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ABSTRACT

Seriation is a data analytic tool for obtaining a permutation of a set of objects with the goal
of revealing structural information within the set of objects. Seriating variables, cases or categories
generally improves visualisations of statistical data, for example, by revealing hidden patterns in data
or by making large datasets easier to understand. In this paper we present a new algorithm for seriation
based on dendrograms. Dendrogram seriation algorithms rearrange the nodes in a dendrogram in order
to obtain a permutation of the leaves (i.e. objects) that optimises a given criterion. Our algorithm is
more flexible than currently available seriation algorithms because it allows the user to either choose
from a variety of seriation criteria or to input their own criteria. This choice of seriation criteria is
an important feature because different criteria are suitable for different visualisation settings. Common
seriation criteria include measurements of the path length through a set of objects and measurements
of anti-Robinson form in a symmetric matrix. We propose new seriation criteria called lazy path
length and banded anti-Robinson form, and demonstrate their effectiveness in a variety of visualisation
settings.

1 Introduction

Statistical graphics are commonly constructed using the order of variables, cases or categories in which
they are listed in the data. As many authors have demonstrated (see, for example, Friendly and
Kwan 2003 and Hurley 2004) visualisations often benefit when the data is systematically reordered.
Reordered visualisations are clearer, more easily interpreted and more informative.

The systematic reordering of data is referred to as seriation. Seriation aims to reveal structural
information within a set of objects by finding a suitable permutation of those objects.

There are many different approaches to seriation, including Travelling Salesperson heuristics
(see, for example, Lawler et al. 1985), simulated annealing algorithms (see, for example, Brusco et
al. 2007) and dimension reduction techniques such as principal components analysis (see, for example,
Friendly and Kwan 2003). This paper focusses on one branch of seriation algorithms called “dendrogram
seriation” algorithms.

The order of the leaves in a dendrogram provides a permutation of a set of n objects. However,
the leaf ordering is not unique. Each of the n−1 nodes in a dendrogram can be rearranged resulting in
a total of 2n−1 possible permutations of the objects. “Dendrogram seriation” algorithms rearrange the
nodes in a dendrogram in order to obtain a permutation of the leaves (i.e. objects) that optimises some
seriation criterion. Dendrogram seriation simplifies the problem of seriating n objects by reducing the
size of the search space from n! possible permutations to 2n−1 possible permutations. It has the added
benefit of providing a clustering of the n objects.
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Gruvaeus and Wainer (1972) first developed dendrogram seriation methods with the goal of
obtaining a unique ordering of objects from a hierarchical clustering. Since then, the methodolgy has
been further developed by Degerman (1982), Gale et al. (1984), Eisen et al. (1998), Alon et al. (1999),
Wishart (1999), Bar-Joseph et al. (2001), Morris et al. (2003), Forina et al. (2007), Tien et al. (2008)
and Wu et al. (2010). Dendrogram seriation has also been successfully applied to many visualisation
settings including scatterplot matrices, parallel coordinates plots (Hurley 2004) and heatmaps (see, for
example, Gale et al. 1984 and Eisen et al. 1999).

Section 2 introduces a new flexible dendrogram seriation algorithm called DendSer (Earle 2010),
which generalises that of Wishart (1999). The succeeding sections define various seriation cost func-
tions. These are used together with DendSer in various applications.

2 DendSer algorithm

The DendSer algorithm provides a seriation of n objects as follows. First calculate a dissimilarity
matrix and perform a hierarchical clustering. This results in a dendrogram ∆, and provides an initial
permutation π of the n leaf objects. Let F denote a seriation criterion or cost function which measures
the “goodness” of a permutation. Some suitable choices for this cost function will be presented in later
sections. The goal of DendSer is to find which of the 2n−1 possible rearrangements of ∆ produces a
permutation minimising F .

Even though the search space has been reduced from n! to 2n−1, except for small n, exploring all
2n−1 possibilities is generally not feasible. However in the special case of a shortest-path cost function
Bar-Joseph et al. (2001) developed an O(n3) algorithm which finds the optimal rearrangement of ∆.

DendSer examines each node N of ∆ in turn, starting at the first node formed by the hierarchical
clustering process and ending at the root node. At each node N , it evaluates whether a rearrangement
of N results in a permutation that reduces F . Let T (N ; ∆) denote the set of permutations of the n
leaf objects offered by a possible rearrangement of N . DendSer compares F evaluated on the current
permutation π to permutations in T (N ; ∆). If any of the permutations in T (N ; ∆) reduce F , this
permutation is retained and ∆ and therefore π are updated. One iteration is complete when the
algorithm has examined all n − 1 nodes. At this stage the algorithm moves to the next iteration,
repeating the process of examining all n− 1 nodes. The algorithm stops when a full iteration fails to
improve the permutation of the leaves or the maximum number of iterations is reached.

The DendSer algorithm results in a rearrangement of the dendrogram ∆ which provides an
improved permutation π of the leaf objects. The flexibility of DendSer over existing seriation algorithms
is that it is not limited to one cost function F and one method of node rearrangement.

Next we describe various methods of node rearrangement. Succeeding sections present some
choices of F that are suited to visualisation applications and give some examples.

At each visit to a node N , the DendSer algorithm evaluates various rearrangements of that
node. These rearrangements are termed node operations. Node operations typically involve reflection
or translation.

Definition 2.1. The reflection of a node N in a dendrogram reverses the order of the leaves in N .

Definition 2.2. Let Nl and Nr be the left and right sub-nodes of a node N . The translation of N
swaps the positions of Nl and Nr but does not change the order of the leaves in Nl and Nr.

For example, Figure 1 illustrates the effect of reflection and translation on a dendrogram node.
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(a) ∆: Initial dendrogram (b) Reflect N5 (c) Translate N5

Figure 1: The node N5 in the dendrogram in (a) is reflected in the dendrogram in (b) and translated in the
dendrogram in (c).

Note that reflecting or translating a node N does not change the hierarchy represented by N , only the
order of the leaves in N .

For a dendrogram ∆ and node N with left and right sub-nodes Nl and Nr, we define the following
node operations.

R0(N ; ∆) = {permutation of leaves in ∆ after reflecting a node N}.
T0(N ; ∆) = {permutation of leaves in ∆ after translating a node N}.
C0(N ; ∆) = R0(N ; ∆) ∪ T0(N ; ∆).

The node operations R0 and T0 each offer a choice of one new permutation at each node N , while
C0 offers a choice of two new permutations (except in the trivial case where N has just two leaves).
Previous dendrogram seriation algorithms used either node reflection (Wishart 1999, Morris et al.
2003), or node translation (Degerman 1982, Gale et al. 1984, Eisen et al. 1998 and Tien et al.
2008). However Earle (2010) demonstrates that dendrogram seriation using both node reflection and
translation leads to improved results.

Gruvaeus and Wainer (1972) used node reflection, but on a node’s sub-nodes rather than on a
node itself. For this we use the notation R1, where the subscript “1” refers to reflection at a depth of
one. Define

R1(N ; ∆) = R0(Nl; ∆) ∪R0(Nr; ∆) ∪R0(Nl, Nr; ∆),

where Nl and Nr are the left and right sub-nodes of N . R1(N ; ∆) is a set of (up to) three permutations
of the leaves in ∆: one corresponding to the reflection of Nl, one corresponding to the reflection of Nr

and one corresponding to the reflection of both Nl and Nr. Earle (2010) similarly defined the node
operation T1 which uses translation of the left and right sub-nodes. She also considered node operations
which use reflections (translations) of the parent node combined with reflections (translations) of each
of the child nodes.

The DendSer algorithm is not limited to a single, fixed choice of node operation. Indeed, the ideal
choice depends on the cost function F . For example, as we see in Section 3 the leaf sorting algorithm
requires the use of T0. Earle (2010) found that the new node operation C0 is generally effective and
efficient in minimising various cost functions.

In the following sections we propose a number of cost functions and give some examples.
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3 Leaf sorting

A number of authors (Degerman 1982, Gale et al. 1984, Eisen et al. 1998 and Tien et al. 2008)
described the following “leaf sorting” algorithm. Consider a dendrogram where each leaf object has a
weight. For each node N , compute the mean weight of the leaves for the left and right sub-nodes of N .
Denote these weights by w̄L and w̄R respectively. If w̄R < w̄L thenN is translated, otherwiseN remains
unchanged. The end result of this “leaf sorting” algorithm is a rearrangement of the dendrogram, where
the leaf weights generally increase as one reads from left to right.

It is easy to see (Earle 2010) that the leaf sorting algorithm is a special case of DendSer with
one iteration, node operation T0 and the leaf sort cost function (LS) defined as

LS(π) = −
n∑
i=1

iwπ(i).

Here π is a permutation of the n leaf objects, whose weights are wi, for 1 ≤ i ≤ n. Next we explore an
application of leaf sorting.

Figure 2(a) shows the result of the hclust R function (R Development Core Team 2010), using
average linkage on the (standardised) pottery data. This data from Tubb et al. (1980) contains nine
chemical measurements on 45 pieces of pottery found at five locations. The clustering of the 45 pieces
of pottery is based on the chemical measurements only.

We now use DendSer with the LS cost function to rearrange the dendrogram, where the leaf
weights are the scores on the first principal component; the result appears in Figure 2(b). This should
arrange the leaves and clusters in a systematic way and assist in the interpretation of the clusters
found.

In Figure 2(a) three clusters are evident. In the rearranged dendrogram of Figure 2(b), the scores
on the first principal component are shown in the associated barchart, where the bars are coloured
by cluster. As the scores have a clear increasing pattern, the three clusters separate along the first
principal component. This leads to a simple description of the chemical composition of the three
clusters.

Furthermore, it turns out that the blue cluster contains the pottery pieces found at two locations
in Hampshire, the green cluster contains the pottery pieces found at Gloucester and the orange cluster
contains the pottery pieces found at two locations in Wales.

4 Path length and extensions

The shortest path problem is a variation of the Travelling Salesperson Problem (TSP). Given n cities,
the goal of the TSP is to find the shortest tour that starts from a chosen city, visits each city once and
returns to the starting city. For the shortest path problem, there is no return to the starting city.

A permutation minimising the path length criterion aims to place similar objects adjacently,
which makes minimising the path length of a permutation a suitable goal for seriation. Consider a set
of n objects, where di,j is the dissimilarity value between objects i and j. For a permutation π of the
objects, the path length cost function is defined as:

PL(π) =
n−1∑
i=1

dπ(i),π(i+1).

The path length criterion has been successfully applied to a variety of statistical visualisations.
Hurley (2004) described why the path length criterion is suitable when seriating variables in a par-
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(b) Leaf sorted dendrogram

Figure 2: Hierarchical clustering of pottery data. The weights on the leaves in (b) are the scores on the first
principal component. The lower barchart gives the weights, coloured by cluster.

allel coordinates plot, while Bar-Joseph et al. (2001) showed that minimising the path length of a
permutation helps to reveal biological structure in heatmaps of gene expression data.

Earle (2010) proposed a new criterion called lazy path length which is a variation of the path length
criterion. Given a set of objects with dissimilarities between them, the goal is to find a permutation of
the objects that has a short path length and where dissimilarities between adjacent objects generally
increase. The lazy path length cost function is defined as

LPL(π) =
n−1∑
i=1

(n− i)dπ(i),π(i+1).

The LPL cost function is a weighted measure of the path length of a permutation, where dissimilarities
at the beginning of the permutation are given more weight than dissimilarities near the end.

The DendSer minimisation procedure starts with a dendrogram ∆, and then attempts to find

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session STS057) p.3288



which of the 2n−1 possible rearrangements of ∆ produces a permutation minimising the PL or LPL cost
function. DendSer is of course a greedy algorithm and is not guaranteed to find the overall minimum.
However, for the PL cost function Bar-Joseph et al. (2001) developed an O(n3) algorithm which finds
the optimal rearrangement of ∆. For both cost functions PL and LPL, Earle (2010) reports that the
node operation C0 is an effective choice, and this is used in the following example.

We return to the pottery data of the previous section and use LPL in conjunction with parallel
coordinate plots (PCP) to explore the chemical composition of the pottery pieces from the three clusters
(or equivalently regions) of Figure 2. In Figure 3(a) the variables are ordered arbitrarily and the lines

Fe2O3 BaO K2O Al2O3 MgO TiO2 CaO Na2O MnO

(a) Arbitrary ordering

MgO Fe2O3 K2O MnO CaO Al2O3 TiO2 Na2O BaO

(b) DendSer + LPL

Figure 3: The variables in the PCP in (a) are arbitrarily ordered. The variables in the PCP in (b) are ordered
according to the permutation returned by using DendSer with the LPL cost function. The lines are coloured
according to the three regions.

are coloured according to the three regions. The lines in this PCP are quite “zig-zaggy” and the panels
show poor separation of the three regions.

For exploring the region differences, an informative permutation of the variables is one that
conveys the differences between the regions. As a measure of separation between the clusters, for a
panel showing variables i and j, we define

mi,j =
∑
k1 6=k2

||ck1,ij − ck2,ij ||

where ck,ij is the centroid vector for the kth cluster for variables i and j, and || · || denotes Euclidean
distance. Taking di,j = m−mi,j where m = maxi6=jmi,j , we obtain ∆ using average linkage and find
a suitable permutation of the variables using DendSer and the LPL cost function.

Note that in this setting, the di,j values measure similarity rather than dissimilarity between the
cluster centroids. While this may seem counter-intuitive, we are simply using dendrogram seriation to
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find a permutation minimising a cost function, in this instance LPL. The only requirement for the cost
function is that di,j = dj,i.

The PCP in Figure 3(b) shows the optimal permutation and contains panels that show better
separation of the regions than does the PCP of Figure 3(a). This makes it easier to extract information
about the differences between the chemical composition of the pottery pieces. Panels showing high
separation of the regions appear at the beginning of the PCP and panels showing low separation are
at the end. Given that people generally read from left to right, it follows that people are also likely
to examine a PCP from left to right (or top to bottom, depending on the orientation of the PCP).
Therefore, placing the most “interesting” panels at the beginning of the PCP allows the analyst to
immediately see features of interest in the data.

5 Robinson form and extensions

Consider a symmetric matrix where the values in the matrix are non-increasing as one moves away
from the diagonal. A matrix with this pattern is said to have “Robinson” form after the statistician
W.S. Robinson, who first described this pattern in Robinson (1951). Similarly, a matrix where the
values are non-decreasing as one moves away from the diagonal is said to have “anti-Robinson” form.

Definition 5.1. A symmetric matrix D = [di,j ], for 1 ≤ i, j ≤ n, has anti-Robinson form if di,k ≤ di,j
and dk,j ≤ di,j, for i < k < j.

Anti-Robinson (AR) form is a natural concept for seriation and visualisation. If a dissimilarity
matrix has anti-Robinson form, then the smallest dissimilarity values are close to the main diagonal and
the largest values are far away from the main diagonal. This means that objects with low dissimilarity
are close together in the corresponding permutation and objects with high dissimilarity are far apart.

Many functions are available for measuring how close a symmetric matrix is to anti-Robinson
form. See, for example, Hubert et al. (2006) and Chen (2002). In this paper we use the following cost
function adapted from a measure described in Hubert et al. (2006):

ARc(π) =
∑

|i−j|≤n−1
(n− |i− j|)dπ(i),π(j).

Optimising AR form in a dissimilarity matrix aims to fit every element of the matrix into a
specific pattern. However, this pattern is quite strict and may be too rigid for some dissimilarity
matrices. Banded anti-Robinson form (Earle 2010) “relaxes” AR form and may be described as a
hybrid of the path length and anti-Robinson criteria.

Definition 5.2. A symmetric matrix D = [di,j ], for 1 ≤ i, j ≤ n, has banded anti-Robinson form if
for a band-width w with w < n:

• di,k ≤ di,j and dk,j ≤ di,j, for i < k < j and |i− j| ≤ w.
• di,j ≤ di′,j′, for |i− j| ≤ w and |i′ − j′| > w.

A matrix following banded AR form has small values close to the main diagonal, but only the
values within a band of width w around the main diagonal satisfy AR form. The banded anti-Robinson
cost function is defined as:

BAR(π) =
∑
|i−j|≤w

(w + 1− |i− j|)dπ(i),π(j).
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Note that when w = 1, the BAR cost function is identical to the PL cost function and when w = n−1,
the BAR cost function is identical to the ARc cost function. The default choice of w is n/5, which we
have found works well.

The DendSer minimisation procedure starts with a dendrogram ∆, and then attempts to find
which of the 2n−1 possible rearrangements of ∆ produces a permutation minimising the ARc or BAR
cost function. Earle (2010) recommends the node operation T0 for minimising ARc and C0 for min-
imising BAR, and we follow these recommendations in the next example.

Rothkopf (1957) described an experiment, where inexperienced subjects listened to pairs of morse
codes and then decided whether a pair of codes were identical. The data used in this example contain
the results for the ten single digits, where the ijth entry in the data is the percentage of subjects who
said codes i and j were identical after hearing code i first and then code j.

The data is an asymmetric similarity matrix (denoted by S) because the response to hearing
code i first and then code j may not be the same as the reponse to hearing the codes in reverse order.
S is symmetrised by averaging the corresponding pairs of off-diagonal elements and is then converted
into a dissimilarity matrix using the transformation D = 100− S.

Ignoring the path through the points, the scatterplot in Figure 4(a) shows the two dimensional
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(a) DendSer + BAR (b) DendSer + ARc

Figure 4: The path through the points in the scatterplot in (a) corresponds to the permutation of digits from
using DendSer with BAR. The same permutation also orders the rows/columns in the corresponding heatmap
of the dissimilarity matrix of the digits. In (b) the digits are ordered using DendSer with ARc.

classical multidimensional scaling of D. This plot visualises a two dimensional representation of the
dissimilarities between the codes: similar codes are close together and dissimilar codes are far apart.

The ten codes form a circle and if the codes are ordered along this circle, then the correspond-
ing dissimilarity matrix follows a “circumplex” pattern (see, for example, Wilkinson 2005, §16.5). A
dissimilarity matrix follows a circumplex pattern if when moving away from the main diagonal in the
matrix, the dissimilarities begin low, then increase to a point and then decrease becoming low again.
The heatmap in Figure 4(a) shows the circumplex pattern in the dissimilarity matrix for the Morse
code data, where black to white represents low to high dissimilarities.

Starting with an average linkage dendrogram of D, DendSer is used to obtain permutations with
each of the cost functions BAR and ARc. These permutations are shown by the paths through the
points in the scatterplots of Figures 4(a) and (b). The rows/columns in the heatmaps of the adjacent
dissimilarity matrices are also ordered according to these permutations.

DendSer with ARc fails to recover the circular ordering of the morse codes for the following
reason. If a dissimilarity matrix follows anti-Robinson form, then the values in this matrix increase
when moving away from the main diagonal. However, in a circumplex dissimilarity matrix, the values
increase and then decrease when moving away from the main diagonal. It is the region of low values
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in the north-east and south-west corners of a circumplex dissimilarity matrix (see, for example, the
heatmap in Figure 4(a)) that messes up the anti-Robinson pattern. DendSer with BAR recovers the
circular ordering of the morse codes because BAR is unaffected by the region of low values in the
north-east and south-west corners of a circumplex dissimilarity matrix.

The morse code data is one example showing that anti-Robinson form may be too rigid a structure
for some dissimilarity matrices, whereas the more relaxed banded anti-Robinson form is more flexible
in revealing patterns in dissimilarity matrices.

6 Concluding Remarks

DendSer is a flexible dendrogram seriation algorithm that allows the user to choose from many seriation
criteria and node operations. This is in contrast to other dendrogram seriation algorithms, which focus
on one criterion and one node operation only. The preceding sections gave some examples of seriation
criteria; Hahsler et al. (2010) list some other possibilities. By combining the choice of both the node
operation and seriation criterion, DendSer provides a general framework for performing many of the
currently available dendrogram seriation techniques and some new ones besides.

Included in the choice of seriation criteria for DendSer are two new criteria called banded anti-
Robinson form and lazy path length. These criteria were illustrated in the examples of the preceding
sections and both have applications to a variety of visualisation settings. In particular, we believe that
banded anti-Robinson form provides a convenient compromise between anti-Robinson form, which may
enforce too global a structure, and path length, which may look for too local a structure.

While the applications presented here involve small numbers of objects n, we have used DendSer
successfully with 10,000 objects, and its efficiency compares well with competitor algorithms. See Earle
(2010) for detailed comparisons with competing algorithms (Hahsler et al. 2010) and more discussion
of node operations, cost functions and extensive examples.
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