
Statistical Graphics in QUAIL: An Overview

Catherine B. Hurley R.W. Oldford
National University of Ireland Maynooth University of Waterloo
Department of Mathematics Department of Statistics and Actuarial Science
Maynooth, Ireland Waterloo, Canada
churley@maths.may.ie rwoldford@uwaterloo.ca

1 INTRODUCTION

It has been suggested (Wainer, 1989) that the system ¯rst proposed by C.S. Peirce to organise knowl-
edge is particularly suited to describing statistical graphics. Peirce felt that all information could be
broken down into three di®erent types { monadic information, which describes something in and of
itself, dyadic information, which describes a relationship between two things, and triadic information,
which describes the relation between two things mediated by a third. We can see how this applies in
statistical graphics by considering the scatterplot. There, each case in a dataset is represented in the
display by a glyph, which is monadic in nature. The scatterplot is a dyad; by positioning the case
glyphs in the plane according to the values each case has on two variates X and Y , any empirical re-
lationship between the variates can be seen. Triadic information is available by linking the scatterplot
with another plot, say a dot-plot of a third variate, Z. Colouring the glyphs in the dot-plot within a
given range of Z values, causes the corresponding glyphs in the scatterplot to be coloured in the same
way. Here the relationship between X and Y is seen mediated by the third variate Z. This description
of information is re°ected in the design and implementation of our graphics software, which is part of
the QUAIL system (Oldford et al).

Quail (for QUantitative Analysis in Lisp) is a programming environment for statistical and quan-
titative computing. It has extensive arithmetical, mathematical, statistical and display facilities. This
paper gives a brief overview of the principles underlying the statistical graphics facilities. The original
software model was ¯rst illustrated in a video (Hurley and Oldford, 1988), and was described in Hurley
and Oldford (1991). Perhaps surprisingly, we have not altered the original software model, rather we
have extended and enriched its scope over the intervening years.

The statistical graphics system in Quail has an object-oriented design, which we outline in Section
2. In the language of Peirce, individual objects have a monadic nature. We provide basic building
blocks consisting of simple graphical objects such as point symbols and lines and container objects
within which the simple objects are positioned to display relationships, ultimately forming plots.
Container objects present dyadic information; Section 3 describes some such objects available in
Quail. In Section 4, we outline a few of the ways triadic information is available; generally this
involves comparison of plots, and, if the plots are displayed over time, interactive graphics.

2 ORGANISING INFORMATION

Each glyph representing a case is its own data structure, or object, called a point-symbol; similarly
there is an axis object, and a label object. Even though a scatterplot is composed of point symbols,
axes and a few labels, it is convenient to introduce an intermediate object called a 2d-pointcloud
object consisting of the point symbols. In general then, a statistical plot is a hierarchy of objects; the
scatterplot object consists of axes, label and a point cloud which itself consists of point symbols,
while a scatterplot matrix consists of many point clouds and labels.

The plot and each of its components are termed a view. A simple view is a view such as a point
symbol or label which contains no other views. All other views are referred to as compound views. In
our software organisation, information pertaining to a particular view is localised in that view. All
views have the slots summarised in the following table:



Slot Purpose Example

Viewed object The data structure being `viewed' scatterplot: dataset
point symbol: case
function-view: single variable function

Drawing style Controls appearance colour, highlighting
Viewports Screen locations where view appears
Menus User interface to view Change colour, variate

Access viewed object

A compound view also has slots for its constituent views or subviews and the subview locations.
Note that these are not the same as the viewport locations: compound views position subviews using
some abstract coordinate system which is meaningful for that compound view. When a compound
view is ¯rst drawn in a viewport, the subview locations are used to determine viewports for the
subviews.

3 ORGANISING INFORMATION GRAPHICALLY

A graphical display consists of graphical objects drawn on the screen. The relative positions of the
graphical objects drawn is crucial: in a scatterplot the point symbol positions display the relationship
between two variates while in a scatterplot matrix the panels are positioned so that in each row (col-
umn), the vertical (horizontal) variate is held constant with the horizontal (vertical) variate changing
from one panel to the next. Layout, then, refers to the task of positioning views relative to each other.
Clearly, layout is a key step in organising information graphically.

3.1 Basic Data Displays

We begin with the familiar two dimensional point cloud. Point cloud layout is the positioning of
each constituent point symbol according to values for the x and y variates. Positioning is carried
out in the coordinate system of the variates themselves. When the point cloud is drawn, the point
symbol locations in variate coordinates are transformed into viewport locations in screen coordinates.
Thereafter we describe layouts where views are positioned within a bounding region in some abstract
coordinate system.

Views such as the 2d-pointcloud that require two values per case are collectively known as
2-d views. Other examples of 2-d views are the lines-view, which has line segments connecting
consecutive pairs of coordinates, ordered by the x values, the fitted-line, which uses the coordi-
nates to compute a (by default, least squares) ¯tted line, and a smooth. Similarly, views such as a
histogram-view and a boxplot-view, which use one coordinate per case are collectively known as
1-d views and a rotating-point-cloud is a 3-d view. In summary, a p-d view is a view that given a
dataset and p variates, calculates p values per case.

3.2 Plot Layout

Typically, the component subviews of a scatterplot are two axes, three labels and a 2-d point cloud.
The scatterplot lays out these components by positioning the axes and labels in the left and bottom
margins, and the title centred at the top border, leaving most of the space for the point cloud. The
responsibility of the scatterplot for layout stops here. Layout is a recursive task and it is up to each
of the scatterplot subviews to layout their own subviews when present.

From the perspective of laying out the scatterplot, the point cloud could just as well be replaced
by a lines-view or even a histogram-view or a density-view. Similarly, some other kind of view {
perhaps a boxplot-view { could be used in place of the axes in the margins. In fact, we have de¯ned
a type of view { called a plot { of which the scatterplot is a special case, whose task it is to position
various views in the margins around an interior view. The plot format encompasses many di®erent



kinds of plot, since there is no restriction on the type of view that may be placed at each location.
Typically, only the left and bottom margin views are present, and these are axes. More generally, plots
allow for multiple interior views which are overlaid on the interior region, similarly for left, bottom,
top and right views. Of these, the \layers" of interior view are by far the most useful and interesting:
one can superimpose smooths or a least-squares ¯t on a point cloud, or overlay a density-view on a
histogram-view for instance.

For the scatterplot to be meaningful there must be some connection or \glue" between its con-
stituent point cloud and axes. For instance, a point symbol at x = 0 should line up with the x-axis
tic mark at 0. More precisely, the transformation from abstract to screen coordinates for x locations
should be the same for the point cloud and the x-axis, (similarly for y locations and the y-axis.) In our
system, this occurs because (i) the scatterplot assigns locations to its subviews so that they line up
in the appropriate way and (ii) a constraint system ensures that the horizontal extent of the interior
view is the same as the horizontal extent of the bottom and top views; similarly for vertical extents.

3.3 Grid Layout

Grids are a compact way of arranging multiple displays of data, and the layout allows for easy com-
parison of displays across rows and columns. A grid-layout is a view that positions its subviews in
a grid format. No restrictions are placed on the types of these subviews.

As with plots, grid layouts also support overlays where multiple subviews may be superimposed on
a tile. This is useful, for instance, when showing point clouds with superimposed ¯ts. Grid layouts,
then, o®er a very general way of arranging arbitrary subviews in a grid format. In many common
applications, there is a consistent pattern across the subviews, where all are of the same type but
show di®erent variate or case subsets from a dataset. We have designed some particular kinds of grid
layouts for these situations, as summarised in the table below:

Layout type Data Format Default subview

1d-layout n variates row/column of n boxplot-view
xy-layout n x-variates, m y-variates m rows, n columns 2d-pointcloud
pairs-layout n variates n rows, n columns 2d-pointcloud

label on diagonal
batch-layout data subsets k=1 row/column boxplot-view

eg levels of k factors k > 1 grid
table-layout data subsets One tile per subset bar

Tiles are scaleable
Default: size ∝ subset size

Like plots, grid-layouts need a constraint system or \glue" to ensure that meaningful comparisons
between the subviews are possible. The constraint system used by grid-layout is necessarily richer
than that of plot; it has options which require all, or none, of the subviews to have the same horizontal
(or vertical) extents, furthermore constraints can be imposed separately on views across rows or down
columns.

The grid-plot is a special kind of plot, where the interior view is required to be a grid-layout.
The grid-plot acts as a wrapper around grid-layouts that will provide associated axes and labels, in
the same way that the basic plot does for the 1 and 2-d views; in fact a scatterplot matrix, is actually
a grid-plot with a pairs-layout as its interior view. Grid plots have a constraint system similar to
grid-layout, except here the constraints apply to the margin views of the grid plot and the subviews
of the grid layout.

4 MEDIATION

Triadic information, according to Peirce, describes the relation between two things mediated by a third.
There are many ways in which mediation can be used in statistical graphics. Generally, mediation



involves comparison of plots displayed simultaneously on the screen or page, or over time on the screen
as in dynamic graphics.

In a statistical context, the most common form of mediation is by the value of some categorical
variate. For example, a categorical variate Z mediates the relationship between the Y and X variates
of a scatterplot when point symbols are coloured according to their Z values. We could also show
the relationship between two variates mediated by a third by laying out a grid of pointclouds, one for
each distinct value of Z. A mechanism for producing these kinds of plots is the so-called batch-plot,
a kind of grid-plot whose interior view is a batch-layout with associated axes and labels in the
margins.

Much of interactive statistical graphics involves some form of mediation. Brushing \linked" plots
is perhaps the best known example. In the Quail system, there are two di®erent implementations of
linking. The ¯rst (see Hurley and Oldford, 1991) is the most e±cient but also the most restrictive. At
any time, a single view object can be a component of more than one compound view. The scatterplot
matrix makes use of this feature: there is one point symbol for each case and this point symbol is a
component of all the point clouds in the matrix. Since there is just one point symbol for the case, the
point symbol has just a single drawing style and the change of highlight status via the brush in one
location is automatically re°ected in the other point symbol locations.

The second linking implementation (Hurley, 1993, 1997) is far more °exible. Basically, any two
simple views can be linked to each other, with the result that a change of drawing style in one view is
re°ected in a change of drawing style in the second view. In the default mode of operation, two simple
views are linked to each other if they display \the same" data, but, more generally, the user controls
which views should be linked by choosing or specifying a function which, given a pair of views, decides
whether or not they should be linked.

5 CONCLUDING REMARKS

The purpose of this paper was to give a °avour of the philosophy of statistical graphics underly-
ing the software design in Quail. The software itself is more extensive than could be detailed here,
and more importantly, the architecture is open-ended so that other graphical displays beyond those
provided can be constructed; Oldford (1997) gives an example of implementing a statistical strat-
egy using the graphical and computing facilities of Quail. The Quail system itself is based on the
Common Lisp programming language, and a programming environment (either Macintosh Common
Lisp from Digitool or Allegro Common Lisp from Franz, Inc). For details on availability, etc, see
http://setosa.uwaterloo.ca/∼ftp/Quail/Quail.html.

REFERENCES

Hurley, C. (1997) `Brushing Tools for Multilevel and Multiway data.', American Statistical Association, Pro-
ceedings of the Section on Statistical Graphics, pp 15{24.

Hurley, C. (1993) `The Plot-Data Interface in Statistical Graphics', Journal of Computational and Graphical
Statistics, vol. 2, no. 4, pp.365{379.

Hurley, C., and Oldford, R.W. (1988) `Plots as Hierarchical Views of Statistical Objects", 19 minute video
(VHS format), STAT-22-88, Statistics Technical Report Series, University of Waterloo, Waterloo, Ont.
Also available from the ASA sections on Statistical Computing and Graphics video library.

Hurley, C., and Oldford, R.W. (1991) \A Software Model for Statistical Graphics", In Computing and Graphics
in Statistics, IMA Volumes in Mathematics and its Applications, vol. 36, Buja, A.,Tukey, P. (editors), New
York: Springer-Verlag.

Oldford, R.W. (1997) `Computational Thinking For Statisticians: Training by Implementing Statistical Strat-
egy', Computing Science and Statistics: Proceedings on the Interface, vol. 29, pp. 88{97.

Wainer, H. (1989) Comments on `Whither and Whence', ASA Sesquicentennial Invited Paper Sessions, pp.
382{390.


	www.stat.fi
	Statistical Graphics in QUAIL: An Overview


