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The n-Point Condition and Rough CAT(0)

Abstract
We show that for n ≥ 5, a length space (X, d) satis-
fies a rough n-point condition if and only if it is rough
CAT(0). As a consequence, we show that the class
of rough CAT(0) spaces is closed under reasonably
general limit processes such as pointed and unpointed
Gromov-Hausdorff limits and ultralimits.
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1. IntroductionGromov hyperbolic spaces and CAT(0) spaces have been intensively studied; see [4], [6], [10], [3] and the referencestherein. Their respective theories display some common features, notably the canonical boundary topologies. RoughCAT(0) spaces, a class of length spaces that properly contains both CAT(0) spaces and those Gromov hyperbolic spacesthat are length spaces, were introduced by the first author and Kurt Falk in a pair of papers to unify as much as possibleof the theories of CAT(0) and Gromov hyperbolic spaces: the basic “finite distance” theory of rough CAT(0) spaces wasdeveloped in [1], and the boundary theory was developed in [2]. As in the earlier papers, we usually write rCAT(0) inplace of rough CAT(0) below. Rough CAT(0) is closely related to the class of bolic spaces of Kasparov and Skandalis [8],[9] that was introduced in the context of their work on the Baum-Connes and Novikov Conjectures, and is also relatedto Gromov’s class of CAT(-1,ε) spaces [7], [5].One gap in the theory developed so far is the absence of results indicating that the class of rCAT(0) spaces is closedunder reasonably general limit processes such as pointed and unpointed Gromov-Hausdorff limits and ultralimits. Thepurpose of this paper is to fill that gap.The fact that the CAT(0) class is closed under such limit processes is a consequence of the following well-known result(for which, see [3, II.1.11]):
Theorem A.
A complete geodesic metric space X is CAT(0) if and only if it satisfies the 4-point condition.

In [1, Theorem 3.18], it was shown that a rough variant of the 4-point condition is quantitatively equivalent to a weakversion of rCAT(0), and it follows that the class of weak rCAT(0) spaces is closed under reasonably general limit processes.However it seems difficult to decide whether or not all weak rCAT(0) spaces are necessarily rCAT(0). To establish similarlimit closure properties for rCAT(0), we prove the following rough analogue to Theorem A; rough n-point conditions aredefined in Section 2.
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Theorem 1.1.
Let (X, d) be a length space. If n ≥ 5 and (X, d) satisfies a C-rough n-point condition for some C ≥ 0, then (X, d) is
C ′-rCAT(0), where C ′ = C +2√3. Conversely, if (X, d) is C0-rCAT(0) for some C0 > 0, then for all n ≥ 3, (X, d) satisfies
a C-rough n-point condition, where C = (n− 2)C0.
After some preliminaries in Section 2, we prove a pair of preparatory lemmas in Section 3. We then prove the maintheorem and discuss its limit closure consequences in Section 4.
2. PreliminariesWhenever we write R2 in this paper, we always mean the plane with the Euclidean metric attached. Throughout thissection, X is a metric space with metric d attached; any extra assumptions on d will be explicitly stated.A h-short segment, h ≥ 0, in X is a path γ : [0, L]→ X , L ≥ 0, satisfying

len(γ) ≥ d(γ(0), γ(L)) ≥ len(γ)− h.
We denote h-short segments connecting points x, y ∈ X by [x, y]h. It is convenient to use [x, y]h also for the image ofthis path, so instead of writing z = γ(t) for some 0 ≤ t ≤ L, we often write z ∈ [x, y]h. Given such a path γ and point
z = γ(t), we denote by [x, z]h and [z, y]h respectively the subpaths γ|[0,t] and γ|[t,L], respectively; note that both of theseare h-short segments. A 0-short segment is called a geodesic segment, and we write [x, y] in place of [x, y]0.A metric space (X, d) is a geodesic space if for every x, y ∈ X , there exists at least one geodesic segment [x, y]. Moregenerally, (X, d) is a length space if for every x, y ∈ X and every h > 0, there exists a h-short path [x, y]h.A h-short triangle T := Th(x1, x2, x3) with vertices x1, x2, x3 ∈ X is a collection of h-short segments [x1, x2]h, [x2, x3]h,and [x3, x1]h (the sides of T ). Given such a h-short triangle T , a comparison triangle will mean a Euclidean triangle
T̄ := T (x̄1, x̄2, x̄3) in R2, such that |x̄i − x̄j | = d(xi, xj ), i, j ∈ {1, 2, 3}. Furthermore, we say that ū ∈ [x̄i, x̄j ] is a
comparison point for u ∈ [xi, xj ]h, if

|x̄i − ū| ≤ len([xi, u]h) and |ū− x̄j | ≤ len([u, xj ]h) .
A geodesic triangle T = T (x, y, z) is just a 0-short triangle. Note that in this case if T̄ := T (x̄1, x̄2, x̄3) in R2 is acomparison triangle, and ū ∈ [x̄i, x̄j ] is a comparison point for u ∈ [xi, xj ], then ū ∈ [x̄i, x̄j ] is uniquely determined by theequation |x̄i − ū| = d(u, xi).A geodesic space (X, d) is a CAT(0) space if given any geodesic triangle T = T (x, y, z) with comparison triangle
T̄ = T̄ (x̄, ȳ, z̄), and any two points u ∈ [x, y] and v ∈ [x, z], we have d(u, v ) ≤ |ū − v̄ |, where ū and v̄ are comparisonpoints for u and v .
Definition 2.1.Given C > 0, and a function H : X × X × X → (0,∞), a length space (X, d) is said to be a C-rCAT(0;H) space if thefollowing C-rough CAT(0) condition is satisfied:

d(u, v ) ≤ |ū− v̄ |+ C ,

whenever
• x, y, z ∈ X ;
• T := Th(x, y, z) is a h-short triangle, where h = H(x, y, z);
• T̄ := T (x̄, ȳ, z̄) is a comparison triangle in R2 associated with T ;
• u, v lie on different sides of T ;
• ū, v̄ ∈ T̄ are comparison points for u, v , respectively;
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We call (Th(x, y, z), u, v ) the metric space data and (T (x̄, ȳ, z̄), ū, v̄ ) the comparison data.
Definition 2.2.Given C > 0, a length space X is C-rCAT(0; ∗) if there exists H : X × X × X → (0,∞) such that X is C-rCAT(0;H).(X, d) is C-rCAT(0) if it is C-rCAT(0;H) with

H(x, y, z) = 11 ∨ d(x, y) ∨ d(x, z) ∨ d(y, z) .
Let us make some remarks about the above definitions. First, every CAT(0) space is C-rCAT(0) and C ′-rCAT(0; ∗), with
C = 2 +√3 and C ′ > 0 arbitrary; this follows from Theorem 4.5 and Corollary 4.6 of [1]. Trivially C-rCAT(0) implies
C-rCAT(0; ∗). Conversely, C-rCAT(0; ∗) implies C ′-rCAT(0) for C ′ := 3C + 2 +√3; see [1, Corollary 4.4].The explicit H in the rCAT(0) condition has proved to be useful, but one situation where rCAT(0; ∗) is needed is whenthe parameter C is close to 0. In particular, we show in Theorem 4.16 that if (Xn) is a sequence of Cn-rCAT(0; ∗) spaceswith Cn → 0, then under rather general conditions the resulting limit space is necessarily CAT(0). A fortiori, we couldchange the Cn-rCAT(0; ∗) hypothesis in this result to Cn-rCAT(0), but such a variant is of no real interest since a lengthspace satisfying a C-rCAT(0) condition for C < 1/2 has diameter at most C (as a hint, in a space of diameter largerthan this, consider a triangle T (x, x, x) containing a side [x, x ] that moves away from x and back again). In particular,only a one-point space can be C-rCAT(0) for all C > 0. By contrast, the class of spaces that are C-rCAT(0; ∗) for all
C > 0 is quite large: it includes, for instance, all CAT(0) spaces (as mentioned above), as well as examples such asthe deleted Euclidean plane D := R2 \ {0}. That D is an example follows from a more general principle: if (X, d) is
C-rCAT(0; ∗) for all C > 0, and a subspace (S, d) of X is also a length space then, a fortiori, S is C-rCAT(0; ∗) for all
C > 0 because the set of h-short paths between x, y ∈ S is a subset of the set of h-short paths between x and y in X .We now introduce the concept of C-rough subembeddings (into R2), which we use to define rough n-point conditions.
Definition 2.3.Let (X, d) be a metric space, C ≥ 0 and n ≥ 3 be an integer. Suppose xi ∈ X and x i ∈ R2 for 0 ≤ i ≤ n, with x0 = xnand x0 = xn. We say that (x1, x2, . . . , xn) is a C-rough subembedding of (x1, x2, . . . , xn) into R2 if

d(xi, xi−1) = |x i − x i−1| , 1 ≤ i ≤ n ,
d(x1, xi) ≤ |x1 − x i| , 2 ≤ i ≤ n , and
d(xi, xj ) ≤ |x i − x j |+ C , 2 ≤ i, j ≤ n .

Definition 2.4.Let n ≥ 3 be an integer. A metric space (X, d) satisfies the C-rough n-point condition, where C ≥ 0, if every n-tuplein X has a C-rough subembedding into R2. We say that X satisfies a rough n-point condition if it satisfies a C-rough
n-point condition for some C . The n-point condition is the 0-rough n-point condition.
We note that our notion of a rough 5-point condition is somewhat analogous to the mesoscopic curvature notion ofDelzant and Gromov [5] which they call CATε(κ), although that paper is concerned with κ < 0, whereas our notioncorresponds to κ = 0.Before proceeding further, let us discuss these conditions. If we vary just one of the parameters C and n in the C-rough
n-point condition, it is easy to see that decreasing C or increasing n gives a stronger condition; note that to deduce the
C-rough (n − 1)-point condition from the C-rough n-point condition, we simply take xn = xn−1. The 3-point conditionis satisfied by all metric spaces.For geodesic spaces, the 4-point condition is equivalent to CAT(0); see [3, II.1.11]. For length spaces, a C-rough 4-pointcondition is quantitatively equivalent to a weaker version of rCAT(0) in which the C-rCAT(0) condition is assumed formetric space data (Th(x, y, z), u, v ) only when v is one of the vertices x, y, z; see [1, Theorem 3.18]. However it seemsdifficult to decide whether or not weak rCAT(0) spaces are necessarily rCAT(0). We do not address that issue in thispaper, but we will show that, among length spaces, rCAT(0) is quantitatively equivalent to a rough n-point condition
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for n > 4. Thus the class of weak rCAT(0) spaces coincides with the class of length spaces satisfying a rough 4-pointcondition, and the class of rCAT(0) spaces coincides with the class of length spaces satisfying an n-point condition forany value (or all values) of n > 4, but we cannot say whether or not a rough 4-point condition implies a rough n-pointcondition for n > 4.The proof of Theorem 4.2 will require the following simple results.
Lemma 2.5.
Suppose A,B,B′, C ∈ R2 such that B and B′ lie on opposite sides of the line through A and C . Suppose that the sum
of the angles at C of the triangles T (A,B, C ) and T (A,B′, C ) is at least π. Then

|B − C |+ |C − B′| ≤ |B − A|+ |A− B′| .
Lemma 2.5 is a part of the well-known Alexandrov’s Lemma (for which see [3, I.2.16]) that is sufficient for our purposes.In fact, we need only the following immediate corollary; below, a filled polygon in the Euclidean plane means a polygonplus its bounded complementary component.
Corollary 2.6.
Suppose P,P ′ are filled polygons in R2 such that:

(a) P and P ′ share a side [A, C ], and lie on opposite sides of [A, C ];
(b) the sum of the interior angles at C in P and P ′ is at least π.

Let Q be the filled polygon P ∪ P ′, and let B,B′ be the vertices other than A that are adjacent as vertices to C in P
and P ′, respectively. Then the geodesic path from B to B′ in Q consists of the union of the line segments [B,C ] and[C,B′].
3. Two lemmasThe proof of Theorem 1.1 requires the following two lemmas. The first is a restatement of [1, Lemma 3.12].
Lemma 3.1.
Let x, y be a pair of points in the Euclidean plane R2, with l := |x − y| > 0. Fixing h > 0, and writing L := l+ h, let
γ : [0, L]→ R2 be a h-short segment from x to y, parameterized by arclength. Then there exists a map λ : [0, L]→ [x, y]
such that λ(0) = x , λ(L) = y, and

|λ(t)− x| ≤ |γ(t)− x| , 0 ≤ t ≤ L ,
|λ(t)− y| ≤ |γ(t)− y| , 0 ≤ t ≤ L ,

δ(t) := dist(γ(t), λ(t)) ≤ M := 12√2lh+ h2 , 0 ≤ t ≤ L .
In particular if h = ε/(1 ∨ l) for some 0 < ε ≤ 1, then δ(t) ≤ √3ε/2 for all 0 ≤ t ≤ L.
Lemma 3.2.
Assume xi, x ′i ∈ R2 for i = 0, 1, 2, with ui ∈ [x0, xi] and u′i ∈ [x ′0, x ′i ] for i = 1, 2 and let

h = ε1 ∨ |x ′0 − x ′1| ∨ |x ′0 − x ′2| ,
for some 0 < ε ≤ 1. Suppose further that

|x1 − x2| = |x ′1 − x ′2| ,
|x ′0 − x ′i | ≤ |x0 − xi| ≤ |x ′0 − x ′i |+ h, i = 1, 2 .
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and

|ui − x0|
|x0 − xi| = |u′i − x ′0|

|x ′0 − x ′i | , i = 1, 2 .
Then |u1 − u2| ≤ |u′1 − u′2|+√3ε .
Proof. Set

s = |u1 − x0|
|x1 − x0| = |u′1 − x ′1||x ′1 − x ′0|and

t = |u2 − x0|
|x2 − x0| = |u′2 − x ′0||x ′2 − x ′0| .We assume without loss of generality that s ≤ t. An elementary calculation using the parallelogram law shows thatgiven x, y, z in the Euclidean plane with w ∈ [y, z] and |w − y| = r|z − y| we have

|x − w|2 = (1− r)|x − y|2 + r|x − z|2 − r(1− r)|y− z|2 . (3.3)
Using (3.3) twice, we get

|u1 − u2|2 = st|x1 − x2|2 + t2 (1− s
t

)
|x0 − x2|2 − st (1− s

t

)
|x0 − x1|2 (3.4)

and similarly
|u′1 − u′2|2 = st|x ′1 − x ′2|2 + t2 (1− s

t

)
|x ′0 − x ′2|2 − st (1− s

t

)
|x ′0 − x ′1|2. (3.5)

Setting |u1 − u2| = |u′1 − u′2|+ d and subtracting (3.5) from (3.4), we get
2d|u′1 − u′2|+ d2 = t2 (1− s

t

) (
|x0 − x2|2 − |x ′0 − x ′2|2)−

− st
(1− s

t

) (
|x0 − x1|2 − |x ′0 − x ′1|2)

≤ t2 (1− s
t

) (
|x0 − x2|2 − |x ′0 − x ′2|2)

≤ t2 (1− s
t

) (2h|x ′0 − x ′2|+ h2) ≤ 3ε.
In particular d ≤ √3ε, as required.
4. Proof and consequencesHere we prove Theorem 1.1 and discuss some consequences. First we need a definition.
Definition 4.1.Suppose (S, dS ) is a metric space, and that for i = 1, 2, we have a metric space (Xi, di), a closed subspace Si ⊂ Xi, anda surjective isometry fi : S → Si. We then define the gluing of X1 and X2 along S1, S2 (denoted by X = X1 tS X2) asthe quotient of the disjoint union of X1 and X2 under the identification of f1(s) with f2(s) for each s ∈ S. The gluedmetric d on X is defined by the equations d|Xi×Xi = di, i = 1, 2 and

d(x1, x2) = inf
s∈S

(d1(x1, f1(s)) + d2(f2(s), x2)) , x1 ∈ X1, x2 ∈ X2.
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We note the following easily verified facts about (X, d) := X1 tS X2 defined by gluing as above:
• d restricted to Xi, i = 1, 2, coincides with di;
• every geodesic segment in Xi, i = 1, 2, is also a geodesic segment in X .

We now prove the following slight improvement of Theorem 1.1.
Theorem 4.2.
Let (X, d) be a length space. If n ≥ 5 and (X, d) satisfies a C-rough n-point condition for some C ≥ 0, then (X, d) is
C ′-rCAT(0) and C ′′-rCAT(0; ∗), where C ′ = C + 2√3 and C ′′ > C is arbitrary. Conversely, if (X, d) is C0-rCAT(0; ∗) for
some C0 > 0, then for all n ≥ 3, (X, d) satisfies a C-rough n-point condition, where C = (n− 2)C0.
Proof. Assume that (X, d) is a length space. We first prove the forward implication, so we assume that n ≥ 5 andthat (X, d) satisfies a C-rough n-point condition for some C ≥ 0. It follows trivially that (X, d) satisfies a C-rough5-point condition. Let T := Th(x, y, z) be a h-short geodesic triangle in X , where

h = H(x, y, z) := ε1 ∨ d(x, y) ∨ d(x, z) ∨ d(y, z) , (4.3)
and 0 < ε ≤ 1 is fixed but arbitrary. Assume also that u ∈ [x, y]h and v ∈ [x, z]h. Let (x ′, u′, y′, z′, v ′) be a C-roughsubembedding of (x1, x2, x3, x4, x5) = (x, u, y, z, v ) into R2, so in particular we have

d(x, y) ≤ |x ′ − y′| , d(x, z) ≤ |x ′ − z′| , d(y, z) = |y′ − z′| ,
and

d(u, v ) ≤ |u′ − v ′|+ C. (4.4)
From the definition of a C-rough subembedding and the fact that T is h-short, it follows that the piecewise linear paths
γ1 = [x ′, u′] ∪ [u′, y′] and γ2 = [x ′, v ′] ∪ [v ′, z′] are both h-short. Thus, by Lemma 3.1 we can choose u′′ ∈ [x ′, y′] and
v ′′ ∈ [x ′, z′] such that

|u′ − u′′| ≤
√3ε2 and |v ′ − v ′′| ≤

√3ε2 (4.5)
and such that

|u′′ − x ′| ≤ |u′ − x ′| and |u′′ − y′| ≤ |u′ − y′| (4.6)
and

|v ′′ − x ′| ≤ |v ′ − x ′| and |v ′′ − z′| ≤ |v ′ − z′|. (4.7)
We illustrate the construction in Figure 1. The “squiggly lines” on the left are short paths, and significant distancesbetween points not connected by paths are indicated by dashed lines. Note that {x ′, u′, y′} and {x ′, v ′, z′} might not becollinear sets even though u ∈ [x, y]h and v ∈ [x, z]h.Now let T̄ = T (x̄, ȳ, z̄) be a comparison triangle for T and choose ū ∈ [x̄, ȳ], v̄ ∈ [x̄, z̄] satisfying:

|ū− x̄|
|x̄ − ȳ| = |u′′ − x ′||x ′ − y′| and |v̄ − x̄|

|x̄ − z̄| = |v ′′ − x ′||x ′ − z′| . (4.8)
Since |x̄ − ȳ| = d(x, y) ≤ |x ′ − y′|, it follows from (4.6) and (4.8) that

|ū− x̄| ≤ |u′′ − x ′| ≤ |u′ − x ′|

and
|ū− ȳ| ≤ |u′′ − y′| ≤ |u′ − y′| ,
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Fig 1. Rough subembedding.

so ū is a comparison point for u. Similarly v̄ is a comparison point for v . Finally, using (4.4) and (4.5), we see that
d(u, v ) ≤ |u′ − v ′|+ C ≤ |u′′ − v ′′|+ C +√3ε ,

and so by Lemma 3.2, we get
d(u, v ) ≤ |ū− v̄ |+ C + 2√3ε .

Thus (X, d) is C ′-rCAT(0; ∗), with C ′ = C + 2√3ε. Taking ε = 1, we see that X is C ′-rCAT(0), where C ′ = C + 2√3.Letting ε > 0 be sufficiently small, we see that X is C ′′-rCAT(0; ∗).We next proceed with the reverse implication, so let us assume that (X, d) is C ′-rCAT(0; ∗). We will prove that (X, d)satisfies the Cn-rough n-point condition, where Cn := (n− 2)C ′ and n ≥ 3.The proof will involve induction, but using a stronger inductive hypothesis which involves not just a set of n points,but an n-gon with these points as vertices. Additionally, the inductive process requires us to establish simultaneouslya CAT(0) version of the result. Note that it suffices to prove the result for sets of distinct points, since the desiredconditions for n points with at least one repeated point follows immediately from the condition for n− 1 points.Given u1, u2, . . . , un ∈ X , n ≥ 3, we say that P is a h-short n-gon (with vertices u1, u2, . . . , un = u0) if P is the unionof h-short paths [ui−1, ui]h for i = 1, 2, . . . , n. An n-gon is geodesic if it is 0-short. We say that h is suitably small if
h < H(ui, uj , uk ) for all 1 ≤ i, j, k ≤ n.Suppose
• Q is a geodesic n-gon with distinct vertices (vi)ni=1 and associated metric d′;
• P a h-short n-gon with distinct vertices (ui)ni=1 and associated metric d;
• F : Q → P is a map with F (vi) = ui, 1 ≤ i ≤ n.

Since a geodesic segment is isometrically equivalent to a segment on R, we can view the restriction of F to a singleside of Q as being a path, and hence define the path length len(F ; x, y) to be the length of the associated path segmentfrom F (x) to F (y). We call F : Q → P a constant speed n-gon map if P,Q, F are as above, and if for each 1 ≤ i ≤ nthere is a constant Ki such that len(F ; x, y) = Kid′(x, y) whenever x, y ∈ [vi−1, vi]. It is easy to see that, given any P,Qas above, a constant speed n-gon map always exists.Given the following data:
• a h-short n-gon P with distinct vertices u1, u2, . . . , un ∈ X , where (X, d) is a metric space and h is suitably small;

64
Brought to you by | National University Ireland  Maynooth

Authenticated | 149.157.1.188
Download Date | 3/25/14 12:16 PM



The n-Point Condition and Rough CAT(0)

• a constant speed n-gon map F : Q → P , where Q is a geodesic n-gon with distinct vertices v1, v2, . . . , vn ∈ Y ,and (Y , d′) is a CAT(0) space,
we define a hypothesis An(P, h;F,Q, d′, Cn):

ui = F (vi) , 1 ≤ i ≤ n ,
d(ui−1, ui) = d′(vi−1, vi) , 1 ≤ i ≤ n ,
d(u1, ui) ≤ d′(v1, vi) , 2 ≤ i ≤ n ,len([F (x), ui]h) ≥ d′(x, vi) , x ∈ Q, vi a vertex adjacent to x , (4.9)

d(F (x), F (y)) ≤ d′(x, y) + Cn , x, y ∈ Q . (4.10)
The inductive hypothesis for n is that for all P, h as above, there exist data (F,Q, d′) such that An(P, h;F,Q, d′, Cn)holds, and such that (Q,d′) is a convex Euclidean n-gon in R2 with d′ being the Euclidean metric. This implies thedesired Cn-rough n-point embedding: the vertices of Q give the rough subembedding of the vertices of P . We havedefined the hypothesis An(P, h;F,Q, d′, Cn) in the more general context of a CAT(0) space Y because we will need thisalong the way.The CAT(0) version of our inductive hypothesis for n is that for all geodesic n-gons P as above, there exist data (F,Q, d′)such that An(P, 0;F,Q, d′, 0) holds, and such that (Q,d′) is a convex Euclidean n-gon in R2 with d′ being the Euclideanmetric. Note also that with h = 0 and Cn = 0 we get equality in (4.9), and (4.10) simplifies to

d(F (x), F (y)) ≤ |x − y| . (4.11)
It is a routine task to use the C ′-rCAT(0) condition to verify the inductive hypothesis for n = 3 (and CAT(0) to verify theCAT(0) variant of the inductive hypothesis for n = 3), so assume that it holds for n = k ≥ 3. Let P be a given h-short(k + 1)-gon, where h is sufficiently small. We draw a h-short path from u1 to uk that splits P into a h-short k-gon P1with vertices u1, . . . , uk , and a h-short triangle P2 with vertices u1, uk , uk+1. Let Fi : Qi → Pi, i = 1, 2 be the mapsguaranteed by our inductive hypothesis for n = k and the easy case n = 3, where Q1 is a convex k-gon with vertices
v1, v2, . . . , vk ∈ R2 and Q2 is a triangle with vertices v1, vk , vk+1. By use of isometries of R2, we may assume that thesides from v1 to vk in Q1 and in Q2 are the same, and that Q1 and Q2 are on opposite sides of this line segment (so theinteriors of Q1 and Q2 are disjoint).We now let (Q′, d′) be the metric space formed by gluing Q1 and Q2 together along S = [v1, vk ], so Q′ = Q1 tS Q2. Let
Q be the (k + 1)-gon with vertices v1, v2, . . . , vk+1 and define F : Q → P by

F (x) = {F1(x) , x ∈ Q1 ∩Q ,
F2(x) , x ∈ Q2 ∩Q .

Note that the fact that each Fi is a constant speed map ensures that F is well-defined.We wish to prove Ak+1(P, h;F,Q, d′, Ck+1). In view of the construction, it suffices to verify (4.10), and for this we mayassume that x ∈ Q1 and y ∈ Q2. Let γ be the geodesic in Q connecting x to y. It follows that γ = [x, v ] ∪ [v, y], where
v ∈ [v1, vk ].Using (4.10) for P1 and P2 and the definition of the gluing metric d′ on Q, we thus get

d(F (x), F (y)) ≤ d(F (x), F (v )) + d(F (v ), F (y))
≤ |x − v |+ Ck + |v − y|+ C3= d′(x, y) + Ck+1.

We can deduce Ak+1(P, 0;F,Q, d′, 0) from the CAT(0) version of our inductive hypothesis by essentially the sameargument.If Q happens to be convex, we are done with the proof so assume that Q is not convex. Then the interior angle at either
v1 or vk exceeds π. Assume without loss of generality that the interior angle at v1 is larger than π. By Corollary 2.6,
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the union of the two geodesic segments [vk+1, v1] and [v1, v2] is also a geodesic segment and so, by eliminating v1 as avertex, we may consider Q to be a geodesic k-gon with vertices v2, v3, . . . , vk+1. We also note that Q is CAT(0) since
Q1 and Q2 are CAT(0) and the gluing set [v1, vk ] is convex; see [3, II.11.1]. Applying the CAT(0) version of our inductionassumption to Q, we get a map G : R → Q, where R is a convex k-gon in R2 with vertices w2, w3, . . . , wk+1 satisfying:

vi = G(wi) , 2 ≤ i ≤ k + 1 ,
|vi−1 − vi| = |wi−1 − wi| , 3 ≤ i ≤ k + 1 ,
|v2 − vk+1| ≤ |w2 − wk+1| ,
|G(y)− vi| = |y− wi| , y ∈ R, wi a vertex adjacent to y ,

|G(y)− G(z)| ≤ |y− z| , y, z ∈ Q .

We now view R as a convex (k + 1)-gon by identifying G−1(v1) as an extra vertex (with interior angle π). Then F ◦G isthe desired mapping (for both the rCAT(0) and CAT(0) variants of our inductive hypothesis). Thus we have establishedthe inductive hypothesis for n = k + 1 and we are done with the proof.
For completeness we state a CAT(0) variant of Theorem 1.1.
Theorem 4.12.
A complete geodesic space (X, d) satisfies the n-point condition for fixed n ≥ 4 if and only if it is CAT(0).

Proof. Since Theorem A already tells us that the 4-point condition is equivalent to CAT(0), it suffices to prove thatCAT(0) implies the n-point condition for each n > 4. But this follows from the CAT(0) version of our inductive hypothesiswhich was established in the proof for all n ∈ N.
Remark 4.13.By examining the above proof, we see that if X is C-rCAT(0; ∗), then X is C ′-rCAT(0;H ′) with C ′ = 3C + 2√3ε,0 < ε ≤ 1, and

H ′(x, y, z) := ε1 ∨ d(x, y) ∨ d(x, z) ∨ d(y, z) . (4.14)
Taking ε = 1, this slightly strengthens [1, Corollary 4.4] which states that C-rCAT(0; ∗) implies C ′-rCAT(0) for C ′ :=3C + 2 +√3. Also interesting is the case ε = 1 ∧ (C 2/3): this shows that the C-rCAT(0;H) condition with arbitrary Himplies the (5C )-rCAT(0;H ′) condition with the explicit H ′ given by (4.14).
As mentioned in the Introduction, CAT(0) is preserved by various limit operations, including pointed Gromov-Hausdorfflimits and ultralimits [3, II.3.10]. The trick is to use the 4-point condition and the concept of a 4-point limit. A verysimilar argument, with the 4-point condition replaced by our rough 5-point condition, will give us similar results forrCAT(0) spaces. We begin with a definition of n-point limits.
Definition 4.15.A metric space (X, d) is an n-point limit of a sequence of metric spaces (Xm, dm), m ∈ N, if for every {xi}ni=1 ⊂ X , and
ε > 0, there exist infinitely many integers m and points xi(m) ∈ Xm, 1 ≤ i ≤ n, such that |d(xi, xj )−dm(xi(m), xj (m))| < εfor 1 ≤ i, j ≤ n.
We are now ready to state a 5-point limit result. Note that, since any n-point limit (X, d) of ((Xm, dm))∞m=1 is also an
n′-point limit of this sequence of spaces for all n′ ≤ n, the following result also holds if 5 is replaced by any largerinteger. The proof of this result, which is very similar to the corresponding result for CAT(0) and 4-point limits given in[3, II.3.9], is included for completeness.
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Theorem 4.16.
Suppose the length space (X, d) is a 5-point limit of (Xm, dm), m ∈ N, where (Xm, dm) is Cm-rCAT(0; ∗) for some constant
Cm. If Cm ≤ C for all m ∈ N, then (X, d) is a C̃-rCAT(0) space, where C̃ = 3C +2√3. If Cm → 0, and (X, d) is complete,
then (X, d) is a CAT(0) space.

Proof. Suppose first that Cm ≤ C for all m ∈ N. Let (xi)5i=1 be an arbitrary 5-tuple of points in (X, d), and supposethat it is the 5-point limit of the 5-tuples (xi(m))5i=1 in Xm. By passing to a subsequence if necessary, we may assumethat d(xi(m), xj (m))→ d(xi, xj ) for all 1 ≤ i, j ≤ 5.By Theorem 4.2, every (Xm, dm) satisfies a C ′-rough 5-point condition, where C ′ := 3C , so there exists a C ′-roughsubembedding (x1(m), x2(m), . . . , x5(m)) of (x1(m), x2(m), . . . , x5(m)) into R2, for all m ∈ N. Since translation is anisometry in R2, we may assume that the points x1(m) coincide for all m ∈ N. Thus all 5-tuples are contained in a diskof finite radius and by passing to a subsequence if necessary we may assume that x i(m) converges to some point x ias m → ∞, for all 1 ≤ i ≤ m. It follows readily that (x i)5i=1 is a C ′-rough subembedding of (xi)5i=1 in R2. Thus (X, d)satisfies the C ′-rough 5-point condition. By again using Theorem 4.2, we deduce that (X, d) is a C̃-rCAT(0) space where
C̃ = C ′ + 2√3.If in fact Cm → 0, then (Xm, dm) satisfies a (3Cm)-rough 5-point condition, and it follows as above that (X, d) satisfies the0-rough 5-point condition, and hence the 4-point condition. This together with completeness and approximate midpoints(as follows from the fact that (X, d) is a length space) implies that (X, d) is a CAT(0) space: see [3, II.1.11].
With Theorem 4.16 in hand, it is now routine to deduce the following corollary.
Corollary 4.17.
Suppose (X, d) is a length space and suppose (Xm, dm), m ∈ N, form a sequence of C-rCAT(0) spaces. Writing
C̃ = 3C + 2√3, the following results hold.

(a) If (X, d) is a (pointed or unpointed) Gromov-Hausdorff limit of (Xm, dm) then (X, d) is a C̃-rCAT(0) space.

(b) If (X, d) is an ultralimit of (Xm, dm), then (X, d) is a C̃-rCAT(0) space.

(c) If X is rCAT(0), then the asymptotic cone ConeωX := limω(X, d/m) is a CAT(0) space for every non-principal
ultrafilter ω.

Note that in the proof of Corollary 4.17(c), we need the fact that ConeωX is complete, but this is true because ultralimitsare always complete [3, I.5.53].In each part of Corollary 4.17, the existence of an approximate midpoint for arbitrary x, y ∈ X (meaning a point z suchthat d(x, z) ∨ d(y, z) ≤ ε + d(x, y)/2 for fixed but arbitrary ε > 0) follows easily from the hypotheses, and so (X, d) iseasily seen to be a length space if it is complete. Thus Corollary 4.17 generalizes the κ = 0 case of [3, II.3.10](1), (2),where the spaces are assumed to be CAT(0) rather than rCAT(0) and the limit space (X, d) is assumed to be completerather than a length space.
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