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1 Introduction

There has been much written on the possible values
attained by the probability that a random pair of elements
in a finite group commute: see for instance [5], [9], [7],
[10], [12], [4], [6], [3], and [8]. The corresponding
question for finite rings was examined in [11] and [2]. In
this paper, we examine the probability that a random pairs
of elements in a finite ring anticommute.

Let f X Y aXY bYX be a formal
noncommutative polynomial in the unknowns X and Y ,
where a b . We use f as a symbol of the function
f R : R R R, defined by f R x y : axy byx, on an
arbitrary ring R. For such a symbol f , and a ring R of
finite cardinality, let

Pr f R :
x y R R : f R x y 0

R 2 (1.1)

where S denotes the cardinality of a set S. Whenever is
a class of finite rings, we define the associated f -spectrum

f 0 1 by

f : Pr f R R

We give Pr f R and f special terminology and
notation in three important cases: the commuting
probability and commuting spectrum, Prc R and c ,
correspond to f X Y : XY YX ; the anticommuting
probability and anticommuting spectrum, Prac R and

ac , correspond to f X Y : XY YX ; and the

annihilating probability and annihilating spectrum,
Prann R and ann , correspond to f X Y : XY .

The commuting spectrum was investigated in [2],
where all sufficiently large spectral values were given
explicitly, both for the class fin of all finite rings and for
the class p of all rings of order a power of a given prime
p. In [1], some relationships between the various spectra
were discussed: in particular, it was shown that the
annihilating spectrum of various classes of finite rings
contains the f -spectrum of the same class for each f as
above. However [1] does not discuss any particular values
that lie in any of these spectra, so in this paper we carry
out such an investigation for anticommuting spectra (and
annihilating spectra for commutative rings), although
some of our results apply equally well to f -spectra for a
general symbol f .

We use three parametrized proportions in our main
results:

α k; p :
pk p 1

pk 1

δ p :
3p 2

p3

ε p :
2p3 p2 3p 1

p5

where p is a prime and k . For comparison with the
results of [2], we also define γ p : p3 p2 1 p5. We
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14 S. M. Buckley et al: Finite Rings with Large Anticommuting Probability

will see in Section 2 that for all primes p and k ,

γ p ε p δ p
1
p

α k 1; p α k; p (1.2)

with all inequalities being strict for p 2.
Let fin and p be as above. In [2], all elements of

c p γ p 1 and c fin γ 2 1 are explicitly
listed for all primes p. In the following theorem, we
explicitly list all elements of ac p ε p 1 and

ac fin ε 2 1 ; note that ε 2 15 32.

Theorem 1.1. For all primes p,

ac p ε p 1 α k; p k

1 α 1; p 2 δ p ε p

The above values are all distinct except for the equation
α 1;2 2 α 3;2 . Moreover,

ac fin ε 2 1 α k;2 k

1 5 9 1 2 15 32

Comparing the above result with [2, Theorem 1], we
see that

c p ε p 1 α 2k; p k

ac p ε p 1

c fin ε 2 1 α 2k;2 k

ac fin ε 2 1

Not only are there more large anticommuting values than
large commuting values, but the isomorphism types
associated with large anticommuting values are
considerably more diverse than those associated with
large commuting values; see Theorem 4.6. It is because of
this extra complexity that we chose a larger cutoff value
than that employed in [2]; note that γ 2 11 32 but
ε 2 15 32.

After some preliminaries in Section 2, we characterize
all values of Pr f R for p-rings R (meaning rings in p)
satisfying f R R p in Section 3; here f R R is the
additive subgroup of R generated by all elements of the
form f x y , x y R. There are two key ideas introduced
in that section to accomplish this characterization:
reductions to rings of a simpler form (split and canonical
forms), and an augmentation process that produces a
sequence of values of Pr f once we find a single value
Pr f R 1. Split form also allows us to prove that the
anticommuting spectrum for all finite rings, or all p-rings,
equals the annihilating spectrum for all finite
commutative rings, or all commutative p-rings,
respectively.

Finally in Section 4, we prove Theorem 1.1. We also
list there all possible isomorphism types of canonical-form
commutative p-rings R with the property Prann R ε p .

2 Preliminaries

Rings and algebras are always assumed to be associative,
but are not necessarily unital. The classes fin and p are
as defined in the introduction; we call a ring in p a
p-ring. We also define c to be the class of all finite
commutative rings, and ac to be the class of all finite
anticommutative rings. If R is a ring, then R2 will always
denotes the additive subgroup generated by all products
xy, rather than the cartesian product which will be
denoted R R. A null ring is a ring R with R2 0.

n denotes the ring of integers mod n, n is the set of
units in n, and Cn denotes a cyclic group of order n. The
p-adic valuation νp : 0 0 1 2 is defined by
νp n k whenever n ipk, i k , and i is not divisible
by the prime p. If S is a subset of a vector space V , we
write spanS for the subspace spanned by S; usually V will
be the additive group of a p-algebra.

f X Y : aXY bYX is a symbol, with a b .
Given a symbol f and a ring R, f R : R R R is defined
by f R x y : axy byx. Suppose R is a ring. For x R,
we write f x R for the additive subgroup

f R x y y R of R , and f R R is the additive
subgroup generated by f R x y , x y R. The right
f -annihilator of x R is

r-Ann f R x : y R f R x y 0

and the right f -annihilator of R is

r-Ann f R : z R f R x z 0 for all x R

The left-handed variants l-Ann f R x and l-Ann f R are
defined analogously. The (two-sided) f -annihilator of R is
Ann f R : r-Ann f R l-Ann f R . These various
annihilators are not in general ideals, so R r-Ann f R ,
R l-Ann f R , R Ann f R always refer to factor groups
of R . If f X Y XY , we drop references to f in the
above terminology and notation, so r-AnnR x is the right
annihilator of x R, Ann R is the annihilator of R, etc.

We will need to deal with direct sums of rings, but
also direct sums of abelian groups, and sometimes the
groups involved in the latter are additive groups of
associated rings. To distinguish between the two concepts,
we write A B for a direct sum of rings, and A B for a
direct sum of abelian groups.

If a ring R equals R1 R2, then Pr f R
Pr f R1 Pr f R2 : this follows easily from the fact that the
kernel of f R is precisely the cartesian product of the
kernels of f R1 and f R2 . Thus f is a monoid under
multiplication, with 0 as an accumulation point, whenever

is a class of finite rings closed under direct sums that
contains at least one commutative ring and at least one
noncommutative ring.

Since a finite ring is a direct sum of rings of prime
power order, it follows that the numbers in f fin are
precisely the set of all products ∏n

i 1 ti, where n ,
ti f pi , and each pi is prime. To understand the
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structure of f fin a 1 for any given 0 a 1, it
therefore suffices to understand f p a 1 for all
primes p. For this reason, we mostly concentrate on
investigating the spectra f p .

By considering the surjective group homomorphism
f R
x : R f x R , fx y f x y , we make the following

observation; note that ker f R
x r-Ann f R x .

Observation 2.1. For each x in a ring R, the additive
groups R r-Ann f R x and f x R are isomorphic.

It thus follows easily from the definition of Pr f that

Pr f R
1
R 2 ∑

x R
r-Ann f R x

1
R ∑

x R

1
R r-Ann f R x

1
R ∑

x R

1
f x R

(2.1)

Since r-Ann f R x r-Ann f R x z , z l-Ann f R , we
can alternatively write

Pr R
1

R A ∑
x R A

1
f x R

(2.2)

whenever A is a subgroup of l-Ann f R ; the sum
above involves one term for each coset x of A.

If R is a p-ring, it follows from (2.2) that

Pr f R
∞

∑
k 0

qk

pk p 1
∞

∑
k 0

Qk

pk 1 (2.3)

where qk is the proportion of cosets x l-Ann f R in
R l-Ann f R such that f x R pk, and Qk : ∑k

j 0 q j.
Note that the series involving qk is really a finite sum, but
the one involving Qk is always an infinite series: in fact
Qk 1 for all sufficiently large k.

Related to the above discussion, we make the
following useful observation.

Observation 2.2. If a b a b R, with
a a b b Ann f R , then f R a b f R a b , so f R

induces a bilinear map

f̃ R : R Ann f R R Ann f R R

By the fundamental theorem of finite abelian groups,
a finite abelian p-group A can be decomposed as a
direct sum

m
i 1Cpki k1 k2 km 0 m 0

We call ki the i-th invariant of A; these invariants and m are
uniquely determined. A basis of A is a set u1 um A,
where each ui is a generator of the ith summand Cpki (when
we view A as an internal direct sum of such summands).
Equivalently, a basis of A is a spanning set of A with the

property that a sum of the form ∑m
i 1 niui, ni , equals 0

only if each term niui equals 0.
Finally in this section, we justify (1.2). The inequalities

1 p α k 1; p α k; p are obvious, once we write
α k; p p 1 p k 1 p 1 . Next, δ 2 1 2, and the
inequality δ p 1 p is clear for p 3. The inequality
ε p δ p holds because

p5 δ p ε p 3p3 2p2 2p3 p2 3p 1

p 1 3 0

Finally, the inequality γ p ε p holds because

p5 ε p γ p 2p3 p2 3p 1 p3 p2 1

p 2 p 1 2 0

It is noteworthy also that ε p α 1; p α 2; p .

3 Split form, canonical form, and
augmentation

In this section, we discuss the concept of split- (and
canonical-) form rings. Split-form rings are easier to
handle than general rings for Pr f , and provide a useful
reduction because for every finite ring R, there is a
split-form ring S with Pr f R Pr f S . This concept is an
outgrowth of the concept of canonical form developed as
part of the theory of isoclinism and isologism for certain
universal algebras in [1], but here we develop the concept
without reference to that theory.

We then define a process of augmentation that allows
us to use existing values of f p to find new ones. In
particular, we use this process for a general symbol f to
help us characterize the set of values of Pr f R for rings
satisfying f R R p. Our augmentation process is
related to that discussed in [2, Section 4]: in fact the
earlier process roughly corresponds to the case where
f X Y : XY YX and S is a split-form
noncommutative ring of order p3 in the following
definition.

3.1 Split form and canonical form

Definition 3.1. A ring (or algebra) R has split form (with
data R1 R2 ) if it satisfies the following conditions:

(a) R is an internal direct sum of two abelian groups
R1 and R2, and we write elements x S as x1 x2,
where xi Ri, i 1 2.

(b) R1 has an associated multiplication that makes it into
a ring, and such that multiplication in R is then given
by the equation

x1 x2 y1 y2 0 x1y1 R2
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Part (b) above can be rewritten as

R2 R2 Ann R l-Ann R r-Ann R (3.1)

It is sometimes useful to replace these containments by
equations, if possible.

Definition 3.2. A split-form ring (or algebra) R with data
R1 R2 is said to have canonical form if l-Ann R

r-Ann R R2 R2.

Given a split-form ring R, there may be more than one
choice of data R1 R2 , although the split-form data are
uniquely defined if R has canonical form, as is clear from
(3.1).

We now describe the split construction which defines
a split-type ring S associated with a given ring R. First,
S equals the internal direct sum of the abelian groups

S1 and S2, where S1 : R and S2 : R2. Writing a
general element of S as x x1 x2, xi Ai, i 1 2, we
define multiplication on S by the equation
x1 x2 y1 y2 0 x1y1 S2, where x1y1 is an

R-product.
The utility of the split construction is tied to the fact

that it preserves several features of a ring R, as
summarized below. These features imply that if we wish
to investigate f for some class of finite rings,
then it often suffices to consider split-form rings. In the
following observations, f can be any symbol, and we use
the notation of the split construction above.

Observations 3.3.

(a) If R is a p-ring, or is commutative, or anticommutative,
then S has the same property.

(b) f S S can be identified with f R R .
(c) A S A R S2, where A stands for r-Ann f ,

l-Ann f , or Ann f .
(d) S has split form, with data S1 S2 .
(e) If R is finite, then Pr f R Pr f S (as follows from

(2.2)).
(f) S3 0.

We now give the canonical construction which defines
a canonical-type ring S associated with a split-form ring R
with data R1 R2 that satisfies l-Ann R r-Ann R . Let
S be the internal direct sum of S1 : R1 Ann R1 and

S2 R2, and we write a general x S as x1 x2, where
x1 S1 and x2 S2. Multiplication on S is defined by the
rule x1 x2 y1 y2 0 u1v1 S2, where u1v1 is an
R-product, and u1 v1 R1 are such that x1 u1 Ann R1
and y1 v1 Ann R1 .

We now state some readily verified properties of the
canonical construction of S from a given split-form ring R,
with notation as in the previous paragraph.

Observations 3.4.

(a) Observations 3.3 all hold (since canonical form is a
special type of split form).

(b) S2 S2 R2.
(c) Ann S S2.

(d) S has canonical form, with data S1 S2 .
(e) The first invariant of S equals the first invariant of

both S1 and S2. In particular, S is a p-algebra if and
only if S1 is an elementary p-group.

Split form is of interest for all rings and all symbols f ,
while canonical form will mostly be of interest for
f X Y XY in the case of commutative and
anticommutative rings. However we will see that it will
be useful by extension when working with symbols of the
form f X Y a XY YX , a .

Given a split-form ring R, we can always define a new
split-form ring with the same data R : R , where
x y : f R x y ; associativity follows from the split-form
assumption. It is clear that Prann R Pr f R . Since split-
form rings give all possible values of Pr f , we deduce
that f ann if fin or if p for some
prime p; these containments were originally proved in [1].

The containment f ann might not be an
equality: for instance, Prann 2 3 4 c fin
according to the results of [2] or [11]. However we do
have the following result.

Theorem 3.5. Suppose p is a prime.

(a) ac fin ann c and ac p ann c p .
(b) c fin ann ac and c p ann ac p .

Proof. We prove only (a) since the proof of (b) is similar.
Since finite rings are direct sums of rings of prime power
order, it suffices to prove that ac p ann c p .
When f x y xy yx, the new multiplication for x y :
f R x y considered above is commutative (and associative
as long as R has split form, as mentioned above). Thus

ac p ann c p .
Conversely, if R is a commutative p-ring for some odd

prime p, then Prann R Prac R , where R : R
and x y 2 1xy. Thus ann c p ac p for all
p 2.

This argument can be modified to work also for p 2.
First, we assume as we may that the commutative ring R
has split form with data R1 R2 . Write R2 as an internal
direct sum of groups Ui, 1 i m, where each Ui is a
cyclic group of order 2ki with generator ui. Let S2 be the
abelian group which is an internal direct sum of cyclic
groups Vi of order 2ki 1 with generators vi, 1 i m. We
define an injective homomorphism µ2 : R2 S2 by the
equations µ2 ui 2vi, 1 i m. Let S be the
commutative split-form ring with data R1 S2 whose
multiplication S is defined by x S y µ2 xy S2 for all
x y R1, where xy is an R-product. Given x y R1 we
have xy 0 in R if and only if x S y 0, and so
Prann R Prann S .

We choose a basis : u1 um of R1. Since
ui S u j 2S2 for all ui u j , we can define a function
F : S2 with the properties that
F ui u j F u j ui and 2F ui u j ui S u j for all
1 i j m. Using bilinearity, we then define a new
multiplication S on S such that S : S is a
split-form commutative ring with data R1 S2 satisfying
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ui u j F ui u j . By bilinearity, we deduce that
2x y x S y for all x y S. It follows that
Prac S Prann S , as required.

Remark 3.6. The above theorem makes canonical form
useful for studying Prc and Prac: we first transform the
study of Prc R or Prac R for p-rings R to the study of
Prann S for anticommutative or commutative p-rings S,
respectively. By applying the canonical construction if
necessary, we can then assume that S has canonical form
(bearing in mind Observations 3.4).

Remark 3.7. For the benefit of someone who has read
[1], we mention that replacing a ring R by a related
canonical-form ring when investigating Prc or Prac
corresponds in the language of [1] to replacing R by a
canonical-form ring for isologism with respect to the
variety of commutative or anticommutative rings,
respectively. Furthermore two rings are isologic in this
sense if and only if the associated canonical-form rings
are isomorphic; see [1, Theorem 4.16(b)]. Thus
subsequent statements in this paper concerning
isomorphism types of canonical-form rings with certain
properties can be reworded as statements about the
isologism types of rings with those properties.

We have the following variant of (2.2) for split-form
rings R with data R1 R2 :

Pr f R
1
R1

∑
x1 R1

1
f x1 R

(3.2)

A split ring homomorphism h is a ring
homomorphism between split-form rings R S such that
h Ri Si, i 1 2, where R1 R2 and S1 S2 are the
data of R and S, respectively. Split ring isomorphisms are
then defined in the natural way.

3.2 Augmentation

Definition 3.8. Suppose R and S are split-form rings with
data R1 R2 and S1 S2 , respectively. Given an injective
homomorphism µ : S2 R2, we define R µ S, the
augmentation of R by S (via µ), to be the unique ring T
with the following properties:

(a) T equals the internal direct sum R1 R2 S1.
(b) Write a general element x T as x x1 x2 x3,

where x1 R1, x2 R2, and x3 S1, multiplication in T
is defined by x1 x2 x3 y1 y2 y3 0 x1y1
φ x3y3 0 R2

It is convenient below to have an alternative notation
for split-form data: if R has data R1 R2 , we write
∆1 R : R1 and ∆2 R : R2. In the following
observations, we use the notation of Definition 3.8.

Observations 3.9.

(a) If R S are both p-rings, or commutative, or
anticommutative, then R µ S has the same property.

(b) T has split form with data T1 T2 , where T1 : R1 S1
and T2 : R2, and T has canonical form if R and S both
have canonical form.

(c) Writing Ann f R R1 R2 and Ann f S S1 S2
for some subgroups R1 of R1, and S1 of S1, we have
Ann f T R1 R2 S1.

(d) f T T can naturally be identified with
f R R f S S . If R has canonical form, then T 2

can be identified with R2.
(e) If φR : R R and φS : S S are split ring

isomorphisms between split-form rings R S, then
R µ S is isomorphic to R µ S , where
µ φR µ φ 1

S S2
and S2 ∆2 S .

(f) If a ring R is an internal direct sum of split-form rings
R and R , and µ : S2 ∆2 R , then R µ S is
isomorphic to R µ S R .

(g) Both R and S can naturally be viewed as ideals in T .

The proofs of the above observations are all rather
obvious, and are left to the reader. As we will see, the
choice of µ can affect the isomorphism type of an
augmentation, so the definition of µ in
Observation 3.9(e) is essential.

We now discuss the relationship between Pr f R µ S ,
and Pr f R Pr f S , concentrating mostly on the case
where ∆2 S is cyclic of order p, and R is a p-group for
some prime p; even here, the choice of µ is important. We
begin with a preparatory lemma.

Lemma 3.10. If S is a p-ring with f S S p, then
Pr f S α m; p , where m dimS l-Ann f S 0.

Proof. Since f S S p, S l-Ann f S is necessarily a
vector space over p of positive dimension m. It follows
from (2.2) that

Pr f S
1

S l-Ann f S
pm 1

p
1

pm p 1
pm 1 α m; p

as required.

Remark 3.11. Given a ring S, it is clear that
Pr f S Pr f Sop , where Sop is the opposite ring with
multiplication x y yx, and yx is an S-product. Since
dimS l-Ann f S determines Pr f S in the above lemma,
we see that S l-Ann f S S r-Ann f S under the
assumption that f S S p. This equation can fail if
f S S p. For instance, let f X Y XY , and let S be

the four-dimensional p-algebra with basis u v w z
where the only nonzero products of basis elements are
u2 uv w and v2 vu z. We see that S has split form
with data S1 S2 , where S1 : span u v and
S2 : span w z , Moreover l-Ann f S S2 has
dimension 2, while r-Ann f S span u v w z has
dimension 3.

c 2014 NSP
Natural Sciences Publishing Cor.



18 S. M. Buckley et al: Finite Rings with Large Anticommuting Probability

We write Pr f R Pr f R Pr f R , where

Pr f R
1
R ∑

x R
µ S2 f x R

1
f x R

Pr f R
1
R ∑

x R
µ S2 f x R

1
f x R

If R has split form with data R1 R2 , we could
equivalently write

Pr f R
1
R1

∑
x R1

µ S2 f x R

1
f x R

Pr f R
1
R1

∑
x R1

µ S2 f x R

1
f x R

Lemma 3.12. Suppose R S are split-form p-rings with
data R1 R2 and S1 S2 , respectively, for some prime p.
Suppose also that S2 p and dimS l-Ann f S m .
With the notation of the previous paragraph, we have

Pr f R µ S Pr f R Pr f R Pr f S

Pr f R α m; p Pr f R
(3.3)

In particular, Pr f R Pr f S Pr f R µ S Pr f R .

Proof. Let T : R µ S. As before, we write a general
element x T as x x1 x2 x3, where x1 R1, x2 R2,
and x3 S1. We say that x T is of Type A if
µ S2 f x1 R , and of Type B otherwise. Since m 0,
we have 1 f S S S2 p, and so necessarily
f S S p.

It is clear that f x T is the sum of the subgroups
f x1 R and f x3 S . Thus if x is Type A, then
f x T f x1 R , and the total contribution to Pr f T of
all Type A elements is precisely Pr f R .

Suppose instead that x is of Type B. Now f x3 S is
either p or 1, depending on whether or not x3 l-Ann f S .
In either case, we see that

f x T f x1 R f x3 S (3.4)

It follows that

1
T ∑

x3 S3

1
f x1 x2 x3 T

1
R f x1 R

1
S3

∑
x3 S3

1
f x3 S

Pr f S

R f x1 R
α m; p

R f x1 R

where the last equation follows from Lemma 3.10.
Summing these terms over all x R of Type B, we get

α m; p Pr f R . Adding this to the Type A contribution,
we deduce (3.3). Finally, the inequalities

Pr f R Pr f S Pr f R µ S Pr f R

follow immediately from (3.3) because Pr f R 0.
We now prove a variation of Lemma 3.12 dealing with

repeated augmentations using the same homomorphism µ ,
under the natural embedding of R in R µ S. We denote the
n-fold repeated augmentation as R n

µ S, i.e. R 0
µ S R,

and R n
µ S R n 1

µ S µ S for all n .

Lemma 3.13. Suppose R S are p-rings of split form with
data R1 R2 and S1 S2 , respectively, for some prime p.
Suppose also that S2 p and that dimS l-Ann f S m
for some m . With the same notation as in Lemma 3.12,
we have

Pr R n
µ S Pr f R α mn; p Pr f R n (3.5)

Proof. Let Tn : R n
µ S. We view Tn as an internal

direct sum of R1, R2, and n distinct copies of S1, and write
a general element of T in the form x x1 x2 ∑n 2

i 3 xi,
where xi 2 lies in the ith copy of S1. Arguing as in the
proof of Lemma 3.12, we see that if µ S2 f x1 R ,
then f x T f x1 R , and so the total contribution to
Pr f T of all such points is Pr f R . For all other points,
we see that if xi 2 l-Ann f S for all i 2 (a condition
that corresponds to ∑n 2

i 3 xi representing the zero element

of n 2
i 3 S l-Ann f S ), then f x T f x1 R , and

otherwise f x T p f x1 R . Consequently, we see
that

1
Tn

∑
x3 xn 2

n 2
i 3 S

1

f ∑n 2
i 1 xi Tn

1
R f x1 R

1
pmn

1
p

pmn 1
pmn

α mn; p
R f x1 R

and the lemma follows as before.

Remark 3.14. Taking R S in Lemma 3.13, it is readily
verified that

Pr S n 1
Id S α mn; p n

where Id : S2 S2 is the identity map. Thus, once we find
a single number in the spectrum f p corresponding to
a ring S as in the above lemmas, we immediately get an
infinite sequence of elements of f p . For future
reference, we write Aug S n S n 1

Id S.

Theorem 3.15. Suppose f X Y aXY bYX is a
symbol for some a b , and that at least one of a b is
nonzero. Suppose also that p is a prime. Then the
elements of f p obtained by rings R p for which
f R R p are precisely:
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(a) all numbers of the form α n; p , n , if a b 0;
(b) all numbers of the form α 2n; p , n , if a b 0.

Furthermore to achieve these values, it suffices to use
commutative rings in (a), and anticommutative rings in
(b).

Proof. Suppose first that a b 0, and let k νp a b .
It is readily verified that R : pk 1 satisfies f R R p
and dimR l-Ann f R 1. This is not a split-form ring
but we can apply the split construction to get the
commutative ring S such that S is isomorphic to
Cpk 1 Cpk 1 and has basis u v , with multiplication

being defined by u2 v and uv v2 0. Then
f S S p and dimS l-Ann f S 1. By Lemma 3.10

and Remark 3.14, we have Pr f Aug S n α n; p for
all n , and no other values of Pr f R can occur for
p-rings R satisfying f R R p. Since S is
commutative, so is Aug S n .

It remains to consider f X Y : a XY YX , a ;
in this case, we have l-Ann f S r-Ann f S . Let
k νp a and assume p 2. As an abelian group, we

take S to be 3
i 1Cpk 1 , with basis : u v w .

Multiplication is defined by taking uv vu w, and
xy 0 for all other pairs x y of basis elements. It is
readily verified that S is an anticommutative split-form

p-algebra with data S1 S2 , where S1 is the additive
group generated by u and v, and S2 the additive group
generated by w. Also f S S is generated by pkw, so
f S S p. Since Ann f S is generated by pku, pkv,

and w, we have S Ann f S p2. Thus by Lemma 3.10,
we have Pr f S α 2; p , and so f p contains
α 2n; p for all n . Since S is anticommutative, so is
the augmented ring Aug S n that gives rise to α 2n; p
for all n .

When p 2, this construction needs to be tweaked.
We instead take S to be 3

i 1C2k 2 . Then the rest of
the proof is as before, except that f S S is generated by
2k 1w, and Ann f S is generated by 2k 1u, 2k 1v, and w.

Suppose conversely that f R R p for some p-ring
R. Without loss of generality, R has split form with data
R1 R2 . We first define a new ring R , where
R R and the multiplication of R is defined

by x y f x y . Then R is also a split-form ring with
data R1 R2 , and by construction Prann R Pr f R .
Because of the form of f , R is anticommutative and
r-Ann R l-Ann R . We now carry out the canonical
construction to get an anticommutative canonical-form

p-algebra S with data S1 S2 , where S1 R1 Ann R1 ,
S2 R 2, and Prann S Prann R .

To finish the proof of (b), it suffices by Lemma 3.10 to
prove that dimS1 is even. This amounts to the claim that if
S is a finite-dimensional anticommutative canonical-form

p-algebra with data S1 S2 such that dimS2 1, then
S1 has even dimension. For the sake of contradiction, we
assume that this is false, and that dimS1 is minimal for
such a counterexample.

Because S2 is nontrivial, we can select nonzero
u v S1 such that uv 0. Since S is anticommutative, u
and v are non-collinear. Moreover, uS vS S2 is a
vector space of dimension 1, so AnnS u and AnnS v
both have codimension 1 in S. Since
v AnnS v AnnS u , we see that AnnS u and AnnS v
are distinct, and U : AnnS u AnnS v has
codimension 2. It is also clear that U is of the form
U1 S2 for some subspace U1 of S1. Neither u nor v lie in
U1 since each fails to annihilate the other. It follows that u
and U generate AnnS u , that v and U generate AnnS v ,
and that u, v, and U generate S. Thus dimU dimS 2.

We are done if dimS 2, so suppose dimS 2, and
thus U is a nontrivial split-form p-algebra. Since U1 S1,
wS1 is nontrivial for all nonzero w U1. But U annihilates
u and v, so in fact wU must be nontrivial. It follows that
U2 S2, and that Ann U S2. Thus U has canonical
form and it satisfies the same assumptions as S, with data
U1 S2 . Since dimU dimS, dimU1 must be even. Now

dimS1 dimU1 2, and the claim follows.
As previously claimed, the choice of µ can affect the

isomorphism type of R µ S even if ∆2 S p. We now
verify this fact by giving an example where the choice of µ
affects the annihilating probability of the augmented ring.
Proposition 3.16. For each prime p, there exist canonical-
type p-algebras R and S, with dimR 5, dimS 2, and
dim∆2 S 1 such that Prann R µ S can take on two
distinct values depending on the choice of µ .

Proof. Let R be the p-algebra with basis
u1 u2 u3 z1 z2 , where u2

1 u2
2 z1, u2

3 z2, and all
other products of basis elements are zero, and let S be the
subalgebra of R with basis u1 z1 . It is readily verified
that R and S both have canonical type with data R1 R2
and S1 S2 , respectively, where R1 : span u1 u2 u3 ,
R2 : span z1 z2 , S1 : span u1 , and S2 : span z1 .
Moreover it is clear that span u1 u2 z1 is isomorphic to
Aug S 2 , and so R is isomorphic to Aug S 2 S. Also
let S2 : span z1 and S2 : span z2 .

We now augment R by (another copy of) S in two ways,
namely via isomorphisms µ : S S2 and µ : S S2 . By
Observation 3.9(f), R µ S is isomorphic to Aug S 3
S and R µ S is isomorphic to Aug S 2 Aug S 2 . In
view of Lemma 3.10, we see that

P1 : Prann R µ S

Prann Aug S 3 Prann S

α 3; p α 1; p

while

P2 : Prann R µ S Prann Aug S 2 2 α 2; p 2

Now P1 P2 for all primes p since

p6 P1 P2 p3 p 1 2p 1 p2 p 1 2

p p 1 3

Thus we have obtained two distinct values of Pr R µ S
by varying µ .
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4 Large probability values

In this section, we find all possible values of ac p in
the interval ε p 1 . However we begin by obtaining an
upper bound on Pr f R dependent on the largest order of
elements in R r-Ann f R ; for this result, f can be any
symbol.

Theorem 4.1. Suppose f X Y : aXY bYX is a symbol,
where a b are not both zero. Let R be a finite p-ring for
some prime p. Suppose the first invariant of R r-Ann f R
is k .

(a) Pr f R M k; p : k p 1 p pk 1.
(b) Equality in (a) is attained if and only if R r-Ann f R

is isomorphic to Cpk , and this is possible for a given
symbol f if and only if a b is nonzero.

(c) M k; p is strictly decreasing as a function of k, with
M 1; p α 1; p , M 2; p δ p , and M 3; p
ε p .

(d) In the case k 2, if R r-Ann f R is not isomorphic to
Cp2 , then Pr f R ε p .

Proof. Let us fix a p-ring R, and write A : R r-Ann f R .
We also write x for the A-coset containing x R, and
o f x for the order of x in A. We assume that k is the first
invariant of A, i.e. pk is the maximal value of o f x .

Let Aj be the set of elements in A of order at most p j,
j 0. Then Aj A j 1 p for each 1 j k. Thus if we
define Rj : Aj A and r j : Rj R j 1 for all 0 j, then
Rj 1 for j k and r j p 1 Rj p for all 1 j k.
Iterating downwards from j k, we see that Rj p j k for
all 0 j k.

Since f x R p j whenever x A has order p j, it
follows from (2.3) that

Pr f R p 1
∞

∑
j 0

Rj

p j 1

Thus to maximize Pr f R we should maximize every Rj.
Equivalently, we should take r j p 1 pk 1 j for 1
j k and r0 1 pk. With these proportions, the qk-form
of the bound in (2.3) gives

Pr f R
k

∑
j 0

r j

p j

1
pk

k

∑
j 1

p 1
pk 1 j j M k; p (4.1)

thus finishing the proof of (a).
It is clear that equality in (4.1) can occur only if

R r-Ann f R is a cyclic group (of order pk): in fact in this
case we see that f x R p j whenever x A has order
p j, so we get equality if and only if R r-Ann f R is
cyclic.

Suppose a b is nonzero, and let m νp a b .
Given k , it is readily verified that R : pk m is such

that R r-Ann f R has elements of order pk and
Pr f R M k; p .

Suppose instead that a b 0 and that the first
invariant of R r-Ann f R is k . Now a 0 and R is
non-commutative. Note also that r-Ann f R Ann f R .
Since f x x 0 for all x R, and since there are
elements x y with axy ayx, R Ann f R cannot be
cyclic: in fact its first two invariants must be equal. Thus
we cannot have Pr f R M k; p , and we have finished
the proof of (b).

Part (c) is rather easily proved. First, the proof that
M k; p is a strictly decreasing function of k is
straightforward (or alternatively can be deduced from the
discussion of the upper bound on Pr f R above). The
equations M 1; p α 1; p and M 2; p δ p are
trivial. The inequality M 3; p ε p holds because

p5 ε p M 3; p 2p3 p2 3p 1 4p2 3p

2p 1 p 1 2 0

Lastly we prove (d). Arguing as in (a), we see that we
still have Q1 p 1. However we now have A p3, so
Q0 p 3, and to maximize the upper bound on Pr f R ,
we take Q1 p 1 and Q0 p 3, or equivalently q2 p
1 p, q1 p2 1 p3, and q0 1 p3. With these values
of qi, we get

Pr f R
p 1
p1 2

p2 1
p3 1

1
p3

2p2 1
p4

and this upper bound β p is less than ε p because

p5 ε p β p 2p3 p2 3p 1 2p3 p

p 1 2

(4.2)

If we want to find all elements of the set
f p ε p 1 , then Theorem 4.1 says that rings R for

which R r-Ann f R fails to be a p-group are relevant only
for Pr f R δ p , and it tells us when such examples
exist. Thus it remains only to investigate the case where
R r-Ann f R is an elementary p-group.

Below, we carry out this analysis for the
anticommuting symbol f X Y : XY YX . As a first
step, we appeal to Theorem 3.5(a) to transform the
problem into an investigation of ann c p ε p 1 .
Since the rings of interest are commutative, it suffices to
consider canonical-form rings R with data R1 R2 . Now
R1 is isomorphic to the elementary p-group R Ann R
and so, by Observation 3.4(e), R is a p-algebra.

Thus the task at hand is to compute all annihilating
probabilities no less than ε p for commutative
canonical-form p-algebras. Initially we will assume that
R is atomic: by this we mean that R is both unaugmented
(meaning that it is not the augmentation U µ V for a
canonical-form p-algebra V with dimV 2 1) and
indecomposable (i.e. it is not a direct sum of two
nontrivial p-algebras). The following result will be
useful.
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Lemma 4.2. Suppose R is an atomic canonical-form
commutative p-algebra for some prime p, with data
R1 R2 where dimR1 1. Then u2 0 whenever u R

is such that dimuR 1. More generally, we have uv 0
for all pairs u v R for which dimuR dimvR 1
under either of the following additional assumptions:

(a) dimR1 2;
(b) p 2.

Proof. Suppose for the sake of contradiction that u2 0
even though dimuR 1. We may assume that u R1, since
R2 Ann R . Now A : AnnR u has codimension 1, and
it has the form A1 R2 for some A1 R1. Since u A , we
see that R1 is the direct sum of U1 : span u and A1. Both
U2 : span u2 and A2 : A2

1 are subspaces of R2, and both
of the subspaces U : U1 U2 and A : A1 A2 of R are
canonical-form subrings of R. Either U2 is a subset of A2,
in which case R is an augmentation of A by U , or it is not
a subset, in which case R is an internal direct sum of A and
U . In either case, we get a contradiction to the atomicity
hypothesis.

The proof that uv 0 when dimuR dimvR 1 and
dimR1 2 is similar. From (a), we already know that
u2 v2 0. Suppose for the sake of contradiction that
uv 0, and without loss of generality we assume that
u v R1. Now A : AnnR u AnnR v has codimension
2, and it has the form A1 R2. The codimension-1
subspace AnnR u is spanned by A and u (since
u AnnR v , and R is spanned by u, v, and A (since
v AnnR u ). Letting U1 : span u v , U2 : span uv ,
and A2 : A2

1, we can then finish the proof as before.
Finally, suppose that dimR1 2, p 2, and dimuR

dimvR 1. We know that u2 v2 0, so suppose for the
sake of contradiction that uv z is nonzero. Then u :
u v and v : u v span R1, u 2 2z 0, and u v
0. Thus dimu R 1, and the fact that u 2 0 gives a
contradiction.

The condition dimuR dimvR 1 does not imply that
uv 0 when R is an atomic canonical-form commutative

2-algebra, with data R1 R2 where dimR1 2, as the
following example shows.

Example 4.3. Consider the commutative 2-algebra R
with basis u v z , where uv vu z and u2 v2 0.
Then R has canonical form with data R1 R2 , where
R1 : span u v and R2 : span z , and dimxR 1 for
all nonzero x R1, since u v u z. However R is
indecomposable because it has only four nontrivial proper
ideals—one is R2, while the other three are spanned by R2
and a single nonzero element of R1—and all contain R2. It
is also unaugmented because all of these ideals are null
algebras so if we use them for augmentation we can only
get other null algebras.

We now separately examine the cases where
R Ann R has dimension 2, or dimension at least 3. For
dimension 2, we examine all possibilities regardless of
whether or not Prann R ε p .

Theorem 4.4. Suppose p is a prime, and R is a
commutative atomic canonical-form p-algebra with
data R1 R2 such that dimR1 2. Writing m dimR2,
one of the following situations must occur:

(a) m 1, p 2, and Prann R α 2;2 .
(b) m 2 and Prann R δ p .
(c) m 2 3 and Prann R 2p2 1 p4 ε p .

Furthermore (a) is possible only for p 2, in which case
there is a unique isomorphism type, while for each prime p
there is a unique isomorphism type giving (b). Finally for
each prime p, there is a unique isomorphism type giving
the m 3 subcase of (c), and at least one isomorphism
type giving the subcase m 2 of (c), with uniqueness at
least when p 2.

Proof. The only possible values of dimxR, for a nonzero
element x of R1 are 1 and 2.

Case 1: dimxR 1 for all nonzero x R1.

Lemma 4.2 tells us that x2 0 for all x R. Thus if
u v is any basis of R1, then z : uv must be nonzero

(lest R be a null ring, contradicting the canonical-form
assumption), and it is clear that R2 span z , so m 1.
Applying Lemma 4.2 again, we must have p 2. The
equation Prann R α 2;2 now follows from
Lemma 3.10. This possibility does occur, as we saw in
Example 4.3. Since multiplication is fully specified, this
case corresponds to a unique isomorphism type.

Case 2: dimxR takes on both the values 1 and 2 for
different choices of x R1.

We select u v R1 such that dimuR 1 and
dimvR 2. By Lemma 4.2, u2 0. The equation
dimvR 2 forces the products z1 : uv and z2 : v2 to be
non-collinear. Given that R2 span z1 z2 , this fully
specifies multiplication on R, so we have shown that there
is exactly one isomorphism type for each prime p. It is
readily verified that if x au bv for a b p, then
dimxR 2 whenever b 0, and dimxR 1 whenever
b 0 and a 0. We therefore deduce from (3.2) that

Prann R
1
p2

p2 p
p2

p 1
p

1 δ p

It remains to verify that R is atomic. Suppose for the
sake of contradiction that R is of the form U µ V , where
V is a canonical-form p-algebra V with dimV 2 1. Let
U1 U2 and V1 V2 be the data of U and V , respectively,

and so V2 V 2. Since µ : V2 U2, dimU2 1. Thus
dimU1 dimU Ann U 1 and
dimV1 dimV Ann V 1. But it follows from
Observation 3.9(c) with f X Y : XY that
2 dimR1 dimU Ann U dimV Ann V , so we
must have dimU1 1 and so dimU2 1. But now by
Observation 3.9(d), dimR2 1, contradicting the fact that
dimR2 2.

Suppose instead that R is a direct sum of nontrivial
algebras U and V . It is clear that
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Ann R Ann U Ann V and R2 U2 V 2, so we
have Ann U U2 and Ann V V 2. Also

R Ann R U Ann U V Ann V

so
dimU Ann U dimV Ann V 2

If one of these factor spaces has dimension 2, say
dimU Ann U 2, then dimV Ann V 0. But then V
would be a null ring, so V Ann V and also
AnnV V 2 0, so V would be trivial, contradicting our
hypotheses. Thus dimU Ann U dimV Ann V 1,
and so dimU2 dimV 2 1. By Lemma 3.10,
Prann U Prann V α 1; p , forcing the equation
δ p α 1; p 2. But this equation fails for all primes p
since

p4 α 1; p 2 δ p 2p 1 2 3p2 2p

p 1 2 0
(4.3)

This concludes the proof that R is atomic.

Case 3: dimxR 2 for all nonzero x R1.

It readily follows from (3.2) that
Prann R 2p2 1 p4, and this is less than ε p by
(4.2). It is readily verified that this occurs if m 3, u v
is a basis of R1, z1 z2 z3 is a basis of R2, and u2 z1,
v2 z2, and uv vu z3.

Conversely, the condition dimuR dimvR 2
requires that z1 : u2 and z3 : uv are non-collinear, and
that z2 : v2 and z3 are non-collinear. If z1 z2 z3 is a
linearly independent set, then we are in the m 3
situation above, and the isomorphism type of R is
uniquely specified. However we claim that even in the
absence of independence, it is possible that dimxR may
equal 2 for all x R1.

For p 2, we take z3 z1 z2. Then u v 2 z1 z2
and u v u z1 z3 z2, giving dim u v R 2 and
so dimxR 2 for all nonzero x R1. It is readily verified
that if we instead chose z3 z1 z2 , then we would get
dim u v R 1, so there is a unique isomorphism type
giving m 2 when p 2.

Suppose instead that p 2. Let s p be a quadratic
nonresidue mod p, and let c p be defined by
c : 4 1 1 s . Then 1 4c s, so it follows that the
quadratic g a : a2 a c has no roots in p. Let R be
the canonical-type p-algebra with data R1 R2 where
u v is a basis of R1, z1 z2 is a basis of R2, and

u2 z1, v2 z2, and uv vu cz1 z2. Certainly
dimuR 2, so to prove that dimxR 2 for all x R1, it
suffices to prove this when x au v for some a p.
For such an element x, we have xu a c z1 z2 and
xv acz1 1 a z2. Thus dimxR 2 if (and only if) the
associated matrix

M :
a c 1
ac 1 a

is nonsingular. But detM a c 1 a ac g a has
no roots, so our claim is proved.

We have shown that this case yields exactly two
isomorphism types when p 2, and at least two when
p 2. We will not investigate whether or not there are
more than one isomorphism type corresponding to m 2
for p 2.

It remains to show that these rings are atomic. The
proof that they are unaugmented is exactly as in Case 2,
as is the proof that the m 2 ring is indecomposable. The
proof for the m 3 ring starts in a similar fashion, but we
get a contradiction from the fact that
dimS Ann S dimT Ann T 1, whereas one of S2

and T 2 must have dimension 2.
We now consider atomic algebras R with

dimR Ann R 3.

Theorem 4.5. If R is a commutative atomic
canonical-form p-algebra with data R1 R2 and
dimR1 3, then Prann R ε p .

Proof. Suppose first that dimxR 1 for at most p of the
elements of R1. By (3.2),

Prann R
1
p3

p3 p
p2

p 1
p

1

p2 2p 2
p4

This bound is less than ε p because

p5ε p p p2 2p 2 p 1 p 1 2

Thus we may assume that dimxR 1 for more than p
elements of R1, and so there exists a two-dimensional
subspace T of R1 spanned by elements u1 u2 such that
dimu1R dimu2R 1. By Lemma 4.2 and distributivity,
xy 0 for all x y T . Letting w R1 T , we deduce that
u1w and u2w must both be nonzero, since otherwise u1 or
u2 would be an element of Ann R , contradicting the
canonical-form assumption. Furthermore u1w and u2w
must be non-collinear, since otherwise some linear
combination of u1 and u2 would similarly contradict the
canonical-form assumption. We deduce that if x is a linear
combination of u1, u2, and w, with the w-coefficient being
nonzero (in p), then dimxR 2. Thus

Prann R
1
p3

p3 p2

p2

p2 1
p

1
2p2 1

p4

which is less than ε p according to (4.2).

Proof of Theorem 1.1. As discussed above, the task of
finding all possible values in ac p ε p 1 is reduced
to finding all possible values of Prann R ε p when R is
a commutative canonical-form p-ring. The data of R will
be denoted R1 R2 as usual, and we write mi : dimRi,
i 1 2.

Based on our work above, it is straightforward to
calculate the values that occur when R is an atomic
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canonical-form p-algebra; we call these atomic values.
If m1 0, then necessarily m2 0, so R is the trivial ring
and Prann R 1. If m1 1, then necessarily m2 1, and
Prann R α 1; p now follows from Lemma 3.10. Both
of these rings are clearly atomic. Theorems 4.4 and
Theorem 4.5 tell us that the only possible atomic values in
ε p 1 corresponding to m1 2 are α 2;2 and δ p .

The value δ p also occurs for commutative p-rings R
that are not p-algebras according to Theorem 4.1, but
such rings give no other values in ε p 1 . Since
R Ann R is cyclic and R has canonical form, we see that
R can only have one isomorphism type: for i 1 2, Ri is
isomorphic to Cp2 and has generator ui, with u2

1 u2 and
uiu j 0 for all other choices of i j.

It remains to investigate what can be found by
augmentation of the (nontrivial) atomic p-algebras
above by a canonical-form p-algebra V with dimV 2 1,
or by direct sums of non-null algebras (since a null ring
direct summand leaves the annihilating probability
unchanged). Both of these processes strictly decrease the
annihilating probability—in the case of augmentation
because of (3.3)—so it suffices to apply these processes
iteratively to the atomic algebras R above for which
Prann R α 1; p , Prann R α 2;2 , or Prann R
δ p .

The algebras with Prann R α 1; p or
Prann R α 2;2 both satisfy R2 p, so augmentation
yields only algebras R with Prann R α k; p for some
k . Repeated augmentation of the algebra R with
Prann R α 1; p yields all numbers α k; p , k by
Remark 3.14.

Next we consider augmenting the algebra R in
Theorem 4.4(b) for which Prann R δ p . Since the
contribution to Prann R always includes the contributions
of all elements of R2, we see that Prann R 1 p2, and so
Prann R δ p 1 p2. If R µ V is any augmentation
with V 2 p, then (3.3) and (4.2) together imply that

Prann R µV
2p 2

p3

2p 1
p2

1
p2

2p2 1
p4 ε p

so these algebras give no new values.
For direct sums applied to the above atomic algebras

and their augmentations, we must consider products of
values that we already have. We first recall that
α 1; p α 2; p ε p , so this gives us one new value. In
view of (1.2), it follows that it remains only to consider
powers of α 1; p . But

p4 α 2; p α 1; p 2 p 1 3 0

so α 1; p 3 ε p . Thus we need only consider α 1; p 2,
a number that by (4.3) exceeds δ p . Now α k; p 1 p
for all k , whereas α 1;3 2 1 3 and for p 5,
α 1; p 2 2 p 2 1 p. Thus α 1; p 2 is a new value
for all p 2, but α 1;2 2 α 3;2 .

The next step is to augment the one new
canonical-form algebra R with Prann R ε p that we

obtained by a direct sum. This is a p-algebra with
Prann R α 1; p 2, with basis u1 u2 z1 z2 , where
u2

i zi, i 1 2, and all other products of basis elements
are zero. We write R1 : span u1 u2 and
R2 : span z1 z2 as usual, and write a general element
x R in the form x a1u1 a2u2 b1z1 b2z2 for
ai bi p. We also denote by v w the basis of the

p-algebra S that we use for augmentation; here v2 w
and vw wv w2 0, and the data of S is S1 S2 ,
where S1 : span v and S2 : span w .

If a1 and a2 are both nonzero, then it is readily
verified that xR R2, so x contributes to Prann R in (3.3)
regardless of the augmentation function µ . By contrast, if
a1 a2 0, then x contributes to Prann R in (3.3).
However elements x with one but not both of a1 and a2
nonzero satisfy dimxR 1, and so the choice of µ affects
whether such elements x contribute towards Prann R or
Prann R . As is clear from (3.3), maximizing
Prann R µ S for a given S is equivalent to maximizing
the number of such elements that contribute to Prann R .
Since for such elements, xR is either span z1 or
span z2 , Prann R µ S is maximized when µ : S2 R2
is the homomorphism with the property µ w z1. By
construction, R is a direct sum of two isomorphic copies
of S, and the condition µ w z1 means that
Observation 3.9(f) is applicable. Thus R µ S is
isomorphic to Aug S 2 S and

Prann R µ S α 1; p α 2; p ε p

This is a value that we already have, and in fact
Aug S 2 S is the same canonical-form isomorphism
type that gave that value in the previous direct sum stage
of this proof. We have now completed the proof that

ac p ε p 1 is as stated.
Finally to compute ac fin ε 2 1 , we need to

take products of elements in ac p for distinct primes
p. First we have all the values in ac 2 ε 2 1 .
These give 1, α k;2 for all k ,
9 16 α 1;2 2 α 3;2 , 1 2 δ 2 , and
15 32 ε 2 . We get nothing additional from primes
p 5 because in this case 2p 1 p2 2 p 15 32.
Taking p 3 does give one additional value, namely
α 1;3 5 9, but it gives no other new values because
α 2;3 11 27 and α 1;2 α 1;3 5 12 are both less
than 15 32.

Although we did not explicitly state it in Theorem 1.1,
we can read off all isomorphism types of canonical-form
commutative p-rings R satisfying Prann R ε p from
the above proofs. These types consist of the trivial ring, a
one-parameter of algebras giving Pr R α k; p for all
k , and either six (for p 2) or four (for p 2) other
types, as detailed in the following theorem.

Theorem 4.6. The following list gives all possible
isomorphism types of canonical-form commutative
p-rings R with Prann R ε p for a given prime p.

(a) Prann R 1 for the trivial algebra R.
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(b) Prann R α k; p , k , for the algebra R with basis
u1 uk z , where u2

i z for all 1 i k, and all
other products of basis elements are zero.

(c) Prann R α 2;2 for the atomic algebra R of
Theorem 4.4(a).

(d) Prann R α 1; p 2 for a direct sum algebra R
constructed in the proof of Theorem 1.1.

(e) Prann R δ p for the algebra R of Theorem 4.4(b).
(f) Prann R δ p for the canonical construction

applied to a ring R given by Theorem 4.1(b) for k 2.
(g) Prann R ε p for the algebra R : Aug S 2 S,

where S is the unique canonical-form commutative p-
algebra with Prann S α 1; p .

(h) Prann R ε 2 for the algebra R : T S, where S
is as in (g) for p 2, and T is the algebra in (c).

All rings listed above give distinct isomorphism types, but
note that (c) and (h) are for p 2 only.

We omit most of the proof of Theorem 4.6, since it is
contained in our earlier proofs. The fact that the
isomorphism type in (f) is unique follows from the fact
that R Ann R is cyclic, as discussed in the proof of
Theorem 1.1. The one other aspect of the proof upon
which we should comment is the fact that the various
isomorphism types listed are distinct. For p 2, this
follows from the fact that there is only one isomorphism
type for each value of Prann R , with the exception of
δ p which is associated with both an algebra and a
non-algebra.

For p 2, there are three other duplicate sets of
Prann R values. First, α 2;2 is given by an augmented
algebra in (b) and an atomic algebra in (c), so these are
necessarily distinct. Also, α 3;2 α 1;2 2 is associated
with an augmented algebra R in (b) and a direct product
algebra in (d), and these are distinguished by the
dimension of R2. The algebras in (g) and (h) are
distinguished by the number of elements x with x2 0:
there are two such elements in (g) and none in (h).

The set of types given in Theorem 4.6 is considerably
more diverse than the set of types of canonical-form
p-rings with Prc R ε p , which can be deduced from
[2, Theorem 1.2]. For the latter problem and any given
prime p, we get a null algebra for Prc R 1, one algebra
for Prc R α 2k; p , k , and nothing else. The extra
complexity is a direct result of the fact that x2 can be
nonzero in a commutative ring, in contrast to the fact that
it must equal zero in an anticommutative ring.
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