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Abstract

In this work we perform a careful study of different matrix models and particu-

larly the property of emergent phenomena in them. We start discussing a 2-matrix

model of Yang-Mills type that exhibits an emergent topology in the strong coupling

limit. We use Monte-Carlo simulations to obtain various observables that allow us

to get more insight in the transition from the non-commutative regime towards the

commutative, strong coupling, limit.

We will continue to discuss higher dimensional Yang-Mills matrix models, focusing

on the lowest dimensional case that is well defined, D = 3, and on the large-D limit.

While we discuss the possibility of an emergent topology in 3 dimensions, we find

that the behaviour of this type of models changes towards random matrices for large

D.

In the second part of the thesis we will add a Myers term to the Yang-Mills type

models which extends the possible solutions to the model by fuzzy spaces. We carry

out a 1-loop calculation for a general SU(d) symmetric solution to this class of

models. We will then turn to a numerical study of a model that incorporates the

simplest case of a fuzzy manifold, the fuzzy sphere. We will further study fuzzy CP 2

which appears as a solution to the 8-dimensional Yang-Mills-Myers model. Numerical

results from a Monte-Carlo simulation will be used to compare with the analytical

results obtained earlier. We will further construct a slightly modified 8-dimensional

model that has a fuzzy complex projective plane as the ground state in phase space.

In total, we find four different phases in this model, which we will describe in detail

after numerically mapping the phase diagram.
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Chapter 1

Introduction

The standard model of particle physics is one of the greatest success stories in modern physics

and managed to describe the interaction of particles up to very high energies in a very accurate

manner. The missing particle in the standard model, the Higgs particle, has been recently dis-

covered at the LHC collider in CERN. Nevertheless it is clear for various reasons that the theory

that succeeded in pushing our understanding of nature to such high energies has to eventually

break down. To describe the behaviour of particles at even larger energies the properties of

the surrounding space itself become more and more important and point to the missing part in

the current theory, general relativity. From the four fundamental forces gravity is the only one

that physicists have not succeeded in including into a grand unified theory as its behaviour is

remarkably different to the other fundamental forces.

Since Einstein discovered general relativity it is clear that energy and space are intricately

related. A famous thought experiment, first fomulated by J. Wheeler, states that to probe space

on a length scale r, the uncertainty principle tells us that we need to use energies E > 1
r . Due

to gravitational interactions we know that such a concentration of energy will create a black

hole for length scales r < lp, where lp is the planck scale. According to general relativity there

is thus a fundamental length scale below which space ceases to exist in the way we understand

it. To unify gravity with the other fundamental forces at high energies we thus will need a new

understanding of gravity and with it of space and time as well. A more detailed argument for

a quantized space-time has been given in [1]. While one possiblity is that the theory of gravity

needs to be modified at such high energies, another viewpoint that is gaining more and more

interest in quantum gravity research is that space and time and thus gravity are not fundamental

phenomena.

The assumption that space is not fundamental is supported, for example, by properties of

string theory, the most studied theory that tries to extend our understanding to even higher
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1. INTRODUCTION

energies/ smaller length scales. Already on the classical level we find ambiguities in string theory

where the same theory can be mapped to different spaces, the so-called T-dualities (for a nice

discussion of emergent phenomena in string theory and beyond see [2]). Such ambiguities exist

also in quantized string theories or we can think of the thought experiment mentioned above for

a further example. Another different example where geometry can be thought of as emergent is

the AdS/CFT correspondence [3] where in the weak coupling regime in the bulk theory there are

no additional dimensions apparent but new dimensions seem to emerge in the strong coupling

regime. Yet another example would be matrix models of random surfaces.

Many models that exhibit emergent phenomena can be formulated as matrix models. In

these zero-dimensional models one starts with no fundamental space but it arises dynamically

in the limit when the matrix size N is taken to infinity. The first example of such a model was

the Eguchi-Kawai model [4], which, as the models we will study in this thesis, does not include

gravity.

Most probably the simplest model that exhibits an emergent structure is the Gaussian one-

matrix model. Here, the eigenvalues of the matrix distribute within a semicircle in the large-N

limit. This bounded distribution can be interpreted as an emergent continuum topology. This

simple case already shows an important property of models with emergent phenomena. While in

these models there is no topology present at first, one can diagonalise the matrix here, resulting in

an effective action for this model, which introduces a repulsive force. Only if the repulsive force is

balanced by an attractive force in the action can topology arise. In the literature this emergence

of an underlying space is often called emergence of geometry which might be misleading as

geometry implies that the model includes information about the metric of this space. Such a

definition of length and angles is not clearly present or does not emerge in this framework. We

do find what we can call an emergent continuous topological space in these models as the matrix

size N goes to infinity. This is in contrast to the emergence of non-commutative geometry in

so-called fuzzy models, which we will discuss below.

In interacting multi-matrix models, which we will study in this thesis, the situation is harder

to analyze and few models can be solved analytically. In chapter 3 we will study one of the

few examples that can be treated analytically. It consists of two matrices with Yang-Mills type

interaction and a mass term for each of the matrices. We will see that in this model space

can be thought of as emerging in the strong coupling limit. In this limit the matrices start to

commute and can thus be diagonalised simultaneously. This is a crucial property of an emergent

space as one cannot speak of a joint eigenvalue distribution, which is interpreted as an emergent

continuum topology, as long as the matrices do not commute.

2



In higher dimensional Yang-Mills models, studied in chapter 4, we won’t introduce a mass

term anymore but still find an interesting behaviour that was interpreted as an emergent space-

time in [5] and one might be able to interpret the lowest dimensional case that is well defined,

d = 3, as an emergent continuum topology. The term emergent space-time does not describe

this phenomenon particularly well as it rather is an emergent topology, including no information

about a metric on this space, which would be of Euclidean and not Minkowski signature if one

could define it.

We nevertheless find an interesting behaviour, when changing the dimensionality of the

model, encoded in the number of matrices. Here the distribution of the individual matrices

changes from high dimensional models, where the matrices behave as free [6] and random, to

the lowest dimensional case of d = 3 where the matrices seem to distribute around a commuting

saddle point, with corrections. In the d = 3 case the individual matrices might thus flucutate

around a joint eigenvalue distribution. Changing the dimensionality of the model therefore seems

to resemble a change in the coupling constant of the 2-dimensional model mentioned before to

a certain extent. Another reason to study Yang-Mills models is that they form a link to string

theory.

The Yang-Mills model forms the bosonic part of a matrix model that was conjectured to give

a nonperturbative defintion of type IIB string theory, the IKKT model [7]. While this supersym-

metric model is well defined in 4,6 and 10 dimensions it is necessary in order to obtain a realistic

model that the symmetry should be spontanteously broken such that the 4-dimensional space-

time emerges dynamically out of the 10-dimensional model. It is possible that the fermionic

sector can stabilize the attractive and repellent forces and lead to an emergent topology in this

case. Both the pure bosonic as well as the supersymmetric model have been studied extensively

but no conclusive results for this issue have been found yet. As these models cannot be solved

analytically anymore numerical simulations are an important source of new insight. Unfortu-

nately, the supersymmetric models are hard to simulate as well due to their complex action

which makes a detailed study of the bosonic part an important step to try to understand the

behaviour of this model better.

The 2-dimensional model discussed in chapter 3 is related to M-theory, a fundamental theory

from which different types of string theory should derive as particular limiting theories. The

2-matrix model was later introduced as a dimensionally reduced, regularized version for the

classical membrane [8] which was generalized to the supermembrane in [9]. Some years later

it was conjectured in [10] that this model of supermembranes can actually be interpreted as a

nonperturbative definition of M-theory, called the BFSS-model.

3



1. INTRODUCTION

A different class of models where one can actually speak of an emergent geometry can be

obtained from Yang-Mills type models by adding an additional term to the action. In [11]

it was first mentioned in relation to string theory, that by adding a cubic term to the model

allows for so called fuzzy solutions. Such spaces have been studied already before for various

reasons starting with [12]. In these models, discussed in chapters 5-8 of this thesis, the matrices

are proportional to generators of some lie group in the ground state and thus have a discrete

spectrum. As long as the matrices are finite the individual matrices do not commute and the

emergent geometry is non-commutative. On such non-commutative spaces Alain Connes [13]

showed that one can define a spectral triple, consisting of an algebra, a Hilbert space and a Dirac

operator, which encode all the geometrical information about the underlying space. Only in the

large-N limit can we recover the classical geometry. In this limit the individual matrices thus

become commutative and can be diagonalized simultaneously. Such fuzzy solutions also appear

in an interesting string theoretical model, the BMN-model [14] that is based on a deformed

BFSS model.

As already mentioned all of these models are hard to treat analytically and numerical meth-

ods play an important role in this field of research. In this thesis we will mostly use Monte-Carlo

techniques, together with some analytical results, to study emergent phenomena in these models,

focusing on eigenvalue distributions of the individual matrices as well as some derived quantities

to achieve this goal. We will start by introducing matrix models using the Gaussian model as an

easy example to explain some of the most important concepts in chapter 2. We will then turn to

the pure Yang-Mills models, starting with the 2-matrix model in chapter 3 and continuing with

its higher dimensional generalizations in chapter 4. In chapter 5 we will continue by introducing

fuzzy spaces which play a crucial part in the class of models we will study in more detail in

chapters 6-8. We end with some conclusions and outlook. In appendix C we give a short in-

troduction to the main tools we are using, namely Monte-Carlo simulations. In appendix D we

show results from the numerical integration of the equations of motion for some of the models

in consideration in this thesis. They are not only a good test of the correctness of the code but

describe the behaviour of the classical potential of the model.
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Chapter 2

Random matrices and their

eigenvalue distributions

Random matrices have been a lively research topic in physics for many years. While they were

introduced by Wigner to describe the eigenvalues and eigenfunctions of the atomic nucleus [15],

they have since then found applications in solid state physics, quantum chaos, field theories and

quantum gravity to name just a few. Good overviews are given in [16, 17].

The most studied random matrix ensembles are the Gaussian ensembles defined by Wigner.

The three Gaussian ensembles, which are distinguished by the index κ, are given by:

• The Gaussian orthogonal ensemble (GOE) with κ = 1, which describes systems that are

invariant under time-reversal and rotations. Here, the Hamiltonian matrix H of matrix

size N ×N would be real and symmetric

Hmn = Hnm = H?
mn. (2.1)

• The Gaussian unitary ensemble (GUE) with κ = 2, which describes systems that are not

time-reversal invariant. This is the case, for example, for a particle in an external magnetic

field. It is given by a Hermitian Hamiltonian matrix H where

Hmn = H†nm. (2.2)

• The Gaussian symplectic ensemble (GSE) with κ = 4, describing time-reversal invariant

systems with half-integer spin and broken rotational invariance. The Hamiltonian can

either be written using quarternions or Pauli matrices σµ. The matrix H has the following

form:

H(0)
mn1 + i

3∑
µ=1

H(µ)
mnσµ. (2.3)

5



2. RANDOM MATRICES AND THEIR EIGENVALUE DISTRIBUTIONS

All matrices are real and matrix H(0) is symmetric while the other matrices are anti-

symmetric.

The weight function of all Gaussian ensembles PκN (H) is given by

PκN (H) ∝ e
κaN

4
TrH2

(2.4)

and κ = 1, 2 or 4, depending on the which ensemble we look at and a is a free parameter. The

matrix size N in the Gaussian weight function ensures that the spectrum obtained from the

Gaussian ensembles are bounded when N →∞. The Gaussian ensemble is in general too simple

to describe physical observables but it can describe statistical fluctuations of such observables

correctly, which are often independent of the general form of the spectrum in the case where the

number of levels N in the spectrum goes to infinity. For this reason we will always be interested

in the large-N limit in our studies.

An important property in random matrix theory in general is the distribution of its eigen-

values. In most cases it is hard to obtain and one can only compute the first moments. For

this reason, simulations are a important tool in the study of such models as it allows one to

numerically compute the distribution. The study of such eigenvalue distributions for a novel

class of Hamiltonians will be one of our main goals in this thesis.

In the simple case of the Gaussian ensembles the distribution is known for a long time. It

was first calculated by Wigner and is named after him the Wigner semicircle distribution. To

follow the steps of its derivation we start by diagonalizing the matrix H = U−1ΛU , where Λ is

diagonal. This unitary transformation leads to a Vandermonde-determinant for a matrix of size

N ,

∆(Λ)κ =
∏
i<j

(λi − λj)κ. (2.5)

Here, κ = 1, 2, 4, depending on which Gaussian ensemble we study. This leads to an invariant

measure under unitary transformations given by

PκN (λ1, . . . , λN )
∏
i<j

(λi − λj)κ
N∏
i=1

dλi. (2.6)

In this thesis we will always deal with Hermitian matrices, corresponding to κ = 2. Given

a Gaussian matrix model for this particular case the partition function Z[b,N ], where we set

b = a
2 , for a matrix X of size N is

Z[b,N ] =

∫
[dX]e−NbTr(X

2). (2.7)

6



Diagonalizing this matrix and writing the Vandermonde determinant as a logarithm in the

exponent we find

Z[b,N ] =

∫
[dΛ]e−Nb

∑
i λ

2
i+

1
2

∑
i 6=j ln(λi−λj)2

. (2.8)

We will call the expression in the exponent S[b,N,X]. We can also note the eigenvalue repul-

sion induced by the logarithmic term originating in the Vandermonde determinant which is an

important property of this type of models. We can now use the saddle point equation to obtain

an equation for the real eigenvalues λt,

0 =
∂S

∂λt
= −2Nbλt + 2

∑
t6=s

1

λt − λs
. (2.9)

Taking the N →∞ limit and defining 1
N

∑
=
∫
ρ(x), where ρ(x) is the eigenvalue density given

by ρ(x) = 1
N

∑N
t=1 δ(λ− λt), we find

bλ = −
∫ R

−R

ρ(x)

λ− x
dx, (2.10)

which is a singular equation which we want to solve for the eigenvalue distribution ρ(x) subject

to the constraint
∫ R
−R ρ(x)dx = 1. To do this we introduce the resolvent I(λ) =

∫ ρ(x)
λ−xdx. This

integral is real for real λ 6∈ [−R,R], goes to zero for λ→∞ as 1/λ and is analytic in the complex

plane except for a cut on the interval [−R,R]. From the integral

I(λ+ iε) = lim
ε→0

∫ R

−R

ρ(x)

λ+ iε− x
dx = −

∫ R

−R

ρ(x)

λ− x
dx−

∫
ρ(x)iπδ(λ− x)dx = bλ− iπρ(λ) (2.11)

we find that

lim
ε→0

Re(I(λ± iε)) =
1

2
(I(λ+ iε) + I(λ− iε)) ≡ −

∫ R

−R

ρ(x)

λ− x
dx = bλ (2.12)

lim
ε→0

Im(I(λ± iε)) =
1

2
(I(λ+ iε)− I(λ− iε)) = −iπρ(λ). (2.13)

The real part of the resolvent is therefore equal to the integral we want to solve, while the

imaginary part gives us the eigenvalue distribution. The function that has these properties is

given by

I(λ) =
2

R2

(
λ−

√
λ2 −R2

)
, (2.14)

where the prefactor is determined by the normalization condition. From the equation for the

real part, 2λ
R2 = bλ we find that the width of the distribution is R =

√
2
b , while the semicircle

distribution with radius R follows from the imaginary part,

ρwsc(λ) =
2

R2

√
R2 − λ2. (2.15)

7



2. RANDOM MATRICES AND THEIR EIGENVALUE DISTRIBUTIONS

Here we should emphasize that this result is derived in the large-N limit. Almost all results in

this thesis will be derived in the N → ∞ limit. Only in this limit we can recover the classical

geometry as mentioned in the introduction. As random matrix theory is part of statistical

physics one can think of the large-N limit as the equivalent of the thermodynamical limit in

standard statistical mechanics. Nevertheless, in simulations we can only use finite-sized matrices

and thus can only expect an approximation to the analytical result derived in this manner.

Using this distribution, we can compute the expectation value of the first moment,

1

N
< TrX2 >=

∫
Tr(X2)ρwsc(λ)[dX] =

R2

4
(2.16)

as well as by using the identity ∫
[dX]

d

dX

(
Xe−S[X]

)
= 0 (2.17)

which gives 1
N < TrX2 >= 1

2b . We will use these relations in later chapters.

From this result for the width of the distribution R we note that it depends on the parameter b

in the Gaussian model. Thinking of the potential formed by the Gaussian action Sgauss[b,N,X] =

NbTr(X2), the parameter also determines the width of this potential and we see that there is a

relation between the potential and the eigenvalue distribution, sketched in figure 2.1. Let’s add

a X4 potential to the action, S4[g, t,X] = g
2X

2 + t
4X

4, where we assume that g < 0. In this case

we see that the parameters determining the depth of the wells in the Mexican hat potential in

figure 2.2 also effect the shape of the eigenvalue distribution. Thus, by studying the eigenvalue

distributions in more complicated cases we can learn something about the underlying structure

of the model and a possible emergence of geometry.
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Figure 2.1: By changing the parameter a = 2b in the Gaussian model the width of the potential is

changed. This in turn changes the width of the eigenvalue distribution.
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Figure 2.2: The relation between potential and shape of the eigenvalue distribution is shown for

a φ4-model, S4[g, t,X] = g
2X

2 + t
4X

4. When varying the parameter g the width of the distribution

changes while the local minimum at 0 in the eigenvalue distribution increases/decreases when we

vary the parameter t.

While the Gaussian ensembles discussed above are very simple one-matrix models that can

mainly capture fluctuations around average quantities in physical system, such models soon be-

come much more complex when adding more individual matrices and making them interact. In

the rest of this thesis we will study a class of such multi-matrix models, where we will assume

that the matrices are Hermitian, corresponding to κ = 2 here. They will have a more compli-

cated potential where, in most cases, few analytical results about the eigenvalue distributions

of the individual matrices have been found. Numerical simulations therefore provide a welcome

possibility to learn more about the properties of such models.
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Chapter 3

The 2-Matrix Model

We will start our discussion of different matrix models with the 2-matrix model whose partition

function is given by

Z[g,N ] =

∫
[dX][dY ]e−S[g,N,X,Y ], (3.1)

where

[dX] =
N∏
i=1

d[Xii]
∏
i<j

d[Re(Xij)]d[Im(Xij)]δ(
N∑
i=1

Xii) for i, j = 1, . . . , N (3.2)

and the measure of matrix Y is defined equivalently. The action of the model consists of a pure

Yang-Mills term, regularized by a mass-term as the model would not be stable otherwise:

S[g,N,X, Y ] = N Tr
(
−g2[X,Y ]2 +X2 + Y 2

)
. (3.3)

Here X and Y are Hermitian, traceless matrices of size N and g is a real coupling constant

defined such that it plays the role of the ’t Hooft coupling in this model. The model is invariant

under U(N) gauge transformations. It was introduced by Hoppe [8] as a model for quantized

membranes and is one of the few multi-matrix models that can be solved analytically in the

large-N limit for some quantities and exhibits interesting properties. It has subsequently been

studied in [18] and in [19] in relation to emergent geometry. A detailed analytical study of some

of the properties we will examine numerically in the following sections has recently been carried

out in [20, 21] and allows for an extensive comparison. As we will see in later chapters, some

of the properties of this model are found in other multi-matrix models as well and make it an

interesting example to compare with. This section is based on [22].

In the following sections we will focus our study on the eigenvalue distributions of the in-

dividual matrices as well as some related quantities and include a few considerations about

11



3. THE 2-MATRIX MODEL

correlators in this model. From the definition of the action in eq. 3.3 we see that the model

reduces to a Gaussian model for g = 0, where it is known that the individual matrices have the

Wigner semicircle as an eigenvalue distribution (see chapter 2). In the large-g limit it has been

found in [20] that the matrices are approximately commuting and the individual matrices exhibit

a parabolic eigenvalue distribution. In a subsequent paper [21] the authors derived expressions

for the corresponding 2- and 3-dimensional distributions, conjectured from the 1-dimensional

result to be a hemisphere and solid ball distribution respectively. We will focus our attention

on the strong coupling regime but add a few comments on the intermediate regime between

strong and weak coupling in the end as well. We will start by deriving the saddle point equation

and examining the large-g solution in the next section. Afterwards, we will turn to numerics

to compare the results from simulation with the analytical predictions for 1- and 2-dimensional

distributions. In the end we will comment on the intermediate coupling limit.

3.1 Saddle point approximation

The solution of the model can be worked out by taking advantage of the U(N) gauge symmetry

[8] which allows us to diagonalize one of the matrices by an unitary transformation such that

X = UΛU †, with Λ = diag(x1, x2, . . . , xN ). This unitary transformation leads to the squared

Vandermonde determinant, ∆2(Λ) =
∏
i 6=j(xi − xj). Further, the commutator becomes

Tr[X,Y ]2 = 2 Tr(XYXY −X2Y 2) = −
∑
i,j

(xi − xj)2 |(Y )ij |2 , (3.4)

as the matrix X is now diagonal and we obtain

Z[g,N ] =

∫
[dY ][dΛ]∆2(Λ)δ(

∑
i

yii)δ(
∑
i

xi)e
−N(

∑
i x

2
i+
∑
i,j |yij |2+

∑
i6=j g

2(xi−xj)2|yij |2), (3.5)

where the delta functions guarantee the tracelessness of the matrices. Since this model includes

a mass term for both matrices, the tracelessness condition is not necessary here. Had we consid-

ered matrices with non-zero trace the additional degree of freedom would have decoupled and

fluctuated as a Gaussian random variable around zero. As we will consider traceless matrices

in all other section in the thesis, we nevertheless include the delta function in the partition

function. Now we can integrate over Y and obtain the partition function for the eigenvalues

of matrix X where we exponentiated the Vandermonde determinant to write it as part of the

action,

Z[g,N ] =

∫
[dΛ]δ(

∑
i

xi)e
−N

∑
i x

2
i+

1
2

∑
i6=j log

[
(xi−xj)2

1+g2(xi−xj)2

]
, (3.6)
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3.1 Saddle point approximation

after having integrated out the U(N) degrees of freedom. The effective action is thus given by

Seff (Λ) = N

N∑
i

x2
i −

1

2

∑
i 6=j

log(xi − xj)2 +
1

2

∑
i 6=j

log[1 + g2(xi − xj)2] (3.7)

Differentiating once with respect to xi results in the saddle point equation,

dSeff
dxi

= 0 −→ xi =
1

N

∑
i 6=j
i fixed

1

(xi − xj)[1 + g2(xi − xj)2]
. (3.8)

Taking the continuum limit 1
N

∑
→
∫
ρ(x)dx, where we introduced ρ(x) as the eigenvalue

density with the normalization condition
∫
ρ(x)dx = 1, the saddle point equation in the large

N limit becomes

x = −
∫

ρ(y)dy

(x− y)[1 + g2(x− y)2]
. (3.9)

The equation can be solved for N → ∞ where the solution for ρ(x) is given by the parabolic

distribution [19]

ρ(x) =
3

4R3
2

(R2
2 − x2), with R2 =

(
3π

2g

)1/3

. (3.10)

Using this result one can easily compute the observable < Tr
N X

2 >, since〈
Tr

N
(X2)

〉
=

∫ R2

−R2

dx ρ(x) x2 =
R2

2

5
=

(12π)2/3

20

1

g2/3
. (3.11)

All analytical results that follow are computed in the large-N limit. Hoppe [8] and Kazakov et.

al. [18] found a parametric expression for this quantity for all couplings g in terms of the elliptic

functions

K(m) =

∫ π
2

0

dΘ√
1−m sin2(Θ)

and E(m) =

∫ π
2

0
dΘ

√
1−m sin2(Θ) (3.12)

where m is the modulus, 0 ≤ m ≤ 1. It is given by

ν = g2

〈
Tr

N
(X2)

〉
=

1

12
− K2

5π2

10 ϑ2(ϑ +m− 2) + 2 ϑ(6− 6m+m2) + (1−m)(m− 2)

3 ϑ2 + 2(m− 2)ϑ + 1−m
,

(3.13)

with

g2(m) =
K(m)4

3π4
(−3ϑ2 + 2(2−m)ϑ− (1−m)) (3.14)
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3. THE 2-MATRIX MODEL

and

ϑ =
E(m)

K(m)
. (3.15)

From the general expression (3.13) an expansion for the observable < Tr
N (X2) > can be

obtained in the large g limit, which in (3.13) corresponds to m→ 1, and reads as follows:〈
Tr

N
(X2)

〉
=

(12π)2/3

20

1

g2/3
− 3

(12π)2/3

1

g4/3
+ · · · (3.16)

The first term corresponds to the leading large g limit (3.11), given in [19].

Another exact result in terms of elliptic functions is the radius R of the distribution given

by

R(m) =
K(m)

πg(m)
Z(sin−1(

√
1− ϑ(m)

m
)|m), (3.17)

where Z(φ|m) is the Jacobi Zeta function. When expanding this equation for large coupling g

we find

R(g) =

(
3π

2g

)1/3

− 2 log(g) + log(96π4)

6πg
+

1

28/331/3π7/3g5/3
+ O(g−7/3). (3.18)

We will see that our numerical results agree excellently with this result.

In [21] a detailed study of this model, focusing on the eigenvalue distributions of the matrices,

for varying coupling g has been undertaken. The authors computed corrections to the parabolic

distribution 3.10 such that the eigenvalue distribution for one matrix is given by

ρlg(x, g) =
g

2π
(R2

lg(g)− x2)+

+
x

2π2
log

(
(Rlg(g)− x)

(Rlg(g) + x)

)
+

3Rlg(g) + 2Rlg ln(2Rlg(g)g)

4π2
, (3.19)

where we can extract the value of the radius Rlg(g) from the equation

1

R2
lg

'
2Rlgg

3π
+

1 + 2 ln(2Rlgg)

2π2
. (3.20)

This expression diverges to −∞ at x → Rlg but fits the distribution well for g2 ≥ 2 as we will

see in our numerical study.

Furthermore, it was shown in [20] that for large g the joint eigenvalue distribution for X and

Y is a hemispherical distribution with radius (3.10). This could be derived from a uniform joint

eigenvalue distribution for a 3-matrix model with only a Gaussian and cubic term which, when

the third matrix is integrated out, gives the action (3.3). The action for this 3-matrix model is

S[X,Y, Z] = N Tr
[
2g[X,Y ]Z +X2 + Y 2 + Z2

]
, (3.21)
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3.2 Numerical results for 2-dimensional Yang-Mills Matrix Model

and is complex for g real. To leading order in large g the eigenvalue distribution of this model

is ρ(r) = g
2π2 θ(r − R2) with r =

√
x2 + y2 + z2, i.e. a uniform distribution within a ball of

radius R2 = (3π
2g )

1/3
. When one of the matrices is integrated out we recover the joint eigenvalue

distribution of the two matrix model by integrating over one of the 3-coordinates of the ball

distribution to get a hemisphere distribution

ρ(x, y) =

∫ √R2−x2−y2

−
√
R2−x2−y2

3

4πR3
2

dxdy =
3

2πR3
2

√
R2

2 − x2 − y2 . (3.22)

If we integrate over two coordinates we recover the parabolic distribution to leading order (3.10).

Unfortunately, it is not easy to perform numerical simulations with (3.21) directly since the

action is complex. Such numerics would require us to overcome the difficulties of simulations

with complex actions (see [23, 24, 25] for recent discussions).

In the next section we will present the results of numerical simulations carried out for the

2-matrix model. We will focus on the study of eigenvalue distributions for the matrix configu-

rations.

3.2 Numerical results for 2-dimensional Yang-Mills Matrix Model

In this section we will focus on numerical results for the 2-dimensional-Yang-Mills matrix

model [26]. An efficient way to simulate this model is using the effective action (3.7). We

do this using a Hybrid-Monte-Carlo algorithm (see Appendix C.2). Also, it is possible to recon-

struct the second matrix Y once we get thermalized configurations for X, since each component

has a Gaussian distribution. When the matrix X is diagonalized its eigenvalues are distributed

with probability distribution P (X) = e−Seff (x). Configurations for Y are simply obtained by

generating random numbers yij that are normally distributed with variance σ2
ij , i.e.

P (yij) =
1√

2πσ2
ij

e
−
|yij |

2

2σ2
ij , with σij =

{ 1√
2N

for i = j
1

2
√
N(1+g2(xi−xj)2)

for i < j . (3.23)

Performing simulations in this manner allows us to study the system for very large matrix size

N as the complexity of the simulation only grows with N2 rather than N3. Further, we can also

perform precise simulations for very large coupling constant g as the autocorrelation is smaller

than when simulating the full model.

A useful identity, which is monitored in simulations, is obtained by noting that the action

(3.3) is a polynomial in the matrices Xa and can be expressed as S = S4 + S2 with each Sk

homogeneous under a rescaling of the matrices. The identity, which follows from rescaling, is

4 < S4 > +2 < S2 >= 2(N2 − 1), (3.24)
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3. THE 2-MATRIX MODEL

with

S4 = −Ng2 Tr([X,Y ]2), and S2 = N Tr(X2 + Y 2) . (3.25)

In practice the identity (3.24) is used as a check of the code.

3.2.1 Strong coupling regime

As discussed in section 3.1 we can diagonalize one of the two matrices while the other matrix has

a Gaussian distribution for its components. With X diagonalized, we find that the Hermitian

matrix (i[X,Y ])ij = i(xi − xj)(Y )ij . From eq.(3.11) we can see that < 1
NTr(X2

µ) > depends

on the coupling constant in the large coupling limit as ∼ g−2/3. In this limit the off-diagonal

elements of Y should therefore acquire a large mass, 1 + g2 < xi − xj >2∼ g4/3, and become

heavy compared to the diagonal elements. For large g one thus expects that X and Y become

effectively commuting matrices.

However, they cannot completely commute since we have the restriction (3.24). Instead we

expect that the commutator becomes a Gaussian random matrix that decouples from the rest

of the system. From eq. (3.24),

< S4 >

N2
+
< S2 >

2N2
=

1

2
, (3.26)

and the expressions of the radius R2 for the parabolic distribution of the individual matrices X

and Y , as well as the radius of the Gaussian distribution for the commutator, RComm, we find

< S2 >

N2
=

1

N

〈
Tr
(
X2 + Y 2

)〉
=

2R2
2

5
, (3.27)

< S4 >

N2
=
g2

N

〈
Tr[X,Y ]2

〉
=
g2R2

Comm

4
. (3.28)

It follows that the contribution of the term < S2 > goes to zero for large g, while the commutator

term < S4 > converges to 1/2,

< S2 >

N2

g→∞−→ 0 (3.29)

< S4 >

N2

g→∞−→ 1

2
. (3.30)

From these considerations we find that the eigenvalue distribution of the commutator for large

g should be described by a Wigner distribution whose radial extent is estimated as follows:

R2
Comm =

2

g2
− 4R2

2

5g2
=

2

g2
− 4

5g2

(
3π

2g

)2/3

. (3.31)
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3.2 Numerical results for 2-dimensional Yang-Mills Matrix Model

This is in good agreement with the numerical results of the simulations as shown in figures 3.1

and 3.2. Figure 3.1 shows the eigenvalue distribution for i[X,Y ] for different values of N and

g2 = 20000. It is well fit by the Wigner distribution RComm = 0.00979, taken from eq.(3.31). In

figure 3.2 we see that this result is true for values of g2 & 50. Below this value of the coupling

constant the large-g approximation for the distribution of the individual matrices by a parabola

is not accurate enough anymore.
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Figure 3.1: Eigenvalue distribution for

the commutator of the two matrices i[X,Y ]

for different values of N and fixed value of

g2 = 20000. The solid line corresponds

to the Wigner distribution with radius

Rcomm = 0.00979 taken from eq.(3.31).
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Figure 3.2: The radius of the eigenvalue

distribution for the commutator i[X,Y ] as

function of g. The solid line corresponds to

the prediction eq.(3.31). It fits well until

comparatively small coupling g2 ∼ 50.

While we found that the expression derived for the radius of the commutator, RComm, where

we considered a parabolic distribution for the matrices X and Y without any correction terms,

fits with numerical results for values of g2 & 50 the corrections only become negligible for

much larger values of g when studying the distribution of the individual matrices X and Y .

Figure 3.3 shows a log-log plot of the width of the distribution of matrix X for different values

of the coupling g between g2 = 2 and g2 = 500000 together with different approximations given

in section 3.1. We see that the radius R2, taken from the parabolic distribution without any

correction terms, shows clear deviations from the theoretical prediction for g2 < 5000, which

corresponds to log(g2) ∼ 8.5. It overestimates the radius for smaller values of the coupling g.

The expression for the radius Rlg, derived using the asymptotic expansion in eq.(3.19) including

correction terms, does describe the distribution better while the expansion of R(m) in eq.(3.17),

obtained from the exact result using elliptic functions, fits for all values plotted to g2 = 2.

In figure 3.4 we show an example of the eigenvalue distribution of matrix X for N = 1000

and g2 = 36 including different approximations. In the graph we included ρlg from eq.(3.20) and
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3. THE 2-MATRIX MODEL

the result from the numerical integration done by one of the authors of [21]. ∗ As in figure 3.3

we recognize that ρlg fits well and only shows a deviation at the tails of the distribution. It

would lead to a slightly larger radius than numerically found, which is consistent with the result

from the log-log plot discussed above. The result from the numerical integration captures the

behavior of the distribution perfectly, even at the tails.
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Figure 3.3: The width of the eigenvalue

distribution of matrix X is plotted for val-

ues of the coupling g, 2 ≤ g2 ≤ 500000. We

see that the radius R from eq.(3.17) gives

the best fit when decreasing g.
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Figure 3.4: The eigenvalue distribution

for matrix X is plotted for g2 = 36. The

result obtained by numerical integration

in [21] fit even for the tails of the distri-

bution.

3.2.1.1 The 2-dimensional distribution Φ = X + iY

Since our model involves two matrices X and Y which do not commute it is natural to combine

them into a single non-Hermitian matrix

Φ = X + iY (3.32)

In terms of Φ the action (3.3) takes the form

S[Φ,Φ†] = N Tr

(
Φ†Φ +

g2

4
[Φ†,Φ]2

)
. (3.33)

Non-Hermitian, random matrix models with potentials that depend on Φ†Φ have been studied in

detail in [27, 28, 29] while properties of non-Hermitian random matrices in general are discussed

in [30].

The eigenvalues of Φ are complex and their distribution is the uniform distribution in the

disc in the N → ∞ limit, known as the Ginibre distribution [31], which is the generalization

∗Thanks to V. Filev for providing the result from the integration for this plot.
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3.2 Numerical results for 2-dimensional Yang-Mills Matrix Model

to non-Hermitian matrices of the Wigner semicircular law for Hermitian matrices. With the

normalizations of our model (3.33) the disc has radius 1. We can also note that, because of the

rotational invariance of the model, the eigenvalue distribution for Φ depends only on r, the sum

of the square of the eigenvalues of matrices X and Y .

Numerically we are able to study the spectral properties of Φ in detail as a function of g.

First, we consider the case g = 0, which is a Gaussian model. We obtain the distribution of the

real and imaginary part of the eigenvalues of the matrix Φ, whose distribution is given by the

Wigner semicircle, eq.(2.15), with radius 1. The result is plotted in figure 3.5. It is interesting

to note that while the eigenvalue distributions of the real and imaginary part of Φ distribute

within a semicircle, the distributions are not equal to the distributions of matrices X and Y for

g = 0. While the semicircle for Re(Φ) and Im(Φ) has radius RRe(Φ),Im(Φ) = 1, the radius of the

semicircular distribution for X and Y is R1d =
√

2 (see section 2).
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Figure 3.5: Distribution of the real and imaginary part of the eigenvalues of the matrix Φ = X+iY

with coupling constant g = 0. We can see that they are well fit by the Wigner semicircle with radius

R = 1.

In figure 3.6 we show the distribution ρ(r) for the modulus r =
√
x2 + y2 for different

matrix sizes. The numerical result supports the derived distribution of a hemisphere as the

density grows linearly with the radius. In figure 3.7 we have rescaled ρ by the factor 1/(2πr).

Here, the solid line is the Ginibre distribution for the non-Hermitian Gaussian matrix model.

We now consider different values of the coupling g. In figure 3.8 we show the real and

imaginary part of the eigenvalues of the matrix Φ for very large g, g2 = 500000, which distribute

according to the parabolic distribution (3.10), as expected. We recover the behavior of the

1-dimensional distribution studied before in the large g limit.

In figure 3.9 we show the 2-dimensional distribution ρ(r) for various values of the coupling g

for matrix size N = 1000. For very large g we find that the distribution for matrix C, a quantity
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Figure 3.8: Distribution of the real and imaginary part of the eigenvalues of the matrix Φ = X+iY

for g2 = 500000. The fit corresponds to the parabolic distribution with radius R2 = 0.1876.

studied in the next section, gives a good fit. We used the radius R2 = (3π
2g )1/3 from the parabolic

distribution in ρ2MM
C (see eq.(3.36)), which for g2 = 500000 gives the value R2 = 0.1876. As

we can see, eq.(3.36) approximates the distribution for the modulus r nicely. Figure 3.10 shows

the distribution of the modulus r for g2 = 500000 and matrix size N = 1000. The solid line

corresponds to the distribution ρ2MM
C with radius R2 = 0.1876.

In figure 3.11 we plot ρ(r)
2πr for different values of g. While we found that the distribution fits

to Ginibre’s distribution for g2 = 0, we see that it agrees with Wigner’s semicircle in the large-g

limit. This is in accordance with the result in [21]. They stated that, using Abel’s integral

equation, the 1-dimensional parabolic distribution, when integrated over, results in a semicircle

distribution for very large coupling g.

When comparing the distribution of ω(r) = ρ(r)/(2πr) with the result obtained by numerical
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Figure 3.9: Distribution for the modulus

r =
√
x2 + y2, where x and y are the eigen-

values of the matrices X and Y respec-

tively. For large g, the distribution for the

modulus r is well approximated by ρ2MM
C

(eq.(3.36)) the eigenvalue distribution for

matrix C, whose radius is given by (3.20).
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the distribution ρ2MM
C (eq.(3.36)) with ra-
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Figure 3.11: We rescale the distribution ρ(r) by the factor 2πr for different values of the coupling

g. For large g the distribution is very well approximated by the Wigner semi-circle of radius R2 =

( 3π
2g )1/3. Here for the case g2 = 500000, R2 = 0.1876.

integration by one of the authors of [21] for comparatively small values of the coupling g ∼ 200,

we find quite a discrepancy between numerics and analytical result (see figure 3.12). While the

numerical integration technique was in excellent agreement with the 1-dimensional distribution,

the expression obtained by numerical integration overestimates the width substantially in the

2-dimensional case. For values of g ≥ 20000 the results agree reasonably. This shows that for

small values of the coupling g such as g ∼ 200 the non-commutative corrections to the eigenvalue

distribution of the matrices become important. We could not find an analytic expression that

captures this effect and further studies of the intermediate regime between strong and weak
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3. THE 2-MATRIX MODEL

coupling will be needed.
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Figure 3.12: We compare the numerical result for ω(r) = ρ(r)
2πr with the result of a numerical

integration technique used in [21]. We see a clear difference between the two results in the regime of

g2 < 20000.

3.2.1.2 The spectrum of Matrix C

A second quantity of interest for an ensemble of random non-Hermitian matrices is the distri-

bution of the singular values of the matrix. These are the modulus of the eigenvalues of Φ†Φ.

They also enter naturally as the spectrum of

C =

(
0 X − iY

X + iY 0

)
= σ1X + σ2Y, (3.34)

which involves both matrices in a rotationally, SO(2), invariant combination.

A generalization of the matrix C was considered in [32] in a 3-matrix model in order to

detect the SU(2) representation content of the matrix configurations in the fuzzy sphere phase.

A gauge theory on the fuzzy sphere was discussed in terms of a quadratic polynomial for this

3-matrix generalization of C [33]. This 3-matrix version was also studied in [34] in order to

understand the geometry encoded in branes.

The results of section 3.1 indicate that in the strong ’t Hooft coupling limit the ground state

of the model is such that the two matrices effectively commute.

If X and Y commute we can diagonalize them simultaneously and the diagonalization of C

then only involves the diagonalization of two dimensional blocks. The resulting eigenvalues are

then simply

ci = ±
√
x2
i + y2

i . (3.35)
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3.2 Numerical results for 2-dimensional Yang-Mills Matrix Model

From section 3.1 we know that for large g the joint distribution of the eigenvalues of X and Y is

given by the hemispherical distribution (3.22). In polar coordinates this gives us the eigenvalue

distribution of matrix C defined as

ρ2MM
C (x) =

3|x|(R2
c − x2)1/2

R3
c

, with

∫ 0

−Rc
ρ2MM
C (x)dx = 1. (3.36)

As our numerical results are reflected around zero, we will divide this distribution by a factor of

2 to make up for the positive and negative values in (3.35). Note that ρ2MM
C is symmetric and

zero at the origin.

Comparing ρ2MM
C with the distribution of eigenvalues obtained from our simulations we see

in figures 3.13 and 3.14, that there is an unexpected non-zero minimum at the origin, which does

not reduce in the large N limit. The oscillations in graph 3.14 around the origin get smaller with

increasing matrix size and are finite matrix effects. The remainder of the distribution broadly

fits the expected distribution.
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Figure 3.13: Eigenvalue distribution of

matrix C in the two-matrix model with

g2 = 5000. The solid line corresponds

to the distribution (3.36), divided by 2 to

make up for the positive and negative val-

ues, with Rc = 0.4034± 0.0002.
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Figure 3.14: Detail around the centre of

the distribution for matrix C in the two-
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to the distribution (3.36), divided by 2.

In figure 3.15 we plot the distribution for different values of g2 = 50, 5000, 20000 for N = 500.

We notice that these distributions have a common value at x = 0 which is independent of g and

well approximated by 1
π which is the value of the Ginibre distribution within the interval [0, R].

It is curious that, while we found the non-commutative effects in the 1-dimensional distribution

in the tails of the distribution, they seem to be present at the center ρ2MM
C (0) of the distribution

studied here.
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3. THE 2-MATRIX MODEL

If we rescale the eigenvalues of the matrix C as xi → xi
R2

, where Rc = R2 is the radius set

to the radius of the parabolic distribution, the resulting theoretical distribution (3.36) becomes

independent of g

ρ̄2MM
C (x) =

3

2
|x̄|(1− x̄2)1/2, with

∫ 1

0
ρ̄2MM
C (x̄)dx̄ = 1. (3.37)

In figure 3.16 we compare the distributions from simulations to this curve (3.37) and we see

that for sufficiently large g the contribution of zero eigenvalues tends towards zero, as predicted

theoretically and the numerical distribution converges to ρ̄2MM
C (x).
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Figure 3.15: Eigenvalue distribution

of matrix C for N = 500 and g2 =

313, 5000, 20000. The box shows a detail

of the distribution around its central mini-

mum that does not depend on g and whose

value appears to equal 1
π .
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Figure 3.16: Eigenvalue distribution

of matrix C for N = 500 and g2 =

50, 5000, 500000. The eigenvalues are

rescaled ci → ci
R2

(preserving area) for each

g so the radius of the distribution is 1.

We clearly see that as g grows the central

minimum approaches to zero as predicted

by ρ̄2MM
C (x)/2, where ρ̄2MM

C (x) is given in

eq.(3.36).

3.2.2 Matrix C in the intermediate coupling regime

The large g distribution (3.36) is no longer a good fit for g2 . 5000. Inspired by the fact that

the matrix C is rotational invariant and knowing that the distribution of the individual matrices

shifts from a parabola in the strong coupling limit towards a semicircle in the weak coupling

regime, we will use an empirically determined distribution, given by

ρ2MM
C (x) =

8

πR2
c(4Ac +R2

c)
(Ac + x2)(R2

c − x2)1/2, with

∫ Rc

−Rc
ρ2MM
C (x)dx = 1.

(3.38)
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3.2 Numerical results for 2-dimensional Yang-Mills Matrix Model

The use of this function is further inspired by the fact that we find a distribution of a similar

shape for the pure scalar quartic potential matrix model in the one-cut regime [35, 36]. The

distribution has two parameters Ac and Rc, where the parameter Ac regulates the value of the

local minimum of the distribution and the parameter Rc gives the support of the distribution

[−Rc : Rc]. Using this function we can fit the numerical result to high accuracy in this regime,

as can be seen in figure 3.17.
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Figure 3.17: Eigenvalue distribution for matrix C for g2 = 2 and different values of N . The fit

corresponds to (3.38). The oscillations around zero are finite size effects since they disappear as N
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Chapter 4

The massless Yang-Mills matrix

model for D > 2

4.1 Definition of the model

For D > 2 the partition function is given by

Z[N,D] =

∫ D∏
µ,ν=1,µ 6=ν

dXµ exp

(
N

4
Tr[Xµ, Xν ]2

)
, (4.1)

where the Xµ’s, µ = 1, . . . ,D, are N ×N traceless, Hermitian matrices. The action is invariant

under unitary transformations U(N) and rotations SO(D). The saddle points are found by

evaluating the equations of motion

[Xν , [Xµ, Xν ]] = 0 (4.2)

which have a large set of possible solutions with commuting matrices forming one of them.

This model has been studied in great detail, e.g. in [5, 37, 38], as in 10 dimensions it forms

the bosonic part of the IKKT matrix model [7, 39, 40]. An extensive study of the analytical

and numerical properties of this model was done in ref. [5]. Here, the authors decompose the

matrices Xµ into their eigenvalues λiµ and their angular part Vµ, Xµ = VµλiµV
†
µ , and integrate

out the angular part to find the 1-loop and 2-loop effective action for the eigenvalues

W1(λ) = (D − 2)
∑
i<j

log(λµi − λµj)2 (4.3)

W2(λ) = g2
{1

2
(D − 2)2I1 −

1

2
D(3D − 7)I2 − 2(D − 2)I3

}
(4.4)
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where

I1 =
∑

i 6=j,j 6=k,k 6=i

1

(λµi − λµj)2(λµi − λµk)2
, (4.5)

I2 =
∑
i 6=j

1

(λµi − λµj)4
, (4.6)

I3 =
∑
ν

∑
i 6=j,j 6=k,k 6=i

λνi − λνj
λνi − λνk

1

(λµi − λµj)2(λµi − λµk)2
(4.7)

These are the results when we rescale Xµ = 1
N1/4√gAµ, as done in [5] and g is a coupling constant

introduced explicitly to be able to do a loop expansion.

The 1-loop effective action induces an attractive potential when the eigenvalues are far away

from each other. As long as they are sufficiently separated, the higher loop orders are negligible.

We can thus study the infrared behavior by only looking at the first order contribution. We see

that the power of the eigenvalues λ in the 1-loop effective action is given by −(D− 2)N(N − 1)

while the contribution from the measure is D(N − 1). The overall power has to be negative

in order for the integral to converge in the weak coupling limit. This leads to a convergence

condition of

N >
D

D − 2
. (4.8)

In reference [41] this has been shown numerically, and in [42] proven, that the integral is well

defined for

N ≥ 4 in D = 3

N ≥ 3 in D = 4 (4.9)

N ≥ 2 in D ≥ 5.

The apparent small g divergence in the 1- and higher-loop orders is due to the fact that this

perturbation theory is not valid in the small-g regime anymore. When we look at the partition

function, where we integrated out the off-diagonal modes, instead,

Z[D,N ] =

∫
dΛµ

∫
dVµ

∏
µ

∏
i<j

(λµi − λµj)e−S[VµΛµV
†
µ ]

 (4.10)

we see no divergence.

If the eigenvalues, which stand for space-time coordinates in this model, are well separated

from each other the 1-loop effective action leads to an attractive force. They will come closer

to each other until the higher loop order effects establish an equilibrium between attractive and
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4.2 The 3-Matrix-Model

repulsive forces. Following this argument the authors in [5] put an upper bound on the width

of the eigenvalue distribution, defined by

U = g
√
N
〈 1

N
Tr(X2

µ)
〉

=
〈 1

N
Tr(A2

µ)
〉

(4.11)

where we rescaled the matrices Xµ = 1
N1/4√gAµ to match the notation in that paper. Comparing

the definition of the model in that paper with the one we use here, we see that
√
g = 1/N1/4

and thus the prefactor cancels. This upper bound is thus given by
√
U ≤ 1 for D ≥ 3.

4.2 The 3-Matrix-Model

The case where we only have three matrices, D = 3 [26], is the smallest dimensional case that

is well defined. While we will extend our studies to D � 3 in the next sections, the D = 3

case is particularly interesting as in [43] it has been argued that the eigenvalues are uniformly

distributed within a solid ball. This can be deduced from the eigenvalue distribution for one of

the matrices, for example Z, as shown in figure 4.1, which has a parabolic distribution. The ball

distribution indicates that some topology might have emerged. Starting from equally distributed

eigenvalues within a solid ball in 3 dimensions, one finds a parabolic distribution by integrating

out two of the 3 dimensions,(∫ R

−R
dz

∫ R

−R
dy

∫ R

−R
dx

)
x2+y2+z2≤R2

=

∫ R

−R
dz

(∫ R

−R
dy

∫ R

−R
dx

)
x2+y2≤R2−z2

=

=

∫ R

−R
dz

(∫ √R2−z2

0
rdr

∫ 2π

0
dθ

)

=

∫ R

−R
dzπ(R2 − z2) =

∫ R

−R
dzρ̃(z). (4.12)

Normalizing
∫
ρ̃(z)dz = 1, gives

ρ(z) =
3

4R3
z

(R2
z − z2). (4.13)

From numerical results we find that Rz ∼ 2, as can be seen in figure 4.1. Taking the parabolic

distribution with radius Rz = 2 as an input we can compare the resulting upper bound of space-

time with the upper bound given in reference [5], which was
√
U ≤ 1 for the 3-dimensional case.

This leads to

U =
〈 1

N
Tr(X2

µ)
〉

=

(
3R2

z

5

)
. (4.14)
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where
√
g = 1/N1/4. Thus,

√
U =

√
12

5
∼ 1.55 (4.15)

which does not agree with the upper bound derived in [5]. This derivation only considers

one-loop corrections and is thus ignoring non-commutative effects.

Further, it was assumed in [43] that the eigenvalues distribute around the commuting saddle

point of the equations of motion,

[Xν , [Xµ, Xν ] = 0 where µ, ν = 1, 2, 3. (4.16)

From the following identity,

∫ ∏
µ

N∏
i,j=1

d (Xµ)ij
d

d (Xµ)ij

(
(Xµ)ij e

−S[X]
)

= 0, (4.17)

we can derive that the expected value of the action 1
N2 < S4 >= 3

4 , which fits to the numerical

observations. In one simulation run, for instance, we found 1
N2 < S4 >= 0.7520 ± 0.0003

for N = 80 matrices, which is very close to the expected result. This constraint thus shows

that the matrices cannot fully commute as the expectation value would be zero for this case.

Commutative matrices might nevertheless form a useful background topology around which

fluctuations induce non-commutative effects.

If the matrices would commute, they were independent from each other. This is clearly not

the case as can be seen from the eigenvalue distribution of the commutator i[X,Y ] in figure 4.2.

From the shape of the distribution we can learn that they are not noncommutative, random

matrices either as the distribution for this case is known and different from the one seen in

figure 4.2. We will discuss the case of noncommutative, random matrices later, in section 4.3.1.

We can do further checks by computing various correlation functions. Using that a distribu-

tion within a solid ball agrees excellently with numerics, we can compute theoretical estimates

of correlators, using the parabolic distribution as an input. For 1
N < Tr(X2Y 2) > this gives

1

N
< Tr(X2Y 2) >=

3

4πR3

∫
d3xx2y2 =

R4

35
. (4.18)

From the identity (4.17) we know that < 1
NTr(−1

4 [Xµ, Xν ]2) >= 3
4 in the large-N limit, where

µ, ν = 1, 2, 3. For one commutator we thus find,

1

N
< Tr(X2Y 2 −XYXY ) >=

1

4
. (4.19)
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Figure 4.1: The eigenvalue distribution

for matrix Z together with a fit of (4.13)

for R = 2.
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Figure 4.2: The eigenvalue distribution

for i[X,Y ]. The shape indicates that the

matrices are non-commuting.

as the difference between the two terms. If the matrices fluctuate around the commuting saddle,

1
N < Tr(X2Y 2) >∼ 1

N < Tr(XYXY ) > as one could reorder the matrices and the two terms

would cancel. In table 4.1 we summarized the results for various correlation functions obtained

numerically and analytically using analogues of eq. (4.18). We see from the first two lines that

1
N < Tr[X,Y ]2 >∼ 1

4 , which show that the constraint (4.17) is fulfilled. The only correlation

function that is in reasonable agreement with the theoretical estimation using a parabolic distri-

bution is 1
N < Tr

(
X2Y 2

)
>. This indicates that corrections around the commuting background

are substantial.

4.2.1 Comparison to the 2-matrix-model

As we concluded in the last section that the matrices of the 3-matrix model do not quite commute

in the ground state, we might try to compare the result with the 2-matrix model of chapter 3.

For that model, we computed the eigenvalue distribution of the individual matrices and found a

parabolic distribution. We also computed the spectrum of matrix C which,in the strong coupling

limit where the matrices are almost commuting, fitted excellently to function (3.36), while the

shape of the distribution in the weak, noncommuting, coupling regime was well approximated

by function (3.38).

For the d = 3 case the matrix C is given by

C = σµ ⊗Xµ where µ = 1, 2, 3. (4.20)

In order to compare it to the 2-dimensional case, we first integrate out one of the matrices and

thus obtain an effective 2-dimensional model. This leads to the following definition:

C̃ = σ1 ⊗X1 + σ2 ⊗X2. (4.21)
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Correlation Function analyt. Result numerical Result
1
N < Tr(X2Y 2) > 0.4571 0.5405± 0.0014

1
N < Tr(XYXY ) > 0.4571 0.2907± 0.0012
1
N < Tr(X2Y 2Z2) > 0.2032 0.3120± 0.0003
1
N < Tr(X4Y 2Z2) > 0.2216 0.4326± 0.0005
1
N < Tr(X2Y 4Z2) > 0.2216 0.4325± 0.0004
1
N < Tr(X4Y 4Z2) > 0.2046 0.5610± 0.0007
1
N < Tr(X6Y 2Z2) > 0.3410 0.8226± 0.0014
1
N < Tr(X6Y 4Z2) > 0.2728 1.0187± 0.0019
1
N < Tr(X6Y 6Z2) > 0.3209 1.7984± 0.0041
1
N < Tr(X8Y 2Z2) > 0.6365 1.8558± 0.0043
1
N < Tr(X8Y 4Z2) > 0.4493 2.2258± 0.0055
1
N < Tr(X8Y 6Z2) > 0.4730 3.8494± 0.0109
1
N < Tr(X8Y 8Z2) > 0.6306 8.1265± 0.0276

Table 4.1: Comparison of the numerical and analytical results for various correlation functions in

the d = 3 matrix model assuming R ∼ 2.

We further rescale the width of the distribution for the eigenvalue distribution of the individual

matrices as well as matrix C̃ and C in the 3-matrix model and the 2-dimensional case respectively

to 1. The result for the distribution of the eigenvalues of one matrix is given in the left graph of

figure 4.3. Here, g2 = 3.125 for the 2-dimensional model and we see that they agree nicely. Also

matrices C̃ and matrix C for the 2-matrix model, which are given in figure 4.3 on the right, agree

nicely. Here we used the distribution of matrix C for the weak coupling, noncommutative limit,

given in eq.(3.38). Changing the parameter g in the 2-matrix model leads to larger deviations to

the matrix C̃. The value g2 = 3.125 however is in the noncommutative regime, which underlines

the results from the last section that perturbations around the commuting background are

substantial.

The fluctuations in the distribution of C̄ in the D = 3 model seem to be finite matrix effects

as they become smaller when we increase the matrix size. The same effect is present in the 2-

dimensional case for matrices of size around N = 100 but cannot be seen anymore in figure 4.3

for N = 500 matrices.
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Figure 4.3: The plots compare the eigenvalue distribution of an individual matrix (left) in the

2-dimensional and the 3-d case as well as of matrix C̃, eq.(4.21) to matrix C of the 2-matrix model

(right). The coupling constant for the d = 2 model is g2 = 3.125. The good agreement between

these two distributions is another indication that perturbations around the commuting background

are substantial in the ground state of the 3MM. Still, it justifies the assumption of a commuting

background as the weak coupling limit would correspond to g2 < 1.

4.3 Results towards the large D limit: 1/D-expansion

While the matrices in the 3-dimensional case seem to be noncommuting and interacting, the

picture gradually changes as we move to higher dimensional models [26]. A powerful tool to

analyze the behavior of these models with increasing dimensions has been developed in ref. [5].

Here, the authors used a 1/D expansion of the bosonic part of the IKKT model to determine

analytic expressions for a set of observables. We will see that from this expansion one can also

obtain a result for the general behavior of the eigenvalue distributions of the matrices in the

large D limit. To derive this result we will go through the steps of the 1/D-expansion below.

We begin by expanding the matrices Xµ in terms of SU(N) generators ta

Xµ =
N2−1∑
a=1

Xa
µt
a, (4.22)

where Tr(tatb) = δab and

∑
a

(ta)ij(t
a)kl = δilδjk −

1

N
δijδkl. (4.23)

Upper and lower indices do not represent co- and contravariant indices but are rather used to

make the various indices better readable. Throughout this thesis, we only consider Euclidean

signature where no distinction between co- and contravariant indices is made. Using this identity
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we can rewrite the action as

S[X] = −N
4

Tr([Xµ, Xν ])2 = −N
4
λabcdTr

(
Xa
µX

b
µX

c
νX

d
ν

)
, (4.24)

where

λabcd =
1

2

{
Tr
(

[ta, tc][tb, td]
)

+ Tr
(

[tb, tc][ta, td]
)}
. (4.25)

Using a Hubbard-Stratonovich transform, we introduce an auxiliary field hab such that we can

bring the action into a quadratic form. Integrating out this auxiliary field will result in the

action S[X] as in (4.24). The action including the auxiliary field is given by

S[X,h] =
N

4
λabcdTr(habhcd −Xa

µX
b
µh

ab −Xa
νX

b
νh

ab) =
N

4
λabcdTr(habhcd − 2Xa

µX
b
µh

ab)

=
N

4
λabcdTr

(
habhcd

)
+

√
N

2
Tr
(
KabXa

µX
b
µ

)
(4.26)

where

Kab = −
√
Nλabcdhcd. (4.27)

Now we can integrate out the field Xa
µ to obtain an effective action in the auxiliary field hab.

Seff [h] =
N

4
λabcdTr

(
habhcd

)
+
D

2
Tr ln(Kab) (4.28)

By rescaling hab → h̃ab =
√

N
Dh

ab we can pull out the dimension D,

Seff [h] =
D

2

(
Tr ln(Kab) +

1

2
λabcdTr

(
h̃abh̃cd

))
. (4.29)

From the saddle point equation

δSeff

δh̃ab
= (K−1)cd

δKdc

δh̃ab
+ λabcdh̃cd = 0 (4.30)

we can calculate the critical values of h̃ab and Kab. As Kab = −
√
Dλabcdh̃cd we find

δKdc

δh̃ab
= −
√
Dλdcab (4.31)

which, when inserted into the saddle point equation, gives

λabcdh̃cd =
√
D(K−1)cdλdcab where λabcd = λdcab. (4.32)

Thus, (K−1)cd,? = 1√
D
h̃cd,?. Demanding a solution that keeps its SO(N2 − 1) symmetry, h̃ab ∝

δab. We will scale our solution by a factor of
√

2N to find the critical values to be

h̃ab,? =
1√
2N

δab, (4.33)

Kab,? =
√

2DNδab. (4.34)
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4.3 Results towards the large D limit: 1/D-expansion

Inserting the critical values into Seff [X,h] we find

S[X,h] =
N

4
λabcdTr

(
h̃ab,?h̃cd,?

)
+

√
N

2
Tr
(
Kab,?Xa

µX
b
µ

)
D�1∼ N

√
D

2
Tr(X2

µ), (4.35)

which is quadratic in the matrices Xµ. In the large D limit the Yang-Mills matrix model thus

reduces to a simple Gaussian model of D independent matrices. We thus expect a semicircle

distribution for each matrix in the large D limit with radius given by eq.(4.36). This explains

why the Gaussian expansion method used in [44, 45, 46] to calculate various observables for this

model fits very well for large D.

From the discussion about the Gaussian model in chapter 2 we know that the radius of the

distribution should be R2
wsc = 2/b, where b =

√
D/2 in the case here, which results in

R2
wsc = 2

√
2

D
. (4.36)

For one matrix this means that

1

N
〈TrX2〉 =

1√
2D

, (4.37)

while, summing over all dimensions, we obtain for the observable U

1

N
〈
∑
µ

TrX2
µ〉 =

√
D

2
. (4.38)

These two results correspond to the leading order terms for those expressions found in [5].

R2 =
〈 1

N
Tr(X2

µ)
〉

=

√
D

2

{(
1− 1

N2

)
+

1

D

(7

6
− 1

6N2

)
+O

( 1

D2

)}
R2

1 =
〈 1

N
Tr(X2

1 )
〉

=

√
1

2D

{(
1− 1

N2

)
+

1

D

(7

6
− 1

6N2

)
+ O(

1

D2
)
}

(4.39)

In the large D limit the width of the distribution for one matrix thus goes to zero as one can

see as well from our consideration concerning the Gaussian model.

4.3.1 Relation for Free Probability

Dan Voiculescu has introduced the concept of free random variables for non-commutative prob-

ability spaces and, as we will see below, for large D the probability space we are looking at in

the Yang-Mills matrix model is such a space. Good in-depth introductions to free probability

are for example [6, 47, 48]. A short summary of the basic notion of free random variables from a

physicist point of view can be found in [49]. We will follow this article to introduce the concepts

necessary to discuss the Yang-Mills model.
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For free, i.e. non-interacting, commuting random variables xi the probability measure fac-

torizes, µ(x1, . . . , xn) =
∏
i µ(xi), such that the expectation value of products of functions

factorizes,

< f1(x1) . . . fn(xn) > =

∫
µ(x1, . . . , xn)f1(x1) . . . fn(xn) =

=
∏
i

∫
µ(xi)fi(xi) =< f1(x1) > . . . < fn(xn) > . (4.40)

The expectation value is thus zero, if any of the individual expectation values is zero.

In the case of noncommuting random variables the probability measure factorizes as well

but expectation values of observables don’t anymore. One can define a weaker concept of a free

probability space. We say that a non-commuting probability space is free if the expectation

value of products of noncommuting variables Mi vanish if all the individual expectation values

vanish.

< f1(Mi1) . . . fn(Min) >= 0 if


< fi(Mik) >= 0 for all k = 1, . . . , n

and ik 6= ik+1 for k = 1, . . . , n− 1
(4.41)

We should note here that adjacent functions must be different random variables. We can use

the fact that in the N →∞ limit the following relation holds,

〈[fi(Mi1)− < fi(Mi1) >] . . . [fn(Min)− < fi(Min) >]〉 = 0, (4.42)

to decompose the expectation value of n functions in terms of a sum of expectation values of

(n − 1), (n − 2), . . . functions. By iteration one eventually gets an expression only in terms

of individual expectation values. While these expectation values are not symmetric under the

exchange of two random variables, they are cyclically symmetric.

By this definition independent matrix models are free random variables in the N →∞ limit.

tr[f1(Mi1) . . . fn(Min)] = lim
N→∞

1

N
〈Tr [f1(Mi1) . . . fn(Min)]〉. (4.43)

Assuming the Yang-Mills matrices are free for sufficiently large D,

1

N
〈Tr(i

∑
i 6=j

[Xµ, Xν ])2〉 =
2

N
(〈Tr(

∑
i 6=j

X2
µX

2
ν )〉 − 〈Tr(

∑
i 6=j

XµXνXµXν)〉), (4.44)

the second term should be equal to zero in the N,D →∞ limit as the trace of all the individual

matrices is zero. This can be shown, for example for [X1, X2]2, by applying the method above

twice:

tr[X1X2X1X2] = 2tr
[
X2

1X2

]
tr [X2] + 2tr [X1] tr

[
X1X

2
2

]
− tr

[
X2

1

]
(tr [X2])2−

− (tr [X1])2 tr
[
X2

2

]
− 4tr [X1] tr [X2] tr [X1X2] + 3 (tr [X1])2 (tr [X2])2 =

= (tr [X1])2 tr
[
X2

2

]
+ tr

[
X2

1

]
(tr [X2])2 − (tr [X1])2 (tr [X2])2 (4.45)
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4.4 Numerical results for the Yang-Mills model with D > 3

This is zero as each term includes the trace of an individual matrix. The first term in the

commutator squared term will be non-zero, as it only involves traces of matrices squared, which

are non-zero. We will see in our numerical studies that this is indeed the case.

4.4 Numerical results for the Yang-Mills model with D > 3

In the following sections we are going to study eigenvalue distributions and correlation functions

obtained using a Hybrid-Monte-Carlo algorithm (see Appendix C.2). We have already seen

that in the 3-dimensional case the individual matrices are non-commuting and interacting. For

this purpose we looked at the distribution of one matrix, Z, which had a parabolic distribution

and was in agreement with the assumption of equally distributed eigenvalues within a solid 3-

dimensional ball. We also checked the distribution of a commutator, i[X,Y ], which we claimed,

did not have the distribution of free random matrices.

The 3-dimensional case was the lowest dimensional case in which the model without a mass

term is stable. Studying the other extreme case, the large-D limit, we saw that the matrices

cease to interact when the dimensionality is large enough and behave as free random matrices.

Our numerical results will verify this result and show that there is a gradual change between

the 3-dimensional case and the large-D limit.

4.4.1 Spectrum of X1

We will first look at the eigenvalue distribution of one of the D matrices Xµ, say X1. As the

model is SO(D) invariant, the spectrum for all the individual matrices are the same. We also

know that in the 3-dimensional case we expect a parabolic distribution, while for large-D the

distribution should correspond to a semicircular distribution to fit the theoretical prediction of

free random matrices. A distribution that captures those properties is the following:

ρD(x, n,RD) =
(R2

D − x2)(n−1)/2

RnDB(n+1
2 , 1

2)
with

∫ RD

−RD
ρD(x, n,RD)dx = 1, (4.46)

where the beta-function B(x, y) is defined as

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. (4.47)

It is a distribution with 2 free parameters, n and RD, where µ = 1, . . . , D and is SO(D) invariant.

For the case n = 2 it gives the semicircle distribution

ρD(x, 2, RD) =
2(R2

D − x2)1/2

πR2
D

, (4.48)
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4. THE MASSLESS YANG-MILLS MATRIX MODEL FOR D > 2

while for 3 dimensions we get a parabolic distribution,

ρD(x, 3, RD) =
3(R2

D − x2)

4R3
D

. (4.49)

When we fit the function to the distribution obtained from our simulations, we use 60% of the

range around the center of the distribution. In this way we exclude finite matrix effects which

are most important near the edges and would lead to deviations from the true values for our

estimation of the free parameters n and RD.

In figures 4.4-4.9 below, we plotted the eigenvalue distribution of X1 for models with D = 3

to D = 48. We always include the distribution for various matrix sizes N into the figure and

fit function (4.46) to the distribution with the largest N . We can see that the fit agrees very

well with the numerical results. We find that for the D = 3 the best fit is given for an exponent

n ∼ 2.97 and radius RD ∼ 2.00, which is very close to the exponent for a parabolic distribution

of n = 3 and radius RD = 2, which has been used, for instance, in [43]. When we increase the

number of matrices the exponent slowly converges to n ∼ 2.0, corresponding to the expected

value for free random matrices. For D = 48 the exponent already fits almost perfectly to the

semicircle predictions. Even for the probably more interesting case of D = 10, which corresponds

to the number of dimensions in the IKKT model, the deviation to the parameter describing free

random matrices is already quite small with n ∼ 2.26.
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Figure 4.4: The eigenvalue distribution
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with the fit for RD = 2.004 ± 0.008 and

n = 2.97± 0.03
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Figure 4.5: The eigenvalue distribution

for matrix X1 of the 5MM together with

the fit for RD = 1.408 ± 0.005 and n =

2.58± 0.02

In addition to the individual distributions we also plotted the values for RD and n in fig-

ures 4.11 and 4.10 obtained from the individual fits to extrapolate toward the large-D limit

where we know the values of the parameters analytically. The points are obtained by fits to
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Figure 4.9: The eigenvalue distribution
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gether with the fit for RD = 0.653± 0.008
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models with D = 3 to D = 80. In figure 4.10 we plotted the exponent n for all fits ob-

tained from models of different dimensions against 1/D. From a linear fit we obtain n =

(1.979 ± 0.004) + (2.976 ± 0.026)/D. Thus, it results in a value at D = ∞ for the exponent

n ∼ 1.979 which is close, but does not include the expected value of n = 2 for the semicircle.

A reason might be that a linear function does not describe the behaviour of the exponent well

enough. Also, the fitting result obtained using Gnuplot for the individual exponents for a fixed

D is sensitive to the range we use to do the fit (60% in our case). By varying the range, the

error also varies and will most probably change the result and its error slightly. These observa-

tions can lead to a result from the derived numerical quantity which is slightly different to the

analytical expectation. These considerations should be taken into account for all polynomial fits
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4. THE MASSLESS YANG-MILLS MATRIX MODEL FOR D > 2

done in this thesis.

The width of the distribution, RD, has been plotted against 1/D in figure 4.11. From our

considerations in the 1/D-expansion, we expect that the radius should go to zero for D → ∞.

If we try to fit a polynomial function in 1/
√
D with a constant term to the data points we

find RD = 11.22±0.66
D1.5 − 8.49±0.68

D + 4.33±0.22√
D

+ (0.17± 0.02), which results in a non-zero radius in

the large-D limit. Around D = 15 the curve starts to descend steeper though, which suggests

that it could reach zero in the limit. Unfortunately simulations for D > 80 are computationally

not feasible to make further tests. Further, we only used the lowest orders in the perturbative

expansion for the fit. The constant term might therefore pick up on higher order corrections

which would explain the non-zero value. For the fit in figure 4.11 we set the constant term equal

to zero, which gives RD = 16.04±0.67
D1.5 − 13.69±0.52

D + 6.04±0.09√
D

.
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In table 4.2 we clearly see that the width of the distribution converges towards the result

from the 1/D-expansion. While the difference for D = 3 is still very large, we find excellent

convergence for large D, where the D = 80 model agrees with the theoretical prediction within

errors.

4.4.2 Spectrum of ı[X1, X2]

According to the theoretical analysis, the spectrum of the commutator should converge towards

the distribution of the commutator of two free random matrices which each have a semicircle

distribution. The distribution of two such matrices has been computed in reference [50] and is
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4.4 Numerical results for the Yang-Mills model with D > 3

D RD 1/D-Result

3 2.004± 0.008 1.278

4 1.599± 0.007 1.189

5 1.408± 0.005 1.125

6 1.285± 0.007 1.075

7 1.201± 0.007 1.034

8 1.140± 0.010 1.000

9 1.087± 0.006 0.971

10 1.044± 0.009 0.946

11 1.012± 0.006 0.923

12 0.981± 0.006 0.904

15 0.914± 0.006 0.855

24 0.790± 0.005 0.752

48 0.653± 0.006 0.639

80 0.567± 0.008 0.562

Table 4.2: The fitted values of the width of the EV distribution for X1 converge towards the

theoretical prediction in the large-D limit

given by the following function:

ρComm(x) =

√
3

2π|x|

(
h(x)−

3 x
2

L2 + 1

9h(x)

)
, |x| ≤ RComm = L

√
11 + 5

√
5

2
(4.50)

where

h(x) =

18 x
2

L2 + 1

27
+

√
x2

L2

1 + 11 x
2

L2 − x4

L4

27

1/3

. (4.51)

We have already stated in section 4.2 that the D = 3 case does not correspond to this shape but

for a larger number of matrices we can again see a clear convergence. In graphs 4.12-4.17 we

plotted the distributions for D = 3− 48. We did not include a fit to function (4.50) for D = 3, 5

as it is too far off. For the rest, we again used 60% of the range around the center for the fit as

for the spectrum of matrix X1 in section 4.4.1. As noted for matrix X1 as well, the fit is already

quite good for the case of D = 10, corresponding to the dimensionality of the IKKT model.

4.4.3 Spectrum of matrix C

While the distribution of matrix X1 and the commutator only captured information about

the spectrum of one or two of the matrices, we would like to be able to study the eigenvalue
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Figure 4.15: The eigenvalue distribution

for ı[X1, X2] of the 10-matrix-case and a fit
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distribution of all matrices in the same basis. This is not possible for X1 and i[X1, X2] as we

can only diagonalize one of the matrices at a time. A way to overcome this problem is to tensor

the individual matrices by the D-dimensional basis of γ-matrices.

C = γµ ⊗Xµ = γµXµ with µ = 1, . . . , D (4.52)

Here, the γµ’s are traceless matrices that fulfill a Clifford algebra

{γµ, γν} = 2δµν1Cl, (4.53)

and 1Cl stand for the identity in the Clifford Algebra. The trace of the identity tr1Cl = n,

where n is the size of the gamma matrices, which, for the irreducible representation, is defined

as n = 2D/2 for D even and n = 2(D−1)/2 for D odd, where D is the number of matrices in

the model. Further, matrix C is also rotational invariant under SO(D) and its size is given by

N = n ·N . For large D the size of this matrix thus becomes very large and is computationally

too expensive for D > 11.

We can also compute the square of matrix C

C2 =

(
1

2
[γµ, γν ] + δµν

)
XµXν =

1

2
[γµ, γν ]XµXν + 1ClX

2 (4.54)

which, when subtracting the second term, is a rotationally invariant measure of the noncom-

mutativity in the model. By taking the trace and dividing by the size of matrix C, N, we

obtain

1

N
Tr(C2) =

1

N
Tr(X2

µ), (4.55)

which expectation value corresponds to the definition of the extent of space-time, defined earlier

in section 4.11. After squaring matrix C once more

C4 =
1

4
[γµ, γν ][γρ, γσ]XµXνXρXσ + [γµ, γν ](XµXν)X2

η + 1Cl
(
X2
µ

)2
, (4.56)

we can divide by the size of C and take the trace of this quantity to obtain the observable Tr(C4)

1

N
Tr(C4) =

1

2N
Tr[Xµ, Xν ]2 +

1

N
Tr
(
X2
µ

)2
(4.57)

which corresponds to the action of the Yang-Mills model plus an additional term. We have

computed the spectrum of this matrix for the 2-dimensional case in section 3.2.1.2, where the

γ-matrices reduce to the Pauli-matrices.
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Below we will show the results from our numerical simulations for the distribution of this

matrix. Knowing that matrix C is rotational invariant and considering the shape of the distri-

bution, we used the density function of the one-cut solution of the scalar φ4-model [36, 51] for

a fit. It is given by

ρC,D(x) =
8(A+ x2)(R2

C,D − x2)1/2

πR2
C,D(4A2 +R2

C,D)
, (4.58)

which also corresponds to the distribution used for the 2-matrix-model in the intermediate

coupling regime (see eq.(3.38). It has two free parameters, RC,D, which corresponds to the

width of the distribution, and A, which describes the behavior around zero. The fit is done

using again 60% of the range around zero, as in the last sections.

From figures 4.18-4.21, where we plotted the eigenvalue distribution of matrix C for D =

3, . . . , 11, we can see that the minimum of its spectrum at zero gets lifted when we increase

the number of matrices D. This is captured by the parameter A. While we find a value of

A = 1.266 ± 0.006 for D = 3 its value increases and for D = 11 the best fit is obtained by

A = 12.93± 0.07. It appears that the minimum will eventually disappear and converge towards

a semicircular distribution. This would be expected as we know that the individual matrices

Xµ converge towards free random matrices in this limit, having a semicircular distribution, as

well as from extrapolating the behavior of function (4.58) for increasing values of the parameter

A. Unfortunately we cannot numerically test this as the size of C grows too fast to make a

simulation for D > 11 feasible.
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Figure 4.18: The eigenvalue distribution

for matrix C of the 3-matrix-case together

with a fit for A = 1.266±0.006 and RC,D =

2.488± 0.001
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Figure 4.19: The eigenvalue distribution

for matrix C of the 5-matrix-case together

with a fit for A = 3.231±0.006 and RC,D =

2.5403± 0.0006
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Figure 4.20: The eigenvalue distribution

for matrix C of the 10-matrix-case together

with a fit for A = 10.99± 0.02 and RC,D =

2.9590± 0.0005
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Figure 4.21: The eigenvalue distribution

for matrix C of the 11-matrix-case together

with a fit for A = 12.93± 0.07 and RC,D =

3.030± 0.001

4.4.4 Correlation functions and their behavior towards large D

In the last sections we did a careful study of various eigenvalue distributions for the Yang-Mills

model with matrices from D = 3, . . . , 48. We could confirm their transition to non-interacting

noncommutative random matrices in all cases. To complete our study on their large D behavior

we will now look at moments and correlation functions of this model, adding to the work in [5].

We start by comparing our numerical results to the analytical expression of R2 =< 1
NTrX2

µ >

in equation (4.39). In figure 4.22 and 4.23 we can see the plot of this quantity. In the right

graph we have scaled it with the inverse factor in front of the brackets in eq.(4.39),
√

2/D, and it

should thus converge to 1 in the large D limit. This is indeed the case and we note additionally

that the minimum at D = 5, which can be seen in the left figure, vanishes. As already noted

in [5] we can conclude from this behavior that the local minimum at D = 5 is only due to the

overall factor in eq. (4.39) and does not indicate a phase transition. The functions

f1(D) =

√
D

2

(
1 +

7

6D
+

a

D2
+

b

D3

)
(4.59)

f2(D) =

(
1 +

7

6D
+

a

D2
+

b

D3

)
(4.60)

have been used to fit the curves in the figures with ’a’ and ’b’ as fitting parameters. The first

two terms correspond to the analytic expression of eq.(4.39).

In addition we also plot R2
1 =< TrX2

1/N > in figure 4.24, which is also given in eq. (4.39),

including a fit for ’a’ and ’b’ using function

f3(D) =

√
1

2D

(
1 +

7

6D
+

a

D2
+

b

D3

)
. (4.61)
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< TrX2
µ/N > is plotted against 1/D

for D = 3, . . . , 80 and has been fitted

using eq.(4.59) with a = 0.70 ± 0.21 and

b = 13.27± 0.74.
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D
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µ/N > is plot-

ted against 1/D for D = 3, . . . , 80 and

has been fitted using eq.(4.60) with a =

0.43± 0.22 and b = 14.21± 0.73.

For large D we see that this observable should converge to zero. The curve should correspond

to the width of one of the matrices that we already plotted in figure 4.11 and the curves do

indeed look similar. To compare with the fit to the width of the radius of X1 we also use a

polynomial in 1/D without the analytical input to fit the curve in figure 4.24. This results in

R2
1 = (0.054±0.002)+(2.55±0.5)/D−(7.09±0.36)/D2 +(18.59±0.72)/D3. While the constant

term for the fit to the width RD in section 4.4.1 was slightly larger than zero, here we obtain a

value slightly less than zero. While the errors for both estimations exclude zero it seems quite

possible that we would see a convergence to zero when adding more points for larger dimensions.

As discussed in section 4.4.1 already, the fit only includes the lowest orders in the perturbative

expansion. Higher order corrections which are not included can mimic a constant term and

might explain the non-zero value found when fitting function R2
1 to the numerical results.

In figure 4.25 we plot the lowest correlation functions consisting of only two of the matrices

in the model, X and Y . While the two functions that include matrices of odd order are zero

throughout the two correlators < Tr
(
X2Y 2

)
/N > and < Tr (XYXY ) /N > only converge to

zero in the largeD limit. From the relation to free probability (see section 4.3.1) we know that the

latter of those two correlators should converge much faster than the first one as free probability

is forcing it to zero. This is clearly the case in figure 4.25. From D > 10 < Tr (XYXY ) /N >

is almost zero while < Tr
(
X2Y 2

)
/N > is near zero only for the largest dimension D = 80.
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4.5 Conclusions

In chapters 3 and 4 we performed an extensive numerical study on two simple matrix models

of Yang-Mills type. We started our discussion with the 2-matrix model where we need to add a

mass term for the matrices X and Y in order to stabilize it. This model has been introduced

in [8] as a model for quantized membranes and is one of the few multi-matrix models that is

solvable analytically for certain observables in the large-N limit. As the authors of [21] noted,

there exists a related 3-matrix model that reduces to the 2-dimensional case when integrating

out one of the matrices.

In our study we checked the previous analytical results for the 1-dimensional eigenvalue

distribution, which suggested that the matrices should mutually commute in the strong coupling

limit, and found perfect agreement. We also looked at various 2-dimensional distributions and

found excellent agreement with this assumption for g → ∞. However, while the results using

numerical integration given in [21] fit perfectly to the 1-dimensional distribution to relatively

small values of the coupling constant g, this is not the case for the 2-dimensional distribution,

as shown in figure 3.12. It would be interesting to get a better understanding of this difference.

In our simulations of this model we used the effective action for the eigenvalues of one of the

matrices and reconstructed the second matrix from them, as they are Gaussian distributed. It

would be worthwhile to think if this procedure can be extended to the 3-dimensional case. This

would not only allow an even better comparison of the analytical results of these multi-matrix

model but, if possible, would also be one of the few cases where numerical information about a

model with complex action could be obtained. Normally, this is hard due to the sign-problem

related to this type of models.

In this model we found that the eigenvalue distribution of one of the individual matrices

changes shape from a semicircular distribution in the weak coupling regime to a parabolic

distribution in the strong coupling limit. A similar behaviour was found in the study of higher-

dimensional Yang-Mills models. Here, we do not need a mass term as for D ≥ 3 the model

is already stable without it. In the large-D limit we could show that the matrices behave as

free random matrices. This has been seen in various forms from eigenvalue distributions to

the correlators involved in the commutator. For the other extreme, D = 3, the spectrum of

the individual matrices exhibited a parabolic distribution. It was noted in [43] that this is in

accordance with a equal distribution of the eigenvalues within a 3-dimensional solid ball and thus

it was assumed that the matrices distribute around a commuting background. From numerical

results on this model we could show that fluctuations around this background have a large effect
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on the eigenvalue distribution of, e.g, the commutator and correlation functions as well. Non-

commutative effects, which must be present due to the constraint (4.17), are clearly visible. To

be able to describe this behaviour better would be another valuable continuation of this project.

While we focused on the pure bosonic model in this thesis, an obvious next step would be

to include fermions into this model. When we add fermions to the pure Yang-Mills model we

obtain the IKKT model [7, 39, 40] which is a possible non-perturbative formulation of IIB string

theory. There has already been substantial analytical as well as numerical (see for example [52,

53, 54, 55, 56]) work done on this model but the importance of this model in string theory would

make a more detailed study well worth pursuing.
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Chapter 5

Matrix Models with fuzzy solutions

To this point we focused on studying Yang-Mills type matrix models in various dimensions and

discussed the phenomenon of emergent topology in these models. We did this by relating the

different eigenvalue distributions to the behavior of the individual eigenvalues of the matrices

in the model. We saw that, while for small dimensions, the eigenvalues seemed to (almost)

commute and the distributions of the individual matrices seem to broadly agree with a joint

distribution within a solid ball, this behavior changes for large D. Here, the matrices exhibit

a distribution that corresponds to eigenvalues that behave as free random variables. This was

captured by a transformation from a parabolic eigenvalue distribution of the individual matrices

towards a semicircular distribution as D increased. These pure Yang-Mills models are of interest

as they, for example, form the bosonic part of the IKKT matrix model [7].

We can now try to add more structure to the Yang-Mills matrix models by adding a Myers

term to the action,

S[α,N,X, p] = NTr

− p∑
µ,ν=1

1

4
[Xµ, Xν ]2 +

iα

3

p∑
µ,ν,ρ=1

fµνρXµ[Xν , Xρ]

 , (5.1)

where p is the dimension of the model, corresponding to the number of matrices. The size of

the matrices is given by N , while α is a coupling constant and fµνρ is the structure constant of

the Lie group SU(d), with D = d2 − 1. Adding such a term increases the number of possible

ground states of the system by allowing it to undergo a phase transition towards fuzzy spaces.

Coordinates in fuzzy spaces do not commute and thus are an example of noncommutative

geometry [13, 57, 58], the study of which was initiated by Snyder [59, 60] in the 1940’s. Fuzzy

spaces also appear, for example, as a low-energy limit of string theory in an external magnetic

field [61] or in the BMN model [14], which is an extension of the dimensionally reduced model of

M-Theory [62], the BFSS model [10]. They also appear as configurations of D0-branes in string
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theory [11, 63]. There have been extensive studies of noncommutative geometry in physics

independently of string theory as well, as it has been noted that an uncertainty relation of

space-time coordinates can be derived from considerations in quantum gravity [1]. Certain

noncommutative spaces can also act as a natural cutoff for field theories on small length scales,

as proposed in [64], a fact that we will discuss more for fuzzy spaces in the next sections. More

recently, matrix models have been considered in relation to emergent gravity as well [65, 66].

Models with a Yang-Mills and Myers term have been extensively studied analytically and

numerically in the literature already [32, 33, 43, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76]. It has been

found in [43] that this simple model for three matrices exhibits a phase transition between a high-

temperature phase, where the Yang-Mills term dominates the behavior and the eigenvalues of

the matrices distribute randomly, and a low-temperature phase with a fuzzy sphere as its ground

state. When the system is cooled down, geometry thus suddenly emerges. Here, we can actually

speak of an emergent geometry and not only a topology that emerges as Connes’ description of

such spaces in terms of spectral triple define a differential calculus. A different model that has

been found to exhibit such a transition as well is the classical Dimer model [77]. The behavior at

the critical coupling looks like a first order phase transition when approaching it from the high-

temperature side but has a diverging specific heat when moving towards the critical point from

the low-temperature side. We will study this model in more detail in section 6. Phase transitions

on fuzzy spheres for a scalar field have also been studied, for example in [51, 78, 79, 80].

Which fuzzy spaces are possible depends on the structure constant in the Myers term and

thus on the dimension of the model. We will call this transition from the Yang-Mills ground

state to the fuzzy space emergence of geometry. While simulations have been carried out for the

D = 3 (see i.e. [32]) and the D = 8 [73] case, the properties of the transition itself to date have

only been studied for the D = 3 case that allows for a fuzzy S2 solution. Finding other models

with a similar behavior but different fuzzy spaces is thus an interesting objective for further

studies.

In the next sections we will describe a couple of examples of these type of models and study

their behavior analytically and numerically. Before we start with the simplest example of a

3-matrix model in section 6, which has a fuzzy sphere solution, we will introduce fuzzy spaces

in section 5.1, beginning with the fuzzy sphere. Then we will move on to the richer 8-matrix

model that allows not only for a fuzzy sphere but also for a fuzzy CP 2 space as a solution. We

will treat two versions of this model, one where the fuzzy sphere still forms the ground state

and one where, by adding an additional term, the 2-dimensional complex projective plane will

be the preferred state in a certain region in parameter space.
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5.1 Fuzzy Spaces

5.1 Fuzzy Spaces

Fuzzy spaces are defined within the framework of noncommutative geometry [13]. Connes ob-

served that, for spinor functions, the differential calculus on Riemannian manifolds can be

constructed from the notion of spectral triples (A,H,D), where A is an algebra of smooth and

bounded functions on a manifold M, D the Dirac operator on M, encoding information about

the metric and H is the Hilbert space on which D acts. Froehlich and Gawedzki [81] used the

Laplace operator ∆ instead of the Dirac operator D in the spectral triple (A,H,∆) ∗ to describe

non-spinorial functions. Fuzzy spaces are then given by a sequence of spectral triples,

(MatN ,HN ,∆N ), (5.2)

where MatN is a matrix algebra of (N ×N)-matrices acting on the Hilbert space HN and ∆N

is the matrix equivalent of the Laplacian. To recover the classical solution we need to take the

N →∞ limit in a particular way.

Another way to look at the construction of fuzzy spaces is by realizing that in many cases

they emerge from quantization of a classical phase space. Given a symplectic manifold we

can quantize it and thus replace the algebra of smooth and bounded functions by operators.

The inner product of this algebra is then given by 〈A,B〉 = 1
NTr

(
A†B

)
. This quantization

introduces an uncertainty relation between the different position operators and the notion of a

point is lost. The space is non-commutative. If phase space is a coadjoint orbit of a compact lie

group this leads to a UV-finite theory with only finitely many degrees of freedom. This property

is fulfilled for fuzzy spaces and one reason why they have been studied extensively since the first

formulation of the fuzzy sphere S2 by Madore [12, 82] as this allows to formulate regularized

field theories [64] on these manifolds. Another exciting property is that, contrary to lattice field

theories, field theories on fuzzy spaces preserve the symmetries of the underlying space.

Good reviews of fuzzy physics are for example [83, 84], while more detailed introductions to

non-commutative geometry and physics are given in [57, 58, 85, 86].

5.1.1 The fuzzy sphere

Following the above steps for the simplest case of a fuzzy space, the fuzzy sphere [12, 87, 88],

we start with a sphere S2, embedded in R3, by the constraint

3∑
µ=1

n2
µ = 1. (5.3)

∗We loosely refer to this as a spectral triple, even though it doesn’t satisfy Connes’ axioms for spectral triples.
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The SO(3) angular momentum generators Lµ = −iεµνρnν∂ρ provide the general derivations on

the sphere and the Laplacian is thus given by L2 = LµLµ, where the sum over µ is implicit. A

general function on the sphere can be expanded in terms of spherical harmonics Ylm as follows:

f(~n) =

∞∑
l=0

flmYlm, (5.4)

where m = −l, . . . , l. Such a function is an element of the space of smooth, bounded functions

C∞(S2) and the spectral triple related to it is given by
(
C∞(S2),H,L

)
.

The fuzzy sphere S2
F can be obtained by noting that the sphere is a co-adjoint orbit of

SU(2), SU(2)/U(1), and thus a symplectic manifold which we can quantize using canonical

quantization. This deforms the algebra of functions C∞(S2) to the algebra of (N ×N)-matrices

MatN . Observables on S2
F are related to linear operators on MatN and of particular interest

are the spin N−1
2 = n

2 irreducible representations of SU(2) in which the generators satisfy

[Lµ, Lν ] = iεµνρLρ with
∑
µ

L2
µ =

N2 − 1

4
=
n

2

(n
2

+ 1
)
. (5.5)

Spherical harmonics, which form a basis on the sphere in the continuous case, are transformed

to the discrete polarization tensors Tlm,

f =
n+1=N∑
l=0

f̃lmTlm. (5.6)

The angular momentum operators defined in eq. (5.5) act on this basis as

[Lµ, [Lµ, Tlm]] = l(l + 1)Tlm

[L3, Tlm] = mTlm

[L±, Tlm] =
√

(l ∓m)(l ±m+ 1)Tlm (5.7)

where L± = L1 ± iL2. The coordinate operators are proportional to these angular momen-

tum operators, which correspond to the polarization tensors T1m, and are subject to a similar

constraint as in the classical case for a unit sphere:

3∑
µ

X2
µ = 1 and [Xµ, Xν ] = i

√
4

N2 − 1
εµνρXρ where Xµ =

√
4

N2 − 1
Lµ. (5.8)

Derivatives in the fuzzy case are given by the adjoint representation of the angular momentum

operators, [Lµ, .], and the Laplacian is

∆N = [Lµ, [Lµ, .]] . (5.9)
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We can see that this leads to a sequence of representations for the SU(2) algebra of n
2 ⊗

n
2 =

0⊕ 1⊕ 2 . . .⊕ n. For a fixed matrix size N = n+ 1 we therefore have a cutoff spectrum of the

Laplacian and only a finite number of possible states on the fuzzy sphere. The classical sphere

can be obtained in the limit of n → ∞ while keeping the radius equal to one, which naturally

corresponds to the limit where we recover the algebra of smooth functions C∞(S2) and thus our

spectral triple for the continuous case.

5.1.2 The fuzzy complex projective plane CP 2
F

While we will discover the fuzzy sphere S2
F , introduced in the previous section, already in the

3-dimensional Yang-Mills-Myers matrix model we will consider another fuzzy space, namely the

fuzzy complex projective plane CP 2
F , once we turn to the 8-matrix-model. This manifold is

of particular interest as it provides the possibility for a feasible description of a 4-dimensional

gauge theory on a fuzzy space which is also amenable to simulations.

Classically, CP 2 can be described as follows. Suppose we are given a 3-dimensional complex

space, C3, where we remove the origin C3/{0}. As coordinates z on this space are thus never

all zero we can normalize them, ξ = z
|z| , such that these coordinates describe a 5-dimensional

sphere S5 embedded in C3,

S5 = {ξ = (ξ1, ξ2, ξ3), ξ ∈ C,
∑
|ξi|2 = 1}, (5.10)

where ξ are the complex coordinates on the sphere with unit radius. We can define a function

X(ξ) = ξ†Tξ, where T = (T1, T2, . . . , T8) are the generators of SU(3), Tµ = λµ/2, with λµ

standing for the Gell-Mann matrices, such that it is invariant under U(1) actions, ξ → eiθξ.

This allows us to define CP 2 as the quotient of the sphere over U(1),

CP 2 = S5/U(1), (5.11)

which is the Hopf fibration U(1)→ S5 → CP 2. Points on CP 2 are given by the function X(ξ).

In this way we arrive at the complex projective plane in the most intuitive way as we identify

all points on S5 and points equivalent to it that lie on a ray in the complex space with each

other. This construction generalizes to higher complex projective spaces, CP d, by substituting

C3 → Cd+1, the 5-sphere by a (2d+1)-dimensional sphere, and the Gell-Mann matrices of SU(3)

with the SU(d+ 1) dimensional equivalent.

There exists another description using coadjoint orbits. For the present case, where we will

be using semi-simple lie algebras, it suffices to consider adjoint orbits as they are isomorphic to
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the coadjoint ones. We can consider such an adjoint orbit of a lie group G with T ∈ g, where g

is the corresponding lie algebra as

O(T ) = {gTg−1, g ∈ G} ⊂ g. (5.12)

Thus, g ∈ G acts transitively on this orbit and we can view O(T ) as a homogeneous space,

O(T ) = G/KT , (5.13)

where KT = {g ∈ G : [g, T ] = 0} is the stabilizer of T. We can use this property to define CP 2 =

SU(3)/U(2). The generators of SU(3) give us therefore an over-complete set of coordinates of

R8 in which the complex projective plane is embedded. It is convenient to rewrite elements of

CP 2 in terms of those generators as

X = xiTi = gT8g
−1 (5.14)

In order to make this construction clearer we can think of the sphere S5, choosing the south

pole as the origin ∗. For this point the stabilizer would be SU(2). We can see this when looking at

the Gell-Mann matrices, defined in Appendix A. Assuming that we rotate the coordinate system

in such a way that the south pole lies along the 8th axis in the embedding space R8, the Gell-

Mann matrix T8 would point in its direction. The subgroup of SU(3) that leaves this matrix

invariant is given by the generators T1, T2, T3, which define the SU(2) subgroup. Note, that

SU(3)/SU(2) is exactly the 5-sphere. Additionally, T8 is invariant under U(1) transformations

and this brings us back to our first definition of the complex projective plane. Further we see

that while the generators T1, T2, T3 and T8 form the rotation subgroup on CP 2 at the origin,

the remaining generators T4, T5, T6 and T7 correspond to translations of the origin.

To obtain the fuzzy version CP 2
F we will consider the construction using the Hopf fibration.

Knowing that CP 2 is a coadjoint orbit we can quantize it by replacing the coordinates on C3

by annihilation and creation operators, zi → ai and z?i → a†i . We define a number operator as

N̂ = a†iai, such that coordinates on the sphere are given by ξ → ai and thus a point on CP 2 is

given by

Xµ(ξ)→ X̂µ = a†µλµaµ. (5.15)

We will use a hat to write operators in a general representation in terms of ladder operators

while we will suppress the hat once we pick out a particular representation. As X̂µ commutes

∗We chose the south pole as it fits with the standard definition of the SU(3) Gell-Mann matrices, defined in

Appendix A. To obtain the north pole we should consider the Gell-Mann matrices where the degenerate eigenvalues

of T8 form the bottom 2 × 2 blockmatrix.
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with the number operator, [X̂µ, N̂ ] = 0, we can restrict it to a subspace Hn of Fock space, which

is finite dimensional, and can thus substitute the space of continuous functions C∞(CP 2) by the

algebra of (N ×N) matrices, just as in the fuzzy sphere case. Here, the dimension N is given

by Weyl’s dimension formula,

dim
(
T (n,0)

)
=

(n+ 1)(n+ 2)

2
, (5.16)

and T (n,0) are the generators of the fundamental, totally symmetric, representation of SU(3)

where n is the Dynkin index.

Using the Schwinger construction we can define the angular momentum operators as

Ĵµ = a†Tµa, (5.17)

such that their commutation relation and Casimir operators in a particular representation n are

given by

[Jµ, Jν ] = ifµνρJρ with C2 =
1

3
n(n+ 3) and C3 =

1

6
(2n+ 3)C2. (5.18)

If we want CP 2 to have a unit “radius”, we can write functions on it in terms of the operators

Jµ, normalized appropriately, which gives

8∑
µ=1

X2
µ = 1 and [Xµ, Xν ] = i

√
3

n(n+ 3)
fµνρXρ and Xµ =

√
3

n(n+ 3)
Jµ.

(5.19)

As in the fuzzy sphere case, derivations on CP 2
F are given by the commutator [Jµ, .]. Again, the

Laplacian defined in this manner has dimension n
2 ⊗

n
2 = 0⊕ 1⊕ 2 . . .⊕n which shows the finite

nature of that space. Altogether this guarantees that we obtain the classical CP 2 when taking

n→∞.

Another way to obtain CP 2
F is given in [89], while a nice construction using polarization

tensors is given in [90]. In [91] the authors construct a gauge theory on that space and discuss

possible solutions. In section 8 we will see that we obtain a similar term as the authors of [91]

to make sure that the matrix model in consideration has a ground state given by fuzzy CP 2
F .

For further aspects of CP 2
F see, for example, in [92, 93, 94, 95].

5.2 Derivation of the effective action for SU(d) and the critical

behavior

After introducing the concept of fuzzy spaces, we will turn to the class of models which action is

given by eq.(5.1) and study their perturbative corrections. While perturbative corrections have
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5. MATRIX MODELS WITH FUZZY SOLUTIONS

been calculated by various authors for either of the symmetry groups we are studying [43, 69, 73],

we will derive the effective potential for a general SU(d) symmetry and derive the critical values

for the two parameters α and φ, introduced in eq.(5.29), below.

5.2.1 The effective action

We start from the partition function

Z[α,N ] =

∫
[dX]e−S[α,p,N,X] (5.20)

where the measure is defined as

[dX] =

p∏
µ=1

N∏
i=1

d[(Xµ)ii]
∏
i<j

d[Re((Xµ)ij)]d[Im((Xµ)ij)]δ(
N∑
i=1

(Xµ)ii) with i, j = 1, . . . , N.

(5.21)

where p stands for the number of matrices and the action S[α, p,N,X] is given by

S[α, p,N,X] = NTr

(
−

p∑
µ,ν

1

4
[Xµ, Xν ]2 +

iα

3

p∑
µ,ν,ρ

fµνρXµ[Xν , Xρ]

)
= NTr (S[α,N,X]) .

(5.22)

From the equations of motion,

[Xν ,−[Xσ, Xν ] + iαfσνρXρ] = 0, (5.23)

we see that the generators of SU(d), Jµ where d2−1 = D and p ≤ D, which are compatible with

the structure constant fµνρ and are scaled with the coupling constant α, are solutions. This

allows us to rewrite the action by rescaling the matrices as Dµ = Xµ/α such that we can pull

out the coupling constant in front of the trace,

S[α, p,N,D] = α4NTr

(
−

p∑
µ,ν

1

4
[Dµ, Dν ]2 +

i

3

p∑
µ,ν,ρ

fµνρDµ[Dν , Dρ]

)
=

=
Nα̌4

SU(d)

Cadj

2 C2(J)
Tr

(
−

p∑
µ,ν

1

4
[Dµ, Dν ]2 +

i

3

p∑
µ,ν,ρ

fµνρDµ[Dν , Dρ]

)
. (5.24)

This motivates the interpretation of α̌4
SU(d) = β as an inverse temperature in this model and shows

that α = 0 is the infinite temperature limit of the model. The definition of α̌SU(d) = αCadj

2 C2(J)

will be motivated at the end of this section. In the following sections we will suppress the sum

in the action S for simplicity.
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5.2 Derivation of the effective action for SU(d) and the critical behavior

We then introduce an external current Cµ such that the generating functional is given by

eW [C] =

∫
[dX]e−NTr(S+CX). (5.25)

We adjust this current such that the first derivative of the generating functional is δW [C]
δCµ

=<

Xµ >= Hµ, where Hµ = αφJµ. Here, φ is a scaling factor. The expectation value of the fields

Xµ is thus proportional to the SU(d) generators which we want to analyze.

1

N2

δW [C]

δCµ
=

1

N
〈Xµ〉 = αφJµ. (5.26)

A Legendre transform of the generating functional defines the effective action Γ[H] given by

Γ[H] = W [C]− Tr (CH) (5.27)

and its first derivative is

δΓ(H)

δHµ
= −Cµ. (5.28)

We can now expand around this classical solution by setting

Xa = αφJa +Aa = Ha +Aa, (5.29)

where the Ja’s are SU(d) generators and a, b, c = 1, . . . , D = d2− 1. If the number of generators

D is smaller than the total number of matrices p, we will start with a configuration where the

generators will be put into the first D = d2−1 matrices while the other ones are set to zero. By

condition (5.28) the terms linear in the fluctuations Aa will vanish. The definition Ha = αφJa

will induce a constant term exp
(
−N2−1

4 ln(α4)
)

in the effective action from the change in the

measure. We therefore obtain

Γ[α,N,H,A] = NTr [S(Ha)] +
N

2
Tr
(
Aa

(
δab[Hc, [Hc, .]]− [Ha, [Hb, .]] + 4[Ha, Hb]−

−4iαfabcHc

)
Ab − 2[Ha, Ab][Aa, Ab] + [Aa, Ab]Ac − [Aa, Aa]

2
)
. (5.30)

In the following calculations we will only take into account fluctuations up to second order. To

be able to integrate over the gauge fields in the functional integral it is convenient to gauge

fix them. In a nonperturbative setting, gauge fixing would not be necessary in this case as the

volume of the fuzzy spaces is finite and we would not encounter any divergences. Here, it allows

us to set the gauge field in the p’th direction to zero by using the axial gauge

npAp = 0. (5.31)
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This means we can diagonalize Hp

Hp → U †0ΛpU0 (5.32)

introducing a Vandermonde-determinant

| δX
δg
|= αφ

∏
i 6=j

(Λi − Λj) (5.33)

which we will exponentiate and write as part of the action. As the one-loop corrections are just

quadratic in the gauge fields we can integrate them out, neglecting higher-loop corrections and

obtain the effective action

Seff [α, p, φ,N ] =
p

4
(N2 − 1) ln(α4) + S[α, φ]− (N2 − 1) ln(αφ) + (p− 1)(N2 − 1) ln(αφ)+

+
1

2
H(J, 1/φ) + (higher loop orders). (5.34)

The term quadratic in the generators Jµ, 1
2H(J, 1/φ), includes no contribution proportional to

N2 and will thus be suppressed in the large-N limit. Thus, we find the 1-loop effective action

for N →∞ to be

Seff [α, p, φ,N ] =
p

4
N2 ln(α4) +N2α4Cadj

2 C2(J)
(φ4

4
− φ3

3

)
+

+ (p− 2)N2 ln(φ) + (p− 2)N2 ln(α) (5.35)

Dividing by N2 and taking the logarithm we find an expression for the effective potential,

Veff [α, p, φ,N ] =
p

4
ln(α4) + α4Cadj

2 C2(J)
(φ4

4
− φ3

3

)
+ (p− 2) ln(φ) + (p− 2) ln(α). (5.36)

We will introduce the general rescaled coupling constant for SU(d), α̌4
SU(d) = α4Cadj

2 C2(J).

Using the definitions given in eq. (7.19) and the first derivative in (5.39) we can rewrite the

effective action and derive an expression for the specific heat Cv.

1

N2
< S >= α̌4

SU(d)

dVeff
dα̌4

SU(d)

=
p

4
−
α̌4
SU(d)

12
φ3 (5.37)

Cv =
< S >

N2
− α̌4

SU(d)

d

dα̌4
SU(d)

(< S >

N2

)
=
p

4
+
α̌5
SU(d)

16
φ2 dφ

dα̌SU(d)

(5.38)

This derivation of the effective action around the fuzzy configuration completely ignores the

contribution of the states in the matrix phase to the partition function Z[α, p,N ]. We will see

that this is an excellent approximation away from the critical coupling α̌SU(d),? but, at least

for small matrices, close to the transition there will be a noticeable effect coming from the

configurations in the matrix phase. We will discuss these issues further in section 6.2.1 for the

case of the 3-matrix model.
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5.2.2 The behaviour of Veff and Cv

From solution (5.36) we can compute the critical values for α and φ. First, from the derivatives

of Veff with respect to φ we determine its critical value φ?

Veff =α̌4
SU(d)

(φ4

4
− φ3

3

)
+ (p− 2) ln(φ) (5.39)

φ
∂Veff
∂φ

∣∣∣
?

=α̌4
SU(d)

(
φ4 − φ3

)∣∣∣
?

+ p− 2 = 0 (5.40)

φ2∂
2Veff
∂φ2

∣∣∣
?

=α̌4
SU(d)

(
3φ4 − 2φ3

)∣∣∣
?
− p− 2 = 0 (5.41)

add→ 4φ4
? − 3φ3

? = 0 → φ? =
3

4
(5.42)

For the critical coupling α̌SU(d),? we reinsert φ? into φ
∂Veff
∂φ

∣∣∣
?

and find

α̌4
SU(d),? = 4(p− 2)

(4

3

)3
. (5.43)

For the two possible symmetry groups of the models we will consider, SU(2) and SU(3), we

use

C
SU(3)
2 =

1

3
n(n+ 3)

n→∞∼ n2

3
(5.44)

C
SU(2)
2 =

1

4
n(n+ 2)

n→∞∼ n2

4
(5.45)

N = dimV SU(2)(n) = (n+ 1)
n→∞∼ n (5.46)

N = dimV SU(3)(n, 0) =
(n+ 1)(n+ 2)

2

n→∞∼ n2

2
(5.47)

to rescale the coupling constant. For the p = 3 dimensional case, discussed in section 6, as

α̊4 = α4N2 for S2. (5.48)

Eq. (5.48) thus leads to

α̊?,S2 =

[(8

3

)3
]1/4

' 2.087, (5.49)

when we use the rescaled coupling constant α̊. We can thus write the effective potential as

follows:

Veff,S2 '
α̊4

2

(φ4

4
− φ3

3

)
+ lnφ. (5.50)
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In the case of p = 8, which we will look at in section 7, it is convenient to use the rescaled

couplings

α̃4 = α4N for CP 2 (5.51)

ᾱ4 = α4N2 for S2, (5.52)

which leads to the critical values for α̃4
? and ᾱ4

? respectively of

α̃?,CP2 =

[
12
(4

3

)3
]1/4

' 2.309 (5.53)

ᾱ?,S2 =

[
6
(8

3

)3
]1/4

' 3.266. (5.54)

We note that the coupling constant α scales differently with the matrix size N for the two fuzzy

phases. Therefore it depends in which phase the system is located to decide under which scaling

the expectation value of observables per degree of freedom stay invariant when changing the

matrix size. This behavior is clearly seen in the results from our simulation and serves as an

easy test to distinguish the different phases when plotting various observables.

Using the rescaled coupling α̃ and ᾱ for the CP 2- and the S2-case to write the effective

potential in the large-N limit, we find

Veff,CP2 ' 2α̃4
(φ4

4
− φ3

3

)
+ 6 lnφ (5.55)

Veff,S2 '
ᾱ4

2

(φ4

4
− φ3

3

)
+ 6 lnφ. (5.56)

When we compute the solution for φ of eq.(5.40) for α̌4
SU(d) →∞ we find

φf = 1− p− 2

α̌4
SU(d)

− 3(p− 2)2

α̌8
SU(d)

+ O

(
1

α̌12
SU(d)

)
. (5.57)

Inserting this solution into the expression for Cv, eq.(5.38), we thus obtain

Cv =
2p− 2

4
+

(p− 2)2

α̌4
SU(d)

− 17(p− 2)3

4α̌8
SU(d)

+ O

(
1

α̌12
SU(d)

)
. (5.58)

For the 3-dimensional model the expansions read

φf,S2 = 1− 2

α̊4
− 12

α̊8
+ O

(
1

α̊12

)
, (5.59)

Cv,S2 = 1 +
2

α̊4
− 17

α̊8
+ O

(
1

α̊12

)
for p = 3. (5.60)
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In the fuzzy phase away from the critical point the specific heat Cv should therefore converge

to 1. The expansions for the 8-dimensional case are given by

φf,CP2 = 1− p

2α̃4
− 3p2

2α̃8
+ O

(
1

α̃12

)
, (5.61)

Cv,CP2 =
7

2
+

18

α̃4
− 459

2α̃8
+ O

(
1

α̃12

)
for CP 2 (5.62)

and

φf,S2 = 1− 2p

ᾱ4
− 6p2

ᾱ8
+ O

(
1

ᾱ12

)
, (5.63)

Cv,S2 =
7

2
+

72

ᾱ4
− 3672

ᾱ8
+ O

(
1

ᾱ12

)
for S2 (5.64)

from which we see that the specific heat converges to 3.5 when far in the fuzzy phase for both

cases. We will see in our numerical analysis for the 3-dimensional as well as the 8-dimensional

model that this agrees excellently with our observations.

5.2.3 An expansion for φ close to the critical point α̌SU(d),?

Using the effective potential, given by eq. (5.36), we can derive an expression for the scaling

factor φ as a function of α̌SU(d) for N →∞. We start by rescaling φ as φ̄ = α̌SU(d)φ. Taking the

first derivative of the expression for Veff with respect to φ̄, we find

∂Veff
∂φ̄

= (φ̄3 − α̌SU(d)φ̄
2) +

(p− 2)

φ̄
= 0 (5.65)

for the extrema of the potential. Solving for φ̄ gives

φ̄±,1 =
α̌SU(d)

4

[
1 +
√

1 + δ ±

√
2− δ +

2√
1 + δ

]
(5.66)

where

δ =
(32(p− 2)

α̌4
SU(d)

)1/3[(
1−

√
1−

α̌4
SU(d),?

α̌4
SU(d)

)1/3
+
(

1 +

√
1−

α̌4
SU(d),?

α̌4
SU(d)

)]
(5.67)

and

α̌4
SU(d),? = 4(p− 2)

(4

3

)3
. (5.68)

The other two solutions to equation (5.65) are given by

φ̄±,2 =
α̌SU(d)

4

[
1−
√

1 + δ ±

√
2− δ − 2√

1 + δ

]
. (5.69)
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The minimum is given by φ+,1. Using p = 3 and the scaling of α̌SU(d) for S2, eq. (5.48), we find

δ =
(64

α̊4

)1/3[(
1−

√
1− α̊4

?

α̊4

)1/3
+
(

1 +

√
1− α̊4

?

α̊4

)1/3]
(5.70)

while for the 8-dimensional case and the appropriate scalings we obtain

δ =
(96

α̃4

)1/3[(
1−

√
1− α̃4

?

α̃4

)1/3
+
(

1 +

√
1− α̃4

?

α̃4

)1/3]
for CP 2 (5.71)

δ =
(384

ᾱ4

)1/3[(
1−

√
1− ᾱ4

?

ᾱ4

)1/3
+
(

1 +

√
1− ᾱ4

?

ᾱ4

)1/3]
for S2 (5.72)

where α̊?, α̃? and ᾱ? are given by eq.’s (5.49), (5.53) and (5.54). This results coincide with the

expression obtained in [73] for the 8-matrix model and the result in [43] for p = 3.

5.2.4 Critical behavior of the action S and the specific heat Cv

If we expand the expression obtained for δ in the last section (eq.(5.67)) around the critical

point we find

δ = 3− 16

3
ε, ε =

α̌SU(d) − α̌SU(d),?

α̌SU(d),?

. (5.73)

Substituting this result into (5.66) and dividing by α̌SU(d), we find

φ =
1

4

(
3 +
√

6ε− 4

3
ε+ O(ε3/2)

)
. (5.74)

We see that the expansion for φ is independent of the number of matrices p. It thus coincides

with the expression obtained in [43] for the 3-matrix-model. Inserting this solution into (5.37),

we obtain an expansion of the action S given by

1

N2
< S > =

p

4
−
α̌4
SU(d)

12
φ3 =

=
8− p

12
− (p− 2)7/8

24/831/8

√
α̌SU(d) − α̌SU(d),?−

− (p− 2)3/4

35/42
(α̌SU(d) − α̌SU(d),?) + O((α̌SU(d) − α̌SU(d),?)

3/2). (5.75)

This means that for the specific case of the three matrix model, p = 3, the result is given by

1

N2
< SS2 > =

5

12
− 1

31/825/8

√
α̊− α̊? −

1√
35/425/4

(α̊− α̊?) + O((α̊− α̊?)3/2), (5.76)

while for p = 8 and the appropriate scalings for the CP 2 and S2 case we find

1

N2
< SCP2 > = −21/233/4

√
α̃− α̃? −

1√
3

(α̃− α̃?) + O((α̃− α̃?)3/2) (5.77)

1

N2
< SS2 > = −21/433/4√ᾱ− ᾱ? −

1√
6

(ᾱ− ᾱ?) + O((ᾱ− ᾱ?)3/2). (5.78)
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From this result and formula (7.19) we obtain an expansion for the specific heat for the general

case

Cv =
(11p− 4)

36
+

(p− 2)9/8

211/837/8

1√
α̌SU(d) − α̌SU(d),?

+ O((α̌SU(d) − α̌SU(d),?)
1/2). (5.79)

This translates for p = 3 to

Cv,S2 =
29

36
+

1

211/837/8

1√
α̊− α̊?

+ O((α̊− α̊?)1/2). (5.80)

and the two solutions for p = 8 are as follows:

Cv,CP2 =
7

3
+

31/4

21/2

1√
α̃− α̃?

+ O((α̃− α̃?)1/2) (5.81)

Cv,S2 =
7

3
+

31/4

21/4

1√
ᾱ− ᾱ?

+ O((ᾱ− ᾱ?)1/2). (5.82)

Therefore the critical exponent αcrit for both cases is given by

αcrit =
1

2
(5.83)

for transitions between a random matrix phase and an arbitrary fuzzy phase for p matrices.

When setting p = 3 and using the S2 scaling the result gives the 3-matrix case studied in [43].

Measuring the critical exponent α numerically is very hard, as one needs to determine the critical

point in the simulations with high resolution. As autocorrelation is a major problem around

such a critical point one has to perform long simulation runs to obtain a reasonable error. We

did not perform such extensive simulation runs in our studies but a first attempt to do this has

been undertaken in [96].

5.2.5 The behavior of R2 =< 1
N

Tr(Xµ)2 > for large α

Another observable of interest to us is R2 =< 1
N Tr(Xµ)2 >. In the case of a fuzzy sphere R can

be interpreted as its radius [43], while the authors of [5] defined it as the extent of space-time for

the pure Yang-Mills model. This would correspond to the weak coupling, or large temperature,

phase of the model in consideration here. While the radius stays constant throughout the weak

coupling phase, it is dependent on the coupling α in the fuzzy phase and can therefore be used

as an order parameter in our model as well.

In [73] it has been shown that the 1-loop corrections to this observable are of order O( 1
α̌2
SU(d)

)

and for large α it is thus enough to look at the classical solution and insert the expression

for φ obtained in section 5.2.3 to get good agreement with the numerical results. From this

comparison we can see that this is a good approximation for all values after the critical coupling

α̌SU(d),?.
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Computing the classical value we find

R2 =<
α2φ2

N
Tr(Jµ)2 >= α2φ2CSU(d)

2 (n) (5.84)

for a general gauge group SU(d) of size N = dim(J (n)), where the Jµ’s are the generators of

the representation. For the two cases we are interested in here, namely SU(3) and SU(2), the

matrix size is given by

dim(T (n)) = n+ 1 for SU(2), (5.85)

dim(T (n1,n2)) =
(n1 + 1)(n2 + 1)(n1 + n2 + 2)

2
for SU(3), (5.86)

where (n) for SU(2) and (n1, n2) for SU(3) are the Dynkin indices of the representation. Using

Xµ ∼ αφLµ, we find the correct expressions for the appropriate scalings of the two cases given

in eq.(5.48) for p = 3,

R2
S2 =

α2φ2

N
<

1

N
Tr(Lµ)2 >=

1

4
α̊2φ2 for S2, (5.87)

and in eqs.(5.53) and (5.54) for p = 8

R2
CP2 =

α2φ2

√
N

<
1

N
Tr(Tµ)2 >=

2

3
α̃2φ2 for CP 2 (5.88)

R2
S2 =

α2φ2

N
<

1

N
Tr(Lµ)2 >=

1

4
ᾱ2φ2 for S2. (5.89)

A result including the first loop-order for the various solutions can be obtained by inserting

the expansion for φ̄, given for general SU(d) in eq.(5.66) into the above formulae. This is the

expansion used in all plots in the subsequent chapters and in good agreement with numerics.

5.3 Calculation of the spectrum of matrix B

Matrix B, given by

B = λµ ⊗Dµ, (5.90)

where λµ are a representation of SU(d) and D = d2−1 must be smaller or equal to the number of

matrices p and Dµ = Xµ/α. It is a useful observable for our numerical studies as it captures the

representation content of the p matrices in the fuzzy phases. Further, it is a single rotationally

invariant observable that allows one to capture information of all p matrices in the model in

one basis. Studying the eigenvalue distribution for the individual matrices only allows us to

diagonalize (d − 1) of the D = d2 − 1 matrices in one basis. Even this is only true if those
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matrices are commuting. In simulations fluctuations around the commuting background will

always be present and induce non-commuting effects in the d classically commuting elements of

the Cartan subalgebra. An observable that captures properties of all matrices in the same basis

is thus an interesting observable in numerical studies.

In the models studied in this thesis the Xµ’s are proportional to the SU(3) generators T
(n,0)
µ

in the fuzzy CP 2 phase, that appears in the p = 8 model, or the SU(2) generators L
(n)
µ for the

fuzzy S2, which exists for both the cases we will look at in the next chapters, p = 3 and p = 8.

From the distribution of the eigenvalues of B we can learn in which representation (n) of SU(2)

or (n1, n2) of SU(3) the system stabilized.

A detailed computation of the spectrum of B is given in Appendix B. In the p = 3 model

we only have a SU(2) symmetric state and we use the Pauli matrices instead of the Gell-Mann

matrices. The spectrum of B is given by

EV (BSU(2)) = EV (σµ ⊗ Lµ) = −1

2
±
(n+ 1

2

)
. (5.91)

For the 8-matrix model with SU(3) symmetry the result is given by

EV (BSU(3)) =
1

2

(n
3
− 1
)
±
√

2

9
n(n+ 3) +

1

4

(n
3
− 1
)2
, (5.92)

where n indicates the dimension of the totally symmetric SU(3) representation T (n,0)
µ which

forms the fuzzy CP 2 as will be seen in the later chapters.

In the SU(2) symmetric case only 3 of the matrices build the fuzzy sphere while the rest of

the matrices is assumed to be zero classically. We still use the Gell-Mann matrices to tensor

the matrices Xµ with, noting that the upper 2× 2 block matrix forms a SU(2) subalgebra that

coincides with the Pauli matrices used for the p = 3 case. We thus find the same spectrum as

in the 3-dimensional case in eq.(5.91) but note that there will also be N zero-eigenvalues due to

the third row/column of the Gell-Mann matrices.
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Chapter 6

The 3-matrix model

We will start our numerical study of Yang-Mills-Myers term models with the simplest case of

p = 3 [26]. The action is thus given by

S[X] = NTr

− p∑
µ,ν=1

1

4
[Xµ, Xν ]2 +

iα

3

p∑
µ,ν,ρ=1

εµνρXµ[Xν , Xρ]

 , (6.1)

where εµνρ is the structure constant of the smallest dimensional simple lie algebra, SU(2). The

Xµ’s are Hermitian and traceless N ×N -matrices. The model is rotationally, SO(3), invariant

as well as invariant under unitary transformations U(N). Looking at the equations of motion

δS[X]

δXσ
= [Xν ,−[Xσ, Xν ] + iαεσνρXρ], (6.2)

we see that the generators of SU(2), Lµ, scaled with the coupling constant α form one solution

Xµ = αLµ, (6.3)

which will be the solution that we are going to focus on in this section. The summation in the

equations of motion over the indices appearing twice in a term is implicit. From eq.(6.2) we

see that any representation, not necessarily an irreducible one, is a solution to the equations of

motion. Any combination of SU(2) representations Ri with size Mi which fulfill
∑

iMi ≤ N is

a possible solution and we can find a unitary transformation for each of those representations

such that we can write them in block-diagonal form in the matrices Xµ. Inserting such a general

solution into the action we obtain the classical solution

S[α,N,X] =
∑
i

−α
4NMiC2(Ri)

6
, (6.4)

which is negative for all possible representations. The only non-negative solution to the equations

of motion, eq.(6.2), is given by the set of commuting matrices while the most negative solution
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6. THE 3-MATRIX MODEL

is given by the irreducible representation of size N . For zero temperature, i.e. α → ∞, this

configuration must thus form the ground state of the system.

In the other extreme case of α → 0 the Myers term vanishes and we are left with a pure

Yang-Mills matrix model where the configuration with smallest energy is given by commuting

matrices. As discussed earlier, the system is in a so-called matrix phase in this case. From these

considerations we can learn that there must be a cross-over or phase transition at some finite

coupling α?. When including fluctuations around the classical solution we found in section 5.2.2

that it is convenient to rescale the coupling constant α as

α̊ = α
√
N. (6.5)

In terms of this rescaled coupling constant we found that there actually is a phase transition at

a critical coupling α̊? ∼ 2.087.

The question whether the system fluctuates around the commuting saddle point in the Yang-

Mills, or Matrix-, phase was discussed in section 4.2. We found that commuting matrices can be

taken to be a useful background configuration around which fluctuations induce non-commuting

effects. The distribution of eigenvalues for the individual matricesXµ was found to be a parabola.

As described in [21], assuming a commuting background the unique lift of the parabola to 3

dimensions is given by a uniform distribution of eigenvalues within a solid ball.

From a comparison of the distribution of matrix C = σ1⊗X1+σ2⊗X2 to the 2-matrix model

discussed in section 3 we learnt however that they overlap almost perfectly for a value of the

coupling constant in the 2-matrix model g2 ∼ 3.125, which is far in the non-commuting phase (see

figure 4.3). Also, from studying higher correlation functions of the different matrices Xµ we saw

that the numerical results differed substantially from the analytical results we obtained when

assuming commuting matrices (table 4.1). It therefore seems as if non-commutative effects,

induced by fluctuations around this commuting background play a significant role. Further

studies will be needed to give a satisfactory explanation of the behavior of the eigenvalues in

the small α, Yang-Mills-type, phase of this model.

In the following we will turn our attention towards the fuzzy phase of this model and discuss

the eigenvalue distributions of different matrices as well as some observables whose analytical

values were computed in section 5.2. We will start by discussing the evolution of the system in

a HMC-simulation by means of the action and demonstrate the nature of the different states in

the fuzzy phase in terms of the eigenvalue distribution of an individual matrix Xµ.
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6.1 The evolution of a HMC simulation and eigenvalue distributions of Xµ in the
ground state and excited states

6.1 The evolution of a HMC simulation and eigenvalue distri-

butions of Xµ in the ground state and excited states

While the spectrum in the Yang-Mills phase is continuous, the eigenvalues will exhibit a discrete

distribution for values of the coupling constant α̊ larger than the critical value α̊?. This is due to

the fact that the ground state is given by eigenvalues of Xµ proportional to the SU(2) generators,

as given in eq.(6.4). SU(2) generators exist for every matrix size N , where the representation

L(n) has size N = n+ 1, with n being the highest weight of the representation.

Given a matrix of size N , all representations of size (n+ 1) ≤ N are possible solutions of the

equations of motion. However, the lowest energy state will be given by the largest irreducible

representation of size (n + 1) = N . If we for example assume that the matrices of size N

decompose into two block matrices of size N1 and N2 where N1 + N2 = N and compute the

difference to the irreducible representation of the action, ∆S = S[N ]− S[N1 +N2] we find

∆S = −3N1N2(N1 +N2) (6.6)

which is always negative as N1, N2 > 0. Thus, reducible representations only appear as excited

states of our system.

This can be seen nicely in figure 6.1 where we see an excerpt of the evolution of the system

in one simulation in terms of the action per degree of freedom, S/(N2 − 1). This simulation

was run for N = 20 matrices and a coupling constant of α̊ = 5.00, which should be far in

the fuzzy phase. The classical ground state for this configuration is given by S[N = 20, α̊ =

5.0](gs)/(N2 − 1) ∼ −26 from eq.(6.4) that is plotted in figure 6.1 on the right, while the first

excited state, corresponding to a N = 20 matrix with a N1 = 19 SU(2) representation while

the 20th row/column is zero classically, has S[N1 = 19, α̊ = 5.0]/(N2 − 1) ∼ −22. The second

excited state we see in the plot has S[N = 18, α̊ = 5.0]/(N2 − 1) ∼ −19, where the other two

rows do not form a SU(2) representation but classically are zero again.

In figures 6.1 we also see the eigenvalue distribution of the matrix D3 = X3/α in the ground

state of the Monte-Carlo evolution considered before. We see a very clear discrete spectrum of

20 peaks, corresponding to the non-degenerate eigenvalues of the irreducible representation for

matrix X3 with N = 20. In figures 6.2 and 6.3 we take a closer look at the eigenvalue spectrum

of the excited states. In both graphs we see the spectrum of D3 on the left. We see the expected

19 peaks for the 1st excited state and 18 peaks respectively in the case of the 2nd excited state

in figure 6.3. The eigenvalue(s) that do(es) not contribute to the fuzzy sphere is/are fluctuating

around a non-zero value. As the tracelessness condition is implemented as a constraint in our

simulations, this is compensated by a slight asymmetry of the spectrum of the fuzzy sphere.
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6. THE 3-MATRIX MODEL

While we fix the whole matrices to be traceless the two independent parts of the matrices, the

fuzzy sphere and the random eigenvalue(s), are not constraint to be traceless here. Therefore,

both of the two parts contain a random U(1) contribution that have to sum up to zero but

can move freely otherwise. Following this argument, the effect should vanish if we commute the

two matrices D1 and D2 to obtain the spectrum of D3. This spectrum is shown in the graph

to the right of the two figures. We can see that the spectrum is indeed centered at zero and

the independent degrees of freedom distribute symmetrically around zero as the central peak is

much higher than the others. The double peak in the spectra of the fuzzy spheres at zero is due

to the different random distribution of the independent degrees of freedom in D1 and D2. This

leads to a blurred resolution of the central peak in the spectrum of i[D1, D2] = D3.
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Figure 6.1: The graph to the left shows the evolution of the action during a simulation run for

N = 20 matrices and α̊ = 5.00. One can clearly see the different local minima it passes until

reaching the ground state with classical value Sgs ' −26. The eigenvalue spectrum of matrix X1

in the ground state can be seen in the right graph. The distribution is proportional to the largest,

irreducible SU(2) representation, X1 = αL1, of size N = 20.

From figure 6.1 we also notice that it takes a large number of Monte-Carlo steps until the

system thermalizes in its ground state. In figure 6.4 we can see that the number of steps which

the system needs to thermalize increases considerably with increasing matrix size N . In this

figure we plotted the evolution for three different matrix sizes N = 6, 12, 24. While N = 6 only

needs about 25 steps to thermalize, N = 12 already needs about 1800 steps and for N = 24 it

takes about 125000 steps to thermalize. By doubling the matrix size we thus have to increase

the time of our simulation by a factor of about 70, which roughly corresponds to a number of

thermalization steps of order ttherm ∼ N6! While, with a very long simulation time, this may still

be possible for N = 48 matrices it is obvious that for systems larger than N ∼ 48 we will not be

able to observe this decay numerically due to the long simulation time. A possible way around

this is to start our simulations in the ground state for matrices larger than a matrix size N ′, which
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Figure 6.2: The eigenvalue distributions for the 1st excited state, marked in the plot to the right

of figure 6.1, is shown for α̊ = 5.00 on the left and the distribution of the commutator i[D1, D2] on

the right hand side. We see that the discrete spectrum is proportional to the SU(2) generators of

size N = 19 but the remaining degree of freedom fluctates around a non-zero value. This is due

to the independent U(1) factors for the fuzzy sphere and the independent eigenvalue. The effect

(almost) vanishes in the commutator where the double peak in the center is due to the different

random fluctuations of the independent eigenvalue for D1 and D2.
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Figure 6.3: The eigenvalue distributions for the 2nd excited state D3 (left) and the commutator

i[D1, D2] (right) is plotted. As noted for the first excited state in figure 6.2 we see a spectrum of

a reducible SU(2) representation of size N = 18 forming the fuzzy sphere while the independent

eigenvalues fluctuate around a non-zero value. The effect induced by the implementation of the

tracelessness condition is resolved when looking at the commutator where the U(1) factors drop out.

The double-peaks are due to the different distribution of the independent eigenvalues in D1 and

D2, thus leading to a slightly different shift in the fuzzy sphere spectrum of those matrices. When

commuted, the resolution of the central peak thus suffers.

depends on the model we are looking at, to extract information about the thermalized state of

the system. Strictly speaking, this violates the detailed balance criterium (see Appendix C)

that the system we simulate has to be able to reach every state in phase space. From analytical

studies or numerical observations for smaller matrix sizes we can nevertheless argue that this
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6. THE 3-MATRIX MODEL

is the state to which the system will eventually thermalize and which contributes most to the

partition function of our model. By neglecting excited states when starting in the ground state

we thus introduce only a negligible error in our results, at least for values of the coupling constant

α̊ sufficiently large relative to the critical point α̊?. In the large-N limit this nevertheless leaves

the possibility that the system could stabilize in a metastable state due to a growing potential

barrier between a local and the supposed global minimum.

Figure 6.4: The plot shows the thermalization of the system when starting from a random con-

figuration for N = 6, 12, 24. This allows us to estimate the increase in MC-steps necessary for the

system to thermalize when doubling the matrix size once more to a factor of about 70. This suggests

that the number of thermalization steps ttherm ∼ N6.

6.2 Properties of the system around the phase transition

The solution in eq.(6.4) corresponds to the classical solution of the equations of motion and,

in particular to capture the behavior around the critical point α̊?, it will be necessary to take

fluctuations into account. The detailed calculations are given in section 5.2 and we will only

state the results from the expansion around the classical ground state,

Xµ = Lµ + αφAµ, (6.7)

where φ is a scaling factor, in the following. Taking into account first order corrections, using

the background field method, we obtain the effective action after integrating out the fluctuations

Aµ as well as the generators Lµ and find in the N →∞ limit:

Veff [α̊, φ,N ]

N2
=

3

4
ln(α̊4) +

α̊4

2

(φ4

4
− φ3

3

)
+ ln(φ) +

1

4
ln(α̊4), (6.8)

where we introduced the rescaled coupling constant α̊ =
√
Nα. By taking the derivative of this

expression with respect to φ we can determine the critical values α̊? and φ? in the N →∞ limit
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to be

α̊? =

(
8

3

)3/4

with φ? =
3

4
. (6.9)

6.2.1 Results for small matrix sizes

While far away from the critical point the system is well thermalized in either the matrix or the

fuzzy phase, around the phase transition the system will fluctuate between the two phases. To

observe those fluctuations in a simulation run is a challenging task for various reasons. First, the

data points obtained during such a simulation will be more correlated the closer the coupling

constant α̊ is to its critical value α̊?, which is the so-called critical slowing down (see [97]) that

is typically found around a second order phase transition. Local updates, as performed in the

Metropolis algorithm (see Appendix C.1), suffer considerably from this problem. A Hybrid-

Monte-Carlo algorithm, described in Appendix C.2 and used for all simulations here, performs

global updates which help soften this problem. Nevertheless the extended auto-correlation is

still clearly visible in any simulation.

Further, as was argued in [96] the matrix phase should become unstable when two eigenvalues

of a matrix get too close to each other. This should happen roughly at α̊m ' R
√
N√

10
, where R

is the radius of the parabolic eigenvalue distribution. We can thus see that the matrix phase

becomes more and more stable for larger matrices. As the radius R is numerically found to be

2.0, we find that α̊m < α̊? =
(

8
3

)3/4
for N < 11 where α̊m is the predicted critical value when

approaching from the hot temperature phase and α̊? is the critical value when the transition is

approached from the fuzzy phase. For matrix sizes much larger than N = 11 we thus expect

that transitions from the matrix phase to the fuzzy phase are highly suppressed and thus no

fluctuations between the two phases can be observed. In our simulations that happened for

matrices N > 12. For larger matrices one effectively probes a restricted ensemble when starting

in the fuzzy configuration. This is the approach taken in the calculations in section 5.2 where

we completely ignored the contribution of the matrix phase to the free energy when expanding

around the fuzzy configuration. For matrix sizes N . 12 this approach is not valid as transitions

between the two phases of the system do occur with sufficient probability to obtain numerical

results. Thus, the matrix phase contribution to the calculation of the free energy cannot be

excluded. This will lead to different properties of the system for such matrix sizes as we will see

below.

In figure 6.5 we plot the expectation value of the action, < S > /(N2 − 1). From it we see

that the transition is continuous. We can see that the critical value is shifted to slightly larger

coupling α̊ in the numerical results compared with the analytical expression obtained from the
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6. THE 3-MATRIX MODEL

1-loop expansion in eq. (5.76). These analytical results are derived by expanding around the

ground state of the fuzzy sphere and thus ignores the contribution from the states in the matrix

phase. The complete partition function Z[α,N ] however can be written as

Z[α,N ] =
∑
fuzzy

e−S[α,N,X] +
∑
matrix

e−S[α,N,X]. (6.10)

Away from the critical point it is enough to consider one of the sums, but close to the phase

transition all terms should be taken into consideration unless one dominates. By ignoring the

sum over the states in the matrix phase we therefore introduce an error that can be seen in the

slightly shifted critical value α̊? in figure 6.5. Otherwise, the numerical and analytical results

agree excellently already for such small matrix sizes.

A similar picture can be seen for the quantity < 1
N2 Tr

(
X2
µ

)
> in figure 6.6. The transition

is continuous for finite size matrices and the critical point is shifted towards larger values of α̊.
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Figure 6.5: The mean value of the ac-

tion, 1
N2−1 < S >, is plotted against the

coupling constant α̊ for matrix sizes N =

9, 10, 11 and 12. We see that the transition

is continuous and shifted to larger values of

the coupling constant α̊ compared to the

analytical value calculated in eq.(5.49).
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Figure 6.6: A plot of the quantity <
1
N2 Tr(Xµ)2 > against the coupling α̊ for

N = 9, 10, 11 and 12. Again, we see a con-

tinuous transition shifted from the analyti-

cal value calculated for α̊?. Away from the

phase transition the numerical results fit

nicely to the analytical result obtained in

eq.(5.87) with eq.(5.66).

The third quantity we consider is the specific heat. As it captures the fluctuations around

the mean value, it is particularly sensitive to the above mentioned phenomena. In the plot in

figure 6.7 we again see the shift to larger α̊ and a continuous transition between the two phases.

Compared to the results for larger matrices in the next subsection and results obtained in [43],

we however see another difference. From results for larger matrices in [43] it was concluded that

the phase transition in this model is asymmetric. It appears to be a first order phase transition
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with a finite jump when approaching the critical point from small values of α̊ but diverges

when we start from the large coupling phase. At least for such small matrix sizes it seems as

if the transition is symmetric around the critical point and approaches a δ-function behavior,

indicating a first order phase transition from both sides [98]. A closer study of the properties of

the model for small matrices could possibly clarify the actual behavior of the phase transition.
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Figure 6.7: The specific heat Cv is plotted around the phase transition. We see that the theoretical

prediction, eq.(5.80), differs considerably from the numerical results and it seems as if the critical

point found in the simulations is moving away from the analytical one when increasing the matrix

size. The specific heat seems to be of first order here, independently of the side you approach the

transition from.

6.2.2 Results on small matrices using the Wang-Landau algorithm

Measuring the density of states g(E,N) directly would allow to compute observables such as

the specific heat with higher accuracy as we can predict the value of it for arbitrary coupling

α̊. It would also allow to compute observables such as the entropy or the free energy directly,

something that is not possible using a standard Monte-Carlo algorithm such as Metropolis or

Hybrid-Monte-Carlo (HMC). For this reason we performed simulations using a Wang-Landau

(WL) algorithm [99] that achieves to compute the density of states g(E,N) directly. The algo-

rithm is described in Appendix C.3. In this section we will present results using this algorithm

for small matrices. Larger matrices are unfortunately out of range as the estimation of g(E,N)

is very time-consuming. This is partially due to the fact that the WL algorithm was developed

for discrete systems (mainly spin systems), where the possible number of states is much smaller

than in our case were the energy of the system varies continuously. A continuum version of

the algorithm was developed in [100] but didn’t seem to increase the speed of our simulations

considerably. The slow convergence to a flat histogram might have another, related reason as

well which we will discuss later in this section.
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In figures 6.8-6.11 we compare the results for the specific heat using a WL and a HMC

algorithm in the left plot of each figure for N = 4, 8, 10, 13. We see that the results agree

excellently around the critical coupling α̊?. From the result of WL we can see a perfect rounding

of the peak in the specific heat whose behavior seems to agree when approaching from either

direction. This hints that we have a first order transition for such matrix sizes from both

directions. Another advantage of the WL algorithm is the negligible error for the results. In [101]

it was shown that the statistical error scales with
√

ln f , where f is the modification factor that

converges to 1 in the end of the simulation. As we let f → 1.000001 the error is ∼ 0.001, which

is negligible and a big advantage for points around the critical value α̊?.
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Figure 6.8: The results for the specific heat Cv using the WL and HMC algorithm are compared

for N = 4 matrices in the plot to the left. The fit around α̊? is excellent. At very small/large α̊ the

WL algorithm ceases to give accurate results as the density of states for regions which are important

in this cases has not been probed accurately enough. In the plot to the right we see the estimation

of the density of states g(E,N). Note, the huge difference between states in the matrix phase and

the fuzzy sphere phase.

The WL results stop being valid at some α̊ < α̊? as well as for some α̊ > α̊? as we can

only probe a finite range for g(E,N). At large energies the 3-matrix model can generally

reach infinitely high energies. They might be negligible in the partition function as the non-

perturbative identity 4.17 fixes the expected value in the matrix phase to < 1
N2−1

S >= 3
4

but will be probed in this algorithm due to its design. The same phenomenon appears at

low energies. Here, the system thermalizes above the classical solution of SU(2) generators in

the fuzzy phase for finite α. We therefore cannot find an estimate of the density of states to

the absolute minimum energy configuration corresponding to the pure SU(2) generators. Put

differently, the number of states in the matrix phase is so large that we can impossibly take all

of them into account while the number of states close to the fuzzy ground state is so small that,

even though the algorithm penalizes visited states and thus pushes the system to configurations
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Figure 6.9: The specific heat Cv is plotted for N = 8 matrices in the plot to the left. The two

results using different algorithms agree very well. In the plot to the right we see the estimation of

the density of states g(E,N). The difference in states between the matrix phase and the fuzzy phase

might make the hot temperature matrix phase the true thermodynamical ground state of the system

that have not yet been visited, it would take a huge amount of time until the system randomly

finds the SU(2) generators. The algorithm pushes the system into new parts of phase space

but still proposes the new configurations randomly. This is not good enough to find the few

configurations that lie very close to zero temperature.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  0.5  1  1.5  2  2.5  3  3.5  4

C
v

°
 α

WL, N=10
HMC, N=10

 0

 100

 200

 300

 400

 500

 600

 700

 800

−50  0  50  100  150  200  250  300  350  400  450

ln
(g

(E
))

E

WL, N=10

Figure 6.10: The results for the specific heat Cv using the WL and HMC algorithm are compared

for N = 13 matrices in the plot to the left. The fit around α̊? is excellent. In the plot to the right

we see the estimation of the density of states g(E,N).

While these considerations indicate the caveats of the application of the WL algorithm to

the system under consideration it shows directly why jumps between the matrix and fuzzy phase

are so rare for larger matrices. The difference in degeneracy is growing rapidly between those

two phases.

Considering the Gaussian model for D matrices for a moment, we can actually compute the
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Figure 6.11: The specific heat Cv is plotted for N = 13 matrices in the plot to the left. The two

results using different algorithms agree very well. In the plot to the right we see the estimation of

the density of states g(E,N). The difference in states between the matrix phase and the fuzzy phase

might make the hot temperature matrix phase the true thermodynamical ground state of the system.

density of states for this case. The partition function in this case is given by∫ ∞
−∞

[dDXij ]e
−βTr((Xµ)2

ij) =

∫ ∞
−∞

[dX]DN
2
e−βX

2
, (6.11)

where we used that the D matrices are independent and their entries randomly distributed. A

change to spherical coordinates and the substitution r2 = E leads to∫ ∞
0

[dE]const · E
DN2

2
−1e−βE , (6.12)

where g(E,N) = const · EDN2/2−1 is the density of states for the Gaussian model.

For the Yang-Mills-Myers model we consider very high temperatures, corresponding to α̊ ∼ 1

and neglect the Myers term in the present consideration. From the shape of the density of states

in the figures 6.8-6.11 we see that the contribution of the fuzzy states, given by g(E,N)|E<0,

is very small, which justifies this assumption. We also have to assume that, as in the Gaussian

case, the density of states scales, g(E,N) ∝ Eν . We can then write the partition function as

Z[D,N, β] = const

∫ ∞
0

[dE]Eν4 e
−βE4 , (6.13)

where E4 = −1
4 [Xµ, Xν ]2. The expectation value < E4 > is given by∫∞

0 [dE]βEν+1
4 e−βE4∫∞

0 [dE]Eν4 e
−βE4

. (6.14)

We can now use
∫

[dE]Eν4 e
−βE4 = 1

βν+1 Γ[ν + 1] and identity (4.17),

< EYM >=
D(N2 − 1)

4
for the Yang-Mills model, (6.15)
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6.2 Properties of the system around the phase transition

where D is the number of matrices, to obtain the exponent ν.∫∞
0 [dE]βEν+1

4 e−βE4∫∞
0 [dE]Eν4 e

−βE4
=
β/βν+2

βν+1

Γ[ν + 2]

Γ[ν + 1]
=
D(N2 − 1)

4

→ ν =
D(N2 − 1)

4
− 1, (6.16)

where we used that Γ[x+ 1] = xΓ[x]. We thus find that the density of states is given by

g(E,N)YM = const · E
D(N2−1)

4
−1. (6.17)

In the plot on the right of figures 6.8-6.11 we see the estimation of the logarithm of the density

of states where we normalized g(0, N) = 0. We can clearly observe that already for N = 3

matrices the difference in the number of states between matrix and fuzzy phase is substantial.

Comparing for different N we see that this difference is increasing further rapidly as well. It

would be interesting to compare the numerical results with the theoretical prediction for the

density of states, eq.(6.17) but in order to do that we would require to compare the numerical

estimation for the density of states for different matrix sizes in a objective manner. This is

difficult for various reasons. First, we would need to measure the density of states for a similar

energy range, thus finding borders on the low and high energy side which are somehow equal for

different matrix sizes. Second, we would need to do this for the same bin size for each matrix

size N . Both conditions pose a problem as, for larger N , the time to obtain the estimate of the

density of states is rising rapidly. We therefore, increased the bin size in order to find a result in

a reasonable time, making a comparison between the different matrix sizes in an objective way

impossible.

The entropic term in the free energy should thus play a considerable role for the minimization

of F . To decide whether the matrix phase is the thermodynamical ground state for large N we

will need additional information though.

Other observables that cannot be measured directly using standard Monte-Carlo techniques

are the internal energy U , the free energy F and the entropy S. As we obtain an estimate

for the density of states form the Wang-Landau algorithm we are able to plot these quantities

directly and compare them with analytical results. The internal energy U in the matrix phase

is classically given by

UMP

N2
=

3

4
T, (6.18)

where T = α̊−4. In the fuzzy phase it is given by

UFP
N2

=
3

4
T − 1

24T
φ3 (6.19)
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6. THE 3-MATRIX MODEL

where the semi-classical approximation from [43] has been used. For the free energy we find

FMP

N2
= c1T −

3

4
T lnT (6.20)

FFP
N2

= T

(
ln

(
φ

T

)
− 1

3

)
− φ4

24
, (6.21)

where c1 is an integration constant [96]. These results allow us to obtain the behavior of the

entropy from the relation S = 1
T (U − F ).

In figures 6.12-6.14 we plotted the numerical and analytical results for these quantities against

the temperature T = α̊−4. We can see that the internal energy U(T ) seems to converge towards

the theoretical results with increasing matrix size N . The critical point α̊? seems to be shifted

passed the theoretical value for N = 10, 13 which is in accordance with our results using a HMC

algorithm. The growing stability of the matrix phase can be observed here.

In figure 6.13 we see a plot of the free energy F per degree of freedom. From a theoretical

analysis we expect a discontinuity at α̊? which is very hard to see in the numerical results.

Simulations with bigger matrices might make this property of the free energy F easier to see.

Otherwise, the numerical value seems to converge towards the theoretical result.

From a combination of the internal and free energy we find a theoretical prediction for the

entropy S which is plotted in figure 6.14. Here again, we find good agreement for couplings

away from the critical point α̊? for the largest matrix size available, N = 13. The critical point

α̊? itself again seems to be shifted. The numerical results all show a continuous transition but

it seems reasonable that it becomes a jump at the critical point from extrapolating to larger

matrices.

6.2.3 Results for the restricted ensemble of fuzzy spaces and large matrices

From the discussion in the last subsection we know that in simulations for matrices N � 12 we

effectively simulate a restricted ensemble as the difference in < S > between the matrix phase

and the fuzzy phase grows faster than the fluctuations within each phase. Nevertheless, the

results can complete our picture about the properties of the fuzzy phase, and the behavior when

approaching the critical coupling α̊? from the low temperature side.

In figure 6.15 we plot the effective action, eq.(5.50), for different values of α̊ around the

critical value α̊?. One can clearly see how the potential vanishes below the critical point and

the ground state is thus given by random matrices. Above α̊?, the fuzzy sphere can form and

will be the ground state if the potential is deep enough.

The expectation value of the action exhibits a jump at the critical point, as can be seen in

figure 6.16. This is a sign that the system cannot properly change between the different phases
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Figure 6.12: The internal energy

U(T )/N2 is plotted against the tempera-

ture T = α̊−4 for N = 4, 5, 6, 8, 10, 13.
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oretical prediction given in eq.(6.18) and
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ical prediction 6.18 and 6.19 away from α̊?.

The critical point itself seems to be shifted

compared to the first-order result.
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Figure 6.14: A plot of the entropy S for N = 4, 5, 6, 8, 10, 13. The black line corresponds to the

prediction, extracted from S = 1
T (U −F ), where U and F are taken from eq.’s (6.18)-(6.21). We see

that the entropy might become discontinuous at the critical point α̊? for larger N . The critical point

α̊? seems to be shifted compared to the analytical results. Otherwise the numerical and analytical

results agree reasonably.

close to the critical point and the simulation is not ergodic when considering the full system.

Within the restricted ensemble ergodicity is nevertheless fulfilled. The plot shows the expectation

value for the action measured by our simulation for various values of α̊ and matrix sizes N . The
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Figure 6.15: The effective potential Veff [α, φ], given in eq.(5.50) is plotted for various values around

the critical point α̊?.

analytical result including one-loop-corrections fits excellently to the results for the fuzzy phase

α̊ > α̊?. In the matrix phase we find a nearly constant value of < S > /(N2 − 1) = 3/4 as the

system is almost independent of the Myers term in the action. The value of 3/4 can be obtained

from eq.(5.37) by setting the coupling constant α̌SU(d) equal zero and p = 3, or by using the

identity eq.(4.17). One can also notice that, for the matrix sizes plotted in figure 6.16, there

seem to be no obvious finite size effects as the points lie perfectly on the analytical curve.

Agreement between numerical and analytical results can also be seen when plotting the

observable R2
S2 =< 1

N2 Tr(Xµ)2 >, which was computed in eq.(6.17) to be

R2
S2 =<

1

N2
Tr(Xµ)2 >

X=αφLµ
=

1

4
α̊2φ2. (6.22)

Here the summation over the index µ = 1, 2, 3 is implicit and we can thus define the observable

R2
S2 as the radius squared of the fuzzy sphere for α̊ above the critical point α̊?. Below that point,

the authors of [5] called it the “extent of space-time” for the pure Yang-Mills model. Here again

it is interpreted as a radius squared. It corresponds to the square of the radius of a solid ball in

which the eigenvalues of the random matrices distribute.

Another interesting quantity to look at is the specific heat Cv of the system. In [43] it was

first noted that the specific heat around the phase transition exhibits a unique behavior in the

present model. When approaching the phase transition from the hot, small α̊, phase we find

a discrete jump at α̊?, while we see a diverging behavior when starting in the fuzzy sphere

phase. We discussed in the last section that for small matrices this does not seem to happen.

To clarify with certainty if the small matrix behavior generalizes to larger matrices a much more

sophisticated simulation code would be needed. From the calculations in chapter 5.2 as well as

from the simulation of the 8-matrix model explained in chapter 7 we find the same behavior for
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Figure 6.17: A plot of the quantity <
1
N2 Tr(Xµ)2 > against the coupling α̊ for

N = 45, 60 and 80. The numerical results

fit nicely to the analytical result obtained

in section 5.2.5.

general Yang-Mills-Myers term models in all dimensions. The discussion for small matrices thus

generalizes and will be addressed briefly for the 8-matrix model as well.

The analytical behavior, obtained from the 1-loop approximation, was found in eq.(5.80) to

be

Cv,S2 =
29

36
+

1

211/837/8

1√
α̊− α̊?

+ O((α̊− α̊?)1/2), (6.23)

close to the phase transition, which captures nicely the behavior found by numerics, as can be

seen in figure 6.18. Further, the specific heat converges to 1 when α̊ is increased as was predicted

by eq.(5.60),

Cv = 1 +
2

α̊4
− 17

α̊8
+ O

(
1

α̊12

)
(6.24)

6.3 Further results on eigenvalue distributions

As the matrices Xµ are proportional to the generators of the SU(2) algebra, the commutator

of two of the matrices should also be proportional to the lie algebra relation [L1, L2] = iL3.

To make the comparison easier we rescaled the matrices Dµ = Xµ/α, such that the spectrum

should be given exactly by the generators of SU(2) as well as their commutator. The scaling

factor φ, which converges towards 3/4 at the critical point α̊? equals to 1 at the minimum of

the potential for the fuzzy sphere such that we can safely assume this value for α̊ � α̊?. We
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Figure 6.18: The specific heat Cv is plotted over the range α̊ ∈ [0, 5]. From the small α̊ side we

find discrete jump at α̊? while Cv diverges when we approach it from the large α̊ direction.

plotted the results for D3 and i[D1, D2] in figure 6.19 for a N = 45 matrix and see that the

result agrees with the spectrum for SU(2) generators L(n), where n = 44. The distribution of

the commutator is different though to the distribution for D3. This effect does not seem to

originate in finite matrix effects as it persists for larger matrix sizes as well. The shape of the

cover of the spectrum of D3 looks almost parabolic which indicates that some remainder of the

matrix phase is still present here. As it vanishes if we commute D1 with D2 it must be a U(1)

effect but the exact origin could not be determined so far. ∗
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Figure 6.19: The eigenvalue spectrum of D3 = X3/α is plotted on the left while the commutator

i[D1, D2] is plotted in the figure on the right for α̊ = 8.00. We see that their spectrum coincides as

the matrices correspond to the generators of SU(2) in the ground state of the system. The difference

in the distribution is due to finite matrix effects.

While the eigenvalue spectra we studied to this point only contained information about any

one of the three matrices it would be interesting to be able to capture the behavior of all three

∗The cover of the spectrum for D3, figure 9, in [32] has an almost inverted shape to the one we found. We

could not reproduce this effect.
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matrices together. We cannot diagonalize all matrices in the same basis but we can define the

following matrix,

B = σµ ⊗Dµ, (6.25)

where the σµ’s are given by the Pauli matrices. Matrix B is of dimension 2N , with the Xµ of size

N . This is a rotationally invariant quantity that includes information about all three matrices.

In particular, it captures the representation of the matrices Dµ = Lµ in the fuzzy phase. We

see this from the spectrum of B that has been computed in section 5.3 and is given by

EV (BSU(2)) = σµLµ = −1

2
±
(N

2

)
(6.26)

in the case of an irreducible representation, which is the one forming the ground state of the

fuzzy sphere. The degeneracy is N + 1 for N
2 −

1
2 and N −1 for −N

2 −
1
2 . In figure 6.20 we see an

example for N = 45 matrices. The SU(2) representation is thus given by L(44) and we expect

two peaks at B
(1)
SU(2) = 22 and B

(2)
SU(2) = −23 from eq.(6.26) which agrees with the numerical

result.

A related observable to matrix B is given by

D = σµ ⊗ [Dµ, .] , (6.27)

where the σµ’s are again the Pauli matrices. The expression [Dµ, .] means that the matrix acts

as a commutator, defined by the adjoint action. Thus, D acts on 2N2 matrices. It corresponds

to the Dirac operator as defined in the IKKT model [7] and was computed for this model

already in [32]. For the fuzzy sphere phase we can again use the fact that the matrices Xµ are

proportional to the irreducible representation of SU(2), Xµ = αLµ, and compute the eigenvalue

spectrum analytically as follows:

D = σµ ⊗ [Lµ, .] = σL =

[
J2
µ − L2

µ −
3

4

]
=

[
j(j + 1)− n(n+ 1)− 3

4

]
, (6.28)

where Lµ = [Lµ, .] and we defined Jµ = Lµ +
σµ
2 . Then we used that J2

µ = L2
µ + σµLµ + 3

4 and

j = n± 1
2 , n = {0, . . . , N − 1}. The spectrum of this operator is thus given by

spec(D) =

{
αn for j = n+ 1

2 ; g(n) = 2(n+ 1)
−α(n+ 1) for j = n− 1

2 ; g(n) = 2n
(6.29)

where g(n) is the degeneracy. Comparing with figure 6.21 we see that the agreement is excellent.

We can also note that, even though the height of the peaks should grow linearly, the height of

the peaks starts to decrease as the largest eigenvalues are approached. This again might be due

to finite matrix effects, which lead to a larger width of the peaks at the edges. Another possible
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explanation is that, as we have seen at the cover of the spectrum of D3 that some effect of the

matrix phase seems to persist, it might as well be that a similar effect causes the curvature in

the cover of spectrum D. ∗
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Figure 6.20: The eigenvalue distribution

of matrix B, defined in eq.(6.26) is plotted

for α̊ = 5.0. Notice that the positions of

the two peaks agree with the result that

Dµ = Lµ, where Lµ are the SU(2) genera-

tors in the n = 44 representation.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

−25 −20 −15 −10 −5  0  5  10  15  20  25
ρ(

x)
 

eigenvalues

N=24

Figure 6.21: The eigenvalue spectrum for

the Dirac operator, D = σµ [Dµ, .], where

Dµ = 1
αXµ, is plotted for N = 24 and

α̊ = 5.0. It agrees with the spectrum given

in eq.(6.29) for Dµ = Lµ.

∗The spectrum of D plotted in [32] seems to be flawed. It shows no zero-eigenvalues and the degeneracy of

the peaks does not correspond to the theoretical prediction.
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Chapter 7

8-Matrix-Model

We will now turn to the 8-dimensional model of YM-Myers type [26]. In contrast to the 3-matrix

model discussed before, it allows not only for a fuzzy sphere solution, S2
F , but also for a fuzzy

2-dimensional complex projective space CP 2. This model is of particular interest because fuzzy

CP 2 is the easiest 4-dimensional manifold to study numerically. The fuzzy 4-sphere [102] would

be the most obvious generalization to the fuzzy S2 but is numerically hard to realize as it is

not a symplectic manifold. Furthermore it is not a coadjoint orbit of a compact lie algebra

and the construction of fuzzy spaces as described in section 5 cannot be applied [72, 103].

In [103] the authors described a way to circumvent this problem by defining S4 in terms of a

squashed CP 3. Modeling this space would involve 15 matrices which makes a numerical study

computationally very expensive. The 8-matrix model described here is a much more tractable

alternative including a 4-dimensional space.

In the following sections we will discuss the properties of the two phases using the observables

defined in section 5.2 and various eigenvalue distributions and the transition between them. Some

of the observables have already been described in [73] and we will review them for completeness.

We will first describe the model and its classical solutions in section 7.1 and then list the results

of adding fluctuations, as done earlier, in section 7.2. Finally we will present the numerical

results for the different phases of the model in section 7.3.

7.1 The model and classical solutions

We are studying the model with partition function

Z[α,N ] =

∫
[dX]e−S[α,N,X] (7.1)

89



7. 8-MATRIX-MODEL

where the measure is defined as

[dX] =
D∏
µ=1

N∏
i=1

d[(Xµ)ii]
∏
i<j

d[Re((Xµ)ij)]d[Im((Xµ)ij)]δ(
N∑
i=1

(Xµ)ii) with i, j = 1, . . . , N (7.2)

and D stands for the number of matrices in the model. The action is given by

S[α,N,X] = NTr

(
−
∑
µ,ν

1

4
[Xµ, Xν ]2 +

iα

3

∑
µ,ν,ρ

fµνρXµ[Xν , Xρ]

)
, (7.3)

and the Xµ are eight Hermitian, traceless N×N matrices, fµνρ are the SU(3) structure constants

and α is a real coupling. The matrix size N in front of the trace has been pulled out to have

intensive quantities as observables. In this way and by judiciously choosing the scaling of α with

N the observables we are studying in our simulations become independent of N in the large-N

limit.

The model is invariant under unitary transformations U(N), Xµ → UXµU
†, and SU(3)

rotations among the matrices. It has been studied numerically for the first time in [73].

From the saddle point equation of the action (7.3)

δS[X]

δXσ
= [Xν ,−[Xσ, Xν ] + iαfσνρXρ], (7.4)

we see that commuting matrices form one extremum. Another solution is given by the SU(3)

generators scaled by the parameter α

Xµ = αTµ, where Tµ =
λµ
2
, µ = 1, . . . , 8 (7.5)

with λµ the Gell-Mann matrices of SU(3). Every L-dimensional representation of size L ≤ N

satisfies the condition δS = 0. The SU(3) invariant minimum of the action is given by the

irreducible representation of size N if such a representation exists. Obviously, such solutions do

not exist for each matrix size N but only for (n1, n2) irreducible representations T (n1,n2), which

size is given by

dim(T (n1,n2)) =
(n1 + 1)(n2 + 1)(n1 + n2 + 2)

2
, (7.6)

where n1, n2 = 0, . . . are the Dynkin indices connected to the highest weights of the represen-

tation. While all irreducible representations are labeled by the two indices only the totally

symmetric representations of SU(3), T (n,0) correspond to fuzzy approximations to CP 2. These

have dimensions

dim(T (n,0)) =
(n+ 1)(n+ 2)

2
= 3, 6, 10, . . . (7.7)
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7.1 The model and classical solutions

The construction of the fuzzy complex projective plane CP 2 has been discussed in chapter 5.1.2.

A further set of matrices solving the equations of motion are the rescaled SU(2) generators

Xa = αLa with α = 1, 2, 3. They form a whole orbit of possible solutions and three possible

implementations, consistent with the definition of the structure constant ∗ fabc, in the eight

matrices are given in Table 7.1, while the other matrices will be set to zero.

configuration 1 configuration 2 configuration 3

X1 = αL1 X4 = αL1 X6 = αL1

X2 = αL2 X5 = αL2 X7 = αL2

X3 = αL3 X3 = α
2L3 X3 = α

2L3

X8 =
√

3α
2 L3 X8 = −

√
3α
2 L3

Table 7.1: three possible implementations of SU(2) in SU(3) Gell-Mann matrices

SU(2) representations, contrary to the SU(3) case, exist for arbitrary matrix sizes N ≥ 2.

For representation T (n), its size is given by

dim(T (n)) = n+ 1. (7.8)

This representation will form the fuzzy sphere S2
F state in this model. For the construction of

this space refer to section 5.1.1 and references therein.

An extension of SU(2) that forms a possible set of solutions as well is SU(2) ⊗ U(1). We

can implement this in the eight matrices by taking the SU(2) configuration 1 in table 7.1 and

setting the diagonal components of X8 to non-zero values, such that X8 represents the U(1)

generator. It is easy to check that this configuration also fulfills the equations of motion of

this model. However, due to the tracelessness condition of our matrices, this configuration can

only be of size N ′ < N , where N is the size of the matrices Xµ. As the Casimir operator

of reducible SU(2) representations is always smaller than the corresponding operator of the

irreducible representation, the resulting value for the classical action, eq.(7.3), will always be

larger for SU(2) ⊗ U(1) configurations than for the SU(2) representation of maximal size N

(see section 6.1 for further details). Representations of SU(2)⊗U(1) will thus always appear as

excited states in this model and will not be discussed in the sections below.

∗The definition of the SU(3) generators and structure constant used in our simulations are given in Ap-

pendix A.
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7.2 Fluctuations and critical behavior

To include fluctuations in our considerations, we expand around the classical solutions as

Xµ → αφJµ +Aµ, (7.9)

where φ is a scaling factor and the Jµ are generators of SU(d), up to one-loop level and evaluate

the path integral using the background field method. For the 3-dimensional model with SU(2)

structure constant in the cubic term this has been done in [43], while in [71] the authors evaluated

the loop-diagrams up to second order, showing that the effective action of this model saturates

at the 1-loop level. For the present case, 1-loop calculations have been carried out around the

S2 and CP 2 solution in [73] where the authors assumed the first configuration in table 7.1 as the

SU(2) configuration, while setting the other matrices to zero. We will use the same strategy, as

this is the configuration chosen by numerics as well (see chapter 7.3.4 for further discussion).

From the background field calculations we derive corrections up to 1-loop order around

general SU(d) generators Jµ in the large-N limit to be

Veff = α4Cadj

2 C
SU(d)
2 (J)

(φ4

4
− φ3

3

)
+ (p− 2) lnφ, (7.10)

where p stands for the number of matrices. The logarithmic term forms the only contribution

at 1-loop order that survives in the N →∞ limit. In chapter 5.2 we derive this result and find

that it is convenient to rescale the coupling constant α as

α̃4 = α4N for CP 2 (7.11)

ᾱ4 = α4N2 for S2, (7.12)

which means that for the unscaled coupling constant α, α?,S2 < α?,CP 2 . From this solution we

can determine the critical values for the coupling constant α̃4
? and ᾱ4

? respectively to be, see

eq.(5.53) and (5.54),

α̃4
?,CP 2 = 12

(4

3

)3
' 2.309 (7.13)

ᾱ4
?,S2 = 6

(8

3

)3
' 3.266 (7.14)

The effective potential for those configurations for large N and unscaled coupling constant α

looks like, eq.(5.55) and (5.56),

Veff,CP2 ' 2α4N
(φ4

4
− φ3

3

)
+ 6 lnφ (7.15)

Veff,S2 '
α4N2

2

(φ4

4
− φ3

3

)
+ 6 lnφ. (7.16)
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Inserting the minimum value for φ = 1 for large values of the coupling α, given in eq.’s (5.63)

and (5.61), into the effective potential we obtain an expression for the free energy of the two

configurations of the system.

FCP2

N2
= −α

4N

6
+ 6 lnφ, (7.17)

FS2

N2
= −α

4N2

24
+ 6 lnφ (7.18)

We can see from the coefficient in front of the classical term that in the regime where both

configurations exist, the 2-sphere has a lower free energy for N > 4 and thus forms the ground

state of the system according to the 1-loop result. The scaling factor φ needs to take values

between 0 < φ < 1 as otherwise the free energy is positive and the solution for commuting

matrices forms the ground state.

Two of our main observables in the simulations will be the average of the action and the

specific heat. From their definitions

1

N2
< S > = α̌4

SU(d)

dVeff
dα̌4

SU(d)

= 2−
α̌4
SU(d)φ

3

12

< Cv > =
< S2 > − < S >2

N2
=
< S >

N2
− α̌4

SU(d)

d

dα̌4
SU(d)

(< S >

N2

)
=

= 2−
α̌5
SU(d)φ

2

16

dφ

dα̌SU(d)

, (7.19)

where α̌SU(d) is the general rescaled coupling constant, we derive an expressions for their behavior

around the phase transition using the value φ̄? obtained from the effective action in section 5.2.3.

7.3 Numerical Results

While for small values of the coupling constant α, corresponding to high temperature T =

1/α4, the system essentially behaves like a pure Yang-Mills matrix model, the behavior changes

drastically above a certain critical point α? and the eigenvalues are found to form a fuzzy space

for finite matrix size N . As discussed before, we can distinguish between two different fuzzy

spaces in this model. When Xa ∼ La, where a = 1, 2, 3 and the other matrices are set to zero

this corresponds to a fuzzy S2, while we find a fuzzy complex projective plane CP 2 for the SU(3)

generators. In the N → ∞ limit they converge towards their continuum limit. Properties of a

model with such a phase transition have been studied already for the three matrix case with the

same action by various authors (see, e.g. [32, 43, 69, 70, 71]).
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7.3.1 High temperature phase

For very small α and fixed N the system is in the matrix phase and essentially behaves as a pure

Yang-Mills matrix model. As α is increased we first reach a critical point α? where, according to

our analytical analysis, the matrix phase will become unstable and the system will thermalize in

a fuzzy S2 configuration through a phase transition. For couplings α < α? the behavior of the

system is largely independent of the Myers term and a description as a pure Yang-Mills model

is very accurate. In section 4 (see [5] or [104] for a recent study) we performed a detailed study

of the model with α = 0 which results stay valid in the whole matrix phase.

We can determine the energy of the ground state from the integral

0 =

∫
[dX]

∂

∂Xµ

(
Xµe

−S[X]
)

where S[X] = −N
4

Tr[Xµ, Xν ]2 (7.20)

as we set α = 0 and

1

Z

∫
[dX]

(
4S[X]e−S[X]

)
= 8(N2 − 1). (7.21)

Thus, 1
N2−1

< S[X] >= 2. From eq. (7.19) we see that the specific heat Cv should have a value

of 2 if the coupling α̌SU(d) is equal to zero. As the matrix phase is almost independent of the

cubic term, this result should be approximately true until the critical point α̌SU(d),?. As can be

seen in graph 7.12 or 7.18 and 7.14 or 7.20 for the specific heat Cv and < S >, our simulations

are in very good agreement with these results.

In chapter 4 it was shown that the matrices behave as random matrices whose distribution

was found to fit a parabola for the 3-matrix model while it converges towards a semicircular

distribution for a large number of matrices. In the 8-matrix case, seen in figure 7.1, the semicircle

distribution

ρwsc(x) =
2(R2

wsc − x2)1/2

R2
wscπ

, (7.22)

where the width of the distribution Rwsc is a fitting parameter, already gives better agreement

than a parabolic distribution. The asymptotic large D analytic value for R2
wsc = 2

√
2
D = 1.00,

obtained from a 1/D-expansion [104] for large D. The numerical value of Rwsc = 1.094± 0.002

found for D = 8 is already quite close to this asymptotic result.

As the eigenvalues of the matrices distribute randomly in the high-temperature matrix phase,

there is no underlying topology. Geometry emerges in this models when the system cools down

sufficiently such that the coupling is increased past the critical point α̌SU(d),?. The eigenvalue

distribution of the matrices changes from a continuous to a discrete distribution and the back-

ground expectation value of Xµ provide a geometry. This resulting geometry can thus be viewed

as emergent. The details of these geometrical phases will be discussed in the next sections.
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Figure 7.1: The eigenvalue distribution for matrix X1 of the 8-matrix-case together with the fit for

Rwsc = 1.094± 0.002 for α = 0. The model corresponds to a pure Yang-Mills model in that case.

7.3.2 Results for small matrices

Studies of the 3-dimensional model (see section 6.2.1) suggest that systems of small matrices

seem to behave quite differently from large matrices around the critical point. While small

matrices manage to transition from the matrix phase to the fuzzy phase, for large matrices the

matrix phase becomes more and more stable and the two different phases effectively separate.

Fluctuations will be suppressed. The problem with this suppression of fluctuations between

the different phases close to the critical point has been discussed for the 3-matrix model in

section 6.2.1 and stays valid for the current case. For matrix sizes N ≥ 10, our simulation

only probes a restricted ensemble as fluctuations are not large enough to jump between the two

different phases when we start in the matrix phase. For small matrices where transitions are still

possible the properties of the critical point are quite different. From the 3-dimensional model we

learnt that the critical point seems to shift away from the 1-loop result and we find a continuous

transition. The peak of the specific heat grows much faster due to the larger fluctuations when

the system can reach both phases and the behavior when approaching the transition seemed

symmetric and of first order rather than asymmetric as for larger matrices. To get a better

understanding of this phenomenon in the present model we will thus include results for small

matrices which can still fluctuate ergodically through the whole phase space.

Unfortunately the range of matrix sizes exhibiting an ergodic behavior within the whole

phase space is very limited. The smallest sized representation existing for both, the SU(2) and

SU(3) group, is N = 3. This case is particularly special as it is the only matrix size where

SU(3) has a lower free energy F than SU(2) (see eq.(7.17)). However, by studying the spectra

of this representation we see that the eigenvalues do not always show the expected properties of
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SU(3). For comparison we plot the spectrum of D1-D8 where Dµ = Xµ/α, in the matrix phase

for α = 0 in figure 7.2. We only see three peaks for the three eigenvalues which is the closest

result possible to a continuous distribution.
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Figure 7.2: A plot of the distribution of D1-D8 for N = 3 and α = 0 in the matrix phase. As the

matrix only has three eigenvalues we cannot find a real continuous distribution.

In figure 7.3 on the left we plot the spectra of the matrices for α ∼ 2.28, while we plot the

spectra for α ∼ 2.32 on the right. Both values of the coupling are clearly in the fuzzy phase

and, according to our analysis of the free energy, should be in a fuzzy CP 2 configuration. While

the graph on the right corresponds to the spectrum for SU(3) generators, the one on the left

does not. It does not look like SU(2) either though as all the eight matrices have the same,

symmetric spectrum. A possible explanation would be that the latter distribution is actually

free under unitary transformations, UXµU
†, as it should be in a completely ergodic simulation.

In that case the spectrum should not resemble the SU(3) generators as they were washed out

by the global SO(8) symmetry. All matrices would have the same spectrum. In section 7.3.4.1

we will discuss this issue for larger matrices in a SU(2) representation also.

When we look at figure 7.5, were we plot < 1
N2−1

S > and the theoretical prediction cor-

responding to the two solutions with SU(2) and SU(3) respectively, we see that the SU(2)

symmetric solution has a larger value of the action than the SU(3) symmetric one. The numeri-

cal results seem to converge to the theoretical result for SU(2) however, even though the SU(3)

prediction lies below the SU(2) result for N = 3. Taking this into consideration we compare with

the spectrum for α ∼ 7.60 in figure 7.4, where we started one simulation in a random configura-

tion (right graph) and one in a SU(2) symmetric state (left graph). We find that the matrices

started in a hot configuration exhibit a spectrum that corresponds to the SU(3) generators.

The matrices started in a SU(2) configuration still show the same symmetric spectrum for all

eight matrices. We thus expect that eventually for large enough α the system will thermalize in
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Figure 7.3: The spectrum for D1-D8 for N = 3 matrices and α ∼ 2.28 on the left and α ∼ 2.32

on the right. While both are in the fuzzy phase the spectrum on the left shows a similar, symmetric

distribution for all 8 matrices while the graph on the left corresponds to the spectrum for matrices

proportional to the SU(3) generators.

the global minimum given by SU(3) for N = 3 matrices even though it thermalizes in a SU(2)

symmetric configuration for smaller couplings, as seen in figure 7.5. We also learn that, even

for N = 3, transitions between the two fuzzy states are highly surpressed and once the system

stabilizes in one of the configuration it will stay there, independent if this is the global or only

a local minimum.
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Figure 7.4: The spectrum for D1-D8 for N = 3 matrices and α ∼ 7.60 started in a SU(2)

representation (left) or in a random configuration (right). The plot on the right shows a spectrum

that corresponds to matrices proportional to the SU(3) generators while the left graph still shows a

symmetric spectrum for all eight matrices.

Another interesting observable for this case is the specific heat Cv, plotted in figure 7.6.

Here, we again see that the numerical results agree for a random starting configuration. But

here the peak of the specific heat lies on the curve of the theoretical prediction for the SU(3)

result, while the action seemed to converge to the SU(2) prediction! Note also, that the points
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for the thermalized configuration in the fuzzy sphere differ, depending on the type of spectrum

the matrices exhibit. The lower points correspond to 8 symmetric matrices, while the upper

ones correspond to SU(3) generators as seen in figure 7.4 on the right. Following both of the

formed lines it seems as if the specific heat converges towards a value of Cv ∼ 3.0 or Cv ∼ 3.3

for large α, while the theoretical analysis predicts a value of Cv = 3.5. As we will see in the

later section, the numerical results agree excellently for matrix sizes N ≥ 10.
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Figure 7.5: The observable < 1
N2−1S >

is plotted for N = 3 matrices for simula-

tion runs starting in a random configura-

tion together with the theoretical predic-

tions from the 1-loop results for the free

energy around a classical SU(2) or SU(3)

solution, given in eq.(7.17). Note that the

numerical results from both starts converge

to the SU(2) result even though the free

energy for an SU(3) configuration would

be lower. In the inlay we see that some

points have slightly larger energies as ex-

pected. Those slightly lifted points exhibit

a spectrum proportional to the SU(3) gen-

erators while the lower ones show a sym-

metric spectrum for all 8 matrices.
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Figure 7.6: The specific heat Cv is

plotted for simulation runs starting in an

SU(2) or an SU(3) configuration. They

overlap but unlike < 1
N2S > the peak lies

on the line for the theoretical prediction for

SU(3) symmetric solutions. < 1
N2S > was

found to converge to the SU(2) result.

The next largest representation that exists for both, SU(2) and SU(3), is N = 6. In

figure 7.7 we see the eigenvalue spectra obtained from simulations starting in a random config-

uration that show an SU(2) configuration on the left and an SU(3) configuration on the right.

We again find the same properties as in the N = 3 case. One state corresponds to matrices

proportional to SU(3) generators while the other one exhibits a symmetric spectrum for all 8

matrices. As already discussed above, it is possible that this means that the system can move
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ergodically through all possible SU(2) configurations while the SU(3) state is stuck in one pos-

sible representation and cannot probe the unitarily equivalent representations ergodically in the

simulations.
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Figure 7.7: The spectrum for D1 − D8 for N = 6 matrices for α̃ = 3.0 is plotted for an SU(2)

symmetric starting configuration on the left and an SU(3) symmetric one on the right. While SU(3)

already shows the familiar spectrum, the spectrum for SU(2) still exhibits the same properties as

the N = 3 case.

For the observable < 1
N2S > plotted in figure 7.8 for N = 6 we see that the SU(2) configura-

tion now is the lowest one. When starting in such a configuration we obtained the green points

while the red ones where obtained by starting from an SU(3) configuration. From a random

start we thermalize sometimes in one and sometimes in the other state. First, the results seem

to agree very well with the theoretical prediction from the 1-loop result for SU(2) while the

SU(3) result still lies well above the analytical line. This again hints that fluctuations around

the SU(3) configuration lift the thermalized value further than fluctuations around the SU(2)

state.

Both curves show a continuous transition between the matrix and the corresponding fuzzy

phase. Fluctuations therefore seem to be large enough to bridge the gap between the two phases.

Nevertheless we still find two different curves, even though the SU(3) configuration corresponds

only to a metastable state. Even if the fluctuations are large enough to jump into the matrix

phase the system does not manage to find the SU(2) symmetric state. This hints that already

for N = 6 matrices the simulations depend a lot on the starting configuration and ergodicity is

not completely fulfilled anymore.

The specific heat is plotted in figure 7.9 and shows comparable properties as < 1
N2S >. We

find two different critical points, depending in which configuration we start the system. Note

that in both cases the specific heat has a very high peak, especially when comparing to large-N

results in the next section. Both curves are shifted from the analytical prediction.
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Figure 7.8: The plot shows the observ-

able < 1
N2S > for N = 6 matrices against

the unscaled coupling constant α. The

SU(2) results fits well to the theoretical

prediction while the SU(3) result is still

lifted above the analytical line. Note, that

even though fluctuations around the crit-

ical points are expected to become large,

the SU(3) configuration did not decay to

the SU(2) state! The starting configura-

tion of our simulations therefore seems to

be crucial and almost determines which be-

havior we will find even forN = 6 matrices.
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Figure 7.9: The specific heat Cv is plot-

ted against α for N = 6 matrices but two

different starting configurations, SU(2)

and SU(3). Even though one would expect

large scale fluctuations around the critical

point, the SU(3) configuration could not

reach the SU(2) symmetric minimum.

Let us continue by discussing the relation between the behavior of small matrices that can

fluctuate between matrix phase and fuzzy phase and the analytical 1-loop result which ignores

the matrix phase contribution. In figure 7.10 we see a plot of the observable < 1
N2S > from a

hot start, corresponding to a random configuration, for N = 3, 4. Only these two sizes could

fluctuate between the matrix and fuzzy phase often enough to obtain numerical results. We see

that they converge to the theoretical prediction for SU(2). While the transition is continuous

it seems to converge towards the theoretical line when increasing N . As larger matrices do

not fluctuate often enough anymore we cannot make a statement about a shift in the critical

point as N = 4 still seems to be consistent with the result from the expansion around the fuzzy

configuration.

The specific heat in figure 7.11 shows a slight shift in the critical point for N = 4. Again,

more data would be needed to make any clear conclusions. The peak of the specific heat is

increasing rapidly between N = 3 and N = 4 hinting a δ-function behavior at the critical point

which is expected for a first order transition. It clearly seems to be symmetric around ᾱ?.
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Figure 7.10: < 1
N2S > is plotted for

N = 3, 4 matrices where the simulations

were started in a random, hot configura-

tion. We see that both curves converge

nicely to the analytical result from the 1-

loop expansion around the SU(2) configu-

ration, eq.(7.17). The transition is contin-

uous.
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Figure 7.11: The specific heat Cv is plot-

ted against ᾱ for N = 3, 4 matrices, start-

ing from a random configuration. We see

a slight shift in the critical point ᾱ? for

N = 4. Also, the behavior around ᾱ?

seems to be symmetric. The peak is grow-

ing rapidly from N = 3 to N = 4, suggest-

ing a first order transition.

7.3.3 Properties of the fuzzy CP 2 phase

As already mentioned in section 7.2, the 1-loop expansion suggests that the fuzzy CP 2 state

does not form the ground state of the system and the system should eventually decay to the true

minimum given by the fuzzy S2. This has been noted theoretically before in [91]. Due to the

barriers between the local minimum of the fuzzy CP 2 configuration and the global minimum of

fuzzy S2, the tunneling is more and more suppressed the larger the matrix size. In the limit of N

going to infinity the local minimum is expected to become stable. As this suppression is already

large enough for N ≥ 10 to prevent any jump between the fuzzy minima in our simulation

runs, we can take advantage of it and perform a study of the fuzzy CP 2 configuration. To do

this, we started all simulation runs of this section in the classical solution for fuzzy CP 2 and

let it evolve, using a Hybrid-Monte-Carlo algorithm (see appendix C.2). Note that by studying

phase transitions between the fuzzy CP 2 and the matrix phase in the following we are studying

transitions between a metastable, excited state and the matrix phase.

Using the analytical results obtained in sections 5.2.4 and 5.2.5 respectively we plot 1
N2−1

<

S > and < 1
N3/2 Tr(Xµ)2 > as in figures 7.12 and 7.13 using the rescaled coupling constant α̃.

The agreement with the 1-loop result is excellent and we can see a jump at the point of the

phase transition. For finite size systems the transition should be continuous in standard lattice

systems. However, an effective discontinuity can appear due to simulation difficulties.
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Figure 7.12: The observable 1
N2−1 < S >

is plotted against the coupling constant α̃

for matrix sizes N = 21, 28, 45, 66.
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Figure 7.13: A plot of the quantity <
1

N3/2 Tr(Xµ)2 > against the coupling α̃ for

N = 21, 28, 45, 66. The numerical results

for large matrices fit very well to the ana-

lytical result obtained in Appendix 5.2.5.

In figure 7.14 we plot the specific heat around the phase transition from the matrix phase to

the CP 2 configuration. First, we can note that for large values of α̃ the specific heat converges

towards 3.5 as was predicted in eq. (5.62). For large matrices the behavior of the system is

different when approaching this transition from the hot, matrix phase or the fuzzy CP 2 phase.

In section 5.2.4 we found the same critical exponent as in the 3-matrix case for all SU(d)

gauge groups. Performing a numerical check of the exponent with reasonable accuracy requires

a very detailed resolution of the phase transition for large matrices and is beyond reach of our

simulations for the 8-dimensional case studied here. A first attempt to study critical exponents

in matrix models has been carried out in [96].
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Figure 7.14: The specific heat Cv is plotted against the coupling constant α̃ for matrix sizes

N = 21, 28, 45, 66.

102



7.3 Numerical Results

7.3.3.1 Eigenvalue distributions

For our numerical studies of the eigenvalue distributions in the fuzzy phases it is convenient to

rescale the matrices Dµ = 1
αXµ, such that we can pull out the coupling constant α in the action

(7.3).

S[D] = α4NTr{−1

4
[Dµ, Dν ]2 +

i

3
fµνρDµ[Dν , Dρ]} (7.23)

The matrices Dµ now correspond exactly to the generators of SU(d) in the fuzzy phases with

the known commutator relations and invariants C2 and C3 (only for SU(3)) if α� α?.

The eigenvalue distributions of the individual matrices exhibit a discrete spectrum in this

phase that corresponds to the SU(3) generators. For the generators T (n,0) they are given by

{n
2
,
n− 1

2
, . . . ,−n

2
} for D1 −D7 (7.24)

1√
3
{n

2
,
n− 3

2
, . . . ,−n} for D8. (7.25)

This fits nicely to the numerical results as can be seen in graphs 7.15 for N = 28 (corresponding

to n = 6, see eq.(7.6)).
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Figure 7.15: The eigenvalue distribution of matrices D1 and D8 in the fuzzy CP 2 phase are plotted

for size N = 28 and α ∼ 2.61. The discrete spectrum corresponds to the generators Tµ of SU(3).

Another observable, namely the commutator of two matrices is plotted in figure 7.16. Here

we used the expectation value of the commutators i[D1, D2] and i[D4, D8] as an example as the

spectrum for matrices D1-D7 are equal. We see that the spectrum of the commutator i[D1, D2]

is equal to D1 in figure 7.15.

Another interesting matrix to look at is

B = λµ ⊗Dµ, (7.26)
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Figure 7.16: The eigenvalue distribution of i[D1, D2] (left) and i[D4, D8] (right) in the fuzzy CP 2

phase are for size N = 28 and α ∼ 2.61. The spectrum of the commutator i[D1, D2] is equal to the

spectrum of matrix D1 plotted in figure (7.15) as f123 = 1. The value of the structure constant fµνρ

for commutator i[D4, D8] is f458 =
√
3
2 .

where the λµ’s are the Gell-Mann-matrices. Diagonalizing this matrix and plotting the eigen-

value distribution allows us to distinguish between the different representations of SU(3) in the

fuzzy CP 2 case and SU(2) for fuzzy S2. In section 5.3 we derive the expected spectrum of B

for both cases. The result where the matrices Dµ are the SU(3) generators T (n,0) is given by

EV (BSU(3)) =
1

2

(n
3
− 1
)
±
√

2

9
n(n+ 3) +

1

4

(n
3
− 1
)2
. (7.27)

In figure 7.17 we see an example for the representation n = 6 which is expected to have eigen-

values equal to 1
2 ±

7
2 and fits excellently with numerics.
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Figure 7.17: The eigenvalue distribution of matrices B = λµ ⊗ Dµ in the fuzzy CP 2 phase are

plotted for size N = 28 and α ∼ 2.61. It fits very good to the theoretical prediction in eq. (7.27).
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7.3.4 Properties of the fuzzy S2 phase

The fuzzy S2 forms the global minimum of the system we are studying here. The scaling of the

coupling constant differs from the one used for the fuzzy CP 2 and is given by

ᾱ4 = N2α4. (7.28)

The action 1
N2−1

< S > and 1
N < 1

NTr(Xµ)2 > is plotted in graphs 7.18 and 7.19. The numerical

results for large N in these plots, probing only the restricted ensemble of fuzzy CP 2 states, agree

excellently with the analytical functions, eq.(5.78) and (5.87), found for values in this phase in

both cases. We see a jump at the point of the phase transition, as for the CP 2 case, which

suggests that this is a first order phase transition.
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Figure 7.18: The mean value of the ac-

tion 1
N2−1 < S > is plotted against the

coupling constant ᾱ for N = 21, 28, 45, 66.
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Figure 7.19: A plot of the quantity 1√
N
<

1
NTr(Xµ)2 > against the coupling ᾱ for

N = 21, 28, 45, 66. The numerical results

for large N fit very well to the analytical

result obtained in Appendix 5.2.5.

The specific heat around the transition point ᾱ? is plotted in graph 7.20. The general

behavior agrees with the one found for the transition between the matrix phase and fuzzy CP 2

and again has an asymmetric form for large N . It also converges towards 3.5 as predicted in

eq.(5.64). The divergent specific heat when approaching the transition from the fuzzy phase

indicates a 2nd order phase transition, while the finite jump when moving towards the point of

the phase transition from the matrix phase side and the finite jump in < S > (see figures 7.18)

correspond to a first order transition.

In figure 7.20 we see the result for the specific heat Cv for large matrices. Here, we find

excellent agreement with the 1-loop calculations carried out in section 5.2.4. Comparing the

height of the peak of the specific heat for N = 66 matrices with the result for N = 4 matrices

in figure 7.11 we can recognize that they are almost equal. As small matrices manage to jump
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between the two phases the specific heat should be proportional to the sum of the fluctuations

in the two phases. For large matrices the system is confined in the fuzzy phase when we start it

in such a configuration and the specific heat only takes fluctuations in that phase into account.

Here we see that this makes a big difference.
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Figure 7.20: The specific heat Cv is plotted against the coupling constant ᾱ for matrix sizes

N = 21, 28, 45, 66.

7.3.4.1 Eigenvalue distributions

As mentioned in section (7.1), there are different ways how to implement the fuzzy S2 into the

eight matrices. Due to the choice of basis, one of the definitions only fits into three matrices

(using matrices 1,2 and 3), while other possible ways will need linear combinations of more

matrices. For the two other definitions we picked in section 7.1 the diagonal matrix is a linear

combination of matrices X3 and X8. In theory, all three implementations should be found equally

often forming the ground state as they have the same energy and a unitary transformation rotates

between them. This issue was already discussed in section 7.3.2 for small matrices where the

distribution for the SU(2) representation hinted that the whole orbit of SU(2) representations

could be probed. In the case for larger matrices each of the configurations in our simulations

is stable when we choose to start the system in them, but the system never jumps into a

configuration using four matrices when starting from a random configuration. This means that

our simulation is violating ergodicity and effectively reduces the degeneracy of the ground state,

such that the chance of jumping into the fuzzy S2 configuration from an arbitrary state is smaller

than it should be. A possible explanation for this lack of unitary equivalent configurations

in our simulations is that the Hybrid-Monte-Carlo algorithm only introduces translations in

terms of the random momenta generated from a heatbath (see Appendix C.2) for each matrix

independently but no rotations. Allowing for linear combinations of the individual matrices as
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the final state in the Hamiltonian dynamics could possibly improve this behavior and should be

studied in the future.

In fact we are taking advantage of this non-ergodicity as we would always see a SO(8)

symmetric spectrum if unitary transformations were visible in the simulation results, no matter

if we are in a SU(3) or SU(2) representation. Even if the system would effectively move on a

SU(2) orbit of the SU(3) group, this effect would be washed out as the distribution would be

averaged over all eight matrices, as is possible seen for small matrices. Were the simulations

ergodic in this way, one would have to gauge fix the system to be able to detect such symmetries.

The eigenvalue spectra for the matrices forming the fuzzy S2 for each of the three configu-

rations given in table 7.1 are shown in graphs 7.21 using the rescaled matrices Dµ, defined in

section 7.3.3.1. In the rest of this section we will always assume the first configuration which

only needs three matrices, using the unscaled matrices D1,D2 and D3.

The eigenvalues in each of the distributions for any of the configurations in table 7.1 corre-

spond to the generators of the gauge group. Those eigenvalues are given by

1

2
{−n

2
,−n

2
+ 1, . . . ,

n

2
} for D3 in configurations 2,3 (7.29)

√
3

2
{−n

2
,−n

2
+ 1, . . . ,

n

2
} for D8 in configurations 2,3 (7.30)

{−n
2
,−n

2
+ 1, . . . ,

n

2
} for D4, D5 in conf.2 D6, D7 for conf.3 and D1 −D3 for conf.1

(7.31)

and are not degenerate. The examples in graph 7.21 are plotted for N = 28, corresponding to

SU(2) representations with n = 27, and α ∼ 0.94. The different height of each peak might be a

remainder of the hot temperature phase as discussed in section 6.3 for the 3-dimensional model.

The commutator i[D1, D2] is plotted in figure 7.22 next to the spectrum of the matrix

D3. As the matrices are proportional to the SU(2) generators in the fuzzy S2 phase, the two

distributions are similar. The peaks in the spectrum for the commutator are just a bit more

spread out due to the additional commutation between the two matrices D1 and D2 performed

to obtain it. Note that for the commutator the eigenvalues seem to have equal degeneracy.

The spectrum of matrix B is shown in figure 7.23. The non-zero eigenvalues are given by

EV (BSU(2)) = Laσa = −1

2
±
(N

2

)
, (7.32)

where N
2 −

1
2 has a degeneracy of N + 1 and −N

2 −
1
2 a degeneracy of N − 1. Further, there is an

additional peak at zero of N eigenvalues, as explained in section 5.3, if the system thermalized

around the fuzzy S2 solution corresponding to the largest SU(2) representation L(n). The plot
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Figure 7.21: The plots show the eigenvalue distributions of the matrices forming the embedded

fuzzy S2 for α ∼ 0.94, in the eight matrices for the three different configurations in table 7.1. In the

uppermost graph we see the distribution of D1−D3 for the first configuration. We see that they all

exhibit the same distribution. The two graphs below form configuration 2 where the sum of the two

distributions in the right figure form the diagonal matrix in this configuration. The same behavior

can be seen for the third configuration in the two lowest graphs.

shows an example from a simulation done for matrices with size N=28 (n=27). According to

equation (7.32) its non-zero eigenvalues are −1
2 ± 14, agreeing with our numerical results.

The other five matrices D4-D8 that are not forming the fuzzy sphere have continuous distri-

butions. Two examples are plotted in figure 7.24 for two different couplings.
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Figure 7.22: The commutator i[D1, D2] (left) and the spectrum of D3 (right) is plotted for N = 28

and α ∼ 0.94. Their distributions look similar as the matrices D1,D2 and D3 correspond to the

SU(2) generators up to fluctuations.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

−15 −10 −5  0  5  10  15

ρ(
x)

 

eigenvalues

N=28, B

Figure 7.23: The spectrum of matrix B = λµ ⊗ Dµ is plotted for N = 28 and α ∼ 1.13. The

positive eigenvalue has a degeneracy of N + 1, while the negative eigenvalue has a degeneracy of

N − 1. We can see that the positive peak is slightly larger than the negative one. The peak of N

zero-eigenvalues is higher which might be due to finite matrix effects.

Matrix D8 has a very narrow Gaussian distribution in all our simulations,

ρGauss(x) =

√
b

π
· e−bx2

, (7.33)

where b is a fitting parameter. Figure 7.26 shows a plot for D8 for N = 45, 66 with α ∼ 1.15

and a fit to the larger matrix where b ∼ 369. We would expect that diagonal matrices which

entries behave randomly exhibit a Gaussian distribution and we thus expect that matrix D8 is

diagonal. In some cases the eigenvalues of one of the other matrices D4 − D7 distribute as a

Gaussian as well but this is not always the case. We can also notice that the spectrum of matrix

D8 in figure 7.26 is slightly asymmetric. This is the influence of the SU(3) state induced by

the structure constant fµνρ as the spectrum of matrix X8 is asymmetric for SU(3). A similar
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Figure 7.24: The distributions of the five matrices D4-D8 that are not forming the fuzzy sphere

are plotted for α ∼ 1.14 to the left and α ∼ 1.15 to the right. Matrix D6 has a Gaussian distribution

in one case and an almost flat distribution in the other case.

effect has been observed in figure 8.7 for the modified 8-matrix model in the matrix phase (see

section 8.2.2). Matrices D4,D5 and D7 always have an almost flat distribution (see figure 7.25).

The tails of the distribution show some rounding but it is likely that they become steeper with

increasing matrix size N . It is rather surprising that most of the matrices that do not form

the fuzzy sphere exhibit equally distributed eigenvalues as one would have expected to find a

semicircular or parabolic distribution as found in the matrix phase of this model. As discussed

previously, a semicircular distribution is an indication for random matrices. Therefore, the

eigenvalues in the case under consideration do not distribute randomly. The effect that causes

this distribution has yet to be understood.
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Figure 7.25: The plot shows the eigen-

value distribution of D4 for α ∼ 1.15. Its

eigenvalues are almost equally distributed.
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Figure 7.26: The distribution of D8 for

α ∼ 1.15 fits a Gaussian distribution given

in eq. (7.33). The parameter b ∼ 369.
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Chapter 8

Modified 8-matrix model with CP 2

as ground state

While we discussed the 8-dimensional Yang-Mills-Myers model in the last section we recognized

that, even though it allows for a fuzzy CP 2 solution, the ground state is still given by the fuzzy

2-sphere, as in the 3-matrix model case. We found this by comparing the free energy of the two

states. This should not have been surprising as a study of the lie algebra representations for the

two cases, SU(2) and SU(3), shows that a representation for SU(2) L(n) exists for every matrix

size N ,

dim(T (n)) = n+ 1, (8.1)

where n is the Dynkin index corresponding to the highest weight of the representation, while in

the case of SU(3), representations T (n1,n2) only exist for specific dimensions,

dim(T (n1,n2)) =
(n1 + 1)(n2 + 1)(n1 + n2 + 2)

2
. (8.2)

The Dynkin indices therefore grow more slowly for SU(3) than for SU(2) and the action for

the YM-Myers model will always be larger for a configuration built by SU(3) generators than

in the SU(2) case. This consideration is only true for the classical case but as the degeneracy

of SU(2) configurations is larger than for SU(3) configurations it seems very plausible that this

relation will persist when including fluctuations.

To define a model where the fuzzy CP 2 state forms the true ground state of the system we

will therefore need to find a way to penalize SU(2) configurations. A good way to achieve this

is to consider invariants of the two lie groups. Here we immediately recognize that, while for

SU(2) there only exists one invariant Casimir operator, C2(L), for SU(3) we also have C3(T ), the

cubic Casimir. Another way of looking at this is that there exists no totally symmetric tensor for
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SU(2) while such an object exists for higher lie algebras. We will use this additional structure

of SU(3) to introduce a term to the action that vanishes for SU(3) configurations but stays

non-zero if the matrices Xµ are proportional to the SU(2) generators Lµ. The additional term

that will achieve the desired lift of states of the system proportional to SU(2) representations

is given by

S1[X] = λTr

(
(dµνρXνXρ −

αC3

C2
Xµ)2

)
, (8.3)

where λ is a coupling constant that has to be chosen large enough to guarantee that fuzzy CP 2

forms the ground state. For Xµ = αTµ the two terms are equal to each other and S1 will vanish.

In [91] the authors carried out an analytical construction of fuzzy CP 2 and found the same term

to stabilize the fuzzy complex projective plane. The complete action for this model will thus be

S[X] = S0[X] + S1[X] =

= NTr

(
−1

4
[Xµ, Xν ]2 +

iα

3
fµνρXµ[Xν , Xρ]

)
+ λTr

(
(dµνρXνXρ −

αC3

C2
Xµ)2

)
(8.4)

In the following sections we will analyze the behavior of the system when changing the two

couplings α and λ. We will start by considering possible solutions to the equation of motion

and constructing the effective potential for those solutions. We will then turn to numerics to

map out a phase diagram of this model and discuss the expectation value of the action and

eigenvalue distributions for the different phases and the specific heat around the different phase

transitions.

8.1 Solutions to the equations of motion and classical/effective

potential

In order to find the classical minima of the model in eq. (8.4) we derive the equations of motion,

given by

δS[X]

δXσ
= N

[
Xν ,−

[
Xσ, Xν

]
+ iαfσνρXρ

]
+

+ λ
(

2dσµρdµηω

{
Xρ, XηXω

}
− 6αCSU(3)

3

CSU(3)

2

dσµνXµXν + 2
(αCSU(3)

3

CSU(3)

2

)2
Xσ

)
, (8.5)

where α and λ are coupling constants, fµνρ and dµνρ correspond to the totally antisymmetric and

totally symmetric tensor of SU(3) and CSU(3)

2 and CSU(3)

3 are the Casimir operators of that lie

algebra. The definitions of these quantities are given in Appendix A. The commutator part of the

equations of motion derives from the pure Yang-Mills-Myers model which we discussed already
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earlier. Here, we additionally have a term proportional to the totally symmetric tensor of SU(3).

Such a tensor does not exist for SU(2) lie algebras and therefore setting the first three matrices

Xa, with a = 1, 2, 3, proportional to the SU(2) generators and the rest of the matrices equal

to zero will not be a solution of the equations of motion anymore. The solution proportional

to the lowest SU(d) lie algebra will thus have SU(3) symmetry given that the coupling λ is

large enough. By construction, the N -dimensional, irreducible SU(3) representation scaled by

α, Xµ = αφJµ where µ = 1, ..., 8, is a solution to the equations, as the λ-terms cancel to zero.

Even commuting matrices cease to be a solution to the equations of motion but, as we will see

later, the λ-term adds only fluctuations in the matrix phase but does not change the properties.

8.1.1 SU(3) symmetric solution

We will start analyzing the SU(3) symmetric solution. Here, the term S1[X] vanishes by con-

struction and the only adjustment we have to make from the pure Yang-Mills-Myers model when

expanding Xµ = αφTµ is to include the contribution due to the scaling factor in the classical

part of the effective action coming from S1[X]. This contribution will cancel to zero at the

minimum of the potential as φmin = 1 as we will see below. There is no additional contribution

up to first-order loop corrections.

Seff = 2(N2 − 1) lnα4 +N2α4Cadj

2 CSU(3)

2 (T )
(φ4

4
− φ3

3
+ g(φ2 − φ)2

)
+ 6(N2 − 1) ln(αφ)

(8.6)

Here we rescaled the coupling constant λ as

g = λ
1

NCadj

2

(
CSU(3)

3

CSU(3)

2

)2

(8.7)

where CSU(3)

3 = 1
6 (2n+ 3)CSU(3)

2 and n is again the Dynkin index of the highest weight of the

representation. In the large-N limit we thus have

N = dimT (n,0) =
(n+ 1)(n+ 2)

2

n→∞∼ n2

2
(8.8)

⇒
(
CSU(3)

3

CSU(3)

2

)2
n→∞∼ n2

9
=

2N

9
(8.9)

and therefore

g
n→∞∼ 2

27
λ. (8.10)

This additional factor of the matrix size N we found in this analysis is the reason we did not

pull out N in front of the action S1[X] in eq.(8.4) as we did for the Yang-Mills-Myers part.
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The complete action is now independent of N for the supposed ground state of the system with

Xµ = αφTµ in the large-N limit as were the models treated earlier. Therefore observables in

this state will become independent of N in the large-N limit. With these definitions we are able

to write down the 1-loop analytic result for the effective potential Veff ,

Veff =
7

2
ln α̃4 + 2α̃4

(φ4

4
− φ3

3
+ g(φ2 − φ)2

)
+ 6 ln(φ). (8.11)

Here we used α̃4 = Nα4, defined in eq.(5.51). As in the 3-dimensional case, investigated in [43]

and section 6, the first order contribution consists only of the logarithmic term in the N → ∞
limit. By computing the first and second derivative with respect to φ we can solve for the critical

solution of the scaling factor φ?.

φ
d

dφ
Veff

∣∣∣∣
?

= 2α̃4
(
φ4 − φ3 + g(4φ4 − 6φ3 + 2φ2)

)∣∣∣∣
?

+6 = 0 (8.12)

φ2 d
2

d2φ
Veff

∣∣∣∣
?

= 2α̃4
(

3φ4 − 2φ3 + g(12φ4 − 12φ3 + 2φ2)
)∣∣∣∣
?

−6 = 0 (8.13)

We find the solution for φ? to be

φ? =
3(1 + 6g) +

√
9 + 44g + 68g2

8(1 + 4g)
(8.14)

Inserting this result into eq.(8.12) and solving for α, we find the critical value of the coupling

constant,

α̃4
? = 1536(1 + 4g)3/

[
9
(

3 +
√

9 + 44g + 68g2
)

+ 2g
(

434 + 83
√

9 + 44g + 68g2+

+ 2g
(

434 + 83
√

9 + 44g + 68g2 + 2g
(

404 + 214g + 51
√

9 + 44g + 68g2
)))]

. (8.15)

This expression is more complicated than in the pure Yang-Mills-Myers model but by setting

the coupling constant g to zero we recover the critical values of this simpler model,

φ? = 3/4 (8.16)

α̃4
? = 12

(4

3

)3
∼ 2.309. (8.17)

In the limit of g � 1 the critical values for φ and α̃ are given by

φ? =
18 +

√
68

32
∼ 0.82 (8.18)

α̃4
? =

128√
17g

. (8.19)

The critical coupling α̃? is thus going to zero for very large g as any states except the SU(3)

symmetric configuration is lifted by the second term in the action, S1[X]. In figure 8.1 we see
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Figure 8.1: The figure shows a plot of parameter space for the SU(3) symmetric state. The line

indicates the critical coupling α̃? between the matrix phase and fuzzy CP 2. Further, we can see that

the model is stable for g > −1/2. For g →∞ the critical point α̃? converges to 0.

a plot of the parameter space where the line indicates the critical line α̃? between the matrix

phase and fuzzy CP 2. We can see that it moves towards α̃? = 0 for g →∞. Notice further that

the model is stable even for slightly negative values of g > −1/2.

Taking the derivative with respect to α̃4 of the effective potential Veff , we can compute φmin

and expand it in terms of large α. We find that

φmin = 1− 3

1 + 2g

1

α̃4
− 9(3 + 8g)

(1 + 2g)3

1

α̃8
+ O

(
1

α̃12

)
. (8.20)

We can also compute an expression for φ4 from eq.(8.12) which we subsequently substitute in

the result of <S>
N2 = α̃4 d

dα̃4Veff to obtain an expression for the expectation value of the action in

terms of powers of φ up to φ3. Using this result we can compute the expectation value for the

action:

< S >

N2
= 2− 1

6
α̃4φ2 (φ+ 6g(φ− 1))

∣∣∣
φ=φmin

=

= 2 +
3 + 6g

2(1 + 2g)
− α̃4

6
+

(
− 9 + 36g

2(1 + 2g)2
+

(9 + 18g)(3 + 9g)

2(1 + 2g)3

)
1

α̃4
+

+

(
9 + 54g

2(1 + 2g)3
− (27 + 108g)(3 + 8g)

(1 + 2g)4

)
1

α̃8
+ O

(
1

α̃12

)
(8.21)

and thereby the specific heat Cv

Cv =
< S >

N2
− α̃4 d

dα̃4

< S >

N2
= 2− α̃5

24

(
3φ2 + 18gφ2 + 16gφ

) dφ
dα̃

∣∣∣
φ=φmin

=

= 2 +
3 + 34g

2(1 + 2g)
+

(
− 9 + 78g

(1 + 2g)2
+

27 + 378g + 816g2

(1 + 2g)3

)
1

α̃4
+

+

(
27 + 162g

2(1 + 2g)3
− 243 + 2754g + 5616g2

(1 + 2g)4

)
1

α̃8
+ O

(
1

α̃12

)
. (8.22)

We again recover the results from the pure Yang-Mills-Myers term model when setting g = 0.
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8.1.2 SU(2) symmetric solution

Due to our choice of the constant factor CSU(3)

3 /CSU(3)

2 in S1, SU(2) is no solution to the equations

of motion anymore. This changes once we set λ = 0 and recover the pure Yang-Mills-Myers term

model and we should expect to find solutions of this simpler model as the ground state even for

small enough values of λ 6= 0, at least for finite sized matrices. If we imagine the phase space for

the λ = 0 model, we find a critical point α̃? beyond which the fuzzy S2 forms the ground state.

By slowly increasing the value of λ for a value α̃ > α̃?, we penalize this configuration while

the fuzzy CP 2 stays largely unaffected. Therefore, there will be a critical value λ? where the

thermalized fuzzy sphere configuration has a larger free energy than fuzzy CP 2 and the ground

state of the model for such a set of parameters will be the fuzzy CP 2. For smaller values of λ we

will still find the fuzzy sphere as the ground state, even though it is no solution to the classical

equations of motion anymore. We will study the effective potential for this SU(2) symmetric

state in the following.

Inserting the ansatz

Xa = αφLa +Aa for a = 1, 2, 3
Xb = 0 for b = 4, . . . , 8,

(8.23)

where the La form a N -dimensional SU(2) symmetric representation, into the action we obtain

the effective action for the SU(2) solution

SSU(2)
eff = 2(N2 − 1) lnα4 + 2α4N2CSU(2)

2 (N)

[
φ4

4
− φ3

3
+

+
λ

2N

((
CSU(3)

3

CSU(3)

2

)2

φ2 +
φ4

3
CSU(2)

2

)]
+ 6(N2 − 1) lnαφ. (8.24)

Dividing by N2 and inserting the values for the Casimir operators we find that

V SU(2)
eff = 2 lnα4 +

α̃4N

2

(
φ4

4
− φ3

3
+
λ

2

(
Nφ4

12
+

2φ2

9

))
+ 6 ln α̃φ, (8.25)

where we used the scaling α̃ = αN1/4. Unlike in the pure Yang-Mills-Myers model, it is the

same as for fuzzy CP 2. From the first two derivatives with respect to φ, evaluated at the critical

point φ? where the derivatives are equal to zero, given by

φ
d

dφ
V SU(2)
eff

∣∣∣∣
?

=
α̃4N

2

(
φ4 − φ3 +

λ

2

(
4

9
φ2 +

N

3
φ4

))∣∣∣∣
?

+6 = 0 (8.26)

φ2 d
2

d2φ
V SU(2)
eff

∣∣∣∣
?

=
α̃4N

2

(
3φ4 − 2φ3 +

λ

2

(
4

9
φ2 +Nφ4

))∣∣∣∣
?

−6 = 0 (8.27)
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we obtain, by adding the two equations above,

φ1,2;? = 0 (8.28)

φ3;? =
27 +

√
729− 576λ− 96Nλ2

12 (6 +Nλ)
(8.29)

φ4;? =
27−

√
729− 576λ− 96Nλ2

12 (6 +Nλ)
, (8.30)

as the critical values of φ where the effective potential ceases to exist.

For finite values of N the solution for φ? which results in the lowest effective potential is given

by solution φ4;?. For large enough λ this solution becomes imaginary though as the argument

in the square root becomes negative. This happens at a value of λ

λ′?(N) =
3
(
−8 +

√
64 + 54N

)
8N

. (8.31)

We can also compute the critical coupling constant α̃SU(2),? = α?N
1/4 by inserting the solution

φ4;? into eq.(8.26), and obtain

α̃SU(2),?(N,λ) =
(

12(6 +Nλ)3/4
)
/
(
N
(

729
(

27 +
√

729− 96λ(6 +Nλ)
)

+

+16λ(6 +Nλ)
(
−243 + 8λ(6 +Nλ)− 6

√
729− 96λ(6 +Nλ)

)))1/4
. (8.32)

Also α̃SU(2),? becomes imaginary for λ > λ? which is smaller than λ′?. It is given by

λ?(N) =
−6 + 3

√
4 + 3N

2N
. (8.33)

From this we can learn that α̃SU(2),? for a certain fixed matrix size N asymptotes towards a

critical value of λ?. The value of λ′? for which φ4;? becomes imaginary will not be reached but

the phase transition occurs already before that value for all matrix sizes. The fact that λ? goes

to zero for N →∞ shows that there will be no more SU(2) symmetric phase in the continuum

limit as we know from analyzing the classical equations of motion.

This λ? describes the critical value above which the SU(2) symmetric phase would cease to

exist. In simulations the system will undergo a phase transition towards a different fuzzy phase

much earlier and we will only be able to see this critical line for a short range in practice.

We can also obtain an estimation for the expectation value of the action and the specific

heat Cv at the minimum of the potential in the SU(2) symmetric phase as long as such a phase

exists, i.e. for λ < λ?, as defined in eq.(7.19). These quantities are given by

< S >

N2
=

7

2
+
α̃4N

2

(
φ4

4
− φ3

3
+
λ

2

(
Nφ4

12
+

2φ2

9

)) ∣∣∣
φ=φmin

(8.34)

Cv =
7

2
− α̃5N

4

(
φλ

18
− φ2

8

)
dφ

dα̃

∣∣∣
φ=φmin

, (8.35)

117



8. MODIFIED 8-MATRIX MODEL WITH CP 2 AS GROUND STATE

where φmin = φ̄/α̃ and φ̄ is the solution of

d

dφ̄

V SU(2)
eff

N2
=

6

φ̄
+
N

2

(
−α̃φ̄2 + φ̄3 +

1

2
λ

(
4α̃2φ̄

9
+
Nφ̄3

3

))
= 0 (8.36)

when solving for φ̄ = α̃φ. We will see in section 8.2.5 that this estimate gives a good description

of the system in this phase.

8.1.3 State with SU(2)× U(1) symmetry

There is yet another solution to the equation of motion for the λ = 0 model, namely SU(2)×U(1)

configurations. These are obtained by setting

Xa = αφ

(
La 0
0 0

)
for a, b = 1, 2, 3

Xb = 0 for b = 4, . . . , 7

X8 = αφ̃

(
u1k 0
0 v1N−k

)
with constraint u · k + v · (N − k) = 0

where the La form a k-dimensional SU(2) representation while the other (N−k) dimensions are

initialized to zero. The 8th matrix consists of two scaled U(1) generators, one of dimension k and

the other one of dimension (N − k) in order to be able to fulfill the tracelessness condition. The

first k dimensions are thus forming an SU(2)×U(1) representation. The size of the representation

cannot be equal to the matrix size N , as the U(1) generator would not be traceless otherwise.

It has to fulfill the constraint uk + v(N − k) = 0, where k stands for the size of the SU(2)

representation, (N − k) is the size of the rest of the matrix that is set to zero in our simulations

initially and u and v are coefficients that have to be adjusted such that the constraint is fulfilled.

Thus, all SU(2)×U(1) configurations of size 2 ≤ k < (N − 1) are possible solutions. Note that

in general the (N − k)-dimensional part of the matrices Xa, a = 1, 2, 3 can form another SU(2)

representation such that we find two SU(2)× U(1) representations in that case. For simplicity

we will not consider this more general case here. From studies of excited states in the 3-matrix

model 6.1 we see that in simulations such states with two lie group representations are, even

if not forbidden, never seen in practice. For representations of sizes k < N , the rest of the

matrices always fluctuated randomly around zero. Further, due to the implementation of the

tracelessness condition in our simulations, there exist two U(1)’s that can move freely as long

as they sum to zero (see discussion in section 6.1). This effect will play a role in simulations as

we see later.

In the λ = 0 model the SU(2) × U(1) solution only appears as a possible excited state,

as the SU(2) configuration that forms the ground state is N -dimensional while, due to the

tracelessness condition, SU(2) × U(1) configurations must have size k < N and thus always
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have a higher energy. As soon as we turn on λ both of these configurations are not solutions to

the equations of motion. However, compared to the SU(2) configuration, the additional term

S1 in the action will lift the free energy of the SU(2)×U(1) configuration by less. The non-zero

matrix X8 allows the system to adjust the matrix configuration more efficiently. Recognizing

that the energy difference between states with SU(3) and SU(2) symmetry is quite large and

growing with the matrix size N , there will be a region in phase space for λ 6= 0 where the energy

of a SU(2)× U(1) state is still smaller than the lowest SU(3)-symmetric state and also smaller

than any SU(2) configuration. This effect will make a possible SU(2)× U(1) configuration the

ground state of the model in a certain range of parameters α and λ.

Further, the number of possibilities to put an SU(2) representation of size k into a N -

dimensional matrix grows the smaller the SU(2) representation gets, thus increasing the degen-

eracy of this configuration. As Monte-Carlo simulations do not minimize the internal Energy U ,

but the free Energy F of this system, this larger degeneracy of the SU(2)× U(1) configuration

when comparing with the SU(2) or SU(3) representations will further increase the chance of

finding this configuration as the ground state of our system.

Inserting this configuration into the action we obtain the following classical potential

V SU(2)×U(1)
class = α̃4kCSU(2)

adj CSU(2)

2 (k)

(
φ4

4
− φ3

3

)
+

+
α̃4λ

N

{(
2√
3
φ̃− CSU(3)

3 (N)

CSU(3)

2 (N)

)2

φ2kCSU(2)

2 (k)+

+

(
φ̃√
3
CSU(2)

2 (k)− φ̃

(
φ̃√
3

+
CSU(3)

3 (N)

CSU(3)

2 (N)

))2

k+

+

(
−C

SU(3)

3 (N)

CSU(3)

2 (N)
+

φ̃√
3

k

N − k

)2
k2φ̃2

N − k

 (8.37)

where we set v = − uk
N−k and rescaled φ̃ → aφ̃. In the limit k,N → ∞ with k/N fixed, it takes

the following form:

V SU(2)×U(1)
class

k2
=
α̃k

2

(
φ4

4
− φ3

3

)
+
λα̃4

N

{
k3

12
φ4 +

Nk

18
φ2 − 9

√
2Nk

24
√

3
φ̃φ2 +

7k

3
φ̃2φ2−

− 2
√

2N

3
√

3

k2

(N − k)2
φ̃3 +

2N

9(N − k)
φ̃3 +

2N

9k
φ̃2 +

k3

3(N − k)3
φ̃4

}
(8.38)

We can see that it is hard to decide which factor of N or k gives the best scaling for α as we do

not know how k is growing. In contrary to the matrix size N , k can vary between 2 ≤ k ≤ N

and, as we will see later, does vary in our simulations. The larger the coupling constant λ, the
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smaller is the representation of SU(2)×U(1). As both the SU(3) and the SU(2) configurations

scaled with α̃ = αN1/4 we will use the same scaling for this phase. Further, that different

terms in eq.(8.38) have different dependencies on the size of the representation k or the matrix

N indicates that results for different matrix sizes N will not overlap in this phase at least for

comparatively small matrix sizes used in our simulations.

In general, it is very hard to determine which SU(2)×U(1) configuration will be the preferred

one as the classical potential depends on N ,k,φ,φ̃ and the couplings α and λ. We therefore used

Mathematica to minimize this classical potential for a given set of couplings and matrix size

N to find an initial configuration for our simulations. This should increase the chance that

the starting configuration is close to the true ground state of the quantum system. As already

mentioned in the section for the SU(3) configuration, starting in the supposed ground state is

necessary as the system never manages to decay into such a state when starting from a random

configuration.

The three different configurations discussed above are plotted together for N = 21 with

various specific sets of parameters in graph 8.2. In the graph to the left at the top we can see

that the SU(2) configuration forms the minimum for very small values of λ. When we increase

the coupling λ the picture changes and an SU(2)×U(1) configuration forms the ground state as

the system has more possibilities to minimize the second term in the action S1 than the SU(2)

configuration. Here, the chosen representation of SU(2)×U(1) has dimension k = 15. In the plot

at the bottom of graph 8.2 one can see that the SU(2) and SU(2) × U(1) configurations, even

though they form the ground state for small values of λ, are lifted above the SU(3) configuration

rapidly. Further, the minima of SU(2)× U(1) and SU(2) in the scaling factor φ move towards

zero when increasing the coupling λ while the minimum of SU(3) stays fixed at phi = 1, which is

the only value where the lie algebra generators can be a solution to the equations of motion. This

movement towards zero indicates that both of the configurations should eventually be pushed

into the matrix phase, contrary to SU(3).

That this is indeed the case can be seen in the graphs in figure 8.3. Here we plot the

classical potential for the three discussed configurations for α̃ = 2.8 and λ = 0.05 but larger

matrices. For this set of parameters we found that SU(2) has the lowest potential for N = 21

matrices in figure 8.2, which corresponds to matrix sizes amenable in our simulations. For the

larger matrix sizes in figures 8.3 we see that this changes. In the graph to the left we plot the

classical potentials for N = 1263, corresponding to a n = 50 representation of SU(3). Here, the

scaling factor φ for the SU(2) configuration has already almost moved to zero, indicating that

the potential for SU(2) configurations has almost vanished. Nevertheless, the SU(2) × U(1)

solution is still forming the ground state. It is thus clear that we have to study very large
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Figure 8.2: The classical potential for α̃ = 2.8 and λ = 0.05 (top left), λ = 0.1 (top right) and

λ = 1.0 (bottom) is plotted around the φmin is plotted. For the SU(2) × U(1) configuration we

minimized the potential using Mathematica for φ and assuming N = 22 matrices which resulted in

a k = 15 representation.

matrix sizes to find a parameter space that resembles the N →∞ solution. From this graph we

can however still assume that eventually this configuration will be penalized sufficiently as well

to give a SU(3) symmetric ground state as the scaling factor of SU(2) × U(1) has decreased

compared to N = 21 matrices in figure 8.2. The representation minimizing the SU(2) × U(1)

potential has dimension k = 442, making up roughly one third of the matrix compared to 2/3

in the case of N = 21 matrices.

For N = 4186 matrices, corresponding to a n = 90 representation of SU(3), SU(2) × U(1)

is penalized sufficiently to make SU(3) the true classical minimum of the system, see figure 8.3

to the right. The minimizing representation of SU(2) × U(1) in this case is k = 803. This

supports our assumption made earlier that the representation size depends on the parameters

and variables of the model and cannot be taken to be, i.e., k = N/2.

The two potentials are almost equal for N = 3403 matrices (n = 81). Here, the SU(2)

potential is not visible anymore and thus centered at φ = 0. This will result in a random

matrix configuration. In general we can thus say that a numerical study of the parameter space
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Figure 8.3: The classical potential for α̃ = 2.8, λ = 0.05 and N = 1263 to the left and N =

4186 on the right. We see that gradually the SU(2) and, even though considerably slower, the

SU(2) × U(1) configurations are lifted above the SU(3) symmetric solution. We thus expect the

SU(3) configuration will form the true ground state in the whole parameter space in the large-N

limit.

that resembles the N → ∞ case is not feasible as one would need to simulate matrices of size

N ∼ 4000. However, the results for small matrices and large enough λ should be comparable to

the transition that happens in the limiting case. The parameter space for small values of λ will

be different to the large-N limit due to finite matrix effects. We will still try to describe this

part of parameter space in the following sections.

8.2 Numerical Results

In the following sections we will discuss our numerical results for this model [26]. We will start

by describing the phase diagram for different matrix sizes. We will then continue with a first

attempt to study the properties of the different phases in this model by looking at the expectation

value of the action for the different configurations as well as their eigenvalue distributions. At

the end we will briefly examine the behaviour around the phase transitions by means of the

specific heat.

8.2.1 Phase Diagram

From our analysis of the different solutions to the equations of motion we see that we expect to

find four different phases in parameter space for small matrices. For small values of α̃ the Myers

term in the action is negligible and the system is in a phase where the matrices are essentially

random matrices. This behavior has already been found in the 3-matrix model (see sec. 6) or

the 8-matrix model without the λ-term (see 7). We called this phase the matrix phase in these
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chapters and will continue to do so. Following our earlier discussion we expect only two different

phases in the phase diagram, given by the parameter space for N → ∞ matrices. For matrix

sizes amenable to simulations we will never be able to see this though.

Increasing α̃ and setting λ = 0 we expect to find a phase with a fuzzy sphere solution as

its ground state. The critical value for α̃ corresponds to the one found in chapter 7, α̃? ∼ 2.3.

Turning on λ slowly the fuzzy S2 should remain the ground state of the system until λ passes a

critical value λ? and the most favorable state will be an SU(2)×U(1) solution. There are many

possible SU(2)×U(1) solutions for all sizes 2 ≤ k < N and within this phase the representation

that forms the ground state will change when varying λ. The system will always tend to stay in

the SU(2)×U(1) solution of largest possible dimension k as it minimizes the effective potential.

As larger representations are penalized stronger by the term S1 in the action, the ground state

will move to smaller size representations when increasing the coupling λ.

Increasing λ further the SU(2) × U(1) configurations will at some point be penalized suf-

ficiently such that the SU(3) configuration which is not affected by the λ-term has the lowest

value and leads to a fuzzy CP 2 configuration as the ground state.

Unfortunately, as already observed in the 8MM for λ = 0, transitions between the different

geometrical configurations are highly suppressed. This made it necessary to measure the critical

line between SU(2) and SU(2) × U(1) and SU(2) × U(1) and SU(3) respectively by running

two separate simulations, one starting in each configuration. The point of the transition was

determined by comparing the thermalization energy of both states. In this way we neglect

any hysteresis effects completely which may shift the critical lines to higher values of λ. When

starting in the SU(2)×U(1) configuration we chose the solution found by minimizing the effective

potential with respect to φ, φ̃ and the representation size k in Mathematica for a fixed value of

the matrix size N and the coupling constants α and λ.

To distinguish the different geometrical phases we used the eigenvalue distribution of the

various matrices. While for SU(3) the spectrum of all matrices is discrete, only three or four

matrices have a discrete spectrum in the SU(2) and SU(2)× U(1) case respectively.

For all following figures we used the rescaled value of the coupling constant α̃ = αN1/4,

which corresponds to the large-N scaling in the fuzzy CP 2 and fuzzy S2 phase in the figures.

We could not determine the scaling of α for SU(2)×U(1) but as the fuzzy CP 2 state is the only

one that fulfills the equations of motion and should form the ground state of the system in the

large-N limit we chose that scaling.

In figure 8.4 we plotted the parameter space for N = 6 matrices for a parameter range of

α̃ = [1, 3.8] and λ = [0, 5] in the left graph and for a subset around the triple point in the plot to

the right. As can be seen in graph 8.4, we only find three distinct regions with different ground
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state symmetries in this diagram. The region that is missing is the one with SU(2) × U(1)

symmetry of its ground state. For such small matrices these configurations always have larger

energy than the SU(2) or SU(3) solution respectively. This fits with our observation that the

energy difference between the fuzzy S2 and the CP 2 solution is growing with the matrix size

and thus the difference between CP 2 and the SU(2) × U(1) solutions grows as well. A matrix

size N ≥ 10 is needed in order to make the energy difference large enough such that, even with

the fluctuations induced by the λ-term, SU(2) × U(1) configurations form the ground state of

the system for a certain coupling regime. For N = 6 the system behaves considerably different

than for systems of size 6 < N < 4000 as it only has three regions. Here, we find one point

where the critical lines between the different regions meet in our parameter space, whose value

is estimated in table 8.1. The analytical prediction for the critical line between SU(3) or SU(2)

and the matrix phase are given by the black lines. They differ considerably due to finite matrix

effects. Also note that the part of the line between SU(3) and SU(2) is the analytical prediction

between SU(2) and the matrix phase. It is thus not surprising that the true transition between

SU(2) and SU(3) occurs before the SU(2) symmetric configuration is completely pushed to

values of < S > larger zero.
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Figure 8.4: The parameter space for N = 6 matrices; we only find three different regions for such

small matrices.

For N = 10 there exist already four different regions as shown in figure 8.5. Here, when

starting at a large value of α̃ and λ = 0 we again find fuzzy S2 as the ground state. Increasing λ

we cross the boundary that indicates a transition from the fuzzy S2 to a region with SU(2)×U(1)

symmetry. Increasing the coupling constant λ further we eventually cross another critical line

where the system transits towards the fuzzy CP 2 as its ground state. One can also note that it

seems as if all the different boundaries meet in one point, which value is given in table 8.1. The

resolution here is not good enough to decide whether there are two “triple points” very close to
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8.2 Numerical Results

each other or if they really coincide. In the large-N phase diagram we expect only one critical

line between the matrix phase and fuzzy CP 2 (see last section). For all non-zero values of λ

there would thus be no triple point at all.
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Figure 8.5: The phase diagram for N = 10 matrices. All four expected phases can be distinguished

clearly. There seems to be one quadruple point.

When we increase the matrix size N further, the “triple point” splits and clearly separates

into two “triple points”. This is shown in figure 8.6 for N = 15 and N = 21 matrices, while

the estimated values of the two “triples points” can be found in table 8.1. We can also note

that the critical line between the matrix phase and the fuzzy CP 2 is getting steeper for larger

matrices and fits excellently to the theoretical prediction. The behavior of getting steeper can be

understood by noting that, as the number of degrees of freedom increases fast with the matrix

size, the system becomes more robust against the preference to undergo the phase transition to

the fuzzy phase. We thus need to increase λ more to force the system into the CP 2 phase.
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Figure 8.6: The phase diagram for N = 15 and 21. It seems as if the quadruple point seen in

the phase diagram for N = 10 (figure 8.5) splits into two triple points. Further, the area of the

SU(2)× U(1) symmetric ground state seems to grow.
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8. MODIFIED 8-MATRIX MODEL WITH CP 2 AS GROUND STATE

The critical line between the matrix phase and SU(2) also fits very well in the region where

such a transition occurs. This transition is due to the fact that for the model with λ = 0 the

critical point to SU(2) occurs earlier than the critical point to SU(3). When turning on λ, the

fuzzy S2 is lifted and for values of α̃ that would be shortly after the phase transition for λ = 0

the system jumps back into the matrix phase.

Additionally we see that the area in phase space with a SU(2) × U(1) symmetric ground

state has become larger. It extended slightly towards the fuzzy CP 2 direction, while it seems

to be constant at the transition line to fuzzy S2. From the theoretical analysis we know that

the contrary should happen. Fuzzy S2 will vanish when increasing the matrix size as well as

the SU(2)×U(1) symmetric state. As this only seems to happen for very large matrix sizes the

effect observed in simulations could still be finite matrix effects.

N α̃ λ

6 ∼ 2.4 0.11-0.12

10 2.36 - 2.38 0.14 - 0.16

15 2.34 0.20-0.22

15 2.30 - 2.33 0.17-0.18

21 2.23 - 2.34 0.21

21 2.21 - 2.25 0.13-0.14

Table 8.1: Estimated values for the triple point(s) for matrix sizes N = 6, 10, 15 and 21.

Our simulation thus seem to agree with the prediction for the SU(3) to matrix phase and

SU(2) to matrix phase transition. We could not observe the expected decrease of the part of

parameter space wher the SU(2) and SU(2)×U(1) symmetric states form the lowest energy con-

figuration. Unfortunately, to observe this behavior might be impossible numerically as matrices

of N > 1000 seem to be necessary.

8.2.2 The Matrix Phase

The properties of the matrix phase with λ > 0 stay largely unchanged compared to the 8-matrix

model with λ = 0. From eq.(8.21), or from the Schwinger-Dyson equation discussed for the pure

Yang-Mills-Myers model (see section 7.3.1), we know that for α = 0 the expectation value of the

action S should be < S > /N2 = 2. This result extends approximately until the critical curve

α̃?(λ) which is given by eq.(8.15) for the boundary to SU(3) and in eq.(8.32) for the boundary

to SU(2) and agrees reasonably well with numerical simulations.

126



8.2 Numerical Results

In this phase the matrices behave as non-commutative, random matrices and, for 8-dimensions,

already are reasonably well fit by a Wigner semicircle distribution, ρwsc = 2
R2π

√
R2 − x2. The

results from numerics can be seen in figure 8.7. In this figure we plot the eigenvalue distribu-

tions for X1 and X8 for two different sets of parameters α̃, λ. The only difference to the λ = 0

case is that, when we increase the coupling constant λ, we see a slight asymmetry between the

spectrum of matrices X1 to X7 and X8. This is the effect of the additional term which acts as a

constraint towards a SU(3) symmetric solution. This effect will get stronger continuously as for

λ→∞ the critical coupling α̃?(∞) goes to zero and the matrix phase should thus be restricted

to α = 0.
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Figure 8.7: The eigenvalue distribution of X1 and X8 for N = 28 matrices in the matrix phase are

plotted parameters α̃ = 1.0, λ = 0.01 (left) and α̃ = 2.2 and λ = 1.0 (right) respectively. We see a

slight asymmetry in the right graph which is due to the constraint term with λ = 1.

8.2.3 Results for small matrices

As discussed earlier for the D = 3 and D = 8 model the system behaves considerably different

for very small matrix sizes (see sec. 6.2.1 and sec. 7.3.2). For such sizes the system is still

able to fluctuate between the matrix and the fuzzy spaces within a time frame that allows to

extract numerical results from it. We therefore do not have to start the system in the desired

fuzzy configuration but can initialize the matrices in a random configuration in our simulations

and still observe a decay into the fuzzy phase. For the 3-dimensional as well as for the 8-

dimensional Yang-Mills-Myers model the critical point shifted from the 1-loop results obtained

by expanding around the fuzzy configurations. Here, we present a few preliminary results about

this phenomenon in this particular model. The range of possible matrix sizes is unfortunately

limited as already for N = 7 the system does not fluctuate ergodically through the whole phase

space anymore. For such matrix sizes the SU(2) symmetric state does still form the ground
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8. MODIFIED 8-MATRIX MODEL WITH CP 2 AS GROUND STATE

state of a certain region in parameter space and we have to distinguish between different values

of λ. For the SU(2)×U(1) symmetric state the accessible matrix sizes are too small though as

the system jumps directly from SU(2) to SU(3) for such sizes.

In figure 8.8 we plot < 1
N2S > as a function of the coupling α̃ for λ = 0.1 (right) and λ = 1.0

(left). In the plot on the left hand side of figure 8.8 we see the results from simulations with

matrix size N = 3, 6. While the N = 3 case was degenerate with the SU(2) solution in the

pure 8d YM-Myers model, the additional term here separates the two states and the SU(3)

configuration has the lower energy. The curves are continuous at the critical point α̃?(λ) but

seem to converge to the theoretical prediction for larger N . This rounding around the critical

value of the transition is due to finite matrix effects as we see that the results seem to converge

towards the analytical result for larger matrices. From results for the 3-matrix model it seems

plausible that the transition point α̃? could shift towards larger values of α̃ were we able to carry

out ergodic simulations for N = 10 matrices. Further studies will have to clarify this point.

In the plot on the right of figure 8.8 the plot corresponds to λ = 0.1 where SU(2) is still

the ground state of the system. For small matrices we find a similar behavior than for the CP 2

state above. The transition is continuous with a critical point that is shifted from the theoretical

prediction. We also see that away from α̃SU(2),? the analytical result differs from the numerical

results but seems to converge towards each other when increasing the matrix size and might thus

be finite matrix effects. This similar behavior at α̃? for different values of λ and thus regimes

with different lowest classical potential are to be expected as fluctuations close to the critical

point will cover the whole phase space and should not be influenced by a specific state.
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Figure 8.8: The expectation value < S > /(N2 − 1) is plotted for fixed λ = 1.0 for matrix sizes

N = 3, 6 (left) where the system has an SU(3) ground state and λ = 0.1 for N = 4, 5, 6 (right) where

the SU(2) configuration forms the lowest potential. In both cases we see a continuous transition and

deviations from the analytical result away from the critical point due to finite matrix effects. In the

right hand graph we also see a shift in the critical point
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8.2 Numerical Results

The specific heat for such small matrix sizes shows an even more different behavior as the

action. While for larger matrices we found an asymmetric behavior, we see a symmetric behavior

for small matrices in graph 8.9. The result seems to be in reasonable agreement with the

theoretical prediction. Comparing to the 3-matrix model it might be that the transition point

shifts compared to the 1-loop result α̃? but we would need larger matrices to test this. Also, the

increase in the height of the peak does not allow to distinguish a divergence in accordance with

a second order transition from the behavior of a δ-function that should diverge much faster as

we only have two points.

For the transition between the SU(2) configuration and the matrix phase in the graph to the

right we see a substantial difference between numerics and the analytical result for the critical

point α̃SU(2),?. The critical point is shifted to larger values of α̃SU(2) which might be due to finite

matrix effects.
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Figure 8.9: The specific heat Cv for λ = 1.0 on the left gives a good fit to the theoretical prediciton.

For λ = 0.1 on the right it shows a difference of the critical point α̃SU(2),? between the numerical and

analytical results.

8.2.4 Properties of the fuzzy CP 2 phase

The phase with fuzzy CP 2 as the ground state is the only one that is, classically, not affected

by the additional term in the action S1. The properties of this phase therefore remain almost

unchanged as well.

In figure 8.10 we see the behavior of < S > /N2 around the coupling constant α̃? for a

fixed parameter λ = 1.0. We see the numerical results for N = 10, 15, 21 together with the

analytical result from eq.(8.21). For these matrix sizes the system is already confined to the

fuzzy phase when starting the simulation in the classical ground state of fuzzy CP 2. As stated

in section 8.1.1 in this phase the terms in the action are independent of the matrix size and
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8. MODIFIED 8-MATRIX MODEL WITH CP 2 AS GROUND STATE

thus collapse when using the correct scaling α̃ = αN1/4, which can be clearly recognized in

figure 8.10. For values far away from the critical point α̃? in the fuzzy phase we see a difference

in the analytical and numerical results which seem to be finite matrix effects as they converge

towards the theoretical line when increasing the matrix size. Close to the phase transition the

function seems to capture the behavior very well. Also, the critical point itself is well described

by the analytic behavior. Like in the 3- and 8-dimensional Yang-Mills-Myers model we find a

jump at the critical point.
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Figure 8.10: The expectation value < S > /(N2 − 1) is plotted for fixed λ = 1 around the critical

point α̃? for N = 10, 15, 21. We find good agreement with the analytical prediction of eq.(8.21).

The eigenvalue distribution plotted in figure 8.11 clearly shows the discrete spectrum of the

SU(3) generators. In the figure we plotted the matrices D1 = X1/α and D8 = X8/α for N = 21

and parameters α̃ = 3.24 and λ = 1.00. A matrix of size N = 21 corresponds to an irreducible

representation with highest weight n = 5. According to the analysis in chapter 7.3.3 we expect

that the eigenvalues should thus be close to

{5

2
, . . . ,

5

2
} for X1 −X7 (8.39)

1√
3
{5

2
, 1,−1

2
,−2,−7

2
,−5} for X8, (8.40)

which fits nicely with the numerical results.

In the specific heat around the phase transition from the matrix phase to the fuzzy CP 2

phase, plotted in figure 8.12 we find a divergence that seems to fit a second order transition

from the fuzzy phase side. We see a difference between numerical and analytical results close

to the phase transition. The analytic function diverges at a slightly higher value of α̃ to that

indicated by our numerical results. As the numerical results converge towards the theoretical

prediction the reason might be finite matrix effects. Also, the behavior in the matrix phase
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Figure 8.11: The eigenvalue spectrum of D1 (left) and D8 (right) are plotted for N = 21 and

α̃ = 3.24, λ = 1.00. The results fit to the spectrum in eq.(8.39).

shows the expected behavior of an (almost) constant value of Cv = 2 as can be read off from

the definition in eq.(8.22) for α̃ = 0.
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Figure 8.12: The specific heat Cv shows a slight difference close to the critical point α̃? between

analytical and numerical result but fits nicely otherwise. As the difference diminishes with increasing

N it might be finite matrix effects. The graph is produced for λ = 1.0.

8.2.5 Properties of the fuzzy S2 phase

From our analysis in section 8.1.2 we know that the scaling factor φ is converging to zero for

increasing matrix size N . Therefore eventually the minimum of the classical potential for SU(2)

symmetric configurations will be pushed to values larger than zero. For matrix sizes that can

be tested in simulations SU(2) symmetric states still form the lowest energetical configuration

for small λ, where they scale with α̃ in the large N limit. We will see below that this scaling

is only asymptotically correct and for small matrix sizes we see that the curves do not exactly

overlap.
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In figure 8.13 we plot < 1
N2S > for N = 10, 15, 21 and coupling λ = 0.10 around the phase

transition between the matrix phase and the fuzzy sphere phase. For this value of the coupling

constant λ the fuzzy S2 forms the ground state of the system, as we can see in the phase diagrams

in figures 8.5 and 8.6. Unlike for the SU(3) case we have different analytical curves for different

matrix sizes α̃SU(2),? as well as φ?,SU(2) depends on N . In the large-N limit the critical point

will move to α̃SU(2),? → 0. For matrix sizes plotted here, we only probe a restricted ensemble of

fuzzy configurations and thus the analytical expansion around the fuzzy configuration gives a

good description of the behaviour of the system in this phase.
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Figure 8.13: The expectation value < S > /N2 is plotted for fixed λ = 0.1 around the critical

point α̃SU(2),? for N = 10, 15, 21. We find good agreement with the analytical prediction of eq.(8.21)

for these matrix sizes. In the large-N limit the critical point α̃SU(2),? moves to 0.

The specific heat around α̃SU(2),? is shown in figure 8.14 for N = 10, 15, 21 and λ = 0.1.

The specific heat exhibits the same properties as the phase transition between fuzzy CP 2 and

the matrix phase, namely a discrete jump when approaching the critical point from the small

α̃SU(2) direction and a divergence when getting closer to α̃SU(2),? from the fuzzy S2 phase. The

analytical estimation fits reasonably good and shows the same finite matrix effect signs as the

action discussed before.

To compare the eigenvalue distribution of the individual matrices to the SU(2) generators

as in the pure 8-dimensional YM-Myers model we need to take the scaling factor φ into account.

As we have already mentioned, φ is moving towards zero and does not stay at 1. We thus have

to divide by α as well as the scaling factor in order to see the spectrum of the SU(2) generators.

In figure 8.15 we plot the spectrum of D1-D3 for α̃ = 3.3 and λ = 0.01 or λ = 0.10 respectively

with N = 28. When we insert these parameters into the solution to eq.(8.36) we find φmin = 0.95

or φmin = 0.65. The spectrum of the SU(2) generators is given by

{−n
2
,−n

2
+ 1, . . . ,

n

2
} where N = n+ 1, (8.41)
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Figure 8.14: The specific heat Cv is plotted for fixed λ = 0.1 around the critical point α̃SU(2),? for

N = 10, 15, 21. We find a reasonably good agreement with the analytical prediction of eq.(8.35).

The difference between the critical point α̃SU(2),? and the numerical results in the graph seems to

diminish with increasing N .

which agrees very well with numerics.
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Figure 8.15: The plots show the eigenvalue spectrum for matrices D1-D3 in the fuzzy sphere phase

for N = 28, α̃ = 3.3 and λ = 0.01 (left) and λ = 0.10 (right) respectively. They agree very well with

the theoretical prediction as we have scaled out α and φ.

The spectrum for the other matrices is continuous and symmetric around zero. The only

clear remark that can be made about these spectra is that the distribution of D8 fits well to a

Gaussian distribution where b = 24.30± 0.29. We plot the different spectra in figure 8.16.

8.2.6 The SU(2)× U(1) symmetric phase

The remaining region in parameter space of this model is the hardest to analyze. From the

analysis of the equations of motion in section 8.1 we know that the only solution in terms of

SU(d) generators allowed is the SU(3) symmetric one. As long as the coupling constant λ is

close to zero we can ignore the contribution of this term in the equations and consider solutions
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Figure 8.16: The plots show the eigenvalue spectrum for matrices D4-D8 in the fuzzy sphere phase

for N = 28, α̃ = 3.3 and λ = 0.10. The distribution of D8 fits well to a Gaussian distribution.

for the Yang-Mills-Myers part only. In this case we also found a SU(2) and a SU(2) × U(1)

symmetric solution. While we considered the former case in the last section we will describe the

latter in the following.

In section 8.1.3 we derived the classical potential for this state and found that it depends on

two variables φ, φ̄ and four different parameters, the coupling constants α and λ, as well as on

the matrix size N and the size of the reducible representation k. Unlike the other two states

considered earlier we could not find a reasonable rescaling of the coupling constant α and thus

decided to use α̃ as in the other states. The difficult dependence on so many parameters made

an analytical treatment difficult, especially as the dimension of the representation k < N varies

with N , α̃ and λ. We will therefore only state the numerical results here. From plots of the

different classical potentials we expect that this state will not form the ground state in any part

of parameter space in the large-N limit.

The quantities < S > /N2 and Cv, plotted in figure 8.17, show the same characteristics

around the phase transition from the matrix phase to the SU(2) × U(1) phase as observed

already in the other cases. The plot shows these observables for a fixed value of λ = 0.14 which
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is in the part of phase space where this configuration forms the ground state. We find a jump in

the action between the two phases and an asymmetric behavior of the specific heat. We could

not compare with results from small matrices, as done for the fuzzy S2 and fuzzy CP 2 phases,

as for matrices N < 10 there is no SU(2) × U(1) symmetric phase while for matrices N ≥ 10

the system does not fluctuate between the two phases anymore.
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Figure 8.17: The observables <S>
N2 (left) and the specific heat Cv (right) are plotted for matrix sizes

N = 10, 15, 21 and λ = 0.14 around the phase transition from the matrix phase to the SU(2)×U(1)

phase.

The eigenvalue distribution for D1 - D3 in figure 8.18 shows discrete, peaks, indicating a

fuzzy sphere. Here we additionally see a continuous distribution around zero. From this we

learn that the representation of SU(2) is smaller than the matrix size k < N . The continuous

distribution arises from the eigenvalues of the matrices that do not contribute to the reducible

representation. In the plot next to that one in figure 8.18 we see the distribution of matrix D8,

which forms the U(1) generator. While the peak around the positive value is formed by the

eigenvalues of U(1), we again find a second peak due to the constraint of traceless matrices. The

negative eigenvalues are the (N − k) eigenvalues that are not part of U(1) and constrained such

that the matrix D8 is traceless. From the fact that the peak around the negative value seems to

be distributed within a semicircle indicates that there is no second SU(2) × U(1) distribution

involved but that the (N − k) block matrix distributes randomly.

The other matrices are distributed continuously and partly very distorted. Particularly

matrix D4 (see figure 8.19) seems to have not stabilized, possibly due to the proximity of a

phase transition to another representation. Matrices D6 and D7 are well fitted by the Gaussian

distribution ρgauss(x) =
√

b
π · exp(−bx

2), where b is used to fit the distribution. Matrix D5 has

much smaller tails than a normal distribution.
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Figure 8.18: The eigenvalue distributions for matrices D1 - D3 (left) and D8 (right) are plotted

for N = 28 and α̃ = 3.0 and λ = 0.20. We see the discrete spectrum of the fuzzy sphere in the

first three matrices and the positive eigenvalues in D8 indicating the U(1) generator. As the size

of the representation must be k < N due to the tracelessness condition, the rest of the eigenvalues

distributes continuously around zero in the plot to the left. For matrix D8 these eigenvalues are

constrained by the tracelessness condition and thus fluctuate around a negative value.
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Figure 8.19: The eigenvalue distributions for matrices D4 (top left) and D5 (top right) and D6 and

D7 (bottom) are plotted for N = 28 and α ∼ 1.30 and λ = 0.20. All of them exhibit a continuous

spectrum. Matrices X6 and X7 fit well to a Gaussian distribution ρgauss(x) =
√

b
π ·exp(−bx

2), where

b = 0.552± 0.005.
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8.3 Conclusions

8.3 Conclusions

We have studied various models of Yang-Mills-Myers type numerically as well as computing the

1-loop expansion, which in this case gave an excellent description of the behaviour found in

numerics. We started by describing the general properties of the fuzzy phases in these model

using the simplest 3-dimensional model that has been studied in great detail already. In all of

these models we found a phase transition between a phase where the entries of the matrices

are random numbers, behaving independently of the Myers term, and a fuzzy space. In the

3-matrix model, studied in section 6, this space was given by the fuzzy S2. At the point of the

phase transition, ᾱ?, we found that the expectation value of the action exhibits a jump, which

was well described by the analytical result of the 1-loop expansion. Also, the specific heat fit

excellently to our theoretical results. As already noted in [43], its behaviour is rather unusual as

it is asymmetric. When approached from high temperature or small coupling α we find a finite

jump, while it diverges when we approach from the fuzzy sphere side. It has been suggested

in [96] that this may be due to the fuzzy sphere being a metastable state that is stable in the

large-N limit.

A similar behaviour was found in the more complicated 8-matrix model with a Yang-Mills-

Myers term in section 7. In this model the space of possible fuzzy solutions is bigger and

also includes a 4-dimensional one, the fuzzy complex projective plane CP 2. The transition

between the matrix phase and both of the fuzzy spaces exhibited similar properties as in the

3-dimensional case. In the theoretical analysis we could also show that the critical exponent is

again αcrit = 1/2, a value that seems to be characteristic of these kind of models.

Even though we showed that the true ground state of the 8-dimensional Yang-Mills-Myers

model is still the fuzzy S2 we could perform a detailed analysis of the fuzzy CP 2 phase taking

advantage of the fact that transitions between the different fuzzy phases are highly surpressed in

our simulations. We compared the eigenvalue spectrum for various observables to the theoretical

prediction for this phase and found excellent agreement.

In section 8 we aimed at defining a model which, unlike in the previous case, has an SU(3)

symmetric ground state. For this purpose we introduced a new term in the action that should

penalize states with a different symmetry group, using the second Casimir operator of SU(3),

C3(T ). Using Monte-Carlo simulations we could plot a phase diagram for this model and found

that, for a large enough coupling constant λ and finite N , the system does indeed have a

SU(3) symmetric ground state. Theoretical considerations suggested that in the large-N limit

the SU(3) symmetric configuration is indeed the ground state of the system, even for small

λ. The eigenvalue distributions of a set of observables could be explained satisfactorily by the
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8. MODIFIED 8-MATRIX MODEL WITH CP 2 AS GROUND STATE

theoretical prediction that the individual matrices are proportional to the generators of this

symmetry group.

In the intermediate range of parameter space for finite N and λ 6= 0 but still small, the

behaviour was found to be more complicated. Here, we noted that in this regime the system still

stabilizes in an SU(2) symmetric configuration, even though setting the matrices proportional

to the SU(2) generators is not a solution of the classical equations of motion anymore. A

theoretical analysis of this phase was done and gave a good fit to the numerical results.

Additionally we found a region in parameter space that appears to exhibit a SU(2)× U(1)

symmetry. Here, the situation is more complicated and deserves a more detailed analytical and

numerical treatment in the future. Terms in the effective potential coming from the additional

term S1 in the action show a complicated dependence on the the matrix size N , the size of the

representation k and the scaling factor φ and φ̄. It also depends on the coupling constants α and

λ. The eigenvalue distributions found numerically in that phase were partially very distorted

but the fuzzy S2 together with a U(1) generator could be clearly observed. The distribution

of the matrices that do not form the SU(2) × U(1) representation seemed to include Gaussian

distributed matrices, suggesting a diagonal matrix. We claimed that the complicated transitions

between different SU(2)×U(1) representations were the reason for this distortion but one should

reexamine this phase in more detail before making any final conclusions.

In total, the study of these different models shows that the broad properties of the fuzzy

spaces, particularily the ground state, are quite well understood. An interesting point for further

studies is to get a more complete understanding of the phase transition between the matrix and

the fuzzy phases. A numerical test whether the critical exponent α computed using the 1-

loop expansion is correct is done in [96] for the 3-matrix model and shows how complicated it

is to extract such information out of simulations. It would also be interesting to find out if

the asymmetric behaviour indicates a new universality class of phase transitions. Further, the

computation of correlators between different points on the fuzzy space are well worth studying.

An attempt to simulate fuzzy S4 would be an exciting direction to continue the research as well.

While we studied such models from a statistical point of view it would be interesting to

include fermions into the picture and study possible relations to string theory. This complicates

the model considerably due to the sign-problem [24, 54] but using various tricks, it appears that

progress in this direction is possible. While research in this area has focused mainly on the

IKKT model [7, 52, 53, 56, 105, 106], which does not allow for fuzzy spaces, first steps towards

a study of the BMN-model [14, 34, 107], which includes fuzzy solutions, have been taken. It

would be highly interesting to get a better understanding of these models.
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Chapter 9

Conclusions and Outlook

This thesis focused on the study of interacting multi-matrix models and their properties. We

focused particularly on models where some kind of topology or geometry seems to be emergent.

We started out with probably the simplest matrix model where a topology emerges in the strong

coupling limit, the 2-matrix model introduced by Hoppe [8]. It consists of two matrices with

Yang-Mills type interaction and a mass term. We performed a numerical study and could

• confirm that the 1-dimensional distribution converges towards a parabolic distribution in

the strong coupling limit as predicted in [21]

• used the formulation in terms of a non-Hermitian matrix model to study the distribution

of its modulus which agrees with the assumption of equally distributed eigenvalues within

a solid 3-dimensional ball; this indicates that the matrices commute in the strong coupling

limit while the non-commutative corrections appear here at the edges of the eigenvalue

distributions

• studied the 2-dimensional observable C in the strong coupling regime in section 3.2.1.2,

which also fits to a distribution within a solid ball in 3 dimensions but the non-commutative

corrections seem to be in the center of the distribution in this case. We also obtained the

spectrum of this observable in the intermediate regime and empirically found a distribution

function that describes its behavior.

These results support the emergence of a topology in the strong coupling limit as the individual

matrices in this model crossover from a noncommutative, weak coupling regime to a commutative

regime at strong coupling. This allows us to study this phenomenon in a simple model where

analytical results can be obtained. While the strong coupling regime seems to be reasonably well

understood, it would be interesting to understand the influence of non-commutative phenomena
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9. CONCLUSIONS AND OUTLOOK

better. A further study on why non-commutative contributions seem to be largest in the center

of the spectrum of matrix C instead of on the edges would be well worth pursuing.

Also the connection to non-Hermitian matrix models is an interesting direction for further

studies. In [21] a related 3-matrix model was found that describes equally distributed eigenvalues

within a solid ball. It seems possible that the distribution of those matrices can be generated

numerically from the 2-dimensional model in a similar way as we generated the 2-dimensional

model from the 1-dimensional effective theory for the eigenvalues of one of the matrices. This

would not only be a further test of the commuting limit but could also be one of the few cases

where the spectrum for matrices in a model with complex action can be studied. Generally,

numerical studies of models with a complex action are difficult due to the rapid oscillations of

the phase.

For our studies in this thesis, the 2-matrix model was of interest due to the similarity to

higher dimensional Yang-Mills matrix models. While we do not need a mass term for D > 2,

we argued that higher dimensional models have a limit in which the background geometry can

be thought of as commuting as well, given by the D = 3 case. We found that

• in the large-D limit the matrices behave as non-commuting independent random matrices

and, by using free probability theory, we could confirm results on the spectrum of the

commutator and roughly predict the behavior of the two terms in the commutator when

approaching this limit.

• we confirmed results for the D = 3 model where it was assumed that the background

geometry is commuting. We also showed that corrections around this background are

substantial by studying correlators and the observable C (see section 4.2.1).

• we studied the transition between these two limiting cases, D = 3 and D = ∞, by

numerically obtaining the eigenvalue distribution of various observables

To understand the transition towards free random matrices in the large-D limit better and to

be able to analytically describe the case of D = 3 could shed more light on whether in the

3-dimensional case the assumption of a commuting background topology is reasonable.

As the Yang-Mills model forms the bosonic part of the IKKT model, which is conjectured

to give a non-perturbative description of string theory and is a 10-dimensional theory, it would

be interesting to have a better understanding of the distribution of eigenvalues for dimensions

D ≤ 10 as the observable < 1
NTrX2

µ > should give the “extent of space-time” in that model.

Numerically, it seems as if D = 10 is already well described by free random matrices but a

better understanding would be of great use. Including fermions in simulations is clearly another
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exciting project to pursue. While there seems to be an emergent topology in lower dimensions

for the pure bosonic model, properties will change when adding fermions and numerical results

can be of great help for a better understanding of this model.

By adding an additional Myers term to the action in the second part of this thesis we allowed

for so-called fuzzy solutions in these models. Examples of this class of models were studied in

the subsequent chapters. We performed numerical and analytical studies of the 3-dimensional

and 8-dimensional model and the most important results were:

• the critical exponent α which was computed already for 3-dimensions seems to be a general

property of models of this class with SU(d) generators as solutions; it was found to be

α = 1/2

• we numerically confirmed the result for the behavior of small matrix sizes around the

critical coupling. In the case of the 3-matrix model the transition appears to be of first

order from both sides for small matrix size N , unlike in the large N limit where the two

phases seem to decouple and an asymmetric behavior around the critical point has been

found.

• using the Wang-Landau algorithm we numerically estimated the density of states for small

matrices in the 3-dimensional model. It was broadly consistent with a theoretical estima-

tion we obtained. It also allowed us to plot observables as the free energy F , the internal

energy U or the entropy S which all fitted well with the theoretical estimation using the

1-loop approximation.

• small matrices in the 8-dimensional case have very particular properties; N = 3 and N = 6

matrices seem to be a hybrid between SU(2) and SU(3) representations whose spectra is

discrete and symmetric for all eight matrices. While the observable < 1
N2S > seems to fit

to the SU(2) symmetric solution, the specific heat Cv is better described by the SU(3)

symmetric behavior.

• we performed a close study of eigenvalue spectra for various observables in the fuzzy S2

and fuzzy CP 2 phase as well as the specific heat and other observables, already studied

before, for larger matrices. They all add to a more detailed picture of the emergence of

fuzzy spaces in these models.

• in the 8-dimensional model we found equally distributed eigenvalue distributions for some

of the matrices that do not form the fuzzy sphere.
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The behavior of small matrices should be understood better and studied in more detail in a

future project. It could be that for the whole class of Yang-Mills-Myers term models the fuzzy

solutions give the lowest internal energy but only form a metastable state for finite matrices

which become stable in the large-N limit while the true thermodynamical ground state is given

by the matrix phase. To clarify this assumption more information is needed. An interesting

approach is given by the Wang-Landau algorithm which allows to estimate the density of states.

At least for small matrices this could be a useful algorithm that complements the results from

standard Metropolis or Hybrid-Monte Carlo simulations.

Independent of the thermodynamical ground state, the fuzzy configurations become stable

in the large-N limit. Using this property the fuzzy CP 2 could be studied in detail for the 8-

dimensional model and it would be interesting to see if by the same mechanism, fuzzy S4 could

be stabilized. This space is harder to study numerically as it does not form a co-adjoint orbit

of a lie algebra and thus a compact fuzzy space. Still, it is possible that in the large-N limit it

might be stable if the simulation is started in such a configuration.

As properties of this model seem to be universal it might be that the type of transition

between matrix and fuzzy phase forms a new universality class and a better understanding of its

properties would be desirable. The difficulties in the research in this direction prevented a study

of exponents or further properties in this thesis. To compute critical exponents numerically a

very high resolution of the critical point α? for large matrices is necessary which means a large

number of long simulations. This was carried out in [96] for the 3-matrix model but seemed out

of reach for our simulations about the 8-dimensional case. A closer look could shed more light

on the behavior of this possible novel universality class.

In the last part of the thesis we performed numerical and analytical studies of a Yang-Mills-

Myers term model with an extra term that should guarantee that fuzzy CP 2 forms the ground

state. Here, the main results were:

• studies of the effective and classical potential suggest that for large-N fuzzy CP 2 is indeed

the ground state as long as the coupling constant λ > λc(α̃) in the additional term.

• for finite sized matrices parameter space is more complicated as we find a region where

SU(2) is still the ground state. There also seems to be a region where SU(2)×U(1) forms

the ground state

• we numerically probed the parameter space for small matrix sizes where we see four dif-

ferent phases: a high temperature matrix phase, an SU(2) symmetric phase for very small

coupling λ, an SU(2)× U(1) symmetric phase for slightly larger coupling λ as well as an

SU(3) symmetric phase if we choose λ large enough.
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• for λ→∞ the matrix phase is reduced to the α = 0 model and the additional term forces

the system into fuzzy CP 2.

• we studied the properties of the different phases in terms of their eigenvalue spectra and

specific heat. The results confirm the properties and analytical results when obtained.

From this initial study of this model we see a quite complicated phase diagram in terms of

the model parameters for finite N . Even though in the large-N limit it seems to provide the

desired properties of a SU(3) ground state in the whole phase space, for finite N we find

more structure. Studying this region of parameter space requires a sophisticated algorithm to

handle the problems with traceless matrices particularly in the SU(2)× U(1) regime. Without

parallelizing the code using MPI even our present results could not have been obtained in a

reasonable time. Still, if one is only interested in a model with an SU(3) symmetric lowest

energy state this can be achieved by choosing λ large enough.

The implications from the study of small matrices have yet to be understood. It might be

that, even though SU(3) is the state with lowest energy, random matrices form the ground state

for large matrices and minimize the free energy. A focus on simpler models that can be modeled

more efficiently might be a better direction for future research as a lot of properties seem to

be universal in this class of models. Also, the possibility that most states that seemed to be

metastable in easier models might become stable in the large-N limit might make it easier to

study their properties in those simpler models.

Matrix models and particularly emergent phenomena as seen in the 2-matrix model and the

pure Yang-Mills model or emergent geometry present in Yang-Mills-Myers models have been

studied for many years but still remain an exciting field for new discoveries. While the results

found over the period of research of this thesis answered some questions, we hope that they will

form the starting point for further studies in the future.
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Appendix A

Definitions for SU(3)

For all calculations as well as our simulations we chose the standard Gell-Mann-Matrices as our

basis for SU(3), which are given by

λ1 =

 0 1 0
1 0 0
0 0 0

 λ2 =

 0 −i 0
i 0 0
0 0 0

 λ3 =

 1 0 0
0 −1 0
0 0 0


λ4 =

 0 0 1
0 0 0
1 0 0

 λ5 =

 0 0 −i
0 0 0
i 0 0

 λ6 =

 0 0 0
0 0 1
0 1 0


λ7 =

 0 0 0
0 0 −i
0 i 0

 λ8 = 1√
3

 1 0 0
0 1 0
0 0 −2


The explicit values of the structure constant fµνρ of SU(3) are given below.

f123 = 1

f147 = −f156 = f246 = f257 = f345 = −f367 =
1

2
(A.1)

f458 = f678 =

√
3

2

These elements plus permutations are all nonzero values. For the totally symmetric tensor dµνρ

all non-zero elements are given by the following:

d118 = d228 = d338 = −d888 =
1√
3

d448 = d558 = d668 = d778 = − 1

2
√

3
(A.2)

d146 = d157 = −d247 = d256 = d344 = d355 = −d366 = −d377 =
1

2
.
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The invariants of this lie algebra are given by the two Casimir operators, and for their totally

symmetric representations can be defined as

C2(T ) =
1

3
n (n+ 3) and C3(T ) =

1

6
(2n+ 3)C2 =

1

18
(2n+ 3)n (n+ 3) , (A.3)

where n stands for the heighest weight of the representation.
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Appendix B

Spectrum of B

A rotationally invariant observable defined in section 5.3 is given by

B = λµ ⊗Dµ, (B.1)

where λµ are the Gell-Mann matrices and the matrices Dµ = Xµ/α are taken to be the SU(3)

generators Dµ = Jµ in the 8-dimensional model or SU(2) generators Dµ = Lµ in both models

under consideration, p = 3 and p = 8.

To compute the spectrum for the SU(3) case analytically we choose the Gell-Mann matrices as

our representation (which are given in Appendix A) and note that

B2
SU(3) = (Jµ ⊗ λa)2 = JµJν ⊗ λµλν =

= JµJν ⊗ (
2

3
δµν + ifµνρλρ + dµνρλρ) =

=
2

3
J2 ⊗ 1 + ifµνρJµJν ⊗ λρ + dµνρJµJν ⊗ λρ =

=
2

3
J2 ⊗ 1 +

(C3

C2
− Cadj

2

2

)
J ⊗ λ, (B.2)

where we have used that

C3 = dµνρJµJνJρ

C3Jρ = dµνρJµJνC2

→ dµνρJµJν =
C3

C2
Jρ (B.3)
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and dµνρ is the totally symmetric tensor and fµνρ the structure constant. This allows us to

obtain the spectrum of B as follows(
J ⊗ λ− 1

2

(C3

C2
− Cadj

2

2

))2
=

2

3
J2 +

1

4

(C3

C2
− Cadj

2

2

)2

→ EV (BSU(3)) = J ⊗ λ =

=
1

2

(C3(n)

C2(n)
− Cadj

2 (d)

2

)
±

√
2

3
C2(n) +

1

4

(C3(n)

C2(n)
− Cadj

2 (d)

2

)2
=

=
1

2

(n
3
− 1
)
±
√

2

9
n(n+ 3) +

1

4

(n
3
− 1
)2
, (B.4)

where the Casimir operators are C2 = 1
3n(n + 3) and C3 = 1

6(2n + 3)C2 for SU(3) and C2 =

1
4n(n+ 2) for SU(2) while Cadj

2 = d for SU(d).

For the SU(2) symmetric case we have to distinguish between the 8-matrix model and the 3-

matrix model. In the case of p = 8 we set all but the first three matrices equal zero in the

classical equations of motion to find the SU(2) symmetric solution. The non-zero contribution

to matrix B in this case therefore only comes from the first three matrices. Studying an 8-matrix

model we nevertheless use the Gell-Mann-matrices as our representation of the λµ’s. As the first

three Gell-Mann matrices capture exactly the SU(2) subgroup in the first two rows and columns

with the last row/column being zero, we can still use the Pauli matrices σa with a = 1, 2, 3 for

the computation and keep in mind that we will get N zero eigenvalues from the third eigenvalue

of lambda, where N stands for the matrix size of the Xµ’s. Otherwise the result for the p = 3

case from eq.(B.5) generalizes to the 8-matrix model.

In the SU(2) case the representation we are going to use for the λµ’s are the Pauli matrices σµ.

We note that in this case there is no totally symmetric tensor dµνρ and the calculation simplifies,

giving the result

EV (BSU(2)) = EV (Lµ ⊗ σµ) = −1

2
±
(n+ 1

2

)
. (B.5)
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Appendix C

Numerical Algorithms

Numerical simulations play a crucial part in different fields of physics where people study models

that are too complicated to derive the desired results analytically. If the problem in consideration

can be solved in a stochastic - rather than a deterministic - way, we can use Monte Carlo

simulations as a tool to find its solution. Excellent introductions to numerical simulations and

the various Monte-Carlo algorithms specifically can be found, for example, in [97, 108, 109, 110].

In a Monte Carlo simulation we attempt to follow the change of a system over ’time’ in a

stochastic fashion. Here, ’Time’ stands for an internal, ’Monte-Carlo time’ and not the physical

time of the system. A time step is defined as a change of the current state that depends on

random numbers. Averaging over the result of an observable at each time step gives us an

estimate of the solution in question. Starting another simulation would result in a different

result which only agrees within statistical errors. This statistical error however, can be reduced

by performing a longer simulation or averaging over various simulation runs.

In our work we use Monte-Carlo simulations to find the ground state of a system and deter-

mine the values of observables in it. The observable < X > is given by

< X >=
1

Z

∑
allstates

Xe−H/kBT with Z =
∑

allstates

e−H/kBT , (C.1)

where H is the Hamiltonian of the system, T the temperature and kB the Boltzmann constant.

In the simplest Monte-Carlo implementation we can do this by generating random configurations

and computing the observables for each configuration at each time step. The average for the

observable, where the sum in eq.(C.1) only runs over the states sampled in our simulation, will be

a very rough estimate of the true value in this case as there are normally just few configurations

sampled that are close to the ground state and the algorithm will spend most time probing

parts of the phase space that contribute little to the partition function Z. Thus, a more efficient

algorithm is required to actually perform simulations of physical systems and obtain results
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within a reasonable time frame. The class of algorithms that fulfills these requirements is

called importance sampling algorithms, with the Metropolis Monte-Carlo algorithm as its most

prominent example.

C.1 Metropolis Algorithm

While in the simple sampling Monte-Carlo, sketched above, the states of two adjacent time steps

in a simulation are independent of each other, they form a Markov-chain in the importance-

sampling algorithm.

A necessary condition that has to be fulfilled in a simulation run is ergodicity. Independent

of the configuration the simulation starts all states in phase space have to be reachable.

The transition probability that the configuration changes from state i to state j is given by

Wij = W (Si → Sj) = P (Xtn = Sj |Xtn−1 = Si), (C.2)

where P (Xtn = Sj |Xtn−1 = Si) is the conditional probability that the system undergoes this

change having started in state Sj . Obviously, we require that the factors Wij sum to 1,

Wij ≥ 0,
∑
j

Wij = 1, (C.3)

as otherwise Wij would not be a probability. The evolution of this probability is given by

dP (Sj , t)

dt
= −

∑
j

WjiP (Si, t) +
∑
i

WijP (Sj , t) (C.4)

where P (Si, t) is the probability to find the system in configuration Si at time t, and, as the

probability needs to be conserved, a necessary criterium for the validity of any importance

sampling Monte-Carlo simulation is that the two terms on the right hand side of eq.(C.4) are

equal to each other. Thus, the transition probability that the system moves from state “i” to

state “j” must be equal to the probability of moving from state “j” to state “i”. This means that

the system should be in equilibrium at each step of the simulation. This condition is known as

’detailed balance’.

The probability of a state k at time t in our simulation is given by

Pk(t) =
1

Z
e−Ek/kBT , (C.5)

where Z is the partition function, which is unknown in most situations. The Metropolis algo-

rithm avoids the problem of determining Z by only looking at the relative transition probability

between two states. The probability that the system in configuration “i” changes to state “j” is

Wij =
1

τ
e−∆E/kBT , ∆E = Ej − Ei (C.6)
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C.1 Metropolis Algorithm

where τ is the time that is needed for an attempted random change and is set to unity in most

cases. Any transition rate is acceptable as long as ∆E fulfills the detailed balance criterium.

With these considerations we can define the elementary steps of the Metropolis algorithm as

follows:

The Metropolis Monte-Carlo algorithm

• create an initial state

• pick a site i

• perform a random change and compute the change in energy, ∆E, between the new

and the old configuration

• generate a random number r, equally distributed between 0 and 1

• if r < e−∆E/kBT accept the new state; otherwise stay in the old configuration

• move to the next site and repeat the procedure

An implementation of the Metropolis algorithm for the 3-matrix model studied in section 6

is given below, written in C:

1 // loop over number of mc steps specified

2 for(k=1; k <= LOOPNUMBER; k++)

3 {

4 /*

5 vary the range of a proposed change for a matrix element dynamically to

facilitate thermalization; done by varying the overall percentage of

accepted states in simulation; optimal percentage is around 30%; do

this every 100th step

6 */

7 if(k%100)

8 {

9 accrate = acccheck *100.0/(k*(N-1) *1.0);

10 if(accrate < LOWERACC)

11 {

12 varint = varint /1.2;

13 }

14 else if(accrate > UPPERACC)

15 {

16 varint = varint * 1.2;
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17 }

18 }

19 // loop over number of matrices

20 for(mat =0; mat <NUMMAT; mat ++)

21 {

22 // loop over elements of matrix

23 for(m=0; m < MATRIX_SIZE; m++)

24 {

25 for(n=m; n < MATRIX_SIZE; n++)

26 {

27 /*

28 generate matrix deltaX where newX = oldX + deltaX for change in

element (m,n) of matrix ’mat’ = X; different for diagonal or off -

diagonal elements as matrix is Hermitian

29 */

30 if(m == n)

31 {

32 if(m != (MATRIX_SIZE -1) && n != (MATRIX_SIZE -1))

33 {

34 deltamat[m*MATRIX_SIZE + n].r = RANDOM(varint);

35 deltamat [( MATRIX_SIZE -1)*MATRIX_SIZE + (MATRIX_SIZE -1)].r = -

deltamat[m*MATRIX_SIZE + n].r;

36 }

37 else

38 {

39 continue;

40 }

41 }

42 else

43 {

44 deltamat[m*MATRIX_SIZE + n].r = RANDOM(varint);

45 deltamat[m*MATRIX_SIZE + n].i = RANDOM(varint);

46 deltamat[n*MATRIX_SIZE + m].r = deltamat[m*MATRIX_SIZE + n].r;

47 deltamat[n*MATRIX_SIZE + m].i = -deltamat[m*MATRIX_SIZE + n].i;

48 }

49

50 // compute the value of action deltaS; the difference in value of

action when changing from old to new configuration

51 if(mat ==0)

52 {

53 l=1;

54 p=2;

55 }

56 else if(mat ==1)

57 {

58 l=2;

59 p=0;
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60 }

61 else

62 {

63 l=0;

64 p=1;

65 }

66

67 trmcYM=trmcCS =0;

68 deltaAction3MM (&trmcYM , &trmcCS , deltamat , pmat , pcomm , ALPHATILDE ,

mat , l, p, MATRIX_SIZE , m, n);

69

70 // Metropolis accept/reject step; if new state is accepted add deltaX

to X=pmat[mat]

71 exp_difftr = fabs(exp(-(trmcYM + trmcCS)));

72 mcrand = prng_get_double ();

73 if(exp_difftr >= mcrand)

74 {

75 if(m==n)

76 {

77 (pmat[mat]+(m*MATRIX_SIZE + n))->r += deltamat[m*MATRIX_SIZE + n

].r;

78 (pmat[mat ]+(( MATRIX_SIZE -1)*MATRIX_SIZE + (MATRIX_SIZE -1)))->r

+= deltamat [( MATRIX_SIZE -1)*MATRIX_SIZE + (MATRIX_SIZE -1)].

r;

79 }

80 else

81 {

82 (pmat[mat]+(m*MATRIX_SIZE + n))->r += deltamat[m*MATRIX_SIZE + n

].r;

83 (pmat[mat]+(m*MATRIX_SIZE + n))->i += deltamat[m*MATRIX_SIZE + n

].i;

84 (pmat[mat]+(n*MATRIX_SIZE + m))->r += deltamat[n*MATRIX_SIZE + m

].r;

85 (pmat[mat]+(n*MATRIX_SIZE + m))->i += deltamat[n*MATRIX_SIZE + m

].i;

86 }

87 /*

88 as commutators are most expensive to compute save it in array pcomm

and only change it if state is accepted

89 */

90 memset(pcomm[mat], 0, sizeof(doublecomplex)*N);

91 memset(pcomm[p], 0, sizeof(doublecomplex)*N);

92 Comm(pcomm[mat], pmat[mat], pmat[l], MATRIX_SIZE , 1.0);

93 Comm(pcomm[p], pmat[p], pmat[mat], MATRIX_SIZE , 1.0);

94

95 acccheck ++;

96 }
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97 // reset deltaX to zero

98 deltamat[m*MATRIX_SIZE + n].r = 0.0;

99 deltamat[m*MATRIX_SIZE + n].i = 0.0;

100 deltamat[n*MATRIX_SIZE + m].r = 0.0;

101 deltamat[n*MATRIX_SIZE + m].i = 0.0;

102 deltamat [( MATRIX_SIZE -1)*MATRIX_SIZE + (MATRIX_SIZE -1)].r = 0.0;

103 }

104 }

105 }

106 }

In this algorithm changes are introduced locally. Each entry in a lattice - or element of a

matrix in our case - is changed separately and then accepted if the energy of the new configuration

is lower than the old one or if the random number in the Metropolis step is smaller. Having

stepped through all entries of the matrix, or matrices, of the model the system is said to have

gone through a Monte-Carlo sweep. These local changes are sufficient to find the ground state

of a system that has a simple energy profile. If the energy landscape of our model includes

a lot of local minima, which are separated by potential barriers, local changes might not be

enough to reach the global minimum with a reasonably high probability. It might take a very

large number of Monte-Carlo steps until the system in consideration manages to jump over the

barrier between different minima and thus probe the phase space well enough to find the true

ground state.

In our simulation of matrix models the number of Monte-Carlo steps that are computationally

feasible depends polynomially on the matrix size N . A simple matrix multiplication A·B requires

N multiplications for N2 elements, thus N3 operations while for A · B · C N4 operations are

required. In general we thus need Np+2 operations for a product of (p+1) matrices. In our case

the Yang-Mills term is of quartic power and we would thus need N5 operations. As we are only

interested in the trace we only need to update the N diagonal elements in the last multiplication

and thus the algorithm grows with N4. Therefore the matrix size very soon becomes a limiting

factor in simulations, in particular as we are interested in the large-N limit in our studies of

matrix models.

An algorithm that improves both of the aforementioned problems, namely getting stuck in

a local minimum and the polynomial order of the algorithm proportional to N4, is the Hybrid

Monte-Carlo algorithm which we will describe in the next section.

156



C.2 Hybrid-Monte-Carlo algorithm

C.2 Hybrid-Monte-Carlo algorithm

The Hybrid-Monte-Carlo (HMC) algorithm [111] is currently the most popular algorithm for

lattice QCD simulations and widely applicable to other theories. It combines the Metropolis step,

described in the last section, with a molecular dynamics evolution. Good introductory course

notes are [112]. As even simple matrix models already have a complicated energy landscape we

implemented this algorithm for all our simulations to improve the thermalization.

The HMC algorithm starts by introducing momenta π to the partition function Z,

Z =

∫ ∏
i

dπi
∏
i

dXie
−H[π,X], (C.7)

where the ’Hamiltonian’ is given by

H[π,X] =
1

2

∑
i

π2
i + S[X] = M [π] + S[X]. (C.8)

Any observable of the system we set out to study will not be influenced by the introduced

momenta as they are quadratic and can thus be integrated out to get the pure action back.

Introducing these momenta allows us to use molecular dynamics to implement changes to the

matrices. Molecular Dynamics uses the classical hamiltonian equations of motion (EoM) to

update the matrices,

dX

dτ
=
∂H

∂π
and

dπ

dτ
= −∂H

∂X
, (C.9)

where τ is the ’Monte-Carlo’ time introduced earlier. As we know that the classical EoM

conserve both the Hamiltonian H as well as the phase space volume we can use Hamiltonian

evolution to create a valid Monte-Carlo algorithm which guarantees us that the two necessary

conditions for such an algorithm (see beginning of section C.1), namely the ergodicity- and the

detailed-balance-condition, are fulfilled.

The momenta are created from a heatbath randomly at each time step τ . This can be

done by generating random, Gaussian matrices, as the momenta in the partition function are

independently, Gaussian distributed, see section C.5. These random momenta are used to change

the matrices X of the action by following the Hamiltonian equations for a time τ . For this

purpose we update the momentum- and the X-dependent parts of the Hamiltonian repeatedly,

I1(ε) = (π,X)→ (π,X + ε∇πS[X]) (C.10)

I2(ε) = (π,X)→ (π − ε∇XM [π], X). (C.11)

This movement along the EoM for a time length τ forms a Monte-Carlo step. Every combination

of these two basic steps results in an allowed trajectory as long as the individual steps add up to
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the Monte-Carlo time τ . The simplest and most popular such trajectory is named the Leap-Frog

algorithm and is given by

Iε(τ) = [I1(ε/2)I2(ε)I1(ε/2)]Ns , (C.12)

where τ = Nsε. In practice ε and Ns are chosen such that the correlation between two states is

low and the system manages to find its ground state. As it is symmetric a potential error in the

trajectory of order O(ε) cancels and the introduced integration error of lowest order is O(ε2).

Another popular integration algorithm is given by the Omelyan integrator,

Iε(τ) = [I1(ξε)I2(ε/2)I1((1− 2ξ)ε)I2(ε/2)I1(ξε)]Ns , (C.13)

where ξ is a parameter that is conventionally chosen to be ξ ∼ 0.1931833. This algorithm

reduces the coefficient in the error term of order O(ε2) with little cost in extra computation

time. Together, the alternating application of updating the momenta from a heatbath and the

matrices Xµ by molecular dynamics is called a ’Hybrid Molecular Dynamics’ algorithm.

This would be an exact (no systematic error) algorithm if we could solve the equations of

motion exactly. Here, we take advantage from the fact that we are always introducing numerical

errors to use molecular dynamics to generate a random configuration that will be accepted with

much higher probability in the subsequent Monte-Carlo accept/reject step as would be the case

for a completely random configuration. The final configuration (πf , Xf ) at the end of the MD

trajectory of length τ is the proposed state. As in the metropolis algorithm, we compute the

change in the hamiltonian, ∆H, and accept it if it has decreased. If ∆H is larger zero, we accept

it if r < e−∆H , where r is a random number, equally distributed between 0 and 1. Otherwise,

we keep the old configuration.

Putting all this together, we find the following steps that form the HMC algorithm:

The Hybrid-Monte-Carlo algorithm

• generate initial configuration for the matrices Xµ, with ’µ’ being the number of ma-

trices

• compute the initial action Si(X)

• generate random, Gaussian distributed momenta from a heatbath according to distri-

bution P (π) ∝ e−π2
µ/2
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• compute the inital action Mi(π) of the momenta πµ

• use the molecular dynamics evolution and numerically solve the hamiltonian equations

(C.9)

• compute ∆H = ∆M + ∆S where ∆S = Sf − Si, ∆M = Mf −Mi

• Metropolis step: if ∆H > 1 always accept it; otherwise generate a random number

r and if r < e−∆H accept new state, if r > e−∆H use old configuration as a starting

point for the next steps

• go back to step 3

We can observe that in this algorithm all the matrices Xµ are updated in one step, contrary

to the Metropolis algorithm where the elements of the matrices were updated locally. This

facilitates the thermalization for more complicated energy landscapes. Because of the global

update we also save a factor of order N in computation time and therefore our algorithm for

a model with a quartic polynomial in the matrices only grows with O(N3) instead of O(N4) as

the Metropolis algorithm discussed previously.

An implementation of this algorithm for the Yang-Mills matrix model, discussed in section 4,

is given below (written in C):

1 // loop over the number of MC time steps k

2 for(k=1;k<LOOPNUMBER;k++)

3 {

4 /*

5 dynamically fit the length of the integration step by adjusting the overall

acceptance rate for proposed states of the simulation; improves

thermalization; optimum between 60 and 80 percent;

6 */

7 if((k%100) ==0)

8 {

9 if(acccheck < LOWERACC)

10 {

11 EPS = EPS *0.8;

12 }

13 else if(acccheck > UPPERACC)

14 {

15 EPS = EPS * 1.2;

16 }

17 acccheck =0;

18 }
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19

20 // save old matrix configuration before applying MD

21 for(i=0;i<NUMMAT;i++)

22 {

23 memcpy(pmatold[i], pmat[i], sizeof(doublecomplex)*N);

24 }

25

26 // generate normal distributed momenta pmom from heatbath

27 gen_gaussmomcplx(pmom , NUMMAT , MATRIX_SIZE , 1.0);

28

29 // compute hamiltonian H of step k before integration

30 P = mom(pmom , NUMMAT , MATRIX_SIZE);

31 H = S + P;

32

33 // perform the integration along a chosen trajectory for chosen integration

steps STEPS

34 for(i=0;i<STEPS;i++)

35 {

36 // choose integration algorithm; here Omelyan algorithm is used:

37

38 // Leapfrog

39 // addmat(pmat , pmom , EPS/2.0, NUMMAT , MATRIX_SIZE);

40 // deltaYM(pmat , pmom , NUMMAT , MATRIX_SIZE , EPS , mass);

41 // addmat(pmat , pmom , EPS/2.0, NUMMAT , MATRIX_SIZE);

42

43 // Omelyan

44 addmat(pmat , pmom , ksi*EPS , NUMMAT , MATRIX_SIZE);

45 deltaYM(pmat , pmom , NUMMAT , MATRIX_SIZE , EPS/2.0, mass);

46 addmate(pmat , pmom , EPS *(1 -2* ksi), NUMMAT , MATRIX_SIZE);

47 deltaYM(pmat , pmom , NUMMAT , MATRIX_SIZE , EPS/2.0, mass);

48 addmat(pmat , pmom , ksi*EPS , NUMMAT , MATRIX_SIZE);

49 }

50 // compute hamiltonian Hend of step k after integration

51 Send = actionYM(pmat , MATRIX_SIZE , NUMMAT , mass);

52 Pend = mom(pmom , NUMMAT , MATRIX_SIZE);

53 Hend = Send + Pend;

54

55 // Metropolis step:

56 deltaH = H - Hend;

57 if(deltaH >0)

58 {

59 H = Hend;

60 S = Send;

61 P = Pend;

62 acc++;

63 acccheck ++;

64 }
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65 else

66 {

67 mcrand = mt_ldrand ();

68 if(mcrand < exp(deltaH))

69 {

70 H = Hend;

71 S = Send;

72 P = Pend;

73 acc ++;

74 acccheck ++;

75 }

76 else

77 {

78 for(i=0;i<NUMMAT;i++)

79 {

80 memcpy(pmat[i], pmatold[i], sizeof(doublecomplex)*N);

81 }

82 }

83 }

84 }

C.3 The Wang-Landau algorithm

The Wang-Landau algorithm [99, 110, 113] is part of the class of reweighting methods. Such

algorithms were developed to measure quantities which are notoriously hard to obtain from

standard Monte-Carlo simulations. One example would be the peak of the specific heat Cv for

which one needs a very high resolution to capture its position correctly in a part of phase space,

close to the critical point, were accurate measurements with low statistical error are difficult due

to phenomena such as critical slowing down.

Reweighting algorithms use the fact that distributions of properties of the system in consid-

eration measured at one temperature can be used to predict the behaviour of the system at a

different temperature. For example, the probability Pk of finding the system in a configuration

with energy E is given by

Pk(E) =
g(E)

Z[k]
e−kE , (C.14)

where g(E) is the density of states, k a coupling and Z[k] the partition function of the system

given by

Z[k] =
∑

states i

e−kEi =
∑

Energies E

g(E)e−kE . (C.15)
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Thus, the density of states contains all the necessary information of the system. We can obtain

the density of states using histograms H(E) in our simulation that record the amount of times a

state with energy E has been reached during a simulation run. This is possible as a simulation

generates configurations for the equilibrium distribution of the system. The histogram is given

by

< H(E) >=
H(E)

M
=

1

Z[k]
W̃ (E)e−kE

M→∞
= Pk, (C.16)

where M stands for the number of measurements made in the simulation and W̃ (E) is an

estimate of the true density of states obtained in our simulations. It will suffer of statistical

errors but for M large might still give a reasonable estimate. k plays the role of the temperature

here and it suffices to obtain results for one particular value k0 as we can invert eq.(C.16) to

determine W̃ (E) and substitute it into eq.(C.14) to obtain

Pk(E) =
H(E)e∆kE∑
E H(E)e∆kE

(C.17)

with ∆k = (k0 − k). We can then go on and calculate the expectation value of any observable

that depends only on E for any k ∗.

< f(E) >=
∑

f(E)Pk(E) (C.18)

In general the density of states could depend on more parameters but we will stick to the easiest

case of one in this section.

Within the class of reweighting algorithms the Wang-Landau algorithm is closely related

to multicanonical sampling techniques. It calculates the density of states that can be used for

multicanonical simulations. Multicanonical methods are useful for systems that exhibit more

than one minimum which may be far away in phase space. Standard methods might find one of

the minima and get stuck in it without probing the other minimum. Multicanonical algorithms

try to modify the probability function used in Monte-Carlo simulations of the ’unlikely’ states

between the minima to increase their probability such that the system eventually can find

the other minima. This is done by introducing an effective hamiltonian Heff , such that the

probability distribution of a state can then be written as:

P (E) =
exp(S(E)−Heff )∑
E exp(S(E)−Heff )

(C.19)

∗In practice we had to restrict the range of energies for which we measured the density of states. Therefore,

our estimation of the observables will break down at some value of k
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with S(E) being the microcanonical entropy. This is done be reweighting the canonical distri-

bution by a weight factor W (E) which is related to the density of states or the microcanonical

entropy S(E) and the effective Hamiltonian in the last equation.

W (E) = 1/g(E) = exp(−S(E)) ≡ exp(−β(E)E + α(E)) (C.20)

The task in a simulation is then to estimate α(E), which is proportional to the exponentiated

density of states α(E) ∼ ln(g(E)), such that the microcanonical entropy is maximized, S(E) = 0.

This guarantees a flat distribution of the weight factor W (E). In the multicanonical algorithm

we would now use this weight factor to define a reweighted probability function using it as a

starting point for a new simulation which determines the observables.

The Wang-Landau algorithm uses the fact that the partition function Z[E] can be written

as

Z[E] =
∑
E

g(E)e−βE =
∑
E

e−βE+ln(g(E)), (C.21)

to determine the density of states directly and use it to calculate the observables. The algorithm

begins with a guess for g(E), for example setting all elements to 1. New configurations are

accepted with the probability

p(E1 → E2) = min

(
g(E1)

g(E2)
, 1

)
, (C.22)

where E1 is the energy before the proposed change to the system and E2 the energy after that

change. In this way poorly sampled regions of the density of states will be preferred in the next

Monte-Carlo step. Once a state is accepted we change our estimate of the density of state g(E)

as

g(E)→ g(E) · fi, (C.23)

where fi is a modification factor that will initially be chosen larger 1. We also update a second

histogram, W (E), that records the number of times a state with a certain energy has been visited.

∗ We continue this procedure with a new proposed state until the weight histogram W (E) fulfills

a flatness criterium. As we maximize the microcanonical entropy S(E) the probability for all

states has to be equal. Thus, the weight factor W (E) has to be flat † . Once this criterium is

fulfilled we reduce the modification factor fi, e.g by fi+1 =
√
fi, reset the weight diagram to zero

∗Note, that the histogram W (E) corresponds to the weight factor in the multicanonical algorithm.
†The histogram does not have to be perfectly flat in general. It suffices if the minimum entry in W (E) is

∼ 80% of the mean value
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and start another iteration. This is done until the modification factor has converged sufficiently

to 1. This is necessary as in the beginning of the simulation, when f > 1, the simulation violates

the detailed balance criterium. Only once fi → 1 is fulfilled within sufficient precision ∗ , detailed

balance is recovered.

The summarized steps for the Wang-Landau algorithm are as follows:

The Wang-Landau algorithm

• initialize the density of states g(E) = 1 and choose a modification factor, e.g. f0 = e1.

• choose an initial state

• choose a site i and propose a change

• calculate the ratio of density of states

η =
g(E1)

g(E2)

• generate a random number r and compare with η; if r < η accept the change

• increase the estimate for the density of states g(Ei)→ g(Ei) ·f , where Ei is the energy

of the current state of the system

• increase the weight histogram W (Ei); if histogram is not flat go to next site and repeat

the steps above

• if the histogram is flat, decrease fi+1 =
√
fi, reset the histogram W (E) = 0

• repeat above steps until f ∼ fmin = 1.000001

• use final density of states g(E) to calculate observables

∗We stopped the iterating algorithm once the modification factor fi < 1.000001.
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C.4 Implementation of the equations of motion in HMC-routine

Let’s start by considering the pure Yang-Mills-Myers model whose equations of motion have

been stated already for example in section 6:

δS[X]

δXσ
= [Xν ,−[Xσ, Xν ] + iαεσνρXρ]. (C.24)

When we implement the equations of motion into our molecular dynamics updating routine

we need to take care that the properties of the matrices are preserved. In all the different

models we deal with Hermitian, traceless matrices. Hermiticity can easily be preserved by only

implementing the changes in, e.g.., the upper triangular matrix and using Hermiticity to generate

the lower triangular matrix. The tracelessness is automatically preserved in all models that only

contain commutators or mass terms, which is the case for the equations of motion of the pure

Yang-Mills-Myers model given above.

In the modified 8-matrix-model discussed in section 8 we need to take a little bit more care

of the tracelessness condition. The equations of motion of the second term in this model (given

in eq.(8.4)) are the following

δS1[X]

δXd
= 2ddacdafg

{
Xc, XfXg

}
− 6αC3

C2
ddabXaXb + 2

(αC3

C2

)2
Xd. (C.25)

Here, there is no commutator that guarantees the preservation of the tracelessness and below

we will add it as a constraint to the action to see how we have to modify our EoM in this case.

There are various ways to impose the tracelessness condition for this model. The easiest way to

do this is to explicitly set the last element of each matrix to minus the sum of the other diagonal

elements after each variation. This imposes the following constraint on the hamiltonian

(Xa)NN = −
(

(Xa)11 + (Xa)22 + ...+ (Xa)N−1,N−1

)
(C.26)

and leads to adjusted hamiltonian equations

For the off-diagonal elements:

Ṗd = − ∂H

∂Xd
=

∂S

∂Xd

Ẋd =
∂H

∂Pd
= − ∂H

∂Pd
(C.27)

and the diagonal elements:

Ṗd = − ∂H

∂Xd
=

∂S

∂Xd
+
∂(Xd)NN
∂(Xd)ii

∂S

∂(Xd)NN

Ẋd =
∂H

∂Pd
= − ∂H

∂Pd
(C.28)
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where i = 1, ..., N − 1 and ∂(Xd)NN
∂(Xd)ii

always gives −1. The additional term for Ṗ does not exist

for Ẋ as the NN ’th-element of each matrix Pa does not appear in the equations of motion as it

is not an independent degree of freedom due to the constraint. The momentum of this element

for each matrix would thus be zero and it does not contribute to the action either.

A more rigorous way to implement the tracelessness condition is using Dirac Quantization.

Here you start with the Hamiltonian and the constraint

H = P 2 + S (C.29)

Φ1 = (Xa)11 + (Xa)22 + ...+ (Xa)NN = 0 (C.30)

which is a first order constraint. Computing the poisson bracket of the constraint with the

Hamiltonian H gives

Φ1 =
{

Φ1, H
}

= (Pa)11 + ...+ (Pa)NN ≈ 0 (C.31)

As this bracket is not zero from the start we have to impose it as a second order constraint Φ2.

The Poisson bracket of the two constraints gives the contact form of this system,{
Φ1,Φ2

}
= Cmn = N

(
0 −1
1 0

)
(C.32)

and it’s inverse is given by

C−1
mn =

1

N

(
0 1
−1 0

)
. (C.33)

Now we can define the Dirac bracket{
A,B

}
DB

=
{
A,B

}
+
{
A,Φm

}
C−1
mn

{
Φn, B

}
(C.34)

This allows us to compute the constrained hamiltonian equations for the classical system.

for off-diagonal elements(
Ẋa

)
ij

=
{
Xa, H

}
ij

=
∂H

∂(Pa)ij
(C.35)(

Ṗa

)
ij

=
{
Pa, H

}
ij

= − ∂H

∂(Xa)ij
(C.36)

for diagonal elements(
Ẋa

)
ii

=
{
Xa, H

}
ii

=
∂H

∂(Pa)ii
(C.37)(

Ṗa

)
ii

=
{
Pa, H

}
ii

= − ∂H

∂(Xa)ii
+

1

N

∑
i

∂H

∂(Xa)ii
(C.38)

(C.39)
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where i = 1, ..., N . As Dirac Quantization admits the use of canonical quantization, this results

generalizes to our setting. Here the constraint element cannot be distinguished as easy as in the

first implementation as it is spread over all the diagonal elements. We thus have to include the

NN ’th element of each matrix in the equations of motion and in the computation of the action

but subtract the sum as given above.

As should be the case, both implementations lead to the same result and because of the

easier implementation we use the first method to obtain our results.

C.5 Short Note on Random Number Generators

(Pseudo-)random-numbers play a crucial role in any Monte-Carlo algorithm. Therefore, the

choice of the pseudo-random-number-generator is important. It needs to have a large period

and should be uncorrelated and as uniformly distributed over the desired interval as possible.

We use an implementation of the Mersenne-twister [114]∗ to generate uniformly distributed

pseudo-random-numbers (prn) between [0, 1) in our simulations. Since its development in 1997

it has become a standard prn-generator in many fields where Monte-Carlo simulations play a

role. Another standard choice, which is particularly used in lattice gauge theory simulations,

would be the “ranlux” prn generator [115].

For the Gaussian distributed random numbers we use the Box-Muller procedure to transform

uniformly distributed prn’s between [0, 1) into Gaussian distributed prn’s. The transformation

is given by

g1 =
√
−2 ln(1− r1) cos(2π(1− r2))

g2 =
√
−2 ln(1− r1) sin(2π(1− r2)), (C.40)

where g1, g2 are Gaussian prn’s and r1, r2 uniformly distributed prn’s.

C.6 Statistical Error Analysis

An important part of Monte-Carlo simulations is the error analysis for the quantities measured

during a simulation. If each point, xi ∈ X with i = 1, . . . , N , measured in a simulation run was

independent from all other points measured, xj ∈ X with j = 1, . . . , N and j 6= i, we could

compute its mean value and variance using the standard definitions

x̄ =
1

N

∑
i

xi and σ(x) =

√
1

N2

∑
i

(xi − x̄)2. (C.41)

∗The implementation is available at http://fmg-www.cs.ucla.edu/geoff/mtwist.html

167



C. NUMERICAL ALGORITHMS

In a Monte-Carlo simulations however consecutive points are correlated. The current configu-

ration of the system will depend on the last configurations it has gone through. This property

is called autocorrelation and can lead to a significant underestimation of the statistical error.

We therefore need a more careful analysis of the statistical errors. Below we will follow [116] to

derive the necessary quantities.

C.6.1 Autocorrelation

We can define the unnormalized autocorrelation of a quantity A as

ΓA(t) =
〈
(An − Ā)(An+t − Ā)

〉
, (C.42)

where < · · · > indicate the average over an infinite number of measurements, Ā is the expectation

value of A and t is the time difference between sample An and An+t. Here time again refers to

the artifical Monte-Carlo time rather than the physical time. For t = 0 we recover the definition

of the variance ΓA(0) = σ2(A). Typically, such a correlation function falls off exponentially,

ΓA(t) ∼ e
− t
|τexp,A| , (C.43)

where τexp,A is called the exponential autocorrelation time for a quantity A. For practical

purposes it is easier to measure the so-called integrated autocorrelation time, given by

τint,A =
1

2
+

∞∑
t=1

ΓA(t)

ΓA(0)
. (C.44)

With this definition we can define an error estimate that takes the autocorrelation time into

account.

σ2
ac(A) =

1

N2

N∑
i=1

(Ai − Ā)2 =
N∑

t=−N

N − |t|
N2

ΓA(t)

N→∞
=

2τint,A
N

ΓA(0) (C.45)

We can see that the statistical error will be larger than the standard error by a factor of
√

2τint,A.

From this definition we can also see that the number of uncorrelated samples is given by N
2τint,A

.

It is thus more efficient to perform measurements only every 2τint,A steps during a simulation

run.

As we only have a finite number of samples, one approximates the correlation function by

ΓA(t) =
1

N − |t|

N−|t|∑
i=1

(Ai − Ā)(Ai+t − Ā) (C.46)

and imposes a boundary for the integrated autocorrelation time τint,A in eq.(C.44) given by the

number of measurements available.
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C.6.2 The Jackknife Method

Another convenient way to obtain statistical errors that take correlation into account is the

jackknife method. Here we have to distinguish between primary and secondary quantities.

Primary quantities A are those that have been measured directly in a simulation and one can

compute its average directly from those measured quantities. Secondary quantities y(A) are

derived from those directly measured in a simulation. It essentially amounts to skipping a

certain number of measurements in all possible ways and computing the statistical error using

those binned samples.

For a primary quantity we start by skipping one element from the set of measurements of

quantity A in all possible ways and computing the average over these subsets,

Ã(1)

i =
1

N − 1

∑
j 6=i

Aj , (C.47)

where we skipped the i-th element of the set in this case. We go on by computing the average

of this new set of N samples,

¯̃A(1) =
1

N

∑
i

Ã(1)

i . (C.48)

This enables us to compute the statistical error using this set by

σ2
jack(Ã

(1)) =
N − 1

N

∑
i

(Ã(1)

i −
¯̃A(1))2. (C.49)

We then repeat this analyis for skipping 2, 3, . . . elements from our set. For a completely uncor-

related set of measurements the error for different numbers of skipped elements would fluctuate

around the standard statistical error in eq.(C.41). If our samples are correlated we will find

an increase in the statistical error when increasing the number of elements we skip until we

reach a point where the error starts fluctuating around a mean value again. This point will

approximately coincide with the result for the error calculated using the autocorrelation time t

in eq.(C.45). In figure C.1 we see such an example for the action S of the 8-matrix model. From

this graph we can determine that the true statistical error of the expectation value of the action

should be around σ2
jack(x) ∼ 4. Using eq.(C.45) we find an error of σ2

ac ∼ 3.8 which agrees

reasonably well. Still, as the statistical error, calculated using the Jackknife method, fluctuates

around a mean value the obtained error can fluctuate considerably as well. Due to this behaviour

it is possible to find errors that are too small to include an analytically predicted value in the

result from simulations as one normally probes values of skipped steps with a spacing between

the different steps larger 1. This does not necessarily mean that the error is computed wrong

but might just mean that the extracted statistical error is on the lower margin of its fluctuations.
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Figure C.1: The statistical error σ2
jk(x), computed with the jackknife algorithm, is plotted against

the number of skipped steps. We see that the error grows at first and eventually fluctuates around

σ2
jk(x) ∼ 4.

For a secondary quantity we compute our jackknife averages Ã from eq.(C.47) and use those

to compute the derived quantities y(Ã). For simplicity we will go through the steps for i = 1

skipped steps. These jackknife estimates have a mean value

ȳ(Ã) =
1

N

∑
j

yj(Ã). (C.50)

The error is then given by

σ2(y(Ã)) =
N − 1

N

∑
j

(yj(Ã)− ȳ(Ã))2. (C.51)

Again, these steps are repeated for larger numbers of skipped steps “i” and the true statistical

error is found when the error only fluctuates but does not increase further.
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Appendix D

Hamiltonian Dynamics using

Omelyan Integrator

When excluding the Monte Carlo step from a Hybrid Monte-Carlo (HMC) routine, what is left

is the simple integrator which, for a sufficiently small integration step ε, allows you to follow the

classical hamiltonian dynamics of the system. It allows for an easy and instructive way to test

the molecular dynamics part of the Hybrid-Monte-Carlo algorithm and can provide information

about the classical dynamics of the system.

In our simulation we use the Omelyan Integrator, which is a more sophisticated version of

the leapfrog algorithm, where the integration steps are defined as follows:

[I1(ξε)I2(ε/2)I1((1− 2ξ)ε)I2(ε/2)I1(ξε)]NS (D.1)

where ξ is a tunable parameter whose canonical value is ξ ≈ 0.1931833, NS stands for the

number of integration steps before the final state is evaluated, and

I1(ε) : (π, φ)→ (π, φ+ ε∇πH(π, φ)) (D.2)

I2(ε) : (π, φ)→ (π − ε∇φH(π, φ), φ). (D.3)

NS will always be set to 1 here as we are aiming for a curve that is as smooth as possible. The

Omelyan integrator reduces the error compared to the standard leapfrog algorithm, but is still

of order O(ε2). If the integration step ε is chosen to be too large, the integration error may be

too big so that the energy of the system is not conserved anymore and it diverges.

The momenta π will be chosen randomly before the first integration step, πij = rand(), where

rand() is a Gaussian distributed random number generated by the Box-Muller transform (see

section C.5 for more information) and i, j = 1, . . . , N for a matrix of size N . As the momentum
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part of the hamiltonian,

P (π) =
1

2
π2, (D.4)

is always independent of the position matrices X, we will denote it as P [π] in the following,

while the action will be labeled S[X].

D.1 Matrix Harmonic Oscillator

The easiest model to test the code on is the harmonic oscillator,

H = Tr

(
1

2m
π2 +

1

2
X2

)
, (D.5)

where we chose X,π ∈ Mat(N), and N stands for the size of the matrices. In this case we can

start the simulation out of a random configuration for both the momenta π and the position

matrix X as the system is stable enough not to diverge. We expect an interchange of energy

between the potential and kinetic energy, where the amplitude depends on the random values

chosen for X and π at the beginning of the integration. The result for such an integration using

an N = 6 matrix is shown in figure D.1. Here, the first 5000 steps for the potential and kinetic

energy are plotted. One can see that the system indeed varies its total energy symmetrically

between the potential and kinetic energy.

If we vary the mass m in the momentum part, the frequency of its oscillations should change

according to

ω =

√
k

m
→ T ∝

√
m, (D.6)

where ω is the frequency and T the period. Testing this in our simulation for masses of m = 1

and m = 0.25, where the period should double, we find this to be in good agreement as can be

seen in figure D.2.

D.2 3-Matrix-Model

For the case of the 3-matrix model with a Yang-Mills and Myers term, we will not see such

a symmetric picture of the oscillations anymore as the energy landscape of this model is more

complicated. The position-dependent part of the hamiltonian for this system is given by

S = NTr

(
−1

4
[Xµ, Xν ]2 +

iα

3
εµνρ[Xν , Xρ]

)
, (D.7)
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Figure D.1: Hamiltonian dynamics for

the 1D Harmonic Oszillator with N = 6.
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Figure D.2: Hamiltonian dynamics for

the 1D Harmonic Oszillator with different

masses m = 1 and m = 0.25 and N = 6.

where µ, ν, ρ = 1, 2, 3. In [43] it is shown that the ground state of this system is given by the

SU(2) generators scaled by the coupling constant α, Xµ = αLµ. For convenience the coupling

α will be rescaled as α̊ = α
√
N . This model has been discussed in section 6 where the critical

point was found to be α̊? ∼ 2.1.

For all the molecular dynamics evolutions studied below, we will start the system in its

supposed ground state with random inital momenta πµ and let it evolve from this configuration.

We start with a study for the dynamics at α̊ = 0, plotted in figures D.3 and D.4. Here we

plotted the action and the momenta for the first 1000 integration steps. Position and momenta

exchange energy and add up to the constant total energy of the system that stays conserved.

As we want to probe a part of phase space that is as large as possible with one initial

configuration, we can increase the initial energy of the system by multiplying the initial momenta

by a constant factor a, (πµ)ij = a ∗ rand(). This will lead to a change in the overall energy that

we put into the system rather than just changing the frequency of the momenta as was the case

for the harmonic oscillator when we changed the mass parameter m. When increasing the inital

energy by multiplying the matrices πµ with a constant factor of a = 10 (see fig. D.5), we find a

different peak structure. The frequency as well as the sequence of peaks changes, as we expect

since the matrices are supposed to behave randomly in this phase.

Once we turn the coupling constant α̊ on, we find a repeating frequency in the dynamics as

long as the initial momenta are small enough so the matrices Xµ cannot escape the potential

which they started in. We can see this in figure D.6 for α̊ = 0.48 and three different values of

initial momenta. The graphs for the different initial momenta are rescaled such that they overlap.

This has been achieved by setting the ground state to zero - S = −0.0864 in this case - and a

suitable transformation such that the amplitudes of the different curves are roughly similiar. For
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Figure D.3: S and P are plotted for the

3-matrix model with N = 6 with α̊ = 0

and inital momenta πµ = 1∗rand() for the

first 1000 integration steps.
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Figure D.4: A plot for the 3-matrix

model with α̊ = 0 and N = 6 and inital

momenta πµ = 1∗rand().

the graph shown in figure D.6 the smallest initial energy is rescaled by (S+ 0.0864) ∗ 10000− 24

and the one with the second smallest energy by (S+ 0.0864) ∗ 100− 0.24. The y-axis fits for the

largest momenta of πµ = 0.1∗rand().

We can see that the frequency of the smallest of initial momenta has a periodic structure

while the dynamics for the larger initial momenta look different. If we compare these curves with

the graph for α̊ = 0 we see that they have a similar structure. It thus seems as if the momenta

here are big enough to escape the potential and behave like random matrices. The ground

state for α̊ = 0.48 and N = 6 is S = −0.0864, while the largest initial momenta contribute by

P ≈ 0.40, which was determined from the initial configuration of the P , to the total energy of the

system. The total energy is therefore much larger than the depth of the potential. The smallest

momenta contribute P ≈ 0.00006 and is thus a lot smaller than the depth of the potential.

If we increase the coupling to α̊ = 0.98 and plot the same graph with the same initial

momenta, we see that even the dynamics with the largest set of momenta now have the same

peak structure. This fits to the observation before as the ground state is now at S = −1.344,

while the momenta are of the same magnitudes as before. This means that all are smaller than

the potential energy and cannot jump over the potential barrier in that case. When looking

at figure D.7 one can see that the amplitude of the fluctuations becomes smaller after the first

integration steps. It seems as if the system is searching for the best balance of the energy

between the π’s and the X’s. It is better to look at the last 1000 steps than the first 1000.

If the potential is deep enough so that the momenta do not allow the Xµ’s to escape out of

the ground state we expect that the energy of our action merely fluctuates around the minimum,

which is the case for the harmonic oscillator as well. As the ground state is given by the SU(2)
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Figure D.5: The dynamics for the 3-

matrix model with α̊ = 0 and inital mo-

menta πµ = 10∗rand() and N = 6 are plot-

ted.
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model with α̊ = 0.48, N = 6, and ini-

tal momenta πµ = 0.1∗rand(), πµ =

0.01∗rand() and πµ = 0.001∗rand(), where

the dynamics with the two smallest initial

energies are rescaled such that the curves

overlap and the amplitudes are of the same

scale.

−1.3445

−1.344

−1.3435

−1.343

−1.3425

−1.342

−1.3415

−1.341

−1.3405

−1.34

 0  20000  40000  60000  80000  100000  120000  140000

S

Integration Steps

d=3, S with πij=0.010*rand()

Figure D.7: The dynamics for the 3-

matrix model with α̊ = 0.98, N = 6, and

inital momenta πµ = 0.01∗rand() are plot-

ted.
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Figure D.8: A plot of 10000 integra-

tion steps for the 3-matrix model with

α̊ = 0.98, N = 6, and inital momenta

πµ = 0.01∗rand().

generators one should expect that the energy of the system can be passed to rotational degrees

of freedom as well. As the potential is 3-dimensional the exact movement of the whole system is

hard to predict. In figure D.8 one can see a relatively constant peak structure. There are more

variations than one would expect when thinking of the harmonic oscillator but this may have

to do with the rotational degrees of freedom. One can further observe that, when changing the

coupling α̊, this basically makes the sides of the potential steeper, which is the reason why the

175



D. HAMILTONIAN DYNAMICS USING OMELYAN INTEGRATOR

frequency of the oscillation increases.

If we plot the graphs for α̊ around the predicted critical coupling α̊? ∼ 2.1 of the quantum

system (see figures D.9 and D.10), we see no big difference to any other graphs with α̊ 6= 0.

Mainly the frequency increases a bit when increasing the coupling but the general behaviour

stays the same. As we study the classical dynamics here, the difference should be between α̊ = 0

and α̊ 6= 0 when we introduce the potential by a non-zero Myers-term. The critical coupling is

shifted towards α̊? ∼ 2.1 due to the introduced flucutations in the full system. By increasing α̊

in the classical system we only make the potential well deeper and can allow for larger momenta

without that the system can escape the potential.
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Figure D.9: The dynamics for α̊ ∼
2.0, N = 6, and inital momenta πµ =

0.01∗rand() are plotted for 5000 steps.
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Figure D.10: A plot of 5000 integra-

tion steps for the 3-matrix model with

α̊ = 2.2, N = 6, and inital momenta

πµ = 0.01∗rand, which is after the crit-

ical coupling α̊? ∼ 2.1. There is no obvi-

ous difference to the same graph before the

critical coupling in figure D.9.

If we vary the mass and thus impose different initial momenta rather than a different initial

energy we already observed that there should be a change in the frequency. For masses of m = 1

and m = 0.25 we expect a doubling in the frequency. In figure D.11 we can observe a change

which is at least close to being twice the period for m = 0.25, even though it is by far not as

clear as for the harmonic oscillator. The energy that’s being stored as angular momenta could

be the reason for the difference here as well.
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Figure D.11: 3-matrix model with α̊ = 2.6 for masses m = 1 and m = 0.25

D.3 8-Matrix Model

When increasing the number of matrices to d = 8 for a Yang-Mills-Myers term action,

S[α,N,X] = NTr

(
−
∑
µ,ν

1

4
[Xµ, Xν ]2 +

iα

3

∑
µ,ν,ρ

fµνρXµ[Xν , Xρ]

)
, (D.8)

we find a quite similar behaviour. Again, we will always start in the supposed SU(2) ground

state, except where stated otherwise and use α̃ = αN1/4. In these graphs we did not shift the

ground state to zero as it makes it easier to see when the initial momenta is large enough to

escape the potential completely as the energy is positive in that case.

In figures D.12 and D.13 we plotted the dynamics for α̃ = 0. They seem to show essentially

the same behaviour as the d = 3 case. When we increase the initial momenta we see a change

in the structure of the peaks which indicates what appears to be a random behaviour.

When we turn on α̃ and start the numerical evolution in the SU(2) ground state we can

observe that the oscillations show a more regular structure for this model until the initial mo-

menta exceed the height of the potential as well. It is much more complicated though than in

the 3-matrix case, as can be seen in figures D.14 and D.15. The SU(2) ground state for α̃ ∼ 0.4

is -0.224, while CP 2 corresponds to an energy of -0.128.

In figures D.14 and D.15 the system seems to move above the potential as the action fluctuates

about a positive value and if we assume that the maximum height of the potential barriers is

zero, while in figures D.16 and D.17 it moves within it. Both of the two graphs that fluctuate

around a negative value of the action (and thus within the potential created by the Myers term)

do so below the supposed SU(3) state as this state has a minimum at S = −0.128.

As we know from Monte-Carlo simulations that SU(3) is very stable and matrices larger

than N = 6 rarely decay to the SU(2) ground state but get stuck in the SU(3) state, we started
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Figure D.12: A plot of 1000 integration

steps for the 8MM with α̃ = 0, N = 6, and

initial π = 10∗rand().
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Figure D.13: The dynamics for the 8MM

with α̃ = 0, N = 6, and initial π =

1∗rand() are plotted for the first 3000

steps.
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Figure D.14: The dynamics for the 8-

matrix model with α̃ ∼ 0.63, N = 6 and

initial π = 1∗rand() are plotted for the first

3000 steps.
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Figure D.15: A plot of 1000 integration

steps for the 8-matrix model with α̃ ∼ 0.63,

N = 6 and initial π = 0.1∗rand().

various computations in that state as well. In figures D.19 we see that the system seems to

behave more like we would have expected already for the SU(2) state, resembling the harmonic

oscillator. Further we note that the barrier between the SU(3) state and the SU(2) potential

is high enough to permit the system with initial momenta of the order 0.01∗rand() to cross

between them. After the study of the 3MM, we would have expected that part of the kinetic

energy is stored as an angular momentum in this case as well but this contribution seems to be

less important than in the 3-matrix model.

As can be seen in graph D.18 the time the system needs to find the best distribution of the

energy between the P ’s and X’s is much longer than in the 3MM case. We can change this

though by increasing the size of an integration step. While in graph D.18 the parameter ε of
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Figure D.16: The dynamics for the 8-

matrix model with α̃ ∼ 0.63, N = 6,

and initial π = 0.03∗rand() are plotted for

10000 steps started in the SU(2) ground

state.
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Figure D.17: A plot of 10000 integration

steps for the 8-matrix model with α̃ ∼ 0.63,

N = 6, and initial π = 0.01∗rand(), started

in the SU(2) ground state.
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Figure D.18: The dynamics for the 8-

dimensional model with α̃ = 0.4, N = 6,

and initial π = 0.03∗rand(), started the in
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Figure D.19: A plot of 10000 integration

steps for the 8-matrix model with α̃ = 0.4,

N = 6, and initial π = 0.01∗rand() and

start in the SU(3) state.

the Omelyan integrator is set to ε = 0.005, we changed it to ε = 0.05 in D.20. We see that

it stabilizes much faster and we cannot see such a huge change in amplitude anymore. The

behaviour for a small number of steps in figure D.21 looks a bit less regular compared to the

behaviour in figure D.19, which could be a result from the increase in the integration step ε.

When increasing the initial momenta slightly this behaviour vanishes and resembles more

the behaviour we found in the case of an SU(2) start (see figure D.23 and figure D.22 for the

full mc-integration). To be able to compare better with that case we plotted the behaviour from

an SU(2) configuration in figures D.24 and D.25.

Checking the change of the period for different masses for this model we again see that the
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Figure D.20: The dynamics for the 8-

dimensional model with α̃ = 0.4 N = 6,

and initial π = 0.01∗rand(), started the in

the SU(3) state, where we increased the

size of an integration step by changing ε =

0.005 → ε = 0.05 compared to all other

graphs, are plotted.
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Figure D.21: A plot of 1000 integration

steps for the 8-matrix model with α̃ = 0.4,

N = 6, and initial π = 0.01∗rand() and

start in the SU(3) state for ε = 0.05.
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Figure D.22: The dynamics for the 8-

matrix model with α̃ = 0.4, N = 6, and

initial π = 0.02∗rand(), started the in the

SU(3) state, are plotted.
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Figure D.23: A plot of 10000 integration

steps for the 8-dimensional model with α̃ =

0.4, N = 6, and initial π = 0.02∗rand()

and start in the SU(3) state.

picture becomes more complicated than in the 3MM case for the SU(2) case (see figure D.26).

A doubling of the period cannot be confirmed. It is very reasonable that this has to do with

the possibility that part of the energy is stored as angular momenta instead of translational

momenta and therefore making the change in the frequency more complicated. When starting

in the SU(3) state we find good agreement with the doubling of the frequency, as can be seen

in figure D.27.
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Figure D.25: A plot of 10000 integration

steps for the 8-matrix model with α̃ = 0.4,

N = 6, and initial π = 0.02∗rand() and

start in the SU(2) state.
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dimensional model with α̃ = 3.0, N = 6,
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period T.
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[100] C. Zhou, T. C. Schulthess, S. Torbrügge, and D. P. Landau, Wang-Landau Algorithm for

Continuous Models and Joint Density of States, Physical Review Letters 96 (2006), no. 12 120201,

[cond-mat/0509335]. 77

[101] C. Zhou and R. N. Bhatt, Understanding and Improving the Wang-Landau Algorithm,

cond-mat/0306711. 78

[102] Y. Kimura, Noncommutative gauge theory on fuzzy four sphere and matrix model, Nucl.Phys.

B637 (2002) 177–198, [hep-th/0204256]. 89

[103] J. Medina and D. O’Connor, Scalar field theory on fuzzy s(4), JHEP 11 (2003) 051,

[hep-th/0212170]. 89

[104] R. Delgadillo-Blando, B. P. Dolan, T. Kaltenbrunner, and D. O’Connor, in preparation, . 94

[105] J. Ambjorn, Y. Makeenko, J. Nishimura, and R. Szabo, Finite N matrix models of

noncommutative gauge theory, JHEP 9911 (1999) 029, [hep-th/9911041]. 138

[106] J. Nishimura, T. Okubo, and F. Sugino, Systematic study of the SO(10) symmetry breaking vacua

in the matrix model for type IIB superstrings, JHEP 1110 (2011) 135, [hep-th/1108.1293]. 138

[107] C. Asplund, D. Berenstein, and D. Trancanelli, Evidence for fast thermalization in the plane-wave

matrix model, Phys.Rev.Lett. 107 (2011) 171602, [hep-th/1104.5469]. 138

[108] B. Smit and D. Frenkel, Understanding Molecular Simulation: From Algorithms to Applications,

second edition. Academic Press, 2001. 151

[109] K. Binder and D. W. Heermann, Monte Carlo simulation in statistical physics: an introduction.

Springer, 2010. 151

[110] K. P. N. Murthy, An Introduction to Monte Carlo Simulation of Statistical physics Problem,

cond-mat/0104167. 151, 161

[111] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, Hybrid monte carlo, Physics letters B

195 (1987), no. 2 216–222. 157

[112] S. Schaefer, Simulations with the hybrid monte carlo algorithm: implementation and data analysis,

Modern Perspectives in Lattice QCD: Quantum Field Theory and High Performance Computing:

Lecture Notes of the Les Houches Summer School: Volume 93, August 2009 (2011) 401. 157

[113] K. B. David P. Landau, A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge

University Press, 2009. 161

[114] M. Matsumoto and T. Nishimura, Mersenne twister: a 623-dimensionally equidistributed uniform

pseudo-random number generator, ACM Trans. Model. Comput. Simul. 8 (1998), no. 1 3–30. 167

189

http://xxx.lanl.gov/abs/cond-mat/0011174
http://xxx.lanl.gov/abs/cond-mat/0509335
http://xxx.lanl.gov/abs/cond-mat/0306711
http://xxx.lanl.gov/abs/hep-th/0204256
http://xxx.lanl.gov/abs/hep-th/0212170
http://xxx.lanl.gov/abs/hep-th/9911041
http://xxx.lanl.gov/abs/hep-th/1108.1293
http://xxx.lanl.gov/abs/hep-th/1104.5469
http://xxx.lanl.gov/abs/cond-mat/0104167


REFERENCES

[115] M. Luscher, A Portable high quality random number generator for lattice field theory simulations,

Comput.Phys.Commun. 79 (1994) 100–110, [hep-lat/9309020]. 167

[116] I. Montvay and G. Munster, Quantum fields on a lattice. Cambridge monographs on

mathematical physics, 1994. 168

190

http://xxx.lanl.gov/abs/hep-lat/9309020

	1 Introduction
	2 Random matrices and their eigenvalue distributions
	3 The 2-Matrix Model
	3.1 Saddle point approximation
	3.2 Numerical results for 2-dimensional Yang-Mills Matrix Model
	3.2.1 Strong coupling regime
	3.2.1.1 The 2-dimensional distribution phi
	3.2.1.2 The spectrum of Matrix C

	3.2.2 Matrix C in the intermediate coupling regime


	4 The massless Yang-Mills matrix model for D>2
	4.1 Definition of the model
	4.2 The 3-Matrix-Model
	4.2.1 Comparison to the 2-matrix-model

	4.3 Results towards the large D limit: 1/D-expansion
	4.3.1 Relation for Free Probability

	4.4 Numerical results for the Yang-Mills model with D>3
	4.4.1 Spectrum of X1
	4.4.2 Spectrum of i[X1,X2]
	4.4.3 Spectrum of matrix C
	4.4.4 Correlation functions and their behavior towards large D

	4.5 Conclusions

	5 Matrix Models with fuzzy solutions
	5.1 Fuzzy Spaces
	5.1.1 The fuzzy sphere
	5.1.2 The fuzzy complex projective plane cp2

	5.2 Derivation of the effective action for SU(d) and the critical behavior
	5.2.1 The effective action
	5.2.2 The behaviour of Veff and Cv
	5.2.3 An expansion for phi close to the critical point alphacheck
	5.2.4 Critical behavior of the action S and the specific heat Cv
	5.2.5 The behavior of R2=<Tr(Xmu2)>/N for large alpha

	5.3 Calculation of the spectrum of matrix B

	6 The 3-matrix model
	6.1 The evolution of a HMC simulation and eigenvalue distributions of Xmu in the ground state and excited states
	6.2 Properties of the system around the phase transition
	6.2.1 Results for small matrix sizes
	6.2.2 Results on small matrices using the Wang-Landau algorithm
	6.2.3 Results for the restricted ensemble of fuzzy spaces and large matrices

	6.3 Further results on eigenvalue distributions

	7 8-Matrix-Model
	7.1 The model and classical solutions
	7.2 Fluctuations and critical behavior
	7.3 Numerical Results
	7.3.1 High temperature phase
	7.3.2 Results for small matrices
	7.3.3 Properties of the fuzzy CP2 phase
	7.3.3.1 Eigenvalue distributions

	7.3.4 Properties of the fuzzy S2 phase
	7.3.4.1 Eigenvalue distributions



	8 Modified 8-matrix model with CP2 as ground state
	8.1 Solutions to the equations of motion and classical/effective potential
	8.1.1 SU(3) symmetric solution
	8.1.2 SU(2) symmetric solution
	8.1.3 State with SU2xU1 symmetry

	8.2 Numerical Results
	8.2.1 Phase Diagram
	8.2.2 The Matrix Phase
	8.2.3 Results for small matrices
	8.2.4 Properties of the fuzzy CP2 phase
	8.2.5 Properties of the fuzzy S2 phase
	8.2.6 The SU2xU1 symmetric phase

	8.3 Conclusions

	9 Conclusions and Outlook
	A Definitions for SU(3)
	B Spectrum of B
	C Numerical Algorithms
	C.1 Metropolis Algorithm
	C.2 Hybrid-Monte-Carlo algorithm
	C.3 The Wang-Landau algorithm
	C.4 Implementation of the equations of motion in HMC-routine
	C.5 Short Note on Random Number Generators
	C.6 Statistical Error Analysis
	C.6.1 Autocorrelation
	C.6.2 The Jackknife Method


	D Hamiltonian Dynamics using Omelyan Integrator
	D.1 Matrix Harmonic Oscillator
	D.2 3-Matrix-Model
	D.3 8-Matrix Model

	References

