and 

making sense of data and data infrastructures. 
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Small data, big data 

Until a couple of years ago data were not considered in terms of being ‘small’ or ‘big’.  All 

data were, in effect, what is now sometimes referred to as ‘small data’ regardless of their size.  
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Due to factors such as cost, resourcing, and difficulties of generating, processing, analyzing 

and storing data, data were produced in tightly controlled ways using sampling techniques 

that limited their scope, temporality and size (Miller 2010).  However, in the last decade or 

so, new technological developments have led to the production of what has been termed ‘big 

data’, which have very different characteristics to small datasets (see Table 1).  As detailed in 

Kitchin (2013), big data are:  

 

• huge in volume, consisting of terrabytes or petabytes of data;  

• high in velocity, being created in or near real-time;  

• diverse in variety, being structured and unstructured in nature, and often temporally 

and spatially referenced; 

• exhaustive in scope, striving to capture entire populations or systems (n=all) within a 

given domain such as a nation state or a platform such as Twitter users, or at least 

much larger sample sizes than would be employed in traditional, small data studies; 

• fine-grained in resolution, aiming to be as detailed as possible, and uniquely indexical 

in identification;  

• relational in nature, containing common fields that enable the conjoining of different 

data sets; 

• flexible, holding the traits of extensionality (can add new fields easily) and scalability 

(can expand in size rapidly).  

(Boyd and Crawford 2012; Dodge and Kitchin 2005; Marz and Warren 2012; Mayer- 

 Schonberger and Cukier 2013). 

 
Table 1: Comparing small and big data 

 
Characteristic Small data Big data 
Volume Limited to large Very large 
Exhaustivity Samples Entire populations 
Resolution and identification Course & weak to tight & strong Tight & strong 
Relationality Weak to strong Strong 
Velocity Slow, freeze-framed/bundled Fast, continuous 
Variety Limited to wide Wide 
Flexible and scalable Low to middling High 
 

 The term ‘big’ then is somewhat misleading as big data are characterized by much 

more than volume.  Indeed, some ‘small’ datasets can be very large in size, such as national 

censuses that also seek to be exhaustive and have strong resolution and relationality.  
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However, census datasets lack velocity (usually conducted once every ten years), variety 

(usually c.30 structured questions), and flexibility (once a census is set and is being 

administered it is all but impossible to tweak the questions or add new questions or remove 

others and generally the fields are fixed, typically across censuses, to enable time-series 

analysis).  Other small datasets also consist of a limited combination of big data’s 

characteristics.  For example, a qualitative dataset such as interview transcripts have strong 

resolution and flexibility but are usually relatively small in size (perhaps a couple of dozen 

respondents), have no or spaced-out temporality (one-off interviews or a sequence over a 

number of months), possess weak relationality, and are limited in variety (text transcripts).  In 

contrast, big data have all these characteristics, or nearly all depending on their form (for 

example, sensor data are lacking in variety but have the other characteristics), with the crucial 

qualities being velocity and exhaustivity.  

 The rapid growth of big data has arisen due to the simultaneous development of a 

number of enabling technologies, infrastructures, techniques and processes, and their rapid 

embedding into everyday business and social practices and spaces.  These include: 

 

• the widespread roll-out of a diverse set of information and communication 

technologies, especially fixed and mobile internet;  

• the embedding of software into all kinds of objects, machines and systems 

transforming them from ‘dumb’ to ‘smart’,  as well as the creation of purely digital 

devices and systems;  

• the development of ubiquitous computing and the ability to access networks and 

computation in many environments and on the move, including the creation of new 

social media platforms;  

• advances in database design (especially the creation of NoSQL databases) and 

systems of information management;  

• distributed and forever storage of data at affordable costs;  

• and new forms of data analytics designed to cope with data abundance as opposed to 

data scarcity.   

The practices of everyday life and the places in which we live are now augmented, 

monitored and regulated by dense assemblages of data-enabled and data-producing 

infrastructures and technologies, such as traffic and building management systems, 

surveillance and policing systems, government databases, customer management and logistic 
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chains, financial and payment systems, and locative and social media.  Within these socio-

technical systems much of the data generation is automated through algoritmically-controlled 

cameras, sensors, scanners, digital devices such as smart phones, clickstreams, or are the by-

product of networked interactions (such as the records of online transactions), or are 

volunteered by users through social media or crowdsourcing initiatives.   

 Collectively, such systems produce massive, exhaustive, dynamic, varied, detailed, 

indexical, inter-related, low cost per data point datasets that are flexible and scalable.  To take 

just two examples as way of illustration.  In 2011, Facebook’s active users spent more than 

9.3 billion hours a month on the site (Manyika et al. 2011), and by 2012 Facebook reported 

that it was processing 2.5 billion pieces of content (links, stores, photos, news, etc) and 500+ 

terabytes of data, 2.7 billion ‘Like’ actions and 300 million photo uploads per day (Constine 

2012), each accompanied by associated metadata.  Wal-Mart was generating more than 2.5 

petabytes of data relating to more than 1 million customer transactions every hour in 2012  

(“equivalent to 167 times the information contained in all the books in the Library of 

Congress”; Open Data Center Alliance 2012: 6).   

 Whereas small datasets were largely oases of data within data deserts, big data 

produce a veritable data deluge that seemingly enables research to shift from: data-scarce to 

data-rich; static snapshots to dynamic unfoldings; coarse aggregation to high resolution; 

relatively simple hypotheses and models to more complex, sophisticated simulations and 

theories (Kitchin 2013).  This has led some to question whether big data might lead to the 

demise of small data or whether the stature of studies based on small data might be 

diminished due to their limitations in size, scope and temporality.  For example, Sawyer 

(2008) notes that funding agencies are increasingly pushing their limited funding resources to 

data-rich areas, perhaps conflating data volume with insight, utility and value, and consigning 

research questions for which it is difficult to generate big data to a funding desert and 

marginal position within and outside the academy.   

 Such a re-prioritization, however, misunderstands both the nature of big data and the 

value of small data.  Big data may seek to be exhaustive, but as with all data they are both a 

representation and a sample.  What data are captured is shaped by:  

 

• the field of view/sampling frame (where data capture devices are deployed and what 

their settings/parameters are; who uses a space or media, e.g., who belongs to 

Facebook or shops in Walmart);  
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• the technology and platform used (different surveys, sensors, lens, textual prompts, 

layout, etc. all produce variances and biases in what data are generated);  

• the context in which data are generated (unfolding events mean data are always 

situated with respect to circumstance); 

• the data ontology employed (how the data are calibrated and classified), and; 

• the regulatory environment with respect to privacy, data protection and security 

(Kitchin 2013, 2014). 

Indeed, all data provide oligoptic views of the world: views from certain vantage points, 

using particular tools, rather than an all-seeing, infallible god’s eye view (Haraway 1991; 

Amin and Thrift 2002).  As such, big data constitute a ‘series of partial orders, localised 

totalities, with their ability to gaze in some directions and not others’ (Latour cited in Amin 

and Thrift 2002: 92).  Big data undoubtedly strive to be more exhaustive and provide 

dynamic, fine-grained insight but, nonetheless, their promise can never be fully fulfilled.  Big 

data generally capture what is easy to ensnare -- data that are openly expressed (what is 

typed, swiped, scanned, sensed, etc.; people’s actions and behaviours; the movement of 

things) -- as well as data that are the ‘exhaust’, a by-product, of the primary task/output.  

Tackling a question through big data often means repurposing data that were not designed to 

reveal insights into a particular phenomenon, with all the attendant issues of such a 

maneuver, for example creating ecological fallacies.   

 In contrast, small data may be limited in volume and velocity, but they have a long 

history of development across science, state agencies, non-governmental organizations and 

business, with established methodologies and modes of analysis, and a record of producing 

meaningful answers.  Small data studies can be much more finely tailored to answer specific 

research questions and to explore in detail and in-depth the varied, contextual, rational and 

irrational ways in which people interact and make sense of the world, and how processes 

work.  Small data can focus on specific cases and tell individual, nuanced and contextual 

stories.  Small data studies thus seek to mine gold from working a narrow seam, whereas big 

data studies seek to extract nuggets through open-pit mining, scooping up and sieving huge 

tracks of land. 

 These two approaches of narrow versus open mining have consequences with respect 

to data quality, fidelity and lineage.  Given the limited sample sizes of small data, data quality 

-- how clean (error and gap free), objective (bias free) and consistent (few discrepancies) the 

data are; veracity -- the authenticity of the data and the extent to which they accurately 
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(precision) and faithfully (fidelity, reliability) represent what they are meant to; and lineage -- 

documentation that establishes provenance and fit for use; are of paramount importance 

(Lauriault 2012).  Much work is expended on limiting sampling and methodological biases as 

well as ensuring that data are as rigorous and robust as possible before they are analyzed or 

shared.  In contrast, it has been argued by some that big data studies do not need the same 

standards of data quality, veracity and lineage because the exhaustive nature of the dataset 

removes sampling biases and more than compensates for any errors or gaps or inconsistencies 

in the data or weakness in fidelity (Mayer-Schonberger and Cukier 2013).  The argument for 

such a view is that “with less error from sampling we can accept more measurement error” 

(p.13) and “tolerate inexactitude” (p. 16).  Viewed in this way, Mayer-Schonberger and 

Cukier (2013: 13) thus argue “more trumps better.”  Of course, this presumes that all uses of 

big data will tolerate inexactitude, when in fact many big data applications do require 

precision (e.g., finance data), or at least data with measurable error parameters. 

 Moreover, the warning “garbage in, garbage out” still holds.  Big datasets that 

generate dirty, gamed or biased data, or data with poor fidelity, are going to produce analysis 

and conclusions that have weakened validity and deliver fewer benefits to those that analyze 

and seek to exploit them.  And by dint of their method of production big data can suffer from 

all of these ails.  The data can be dirty through instrument error or biased due to the 

demographic being sampled (e.g., not everybody uses Twitter) or the data might be gamed or 

faked through false accounts or hacking (e.g.,  there are hundreds of thousands of fake 

Twitter accounts seeking to influence trending and direct clickstream trails) (Bollier 2010; 

Crampton et al. 2012).  With respect to fidelity there are question marks as to the extent to 

which social media posts really represent peoples’ views and the faith that should be placed 

on them.  Manovich (2011: 6) warns that “[p]eoples’ posts, tweets, uploaded photographs, 

comments, and other types of online participation are not transparent windows into their 

selves; instead, they are often carefully curated and systematically managed.”   

 There are issues of access to both small and big data.  Small data produced by 

academia, public institutions, non-governmental organizations and private entities can be 

restricted in access, limited in use to defined personnel or available for a fee or under license.  

Increasingly, however, public institution and academic data are becoming more open.  Big 

data are, with a few exceptions such as satellite imagery and national security and policing, 

mainly produced by the private sector.  Access is usually restricted behind pay walls and 

proprietary licensing, limited to ensure competitive advantage and to leverage income 

through their sale or licensing (CIPPIC 2006).  Indeed, it is somewhat of a paradox that only 
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a handful of entities drowning in the data deluge (boyd and Crawford 2012) and companies 

such as mobile phone operators, app developers, social media providers, financial 

institutions, retail chains, and surveillance and security firms are under no obligations to 

share freely the data they collect through their operations.  In some cases, a limited amount of 

the data might be made available to researchers or the public through Application 

Programming Interfaces (APIs).  For example, Twitter allows a few companies to access its 

firehose (stream of data) for a fee for commercial purposes (and have the latitude to dictate 

terms with respect to what can be done with such data), but researchers are restricted to a 

‘gardenhose’ (c. 10 percent of public tweets), a ‘spritzer’ (c. one percent of public tweets), or 

to different subsets of content (‘white-listed’ accounts), with private and protected tweets 

excluded in all cases (boyd and Crawford 2012).  The worry is that the insights that privately 

owned and commercially sold big data can provide will be limited to the business sector, or 

maybe only opened to a privileged set of academic researchers whose findings cannot be 

replicated or validated (Lazer et al. 2009).   

Given the concerns and limitations of big data, small data studies will continue to be 

an important component of the research landscape.  Such data, however, will increasingly 

come under pressure to be scaled-up within digital data infrastructures in order that they are 

preserved for future generations, become accessible to re-use and combination with other 

small and big data, and more value and insight can be extracted from them through the 

application of big data analytics.  Already, considerable resources have been invested in 

creating such data infrastructures.  In the remainder of this paper we examine the scaling of 

small data into data infrastructures, the implications of such a scaling with respect to 

exposing small data to new big data epistemologies and repurposing, and provide a 

framework for conceptualizing and making sense of data infrastructures, focusing on spatial 

data examples. 

 

Scaling, preserving, sharing and re-using small data: creating data infrastructures  

Data have been collected together and stored for much of recorded history.  Such practices 

have been both informal and formal in nature.  The former consists simply of gathering data 

and storing them, whereas the latter consists of a set of curatorial practices and institutional 

structures designed to ensure that data are preserved for future generations.  The former 

might best be described as data holdings, or backups, whereas the latter are data archives.  

Archives are formal collections of data that are actively structured, curated and documented, 

are accompanied by appropriate metadata, and where preservation, access and discoverability 
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are integrated into technological systems and institutions designed to last the test of time 

(Lauriault et al. 2013).  Archives explicitly seek to be long term endeavours, preserving the 

full record set -- data, metadata and associated documentation -- for future re-use.   

 The ability to store data digitally and to structure them within databases has radically 

transformed the volume of data that can be stored and efficiently and effectively handled and 

queried and has enabled the creation of extensive digital holdings and archives.  Such digital 

data can be easily shared and re-used for a low marginal cost, although the cost of both the 

soft (institutional, policies, standards, human resources) and hard (technology, servers, 

software, delivery mechanisms, portals) infrastructures are not in the least bit inexpensive.  

Moreover, these data can be manipulated and analyzed by exposing them to computational 

algorithms.  As such, procedures and calculations that would be difficult to undertake by 

hand or using analogue technologies become possible in just a few microseconds, enabling 

more and more complex analysis to be undertaken or the replication of objects (i.e. an atlas) 

and results.  Further the data can also be relatively easily linked together and scaled into other 

forms of data infrastructure. 

 A data infrastructure is a digital means for storing, sharing and consuming data across 

networked technologies.  Over the past two decades in particular, considerable effort has 

been expended on developing and promoting data access and discovery infrastructures, which 

take a number of forms: catalogues, directories, portals, clearinghouses and repositories 

(Lauriault et al. 2007).  These terms are often used interchangeably and are confused for one 

another, though they are slightly different types of entities.  Catalogues, directories and 

portals are centralized resources that may detail and link to individual data archives (e.g., 

Earth Observation Data Management Service of the Canada Centre for Remote Sensing) or 

data collections held by individual institutions (e.g. Australian National Data Service) or are 

federated infrastructures which provide the means to access the collections held by many 

(e.g., US National Sea Ice Data Center).  They might provide fairly detailed inventories of the 

datasets held, and may act as metadata aggregators but do not necessarily host the data (e.g., 

GeoConnections Discovery Portal; Europeana) (O’Carroll et al. 2013).  Single site 

repositories host all the data sets in a single site, accessible through a web interface, though 

they may maintain back-up or mirror sites in multiple locations (e.g., The UK Data Archive).  

A federated data repository or clearing house can be a shared place for storing and accessing 

data (e.g. US National Database for Autism Research (NDAR), NASA’s Global Change 

Master Directory).  It might provide some data services in terms of search and retrieval, and 

data management and processing, but each holding or archive has been produced 
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independently and may not share data formats, standards, metadata, and policies.  

Nevertheless, the repository seeks to ensure that each archive meets a set of requirement 

specifications and uses audit and certification to ensure data integrity and trust amongst users 

(Dasish 2012).   

 A cyber-infrastructure is more than a collection of digital archives and repositories.  It 

consists of a suite of dedicated networked technologies, shared services (relating to data 

management and processing), analysis tools such as data visualizations (e.g., graphing and 

mapping apps), and shared policies (concerning access, use, IPR, etc) which enable data to be 

distributed, linked together and analyzed (e.g. a spatial data infrastructure).  Whilst it is 

sometimes used to denote the infrastructure that enables a federated repository to function, 

here we use it to denote a data infrastructure in which data share common technical 

specifications relating to formats, standards, and protocols.  In other words, there are strong 

rules relating to data standardization and compliance within the infrastructure.  Such cyber-

infrastructures include those implemented by national statistical agencies and national spatial 

data infrastructures that require all data stored and shared to comply with defined parameters 

in order to maximize data interoperability and ensure data quality, fidelity and integrity that 

promotes trust.  The objectives of spatial data infrastructures are to ensure that users from 

multiple sectors and jurisdictions can seamlessly re-use these data and link them into their 

systems.  A cross border natural disaster, for instance, would require multiple agencies, in 

different countries along with sub-national entities, under severe time constraints and 

pressures, to access, model and visualize spatial data in near real time while also inputting 

newly acquired data to respond to and inform an emergency response arena.  In less stressful 

environments, SDIs enable the management of cross border shared services and natural 

resources (e.g. EU Water Framework Directives). 

 

The arguments for the storing, sharing and scaling of small data 

The arguments for building repositories and data infrastructures centre on the promises of 

new discoveries and innovations through the combination of datasets and the crowdsourcing 

of minds.  Individual datasets are valuable in their own right, but when combined with other 

datasets or examined in new ways fresh insights can potentially be discerned and new 

questions answered (Borgman 2007).  By combining datasets, it is contended that the 

cumulative nature and pace of knowledge building is accelerated (Lauriault et al. 2007).  

Moreover, by preserving data over time it becomes possible to track trends and patterns, and 

the longer the record, the greater the ability to build models and simulations and have 



10 
 

confidence in the conclusions drawn (Lauriault et al. 2007).  Over time then, the cumulative 

value of data infrastructures increases as the data become more readily and broadly available, 

both in scope and temporality.  Such a sharing strategy is also more likely to spark new 

interdisciplinary collaborations between researchers and teams and to foster enhanced skill 

through having access to new kinds of data (Borgman 2007).  Moreover, the sharing of data 

and the adoption of infrastructure standards, protocols and policies increases data quality and 

enables third party data and study verification, thus increasing data integrity (Lauriault et al. 

2007).   

The financial benefits of data infrastructures centre on the scales of economy created 

by sharing resources and avoiding replication, the leveraging effects of re-using costly data, 

the generation of wealth through new discoveries, and producing more efficient societies.  

Research and the production of administrative, statistical and geomatics data are typically 

costly undertakings, with various funding agencies collectively spending billions of dollars 

every year to fund research activities.  Rather than creating a plethora of ad hoc archives, it 

makes more sense to establish a smaller number of dedicated institutional repositories or 

infrastructures which undertake basic data standardization and produce significant 

efficiencies in effort, as well as enable broader access to data for individual 

researchers/institutions where entry costs to a field would normally be prohibitive (Fry et al. 

2008).  As well as reducing wastage, preserving and sharing the fruits of such endeavours is 

more likely to maximize the return on investment by enabling as much value as possible to be 

extracted from the data (Lauriault et al. 2007).  That said, the sustainability of these 

infrastructures are often an issue.  Research data infrastructures are funded through a mix of 

mechanisms such as state and research funds, community organized infrastructures rely on 

small grants and membership fees, while the open data infrastructures run by civil society 

organizations are built by volunteers. 

 

Examples of data infrastructures 

Given the anticipated gains from sharing data, over the past three decades supranational 

bodies such as the European Union, national governments, researchers, philanthropic and 

civil society organizations, have invested extensively in funding a wide variety of data and 

cyber-infrastructure initiatives.   

Spatial data infrastructures (SDIs), are the achetype cyber-infrastructure.  National 

scale SDIs are normally institutionally located in national mapping organizations, national 

surveys, or the departments that manage natural resources.  They are an assemblage of 
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institutions (e.g., government, geomatics), policies (e.g., data sharing protocols), laws (e.g. 

licenses, legislation, regulation), technologies (e.g., data portals, storage, software), processes 

(e.g., web mapping, metadata aggregation), standards (e.g., metadata, file transfer, data 

quality) and specifications (e.g., interoperability), scientific and computing knowledge, 

skilled human resources, discovery and access portals, framework data (e.g., common 

datasets upon which others can build such as road networks) and mapping services that direct 

the who, how, what and why geospatial data are collected, stored, manipulated, analyzed, 

transformed and shared.  They are inter-sectoral, cross-domain, trans-disciplinary, 

interdepartmental, and require much consensus building.  Supranational SDIs such as the 

Infrastructure for Spatial Information in the European Community (INSPIRE), are very 

similar to national SDIs, however in the case of INSPIRE, it governs how nations are to 

construct their infrastructures via rules, directives and policies, that will lead to data, 

geomatics systems and services being seamlessly interoperable across 27 member states.  In 

addition, INSPIRE includes a GeoPortal which is a federated catalog that aggregates the 

metadata of member state SDIs thus providing users with a single point to discover and view 

EU geospatial data. 

On a smaller scale, and in a different domain, the UK Data Archive, is an example of 

a research data infrastructure that acquires, curates and provides access to social science and 

humanities data.  Data are discovered via the UK Data Service which is a catalogue that 

provides access to hosted national and international survey data collections, international 

databanks, census data and qualitative data.  Secure data services for access and use of more 

sensitive research data are also provided.  Data are described with standard metadata, and a 

number of educational resources are provided for users to work with the data once they have 

been downloaded.  The UK Data Archive, although, not a certified trusted digital repository, 

has as its objective to maintain its large collections of data for long-term reuse, and provides 

a number of capacity building resources to enable researchers to manage and deposit their 

data. 

There are not many examples of data infrastructures in the non-profit and charitable 

sector.  The Canadian Council on Social Development, Community Data Program (CDP), is 

however an example of a small data infrastructure created for the specific purpose of enabling 

small area, evidence based decision making in the social sector.  It is funded by its members 

through a consortia model.  Members are city based networks of municipal administrators, 

school boards, community health centres, social planning councils and a number of charitable 

and non-profit organizations.  The CDP acquires and disseminates mostly public sector data 
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and custom ordered cross tabulated data aggregated into neighbourhood, city ward, small area 

census geographies and postal codes.  These are stored into a database and delivered to 

members via an online catalog.  In this instance, members not only benefit from the data, but 

also from services where experts negotiate data acquisition based on community needs and 

specifications, and a knowledge sharing network between super users and novices. 

Finally, in the last four years a number of open data infrastructures have been created 

by national governments, sub national governments such as cities, provinces, counties and 

states, and civil society organizations such as the UK-based Open Knowledge Foundation 

(OKNF) and to a lesser extent research and private sector entities.  The objectives of these 

data infrastructures are to unlock access to public sector datasets and make them accessible 

via a discovery and access portals for free and under open licences.  The OKNF is an open 

data supranational organization which provides direction to governments and civil society 

groups and helps build capacity in terms of the deployment of catalogs (e.g., CKAN), and has 

created a set of open data principles and open license specifications.  Open data portals have 

not yet matured into a cyber-infrastructures, although government funded open data portals 

do manifest some of their qualities.  Unlike SDIs, these are not grounded in a domain, 

discipline or the sciences, and often open data infrastructures are administered in information 

management/technology departments and championed by chief technology officers, or are 

created and supported by volunteers groups composed of new media enthusiasts and app 

developers. 

These four cases are but a small sample of the innumerable data and cyber-

infrastructures currently in operation.  In all four cases, the data found in their portals are 

small data, SDIs being the exception as remote sensing data and many environmental sensors 

produce data that have the qualities of big data.  Alternatively, geodemographic data 

infrastructures, discussed later, exemplify the scaling of small data with big data.  

 

Implications of scaling small data into data infrastructures 

Whilst the scaling of small data into data infrastructures does not create big data, in the sense 

that the data still lack velocity, it does make them more big data-like by making them more 

extensive, relational and interconnected, varied, and flexible.  This enables two effects to 

occur.  First, it opens scaled small data to new epistemologies and, in particular, to new forms 

of big data analytics.  Second, it facilitates small data being conjoined with big data to 

produce more complex, inter-related and wide-ranging data infrastructures that are presently 

driving the rapid growth of commercial data brokers, including the burgeoning 
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geodemographics industry (also known as locational targeted niche marketing tools).  Both 

have consequences with respect to how small data are being used and raise normative 

questions concerning the creation and use of data infrastructures. 

 

New epistemologies 

Traditional small data methods of analysis have primarily been designed to extract insights 

from scarce, static, clean and weak relational data sets that have been sampled and adhere to 

strict assumptions (such as independence, stationarity, and normality), and were generated 

and analyzed with a specific question in mind (Miller 2010).  The challenge with big data is 

to cope with abundance and exhaustivity (including sizable amounts of data with low utility 

and value), timeliness and dynamism, messiness and uncertainty, high relationality, semi-

structured or unstructured content, and the fact that much of them are generated with no 

specific question in mind or are a by-product of another activity.  The solution has been new 

data analytics that utilize the power of algorithms and computation to process and provide 

insight into datasets that would simply be too costly, difficult and time-consuming to analyze 

otherwise.  Such analytics scale-up existing statistical methods, such as regression, model 

building, data visualization and mapping, as well as employing new machine learning and 

visual analytics techniques that computationally mine meaning from data and detect, classify 

and segment meaningful patterns, relationships, associations and trends between variables, 

and build predictive, simulation and optimization models (Han et al. 2011). 

 Machine learning generally consists of two broad types: supervised (using training 

data) and unsupervised (using self-organization).  In supervised learning, a model is trained 

to match inputs to certain known outputs (Hastie et al. 2009).  For example, the model might 

be trained to match patterns on an aerial photograph with building shapes, or to predict a 

certain outcome.  In contrast, in unsupervised learning the model seeks to teach itself to spot 

patterns and find structure in data without the use of training data.  In general, this is achieved 

through identifying clusters and relationships between the data where the characteristics of 

similarity or associations were not known in advance.  For example, the model might learn 

how to segment customers into self-similar groups and to predict purchases amongst those 

groups (Han et al. 2011).  In both cases, the model is created through a learning process 

shaped by learning rules and weightings that direct how the model is built in relation to the 

data (Hastie et al. 2009).  The process of building the model starts with a simple construction 

and then tweaks it repeatedly using the learning rules, as if applying ‘genetic mutations’, until 

it evolves into a robust model (Siegel 2013: 122).  Using a machine learning approach 
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hundreds of different types of models can be applied to a dataset in order to determine which 

best explain or perform optimally.  Indeed, an ensemble approach builds multiple models 

using a variety of statistical techniques (e.g. regression, neural network, nearest neighbour, 

factor analysis, and decision tree models) to predict the same phenomena, rather than 

selecting a single approach and building a handful of models (Siegel 2013).  These data 

analytics can equally be applied to scaled small data to extract and model insights.   

 Data analytics are reflective of a particular way of making sense of the world; they are 

the manifestation of a particular epistemology.  Some envisage them as a new form of 

empiricism that enables data to speak for themselves free of theory.  For example, Anderson 

(2008) argues that “the data deluge makes the scientific method obsolete”.  He continues, 

“We can analyze the data without hypotheses about what it might show. We can throw the 

numbers into the biggest computing clusters the world has ever seen and let statistical 

algorithms find patterns where science cannot... Correlation supersedes causation, and 

science can advance even without coherent models, unified theories, or really any 

mechanistic explanation at all.  There’s no reason to cling to our old ways.”  In other words, 

rather than testing whether certain hypothesized patterns or relationships exist within a 

dataset, algorithms are set to work on big data to discover meaningful associations between 

data without being guided by hypotheses.  In this epistemological vision, scaled small data 

are made sense of through a purely inductive approach. 

 In contrast, data-driven science seeks to hold to the tenets of the scientific method, but 

uses a combination of abductive, inductive and deductive approaches to advance the 

understanding of a phenomenon.  It differs from the traditional deductive approach in that it 

seeks to generate hypotheses and insights ‘born from the data’ rather than ‘born from the 

theory’ (Kelling et al. 2009: 613).  In other words, it seeks to incorporate a mode of induction 

into the initial stages of the research design, though explanation through induction is not the 

intended end-point.  This process of induction does not arise from nowhere, but is situated 

and contextualized within a highly evolved theoretical domain.  The patterns, associations 

and trends identified through initial data analytics are thus used to identify potential 

hypotheses worthy of further examination and testing.  As such, the epistemological strategy 

adopted within data-driven science is to use guided knowledge discovery techniques to 

identify valuable insights that traditional ‘knowledge-driven science’ might fail to spot and 

then to investigate these further (Kelling et al. 2009; Miller 2010; Loukides 2010). 

 With respect to the social sciences and humanities, data infrastructures, new data 

analytics and associated epistemologies offer the potential to transform the research 
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landscape.  As noted, data infrastructures provide access to large collections of data for re-use 

and analysis.  These data can be conjoined in new ways and the relationships and associations 

between them explored using data analytics.  With respect to structured data, it becomes 

possible to produce more refined and sophisticated models and to test the veracity of these 

models across a multitude of groups, settings and situations (Lazer et al. 2009).  This includes 

the production of more elaborate and robust spatial models (Batty 2013).  Access to 

unstructured data multiplies, including both new sources of information (e.g., social media) 

and many which have heretofore been difficult to access (e.g., millions of books, documents, 

newspapers, photographs, art works, and material objects; Cohen 2008).  These data are thus 

opened up to the power of computation, including sophisticated tools for handling, searching, 

linking, sharing and analyzing data that seek to complement and augment existing humanities 

methods and traditional forms of interpretation and theory building (Berry 2011; Manovich 

2011), as well utilizing new data analytics that provide new means to make sense of such data 

(Moretti 2005). 

 Such approaches are not without critique, with detractors arguing that data analytics 

are mechanistic, reductionist, functionalist, and parochial, reducing diverse individuals and 

complex, multidimensional social structures to mere data points (Wyly, 2013), thus fostering 

weak, surface analysis, rather than deep, penetrating insight; that they sacrifice specificity, 

context and depth for scale, automation and breadth.  Indeed, Brooks (2013) contends that 

data analytics: struggle with the social (people are not rational and do not behave in 

predictable ways; human systems are incredibly complex, having contradictory and 

paradoxical relations); and with context (data are largely shorn of the social, political and 

economic and historical context); create bigger haystacks (consisting of many more spurious 

correlations making it difficult to identify needles); have trouble addressing big problems 

(especially social and economic ones); favour memes over masterpieces (identifies trends but 

not necessarily significant features that may become a trend); and obscure values (of the data 

producers and those that analyze them and their objectives).  Such debates over the value and 

appropriateness of new analytics and epistemologies, and their application to scaled small 

data, seem set to continue for the foreseeable future. 

 

New hybrid small and big data infrastructures 

Scaled small data also gain in value as a commodity, especially when they can be conjoined 

with big data.  In contrast to academic, research-orientated or governmental data 

infrastructures, data brokers (sometimes called data aggregators, consolidators or resellers) 
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gather together data into privately held infrastructures for re-sale on a for-profit basis.  They 

source data from both public and private sources.  For example, from public sector sources 

they gather data relating to individuals and aggregates (e.g., groups, places) concerning 

health, education, crime, property, travel, environment, etc., matching these with private 

sector data related to or captured within retail, financial, logistics, business intelligence, real 

estate, private security, political polling, transportation, media, and so on.  The potential to 

link data across domains is high.  For example, the Dutch Data Protection Authority estimates 

that the average Dutch citizen is included in 250-500 databases, with more socially active 

people included in up to 1000 databases (Koops 2011).  More recently, data brokers have 

been combining these data with the metadata and content from locative (e.g., smart phone 

apps) and social media (e.g. Twitter and Facebook).  For example, Facebook is partnering 

with large data brokers and marketers in order to merge together the profiles, networks and 

uploaded content of its billion users (their likes, comments, photos, videos, etc) with non-

Facebook purchasing and behaviour data (Edwards 2013).  Such data form a set of vast 

relational data infrastructures.   Acxiom (one of Facebook’s partners) is reputed to have 

constructed a data infrastructure concerning 500 million active consumers worldwide (about 

190 million individuals and 126 million households in the United States), with about 1,500 

data points per person, its servers processing over 50 trillion data transactions a year and its 

turnover exceeding one billion dollars (Singer 2012).  It also manages separately customer 

databases for or works with 47 of the Fortune 100 companies (Singer 2012). 

 These vast relational data infrastructures can be used to construct a suite of derived 

data products, wherein value is added through integration, and may be subjected to data 

analytics to profile individuals, groups and places, and to predict what people might do under 

different circumstances.  In the main, profiles are used to micro-target advertising and niche 

marketing campaigns, assess how such targets might behave and be nudged into a particular 

response (e.g., selecting and purchasing a particular item), assess credit worthiness and 

socially sort individuals (determine whether one might receive a service or set personalized 

pricing), and provide detailed business analytics, whilst reducing their overheads in terms of 

wastage and loss through risky investments (Lyon 2002, Graham 2005, Siegel 2013).  

Acxiom, for instance, seeks to mesh offline, online and mobile data in order to create a ‘360-

degree view’ of consumers, using these data to create detailed profiles and robust predictive 

models which it sells to interested parties (Singer 2012). 

 Geodemographic segmentation is a data analytical process which can combine both 

small and big data in order to create quantitatively based classification systems of groups of 
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people at a particular geographic unit of analysis, often at postal code geographies.  Once 

classification systems are developed, primarily with small data inputs, big data such as 

purchasing histories, which use postal codes as unique identifiers, can be matched to these 

classifications to assess consumption patterns and to refine the groupings.  These data 

infrastructures, while they can be used to better understand population dynamics in cities, are 

mostly developed by the private sector to geo-target marketing.  As an illustration, the 

Environics Analytics PRiZMc2 Lifestyle segmentation tool classifies Canadians into 66 

lifestyle types such as ‘cosmopolitan elite’ or ‘Les Chics and Lunch at Tim’s’ (short for Tim 

Horton Donuts) “based on their demographics, marketplace preferences and psychographic 

Social Values”.  This company also produces a product called Wealth$capes Dollar and 

Sense which provides marketers with a similar service (Environics Analytics, 2013).  The 

algorithms, methodological assumptions and the mix of datasets used to produce the 

geodemographic profiles are proprietary and protected by intellectual property regimes and 

are not subject to public scrutiny.  Irrespective, by using such products companies seek 

become more effective and efficient in their operations with respect to targeting customers 

and siting stores.  

 The scaling of small data, mashing them with big data, and subjecting them to data 

analytics, can have profound implications for citizens and the services and opportunities 

extended to them.  The worry for some is that a form of ‘data determinism’ is being practiced 

in which individuals are not profiled and judged just on the basis of what they have done, but 

on the prediction of what they might do in the future (Ramirez 2013).  A new probability 

market is emerging – although gambling industry odds compilers and security markets have 

been around for some time – which constitutes a new phase in the era of probabilistic 

thinking (Hacking 1975, 1990), one that is making up new kinds of people (Hacking 2007) 

and new kinds of places (Lauriault 2012), led by the private sector and surveillance 

institutions, mostly for the purpose of marketing products and security.  Moreover, there are 

concerns to the extent to which scaled small data data infrastructures facilitate dataveillance 

(surveillance enacted through the processing and analyzing of data records), infringe on 

privacy and other human rights, affect access to private health insurance and its rates, 

stigmatize and redline areas, pose significant data security concerns with regards to data 

being stolen and exploited criminally, and enable control creep wherein data generated for 

one purpose is used for another (Clarke 1988, Innes 2001, Solove 2006, CIPPIC 2006).  

Citizens may also have not agreed with the entities producing the data as to how data about 

themselves are used (CIPPIC 2006).  As such, whilst scaling small data does offer a number 
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of benefits they also can have differential and negative consequences.  There are thus a 

number of fundamental normative questions that need urgent reflexive consideration 

concerning the production of data infrastructures if we are to maximize their benefits whilst 

minimizing their more pernicious effects.   

 

Making sense of data and data infrastructures 

As the last section makes clear, the scaling of small data has many potential implications.  It 

is thus important to think critically about the nature of data, databases and data 

infrastructures, their socio-technical production, and how they reflect rationalities about the 

world at the same time as they reproduce and reinforce such rationalities.  In this section, we 

provide a framework for conceptualizing and making sense of data infrastructures. 

 Data are often understood as the raw material produced by abstracting the world into 

categories, measures and other representational forms; they are pre-analytical, pre-factual and 

rhetorical in nature; that is, they are simple, straightforward, and unadorned, pre-existing 

argument or interpretation that converts them to facts, evidence and information; they speak 

for themselves (Rosenberg 2013).  From this perspective, data are understood as being benign 

and lacking in political ideology.  Likewise, the algorithms used to process these data are 

viewed as neutral and non-ideological in their formulation and operation, grounded in 

scientific objectivity (Kitchin and Dodge 2011).  As already intimated, however, data are 

more complicated than that.  Data do not exist independently of the ideas, techniques, 

technologies, people and contexts that conceive, produce, process, manage, analyze and store 

them (Bowker and Star 1999; Lauriault 2012; Ribes and Jackson 2013).  As Gitelman and 

Jackson (2013: 2, following Bowker) put it, “raw data is an oxymoron”; “data are always 

already ‘cooked’ and never entirely ‘raw’.”  What data are generated is the product of choices 

and constraints, shaped by a system of thought, models and methodologies, techniques and 

technical know-how, public and political opinion, ethical considerations, the regulatory 

environment, and funding and resourcing.  Data then are situated, contingent, relational, and 

framed and used contextually to try and achieve certain aims and goals (Poovey 1998; Latour 

1987, Hacking 1982, Anderson 1991). 

 Similarly, databases and data infrastructures are not simply neutral, technical means 

of assembling and sharing data; and they are not merely products that store captured data 

about the world, but are bundles of contingent and relational processes that do work in the 

world (Star and Ruhleder 1996; Kitchin and Dodge 2011).  They are complex socio-technical 

systems that are embedded within a larger institutional landscape of researchers, institutions 



19 
 

and corporations (Ruppert 2012) and are subject to socio-technical regimes “grounded in ... 

engineering and industrial practices, technological artifacts, political programs, and 

institutional ideologies which act together to govern technological development and pursue 

technopolitics” (Hetch, 2001:257).  They are essential tools in the production of knowledge, 

governance and capital. 

 Databases are designed and built to hold certain kinds of data and enable certain kinds 

of analysis.  How they are structured has profound consequences as to what queries and 

analysis can be performed conditioning the work that can be done on and through them 

(Ruppert 2012).  Databases then are not neutral containers; they are expressions of 

knowledge/power and they enact and reproduce such relations (Ruppert 2012) and are 

biopolitical objects (Foucault 2010).  At the same time, databases unmoor data analysis from 

the data by enabling complex queries and calculations without those conducting such 

analyses having to peruse and work the data themselves or even understand how the data 

have been compiled and organized (Gitelman and Jackson 2013).  This unmooring is aided 

by techniques such as standardization of formats and metadata and works to decontextualize 

and depoliticize the data contained within (Wilson 2011).  Importantly, such unmooring 

enables the power/knowledge of the database to travel and be deployed by others shorn of its 

complex inner workings and history and politics of production.  Although, if data curation 

and preservation are properly practiced, databases are accompanied by methodological 

guidebooks and use instructions which seek to reduce the effects of this unmooring. 

Data infrastructures host and link databases into a more complex data assemblage.  As 

with databases, there is nothing inherent or given about how such archiving and sharing 

structures are composed.  Indeed, the design and management of data infrastructures are 

riddled with technical and political challenges that are tackled through messy and contested 

negotiations that are contextualized by various agendas and governmentalities.  The solutions 

created in terms of standards, protocols and policies inherently have normalizing effects in 

that they seek common shared ground and to universalize practices amongst developers and 

users (Lauriaut 2012), glossing over and ameliorating the tension between enabling 

interoperability and limiting customization and constraining innovation (Star and Ruhleder 

1996).  Given these tensions, normalizing processes have to constantly and recursively be 

reaffirmed through implementation, management and system governance (Star and Lampland 

2009).   

As Dourish and Bell (2007) contend, databases and infrastructures then cannot be 

considered in purely instrumental terms as they are thoroughly cultural, economic and 
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cognitive in nature and steeped in social significance.  They thus suggest two lenses through 

which to understand data infrastructures.  The first is a sociopolitical reading which examines 

them as “crystallizations of institutional relations” (p.416).  The second perspective is an 

experiential reading that examines “how they shape individual actions and experience” 

(p.417).  In both cases, data infrastructures are understood as relational entities.  This 

relationality reshapes the world contingently around it, as it in turn is shaped by the world.  

As we come to use and rely on databases and data infrastructures to make sense of and do 

work in the world, our discursive and material practices adapt and mutate in response to them 

(Star and Ruhleder 1996).  The world is not just reflected in data, it is changed by them; “the 

work of producing, preserving, and sharing data reshapes the organizational, technological, 

and cultural worlds around them” (Ribes and Jackson 2013:147). 

In other words, databases and data infrastructures do not simply support research, they 

fundamentally change the practices and organization of research -- the questions asked, how 

they are asked, how they are answered, how the answers are deployed, and who is conducting 

the research and how are they operate as researchers.  For example, in her study of the 

evolution of the Canada Census and the Atlas of Canada, Lauriault (2012) details how each 

has developed recursively and iteratively based on models of the world which construct ways 

to imagine and produce Canada.  She argues that the data infrastructures and the data 

themselves constitute an institutional “extrasomatic memory system that allows for the telling 

of stories about the nature of Canada ... [through] maps, graphs, models and statistics which 

rely on sensors, data, interoperability and web mapping standards, portals, metadata and 

models, science, and open architectures” (p.27).  In turn, these stories modulate the 

underlying models and thus the data infrastructure mutates, inflecting the means through 

which the stories are created.  

Making sense of data, databases and data infrastructures then requires carefully 

unpacking and deconstructing their always emerging, contingent, relational and contextual 

nature (Star and Ruhleder 1996).  As Lauriault (2012) argues this also requires a genealogical 

analysis that documents how databases and data infrastructures develop over time and space.  

This kind of in-depth, historically rich deconstruction of the processes, practices and political 

economy of data infrastructures has been largely neglected to date, despite the fact that data 

and how they are handled underpins and explicitly shapes scientific endeavour, large 

components of governance, and the work of institutions and companies. 

 

Conclusion 
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We are presently witnessing a fast changing landscape with respect to data.  Not only are we 

witnessing the roll-out of a new form of data in the guise of big data, but traditional, small 

data are evolving through new data infrastructures that enable them to be scaled and analyzed 

in new ways.  In this paper we have compared small and big data before going on to examine 

how small data are being scaled, combined with big data, and being made amenable to big 

data analytics.  Our argument has been fourfold.   

 First, despite the rapid growth of big data and associated new analytics, small data 

will continue to be a vital part of the research landscape.  There will not be a paradigm shift 

in the near future in which studies using big data replace those employing small data, rather 

small and big data will complement one another; mining narrow seams of high quality data 

will continue alongside open pit mining because it enables much more control of the research 

design and to answer specific, targeted questions.  As such, rather than directing research 

funding to projects that have access to vast quantities of data in the hope that they will 

inherently produce useful insights, funding needs to be focused on answering critical 

questions, whether they are tackled using small or big data (Sawyer 2008).   

 Second, the small data landscape is changing through the development of data 

infrastructures.  Small data gain value and utility when made accessible for re-use and are 

combined with other data sets.  As a consequence, much effort is being directed at building 

such infrastructures and in trying to harmonize small data, with respect to data standards, 

formats, metadata, and documentation, to ensure their compatibility with systems, maximize 

discoverability, and facilitate the linking together of data sets.  The pressure to harmonize, 

share and re-use small data will continue to grow as research funders seek to gain the 

maximum return on their investment through new knowledge and innovations. 

 Third, the scaling of small data into data infrastructures has three consequences.  One: 

by pooling and linking small data to create larger, interconnected data sets, small data are 

opened up to analysis by big data analytics.  Small data are thus exposed to the new 

epistemologies of data science, fostering the growth of new approaches such as the digital 

humanities and computational social sciences.  Two: small data are more easily conjoined 

with big data to produce more diverse derived data that enables more wide-ranging and 

extensive analysis.  This reconfiguration of the data landscape is facilitating the rapid growth 

of data brokers and new data products, including detailed profiling.  Three: the scaling of 

small data, and their combination with big data and exposure to big data analytics, produces a 

set of potential pernicious effects such as dataveillance, social sorting, control creep, and 

anticipatory governance that impinge on privacy, social freedoms and have structural 
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consequences for individual lives.  As such, the scaling of small data raises normative 

questions concerning how data should be managed and utilized.  We have barely begun to 

examine these consequences, with developments running ahead of critical and normative 

reflection and political, policy and legal reaction. 

 Fourth, whilst much theoretical attention has been focused on the derivatives of data, 

information and knowledge, data themselves have been relatively neglected from a 

conceptual and philosophical standpoint.  Instead, attention has largely been technical and 

how best to generate and analyze data to leverage insight, rather than to consider their nature.  

Given the rapidly changing data landscape, the growing importance of evidence-based 

management and governance, and rise of data-driven science it is important to think critically 

about the nature of data and data infrastructures.  Our suggestion, drawing from the nascent 

theoretical work in the literature, is to conceive of data as being situated, contingent, 

relational and contextual, and to understand data infrastructures as socio-technical 

assemblages composed of many elements and shaped by governmentalities, political 

economy and other processes. 

 Small data are set to continue being an important component of research endeavours. 

However, they are in the process of taking on new forms that have consequences for how we 

think about and utilize such data.  We have made an initial attempt to detail some of these 

transformations, but further critical reflection and normative thinking is required to make 

sense of the changes taking place and their implications. 
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