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Abstract

Physiological systems are amongst the most challenging systems to investigate from a

mathematically based approach. The field of mathematical biology is a relatively recent

one when compared to physics. In this thesis I present an introduction to the physiological

aspects needed to gain access to both cardiac and neural systems for a researcher trained

in a mathematically based discipline. By using techniques from nonlinear dynamical

systems theory I show a number of results that have implications for both neural and

cardiac cells. Examining a reduced model of an excitable biological oscillator I show how

rich the dynamical behaviour of such systems can be when coupled together. Quantifying

the dynamics of coupled cells in terms of synchronisation measures is treated at length.

Most notably it is shown that for cells that themselves cannot admit chaotic solutions,

communication between cells be it through electrical coupling or synaptic like coupling,

can lead to the emergence of chaotic behaviour. I also show that in the presence of

emergent chaos one finds great variability in intervals of activity between the constituent

cells. This implies that chaos in both cardiac and neural systems can be a direct result

of interactions between the constituent cells rather than intrinsic to the cells themselves.

Furthermore the ubiquity of chaotic solutions in the coupled systems may be a means of

information production and signaling in neural systems.
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Chapter 1

The Cardiac and Neural System:

Physiology and Modeling

1.1 Chapter Introduction and Aim.

The aim of this chapter is to introduce the reader to the biological systems under study,

namely the cardiac and neural systems. This chapter outlines the physiological aspects

relevant to the creation and propogation of action potentials. The mechanisms involved

in cardiomyocyte action potential production and propagation is discussed. Attention

is spent on the various regions of the cardiac system and how the cardiac system regu-

lates the flow of action potentials through its conduction system to the bulk muscle mass.

The action potentials of neurons is also discussed with an emphasis placed on what is

physiologically known concerning the conduction action potentials through neurons, the

ionic mechanisms involved and a brief discussion of ion channel kinetics and structure.

This chapter serves as a basis for readers to gain an insight into the complexity of both

the central nervous system and the cardiac system. The various technical physiological

terms are defined and explored such that future mathematically based researchers will

be able to access a number of the key ideas presented in biomedical research concerning

both neural and cardiac systems.
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1.2 Physiology of the heart.

1.2.1 A General Introduction

The heart is an organ

Definition 1.2.1 (Organ). An organ is a collection of connected tissue which serve a

common function.

Definition 1.2.2 (Tissue). Tissues are collections of cells, which may not be identical,

that share the same origins and collectively carry out a specific function.

Definition 1.2.3 (Cell). A cell is the smallest unit of life and is the basic functional unit

of all living organisms.

The hearts function as a pump is two fold

• pump oxygenated blood received from the lungs to the rest of the body

• pump deoxygenated blood, along with waste products such as carbon dioxide, re-

ceived from the rest of the body to the lungs for re-oxygenation.

In order to effectively pump blood around the body, information in the form of waves of

electrical potential are used by the heart to effectively trigger cells into contracting.

These electrical impulses are termed action potentials and provide a form of communi-

cation between the muscle cells, (myocytes) within the heart’s structure. The dynamical

properties of the cardiac cells themselves, such as conduction delays or periods of non

stimulability, provide the necessary feedback-response in communication between cells to

provide the heart with a robust, dynamic and adaptable structure with respect to stim-

ulus.

It is however the abnormal conduction of the cardiac action potential or equivalently

the abnormal propagation of the “excitation wave” that the fundamental function of the

heart, pumping blood, is compromised. This abnormal propagation of the action poten-

tial can in many cases lead to what is termed cardiac arrhythmia.

A cardiac arrhythmia, loosely defined, is any disturbance from the ‘normal’ propagation

of the excitation wave in the heart. Such disturbances can have a dramatic range of

effects on the functionality of the heart as a pump. Arrhythmias do also occur in healthy

humans, these arrhythmia manifest themselves as an increase in heart rate that do not
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greatly effect the efficiency of the heart and can be considered as part of the normal func-

tionality of the heart. There are however arrhythmias that have dangerous consequences

which comprise of a large percentage of the number one cause of death in the industri-

alised world, cardiovascular disease [147]. The most dangerous of the arrhythmias are

Ventricular Fibrillation (VF) and Ventricular Tachycardia (VT). The ventricular cham-

ber in the heart is responsible for pumping blood from the heart to the lungs as well as

to the body. As it is the ventricles that must produce the force to push blood around

the entire body the ventricular muscle structure is the most built up in the heart, we will

later go into more detail of the structure of heart muscle in subsequent sections. For now

it suffices to know that the ventricles are areas of the heart responsible for the largest

part of the hearts realisation as a pump. As such abnormal propagation of excitation

waves in the ventricular muscle structure can quickly have large repercussions on the rest

of body. This being the reason why ventricular arrhythmias can cause fatality within

minutes of its genesis.

1.2.2 The Structure of the Heart

The human heart is made up of four separate chambers, the two chambers at the top

are the left and right atria while the two chambers at the bottom are the left and right

ventricles. The left and right sides of the heart are separated by the septum which is a

collection of collagenous fibres which are more rigid that the rest of the cardiac tissue.

There are four main valves in the human heart as shown in figure 1.1 these are the

1. mitral valve

• located between the left atrium and left ventricle

• ensures no oxygenated blood is pushed back into the ventricle while it is being

pumped through the aorta to every cell in the body.

2. tricuspid valve

• located between the right atrium and right ventricle

• ensures deoxygenated blood does not flow into the right atrium from the right

ventricle when it is being pumped to the lungs for re-oxygenation.

3. aortic valve

• located between the left ventricle and the aorta
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Figure 1.1: The heart, its main chambers, valves and blood flow.

• ensures that oxygenated blood does not flow back into the left ventricle after

it has contracted.

4. pulmonary valve

• located between the right ventricle and the pulmonary artery

• ensures that the deoxygenated blood being sent to the lungs does not reenter

the right ventricle after it has contracted.

These valves are remarkably elegant in the simple manner in which they are designed,

their opening and closing being entirely dictated by the blood pressure in the ventricles.

The compartmentalisation of the heart is a necessity unique to complex organisms in

contrast to the basic tubular hearts of mollusks and insects. To understand the need for

this level of complexity in what is essentially a pump one can gain a great deal of insight

by looking at the blood pressure in each of the chambers. In humans the atrial pressure

at rest (given in units of torr1) are given in table 1.1

while in the ventricles the pressures needed to pump blood through the body (left ven-

tricle) and to the lungs (right ventricle) are given in table 1.2.

Not only do the left and right sides of the heart keep the oxygenated and de-oxgenated

bloods from mixing, they also pump the blood with different pressure. The right ventricle

11 Torr is defined as 1
760 of a standard atmosphere. Using SI units we have 1 Torr = 133.3224 pascal.
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Atrial Pressure

Left Right

10 mm Hg 0-8 mm Hg

Table 1.1: Typical human atrial pressures.

Ventricles Pressure

Left Right

118-138 mm Hg 15-30 mm Hg

Table 1.2: Typical human ventricular pressures.

sends blood to the lungs at which point the waste products in the blood are exchanged

for oxygen by osmosis in delicate structures known as alveoli. At which point it should

be clear why the pressure from the contraction of the right ventricle is relatively small

as higher pressures could rupture the alveoli leading to bleeding in the lungs. On the

other side of the heart the left ventricle is responsible for sending the oxygenated blood

throughout the entire systemic2 system. Thus in order to push the blood through the

entire organism the left ventricle must be capable of producing higher force which leads

to increased pressure. A fact which is made clear when one examines the tickness of the

ventricular muscle walls, known as myocardium, of the human heart

Ventricular myocardial thickness

Left Right

15 mm 2mm

Table 1.3: Typical human ventricular myocardial thickness.

The pressures found in the ventricles can be understood well from the function of the

chambers. The atria however serve as prechambers for the ventricles, why the ventricles

require prechambers is a consequence of the Frank-Starling Mechanism[38, p 81.] named

after Otto Frank3 and Ernest Henry Starling4

Definition 1.2.4. Frank-Starling Mechanism The ventricular contractile force is related

to the amount of stretching the ventricle is exposed to prior to contraction. Hence the

2This being the system which carries oxygenated blood away from the heart to the body
3German Physiologist 1865-1944
4British Physiologist 1866-1927
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Figure 1.2: The Frank-Starling law showing that increased atrial pressure results in
more forcible contractions of the ventricles. Figure recreated from [69, p 112] based on

data from [151].

force of contraction in the heart is dependant on the volume of blood present (which

stretches the ventricular muscle tissue) in the ventricle.

As an interesting consequence of the Frank-Starling mechanism it is worth noting the

remarkable design feature that this mechanism imposes on the heart. We know that

pumping a greater amount of blood into the ventricle results in a more forceable ’beat’

from the ventricle5. This mechanism’s design is simple and effective in situations of

emergency. In behavioral situations of rage and/or fear where adrenaline is injected

into the blood stream, adrenaline results in arterial contraction and pulse rate increase.

This contraction and increase causes blood pressure to rise and the atria to pump more

blood into the ventricles. The increased blood introduces an increased stretching of the

ventricles and by the Frank-Starling mechanism a larger beat. This increase in ejection

force overcomes the increased atrial back pressure and pumps more blood around the

system increasing the circulation rate and providing an increase in energy available to the

organism, thus providing the organism with an effective means to cope in its environment.

5There is an upper limit to this mechanism as is with all real systems. At large stretching of the
ventricle the Frank-Starling mechanism breaks down, as is the case in high blood pressure patients that
receive sudden sock, the heart may in fact entirely fail to beat, or beat with only a small force that can
result in cardiac failure
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1.2.3 The cardiac muscle fibre and their orientation

The chambers of the heart are made up of fibres of muscles. These fibers are oriented

in twists and curves about each other in order to optimize their pumping action. This

twisted orientation allows the ventricles to have an additional twist to the upward pressure

which directs the blood to either the pulmonary or systemic circuit outflow depending

on which side of the heart the blood is in. Muscle fibres are chains of cardiac muscle

cells connected in series predominantly in the longitudinal direction via communicating

junctions known as gap junctions

Figure 1.3: The fibre orientation of the canine heart from [110, p167].

Relating fibre orientation, Figures 1.3 and 1.4, to cardiac function is a difficult task that

pushes both theoretical and experimental investigation [61, 30, 175].

Figure 1.4: Idealised transmural block cut from the ventricular wall showing the change
in fibre orientation. Figure from [175]

The current imaging techniques are based on Diffusion Tensor Magnetic Resonance Imag-
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ing (DT-MRI). DT-MRI measures the diffusion of water in tissue, cardiac fibres contain

microstructure that influence the direction of diffusion, thus making them detectable.

The corresponding diffusion information that is gained in the imagining using the tech-

niques of traditional magnetic resonance imaging is stored in a tensor, this change from

analog-to-digital (scanning-to-tensor) information allows the data to be more readily ma-

nipulated for observation and interpretation. From the tensor the corresponding eigen-

vectors and eigenvalues can be extracted[13] to yield the directions of least and greatest

diffusion. The method is to examine the data in terms of three directions, leading to three

eigenvectors with three corresponding eigenvalues. The largest eigenvalue indicates that

its eigenvector is the primary direction which follows the fibre direction. The other two

eigenvalues also give their corresponding eigenvectors significance, the secondary points

in the transmural direction while the tertiary is found parallel to the epicardial tangent

plane [154, 80]. Implementing methods to calculate the eigenvectors and to conclude the

tracts from the DT-MRI data is still an active area of research with applications in neural

imaging where the hope is to visualize and study the neural pathways in vivo [12].

1.2.4 The Cardiac conduction system

The Cardiac Conduction System, Figure 1.5, is responsible for initiating, synchronising,

timing and propagating the contraction signal to the myocardial cells in the heart. The

conduction system transmits information by creating a propagating wave containing the

“contract” signal known as the Action Potential (AP). The primary structures responsible

for the conduction of action potentials are shown in figure 1.5

SAN

AVN

His Bundle

Left Bundle Right Bundle

Purkinje Fibres

Contract
Atria

Contract
Ventricles

(a) Flow chart of the cardiac
conduction system

(b) Anatomical representation of the hearts conduction system

Figure 1.5: The cardiac conduction system.
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The Genesis of the heart beat: The Sinoatrial Node

The heart beat begins with the genesis of an Action Potential. This is the signal, in

the form of a wave of electrical potential, whereby the cells through out the cardiac my-

ocardium will be instructed to contract. The action potential is created in a cluster of

pacemaker cells found in the right atrium near the vena cavae known as the sinoatrial

node (SAN)6.

The sinoatrial node itself is made up of excitable cells that have the property of auto-

maticity.

Definition 1.2.5 (Excitable Cell).

This is a cell that when stimulated is capable of producing an action potential.

Definition 1.2.6 (Automaticity).

An excitable cell possessing this property is capable of producing an action potential

without the need of an external stimulus.

Each cell in the sinoatrial node spontaneously creates a current of a certain frequency by

energy consuming biochemical processes intrinsic to the cell.

It’s important to note that these cells are not absolutely identical, as is the case with

all real systems, as such each cell individually produces a current at its own natural fre-

quency. This however leads to a problem when we consider the effect of action potential

signals of multiple frequencies spreading over the hearts myocardium.

As stated previously the action potential is the “contraction signal” that is transmitted

to all of the cells in the hearts muscle structure. It necessarily needs to be a coherent

wave of uniform frequency if it is to ensure the optimal spread of contraction throughout

the heart. The accurate triggering of cells to contract results in the effective pumping of

blood throughout the cardiovascular system.

Thus the problem is such; with the SAN being made up of cells that together produce a

spread of AP frequencies how does the heart translate these multiple contraction signals

into the well timed and effective contractions that makes up the normal heart beat?

The answer may lie in a physical phenomenon termed synchronisation which is due to

the dynamical restraints on each cell that intercellular coupling imposes.

6We note that this is the case in healthy hearts. In some cases the SAN is dominated over by different
regions of self sustained excitable cells, this in many cases is a life threatening condition.
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Definition 1.2.7 (Synchronisation).

Synchronization is an adjustment of rhythms of oscillating objects due to their weak

interaction. [134, p 8]

Pacemaker synchronisation in the SAN has been extensively studied theoretically and

experimentally to great effect [116, 115, 194, 183, 65]. In some cases it has lead to

performing man made coupling between between SAN cells [183] which may lead to a

means of physically controlling this phenomena in “biological oscillators”. The theoretical

treatment of pacemaker synchronization is still an open problem. The difficulties lie

in examining the property of synchronization when the inhomogeneous nature of the

pacemaker frequencies is taken into account, though an elegant theory of N coupled

homogenous cells has been formulated [118] and progress has been made concerning the

introduction of inhomogeneity to the theoretical models [78].

The SAN

Fibre diameter Conduction Velocity Intrinsic Firing rate Rest Voltage

3-5 µ m ∼2 cm/s 70-80 bpm -55 to -65 mV

Table 1.4: Properties os the SAN [69, p 116-120][109, vol 1, p150].

Atrial Contraction and AP Delay: The Atrioventricular Node

The production of the “contraction signal”, action potential, originating from the SAN

is dynamically linked to the physical process of synchronisation. The pumping of blood

around the body is directly linked to the propagation of the wave of the action potential

to the myocardial cells in the heart. The SAN is located in the right atrium and the gen-

esis of the AP wave causes the atria to contract. This is achieved by the rapid conduction

of the AP through Bachmann’s bundle7 to the the myocardial mass comprising the wall

of the left atrium. Simultaneously the AP wave from the SAN is conducted to the right

atrium 8 leading to simultaneous contraction of both the left and right atria.

The conduction of AP through the atria is rapid. After atrial stimulation the AP finds

its way through the muscle mass to the atrioventricular node (AVN) junction. The AVN

7This is the only conduction pathway, known as a tract, to the left atrium.
8It was believed in the 1970-1980s that there were three tracts that conducted the AP to the right

atrium the Anterior, Middle and Posterior Internodal tracts[88]. In more recent times however it is
believed that the conduction from SAN through the atria is conducted through preferential conduction
due to anisotropic properties of cardiac muscle. For a more in depth discussion the reader is referred to
[109, vol 1, p 151]
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The Atrial Muscle Mass

Fibre diameter Conduction Velocity Intrinsic Firing rate Rest Voltage

0.3 - 1 m/s bpm -85 to -90 mV

Table 1.5: Properties of the Atrial muscle mass [69, p 116-120].

junction is made up of a dense network of cells which delay the conduction of the AP to

the rest of the heart. No single factor is responsible for the slowing of the impulse in this

area, some of the factors involved in the slowing of AP are [109, Vol 1. p 155]

• The small size of AV nodal cells.

• The scarcity of intercellular connections

• The complex network of small bundles separated by connective tissue where sum-

mation and collision of impulses occur.

The role of the AVN junction is delay the AP signal from reaching the ventricles of the

heart long enough so that the mechanical process of pumping blood from the contracting

atria fills the ventricles. After the ventricles are filled the AP is rapidly passed through

the remainder of the conduction system.

An interesting point to note is that there is no backward conduction of AP from the AVN

to the atria. This remarkable specialisation of AVN junctional cells is due to the length

of their refractory period.

Definition 1.2.8 (Refractory Period).

The refractory period of a cell is the amount of time that an excitable cell requires before

it is capable of producing a second action potential response from a second stimulus after

it has produced a response from an initial stimulus.

The AV node also plays an important role as a secondary pacemaker where the SAN

is the primary pacemaker. The key is that AV nodal cells have the property of auto-

maticity and are capable of producing action potentials without stimulus. The natural

frequency of AP production in isolated AVN cells is lower than that of the SAN. The

coupling between the SAN and the AVN through the atria ensures that the AVN cells

are entrained or locked9 to the frequency of the SAN.

9In this thesis the terms entrainment and locking are used synonymously.
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The AV Node Junction

Fibre diameter Conduction Velocity Intrinsic Firing rate

7 µ m ∼< 5cm/s 40-60 bpm

Table 1.6: AV Node junction properties [109, Vol. 1, p 155].

Definition 1.2.9 (Frequency entrainment/locking).

Given two nonidentical oscillators with their own frequencies that are coupled. The

coincidence of their frequencies is referred to as frequency entrainment.

Automaticity in the AVN gives the heart a back up means of propagating the contraction

signal to the heart should the SAN fail to produce an AP response.

Definition 1.2.10 (Ectopic beat).

A contraction of the heart due to an action potential response not originating for the

sinoatrial node.

Ventricular Contraction: The Purkinje Fibres

After the ventricles of the heart have been filled by blood entering via the atria, the AP

signal is conducted through the AVN, the bundle of His 10 and the bundle branches to the

apex of the heart. At the apex of the heart the bundle branches spread into a fractal-like

structure known as the Purkinje network where the conduction system finally makes a

direct interface with the ventricular myocytes. This specialised set of cells from the AVN

to the ventricles is composed of Purkinje myocytes, longitudinally oriented in bundles,

packed by dense connective tissue. [109, vol 1, p109]

The Purkinje Fibre

Fibre diameter Conduction Velocity Intrinsic Firing rate

50 µ m ∼ 2− 4m/s 25-40 bpm

Table 1.7: Purkinje Fibre properties [109, Vol. 1, p 156].

The formation of irregularities in the contraction of the ventricles can lead to ventricular

fibrillation. Fibrillation, which can also occur in the atria, is a form of contraction of a

cardiac chamber which is a chaotic fluttering of the the muscle mass. The action potential

wave is seen to break up into reentrant waves of smaller size until the heart no longer

effectively pumps blood through the system. Ventricular fibrillation is a type of cardiac

10Named after the Swiss cardiologist Wilhelm His Jr. whom discovered the His-bundle in 1893.
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arrest, know as sudden cardiac death it is the leading cause of death in the industrialised

world[199].

The Ventricular Muscle Mass

Fibre diameter Conduction Velocity Intrinsic Firing rate Rest Voltage

m ∼60cm/s bpm -85 to -90 mV

Table 1.8: Properties of the Ventricular muscle mass [69, p 116][109, vol 1, p150].

1.3 The Cardiac Action Potential

Cardiac action potentials are potential differences across the muscle cell membrane known

as the sarcolemma.

Excitable cells, such as are found in the heart, at rest maintain a constant nonzero

potential11. This nonzero rest potential is a result of the intracellular and extracellular

concentrations a fact that shall be discussed shortly. When stimulated12 (electrically) a

cell will not produce an exciton response if the the stimulus is not large enough, such a

stimuls is termed a subthreshold stimulus. If the stimulus is large enough the stimulus

is termed superthreshold, shown in Figure 1.6, and the cell produces an action potential

consisting of 5 phases.

1.3.1 Phases of the Cardiac Action Potential

Action potentials created/transmitted through different regions of the heart have differ-

ent shapes and amplitudes. The morphology of the action potential varies with differing

cardiomyocyte types. This is due to the variety of different ionic currents typically found

in myocytes in different regions of the heart.

The flow of ions along electrochemical gradients is the mechanism by which potential

differences are maintained across a myocytes cell membrane. For ‘typical’ action poten-

tials13 these phases are easily distinguishable on the action potential’s voltage vs. time

profile.

11We are here purposefully not taking automaticity into account here.
12by means of an external current - this could be an AP from another cell or simply an electrode
13Typical here is referred to as any non-pacemaker action potential. The Purkinje network is however

not excluded from the ’typical’ class as its action potential is similar to that of the non-pacemaker regions
of the heart.
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Figure 1.6: Subthreshold and superthreshold responses to stimulus.

The phases are, shown in Figure 1.7

Phase 0. Upstroke: Rapid Depolarisation.

Phase 1. Notch: Early repolarisation.

Phase 2. Plateau: Balance between inward and outward currents.

Phase 3. Rapid repolarisation.

Phase 4. Return to rest potential.

Action potential phases are mediated by different ion movements producing ionic currents

Iion. These ionic currents flow both inward and outward along electrochemical gradients

while the release of ions is subject to various gates that allow or inhibit their flow. The

ionic currents flow in two directions, inward currents correspond to the flow of positive

ions into the cell causing depolarisation while outward currents correspond to the out-

ward flow of positive ions from the cell resulting in repolarisation.

The major ion fluxes composing the action potential are mediated by Na+, K+ and Ca2+.

The rapid upstroke, that corresponds to the rapid depolarisation of the cell, is a result

of the fast inward sodium current INa

27



0

1

2

3

4

-100

-50

50

0

Time (s)

Membrane
Potential (mV)

0.2 0.4 0.6

Figure 1.7: The phases of a typical (Purkinje) cardiac action potential.

Phase 0

The upstroke, or autoregenative deoplarisation, when a suprathreshold stimulus is ap-

plied to an excitable cell, occurs when the stimulus activates sodium (Na), calcium (Ca)

and potassium (K) gates. Phase 0 is predominantly due to the rapid inward movement

of Na ions (inward sodium current INa) causing the cell to depolarise14, the inward move-

ment of Ca ions (inward sodium current ICa) into the cell, which also depolarises the cell,

results in an abundance of Ca2+ ions which is required to trigger myocyte contraction15.

After depolarisation the potential triggers the closing of the Na and Ca gates and acti-

vates the outward K gates resulting in the outward transient current Ito, which marks

the end of Phase 0.

Phase 1

14It is typical in the literature concerning action potentials to refer to depolarisation as an positive
charge of charge across a cell membrane and repolarisation as a negative change in charge.

15The process by which this electrical potential translates into a mechanical contraction is termed
Excitation - Contraction coupling16. E-C coupling itself is a cellular process where by the depolarization
of the sarcolemma overlying the terminal cisternae of the sarcoplasmic reticulum (SR) induces the release
of Ca(2+) from the SR. This calcium release binds itself to a binding subunit found in the protein troponin
which activates the cellular contraction.

28



Phase 1 is characterised by the outward movement of K+ ions from the cell which results

in an early repolarisation through the Ito current. This current is quickly activated and

inactivated in a manner similar to the INa current present in phase 0.

Phase 2

The plateau phase is composed of the algebraic sum of both inward and outward moving

currents. The effect being that the net change in membrane potential is small. The

predominant currents are due to the delayed rectifier current17 IK, residual outward INa

and the L-type calcium current ICa. There is also an exchange current where the cell

physically exchanges sodium ions for calcium ions within this phase INa-Ca which also

contributes to Phase 2.

Phase 3

The rapid repolarisation present in phase three is mediated by the two delayed rectifier

currents IKr and IKl. IKr is responsible for the initial repolarisation while IKl brings the

cell to its rest potential toward the end of the Phase 3.

Phase 4

The final stage describes the myocyte during its noncontracting, relaxed, phase. This

phase depends on the final current from phase 3, namely the delay rectifier current IKl.

For cells expressing a significant IKl (such as in atrial and ventricular myocytes) the

rest potential is stablised close to the Nernst potential ensuring that only a significant

stimulus will produce an AP response. Cells that have a less pronounced IKl current

(Purkinje cells) or absent IKl current (nodal cells) have a more unstable rest potential,

allowing small stimuli to trigger action potentials.

17This is actually the sum of two outward potassium currents IKr, the rapid rectifier current and IKs,
the slow rectifier current.
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Summary of major ion fluxes involved in the AP phases

Current Selective Ion Current Direction AP Phase Effect

INa Na+ Inward 0 Depolarising

ICaT Ca2+ Inward 0 Depolarising

Ito K+ Outward 1 Early repolarising

ICaL Ca2+ Inward 2 Plateau

IKr K+ Outward 3 Repolarising

IKs K+ Outward 3 Repolarising

IKl K+ Outward 4 Return to rest potential

It K+/Na+ Inward 4 Depolarising/pacemaking

Table 1.9: Table of major currents contributing to the phases of the action potential,
taken from [159, p 48]

1.3.2 Action potentials and Ion Channels.

The production of action potentials in an excitable cell, be it a neuron or cardiomyocyte,

is regulated by the influx or efflux of ions through the cells membrane.

Definition 1.3.1 (Cell Membrane). This is a membrane consisting of phospholipids

(in a bilayer) which acts as an insulator. The cell membrane ensures that the various

proteins, ions and organelles are kept separate from the extracellular space and provide

the cell with a physical structure.

Phospholipid 
Bilayer

Phosphate

Fatty acid

Figure 1.8: The Phospholipid bilayer making up the cell membrane.

The movement of ions across the cell is mediated by structures found in the phospholipid

cell membrane known as

Definition 1.3.2 (Ion Channels). Ion channels are proteins made up of long chains of

amino acids, that are laced through the cell membrane of an excitable cell. Ion channels
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are pores which have selective permittivity to in influx and/or efflux of ions through the

membrane [50].

Figure 1.9: Ion channel protein representation [50]

Ion channels allow the passage of thousands of specifically selected ions per second. They

do this by bringing about changes in their conformational shape via energy consuming

processes. The changes of conformational shape are sensitive to both voltages and lig-

and18 concentration making them voltage gated and ligand gated ion channels. The

‘gating process’ (opening and closing of the ion channel) takes place on the millisecond

timescale the details of which are still open problems in the field of ion channel kinetics.

This topic is not considered here in any detail, however the interested reader is referred

to [28, 201] and references therein for an introduction.

It is estimated a typical neuron has on the order of 10,000 ion channels [25], the number

of different ion channels are extensive however for excitable cells found in the heart or

central nervous system, the channels that regulate the movement of Na+ (sodium ions),

K+ (potassium ions) and Ca2+ (calcium ions) are the most influential in dictating the

shape of an action potential. Different ions induce different potential responses across

the cell membrane. The interaction of ion channels, pumps and exchangers in excitable

cells and their relation to the morphology of the action potential is an extensively studied

area of cardiac and neural electrophysiology. The range of ionic based models for cardiac

systems alone is extensive

18A collective term for ions and molecules.

31



Table 1.10: Cardiac Ion Models.

Model Species Parent Model

Ventricular cell models

Noble et al.[124] Guinea Pig Earm and Noble[51]

Luo and Rudy[107] Guinea pig Beeler and Reuter[15]

Nordin[126] Guinea pig -

Luo and Rudy[108] Guinea pig Luo and Rudy[107]

Jafri et al.[87] Guinea pig Luo and Rudy[108]

Noble et al.[125] Guinea pig Noble et al.[124]

Priebe and Beuckelmann[138] Human Luo and Rudy[108]

Winslow et al[198] Canine Jafri et al.[87]

Pandit et al.[129] Rat Demir et al.[42]

Puglisi and Bers[139] Rabbit Luo and Rudy[108]

Bernus et al.[17] Human Priebe and Beuckelmann[138]

Fox et al.[58] Canine Winslow et al[198]

Greenstein and Winslow[68] Canine Winslow et al[198]

Cabo and Boyden[27] Canine Luo and Rudy[108]

Matsuoka et al.[114] Guinea pig -

Bondarenko et al.[19] Mouse -

Shannon et al.[156] Rabbit Puglisi and Bers[139]

ten Tusscher et al.[169] Human -

Iyer et al[85] Human -

Hund and Rudy[83] Canine Luo and Rudy[108]

ten Tusscher et al.[170] Human ten Tusscher et al.[169]

Atrial Cell Models

Earm and Noble[51] Rabbit Hilgemann and Noble[74]

Continued on Next Page. . .
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Table 1.10 – Continued

Model Species Parent Model

Lindblad et al.[103] Rabbit -

Courtemanche et al.[39] Human Luo and Rudy[108]

Nygren et al.[127] Human Lindblad et al.[103]

Ramirez et al.[143] Canine Courtemanche et al.[39]

Sinoatrial Cell models

Noble et al[122] Rabbit Noble and Noble[123]

Wilders et al.[195] Rabbit Noble and Noble[123]

Demir et al.[42] Rabbit -

Dekos et al.[48] Rabbit Wilders et al.[195]

Dokos et al.[49] Rabbit Dekos et al.[48]

Demir et al.[43] Rabbit Demir et al.[42]

Endresen et al.[53] Rabbit -

Zhang et al.[202] Rabbit -

Boyett et al.[21] Rabbit Zhang et al.[202]

Zhang et al.[203] Rabbit Zhang et al.[202]

Kurata et al.[99] Rabbit -

Sarai et al.[150] Rabbit -

Lovell et al.[1] Rabbit -

Mangoni et al.[111] Rabbit Zhang et al.[202]

To gain a basic insight into the formation of the action potential in relation to ion chan-

nels, it is sufficient to consider an ion channel as being a simple gate which is capable of

switching between an open and a closed state.
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Figure 1.10: A basic representation of an open (green) and closed (blue) ion channel

The rest potential and the chemical gradient

Typical cardiomyocytes and neurons have negative rest potentials in vivo, −60 – −70mV.

This potential difference is measured between the intercellular and extracellular space of

a cell. The rest potential is produced by means of active transport of ions into and

out of the cell in an energy consuming process due mainly to Na+–K+ pumps. The

sodium-potassium pump19 is an enzyme found laced through a cells membrane.
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Figure 1.11: The sodium-potassium pump.

This enzyme is capable of moving three Na+ ions from the cytoplasm of a cell into the

extracellular space and two K+ ions from the extracellular space into the cells cytoplasm.

The pump moves ions from a low concentration to regions of high concentration, ie against

the potential gradient, making it an active transport mechanism. To counter the forces

due to the potential gradient the pump requires energy to change its conformational

19also referred to as an exchanger.
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shape, which it receives from the metabolic process of converting ATP to ADP.

The exchangers lowest energy conformation exposes the regions along its protein chain

which have a high affinity for sodium ions, these are sodium binding sites. This conforma-

tional state allows the binding of sodium from within the cell. This state also suppresses

the binding of potassium ions to the potassium binding sites. Thus sodium, and only

sodium, binds to the Na-K pump from inside the cell. At this point the pump also has

the availability of ATP (also bound to the pump) for energy release.
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(a) The sodium-potassium pump, with
bound sodium and ATP.
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(b) The sodium-potassium pump in a high
energy state after the conversion of ATP to

ADP.

Figure 1.12: The sodium-potassium pump, from low energy to high energy state.

Through the metabolic process of converting ATP20 to ADP21 the Na-K pump has enough

energy to change its conformational shape and move the sodium ions from an area of low

sodium concentration22 (intracellular) to a region of high sodium concentration (extra-

cellular), thus doing work against the chemical gradient.
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(a) In the high energy state the Na+ ions do
not bind well with the new conformation of

the pump, the K+ binding sites are now
active and available for binding.
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Figure 1.13: The sodium-potassium pump, from high energy to low energy state.

20Adenosine triphosphate.
21Adenosine diphosphate.
22This is low relative to the extracellular space.
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The new conformation is weakly binding with sodium and the sodium binding sites re-

lease the sodium ions into the extracellular space. This high energy state however exposes

the potassium binding sites and potassium is bound the channel from the extracellular

space.

After potassium binding the pump returns to its low energy state which is again weakly

binding to potassium allowing the release of potassium into the intracellular space.
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Figure 1.14: After the exchange of 3 Na+ ions for 2 K+ ions the effect is a net change in
potential across the cell membrane of −1.

The 3 : 2 exchange of positive ions across the cell membrane results in the cell becom-

ing repolarised. This process continues typically keeping the cell at its rest potential.

Furthermore as a direct consequence of the transport due to the Na-K pump there is

an abundance of potassium ions within an excitable cell and an abundance of

sodium ions outside of an excitable cell. As is shown in Table 1.11 taken from [69,

p 60]

Table 1.11: Potassium and Sodium concentration of a nerve membrane.

Ion Location Concentraction

Na+ Outside 142 mEq/L

Na+ Inside 14 mEq/L

K+ Outside 4 mEq/L

K+ Outside 140 mEq/L

36



The maintenance of these concentration gradients is vital for the production of action

potentials.

The sodium ion channel: The number of different ion channels in humans is still an

open problem of discussion, however all ion channels have a simple function - to allow the

selective flow of ions across the cell membrane. In order to achieve this function the ion

channel has a selectivity filter and a gating mechanism which may be sensitive to, voltage,

temperature, ion concentration and mechanical force. The sodium ion channel possesses

two voltage-dependant gates. The gates are known as the activation and inactivation

gates. At the sodium gates equilibrium potential (approx -90mV) the gate is inactive.
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Figure 1.15: The sodium channel while at a rest. Adapted from [69, p 62].

Depolarisation from the rest state causes the (protein) channel to undergo a change in

shape. This change in conformational shape puts it in an “activated” state. The filtering

mechanism ensures that only sodium ions pass through the sodium channel from the

extracellular space (where there is a relative abundance of sodium) into the cell. This

movement is due to the sodium (chemical) gradient maintained by the Na-K pump and

doesn’t require any further energy.
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Figure 1.16: The activated sodium channel. Adapted from [69, p 62].
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The rapid movement of sodium into the cell causes a sharp increase in the potential differ-

ence across the cells membrane. Depolarisation 23 doesn’t cause a conformational change

in the channels arrangement until the channel has a potential difference of approximately

+35mV across its structure at which point the conformation changes until the channel

reaches an inactive state.
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Figure 1.17: The inactivated sodium channel. Adapted from [69, p 62].

Once in this state the channel will remain inactive until the channel returns to its rest

potential, at which point the process is capable of repeating itself.

The potassium ion channel: The voltage gated potassium ion channel unlike the

sodium channel has a single gate. It remains at its rest state which impairs the outflux

of potassium ions from the cell until activation,
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Figure 1.18: The potassium channel. Adapted from [69, p 62].

Once the potential reaches a voltage of approximately +35mV the potassium channel

becomes active resulting in the flow of potassium ions due to the potassium (chemical)

gradient across the cell membrane. The outward movement of positive charge causes a

negative potential difference across the membrane which repolarises the cell. This process

23This is a local depolarisation; in other words depolarisation across the cell membrane where the
sodium channel is located.
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of repolarisation returns the cell to its rest potential24 and inactivates the potassium gate

once it reaches -90mV.
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Figure 1.19: The active potassium channel and the outward potassium current.
Adapted from [69, p 62].

Variety of ion channels There are a multitude of different ion channels involved in

the processes which govern excitable cells. There exist ion channels that are part of the

internal structures of cell as opposed to ion channels on the cell membrane. These are

not discussed in this thesis however the reader is referred to [75] for a readable text on

the subject of ion channels.

Figure 1.20: Variety of ionic currents in a typical electrophysiological model of a cardiac
ventricular cell [82].

24The cell can in fact become more negative than its rest potential a situation which is typical but
omitted here for the sake of simplicity. This ‘extra’ repolarisation is known as the hyperpolarisation
when looking at the profile of an action potential.
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1.3.3 Action Potential Morphology

As stated earlier the shape and amplitude of an AP depends on the magnitude and types

of ionic currents flowing into and out of a myocardial cell. The myocardial cells regulate

the flow of ions differently depending on where in the heart they are found. This gives

rise to a variability in the AP forms found in the heart, an illustration of which is shown

in figure 1.21.
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Figure 1.21: Illustration of the morphology of the cardiac action potential.

1.3.4 Excitability and Refractoriness

Excitability is the ease at which a response may be triggered from a cell[22, 84]. Properties

such as threshold valueVth, membrane resistance Rm and conductance gion of a cell are

directly related to cells excitability.

The excited state of a cell can be seen in the cell’s action potential profile, this state

being the region of the action potential after the upstroke and ending when the cell has

returned (or is near) to its resting potential. During the excited period the cell is found

in a refractory state. In a refractory state a cell is unable to produce a response from

stimulus even though the cell may be at its rest potential[93]. Refractoriness is a result

of a cell’s ionic channels recovering from a prior excited state, while Na channels in the

cell are recovering the cell is unable to produce an upstroke response to a stimulus that

is above its threshold value. This behaviour is an example of a cell being refractory.
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Figure 1.22: Illustration of the refractory periods associated with the action potential.
To the right are illustrations of the AP response of stimulating a cell with a
suprathreshold stimulus at various points during the cells refractory period.

The transient behaviour of refractoriness is divided into three refractory periods in an

action potential’s profile; these three distinctions are made based on the cells responsive-

ness during its refractory state. These three periods are the absolute refractory period

(ARP), the effective refractory period (ERP) and the relative refractory period (RRP).

The distinctions of these periods becomes more apparent and important when investigat-

ing possible mechanisms involved in arrhythmia genesis and considering possible measures

that can be taken when developing arrhythmia treatments. The ARP is the duration of

time from the depolarization of the cell (the action potentials upstroke) and terminates

before the cell is able to produce a local nonconducted response to a stimulus. This is the

absolute minimum time required after the depolarization of a myocyte until it is able to

produce any response to another stimulus. During the ARP the myocyte is unable to pro-

duce any response to a stimulus no matter how large the magnitude of the stimulus. The

ERP includes the ARP and is extended until the point in time in which the cell is able

to produce a nonconducted stimulus to an external stimulus. This is thus the minimum

time a cell needs between two stimuli to produce a response. The RRP begins at the end

of the ERP and is the period of time that a cell is able to produce a propagating response

to a stimulus that exceeds the normal threshold value of the completely recovered cell.

Another period, often used in the literature, before the cell is completely repolarized that

has a unique property to stimulus, this is the supranormal period. (SNP). The SNP is the

period of time that a cell is able to elicit a propagated response to an external stimulus
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that is slightly below that of the normal threshold, and is found after the RRP. Although

during both the RRP and the SNP a cell is able to produce a propagating action poten-

tial, this response differs to the normal action potential produced by normal threshold

stimulus from a cell that has been given sufficient time to recover, this period is known as

the Full recovery time (FRT). The difference is that action potential’s produced during

the RRP and SNP have a reduced amplitude compared to those produced after the FRT

[92, 40].

1.3.5 Intercellular Communication - Gap Junctions

The heart’s ability to conduct action

potential depends on cells communicat-

ing with their neighbours. The com-

munication is mediated by Gap Junc-

tions [160], which are a form of inter-

cellular coupling of cellular membranes.

It has been found that gap junctions

play a crucial role in cardiovascular

pathiophysiology[46]. Gap junctions are

themselves a subcategory of a larger set

of cellular connective structures known

simply as cell junctions. Cell junc-

tions are categorised functionally into

Occluding junctionsa, Anchoring junc-

tionsb and Communicating junctions of

which gap junctions are considered a

member.

aThese provide an intercellular connection
that limits/prevents the passage of molecules
between cells and the loss of solutes to the in-
tercellular space

bThese junctions connect cell membranes to
cytoskeletal elements (these being networks of
protein filaments enabling a cell to maintain its
shape and ability for cellular movements.)

Occluding Junctions

1. tight junctions (vertebrates only)

2. septate junctions (invertebrates only)

Anchoring junctions

Actin filament attachment sites

1. cell-cell junctions (adherens junctions)

2. cell-matrix junctions (focal adhersions)

Intermediate filament attachment sites

1. cell-cell junctions (desmosomes)

2. cell-matrix junctions (hemidesmosomes)

Communicating junctions

1. gap junctions

2. chemical synapses

3. plasmodesmata (plants only)
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Gap junctions provide cells with a communication junction via the passage of small ions25

between cells and by a process of passive diffusion. Furthermore gap junctions inhibit

the passage of nucleic acid and proteins between cells.

Structurally, gap junctions are clusters of intercellular channels between cells which are

themselves made of proteins. Vertibrate gap junctions are made up of the connexin26 fam-

ily of proteins that have evolved from the innexin gene family found in invertibrates[132].

Figure 1.23: The full profile of a gap junction (a), (b) shows the figure (a) with the
density cropped to allow for better viewing of the connexin arrangement. Also indicated
are the approximate boundaries of the cells cytoplasm (C), the membrane bilayer (M)

and the extracellular space (E) [179].

Although connexins express great variation in their properties, they are identified by

their similarities in protein sequences and transmembrane topology. There are variations

in their lengths but all connexin have four membrane crossing domains (M1-M4), see

Figure 1.24, which result in three loops. Two loops occur in the extracellular space E1

and E2 resulting from the connection of the M1-M2 and M3-M4 domains. The third loop

occurs within the cells cytoplasm, the cytoplasm loop (CL), and is the region connecting

the M2-M3 domains [72].

In situ27 two cells are separated by intercellular fluid, the membranes of the cells are

25Gap junctions also mediate intercellular movement of cytoplasmic molecules and show a rich ability
of selective permeability that are not further discussed here, as our main focus here is on the electrical
properties of gap junctions, the reader is referred to [71] and references therein for a comprehensive
review.

26We note that there is another family of proteins, the pannexins, which are present in both chordates
and invertibrates which will not be discussed here, the reader is referred to [128] for further reading.

27This is a laten term, meaning ‘in place’ which in the medical sciences referes to observing an object
or phenomena in the place where it occurs without moving it elsewhere.
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Figure 1.24: The looping of the connexin protein through the cell membrane, figure
adapted from [62].

connected with one another by a series of connexons. Connexons, see Figure 1.25, are

docking locations found on a cell membrane made of connexin proteins arranged in a

hexameric structure. Once a connexon of a cell has docked ono the connexon of the

adjacent cell a gap junction channel is formed. The gap junction channel provides the

cells with a means to communicate with another. Multiple gap junction channels together

form a structure known as a gap junction plaque connecting a cell to its neighbor through

multiple locations.

Connexons, and hence gap junctions as a whole, have varied properties and sensitivities

depending on their constituent connexin expressions. Connexons have the ability to select

what molecules and atomic ions they will allow to be transmitted from a cell as well as

what molecules and ions they will accept into a cell. This selective property is known as

permeant selectivity. Connexons also show gating28 dependencies on pH and voltage and

the ability to rectify unitary conductance[181, 73, 72].

There have been at least 21 connexin genes (Cx23, Cx25, Cx26, Cx30, Cx30.2, Cx30.3,

Cx32, Cx31.1, Cx31.9, Cx32, Cx36, Cx37, Cx40, Cx40.1, Cx43, Cx45, Cx46, Cx47,

Cx50, Cx59, Cx62) 29 discovered in human gap junctions [149]. Of the 21 connexin there

are three main connexin found in the heart. These are connexin 40 (Cx40), connexin

28This is the process of opening and closing of the connexon pores to influence.
29There are also three pannexin genes identified Px1, Px2, Px3
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Figure 1.25: (a) shows the membrane topology of the connexin protein, CT is the
carboxyl terminus. (b) shows the the joining of two connexons to form a complete gap

junction channel [41].

43 (Cx43), and connexin 45 (Cx45). The numbering system used to identify between

connexin is based on their molecular weight (measured in kDa, the atomic mass unit)

[45]. Cx43 is found in most regions of the heart and is the main connexin expressed in

all mammalian ventricles, it is also found in atrial muscle and the His-Purkinje system

[67, 184]. Cx40 is mainly found in the atria and the conduction system, abundantly in

the SAN and the AVN, and is not expressed in the ventricles see [155] and references

therein. Cx45 which is found predominantly in embryonic development is also found in

the conduction system of mice and rats [36]. Cx45 is largely absent in the myocardium

[35] but is found in the SAN, AVN and BoH [37, 104]. The connexin have a spatial

organization about the heart’s structure and are summarized in the table below for an

adult human[180]

Region Vs. Connexin Cx40 Cx43 Cx45

SAN X x X

Atrial myocardium X X x

AVN x x X

AV Bundle X x X

Bundle Branches X x X

Ventricular myocardium x X x

Purkinje Fibres X X X

It is worth noting at this point that the nomenclature used to identify cardiac connexins

can lead to some confusion when interpreting results in various species. For example
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Homomeric Homomeric

Heteromeric

(a) Figure showing the 14 different
configurations that a connexon can have if
there are two different connexin proteins

available for expression. When there are at
least two different connexin expressed in

connexon the connexon is said to be
heteromeric. If the connexon is made up of
only one connexin type then it is said to be

homomeric.

Homomeric

Heteromeric

Homotypic Heterotypic

(b) Figure showing the diversity of gap
junctions when two connexon dock.

Figure 1.26: (a) Possible configurations of connexons when there are two connexins. (b)
The categorised types of gap junctions that can be formed from the hommomeric and

heteromeric connexons. Figures both adapted from [45].

Cx57 in mice have the same function as Cx62 in humans, making Cx57 in mice ortholo-

gous to human Cx62[149], thus experimental results found from connexinX from speciesX

should not be suggested to hold true for connexinX from speciesY but can be suggested

to hold for connexinY in speciesY if connexinX in speciesX is orthologous to connexinY

in speciesY. Furthermore orthologous connexin pairs may not be express in the same

tissue or cell type between the two species [163] and thus a prior knowledge to species

dependent connexin orthologous is necessary for comparative work between connexin in

different species.

All gap junctions express voltage sensitivity which is a result of the voltage dependant

processes found in connexons. In the cardiac system these voltage dependencies influence

how action potentials propagate from one cell to the next. Factors such as the distri-

bution and number of gap junctions between cells (which varies across different cardiac

regions), the locally dependant orientation of cell relative to its neighbour and a cell’s

size [164, 81] all effect the conduction velocity. The coupling itself, between cells, has

voltage dependencies to consider when trying to build a full dynamical picture of the

cardiac system.
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Connexin Voltage Sensitivities

1. Vj gating - Macroscopic junction conductance has a dependency on the magnitude

of transjunctional voltage [72].

2. Loop-gating - mechanism that can slowly open or close a junctional channel, de-

pendant on transjunctional voltage [176].

3. Vm gating - The steady state of the junctional channel is dependant on the mem-

brane potential of the cells. (distinct from Vj gating)[11]

4. Vm has sensitivity to the initial and instantaneous conductance of the cell. The case

when initial conductance is monotonically dependant on Vm has been termed fast

Vm voltage dependance.[72, 152, 52]

Due to the variations in conductance properties, molecular permittivity and gating prop-

erties of connexins the ability to produce heterotypic junctions results in areas of special-

ization and control in communication between cells in neighboring regions of the heart.

This suggests that the spatial distribution of gap junction type is significant for the re-

gional separations of heart functions, such as the separability of the conduction system

from the bulk myocardium. The question of how specific hemichannels form the con-

nexin configurations is still an ongoing and active area of research. However there are

insights into the types of heterotypic hemichannels that can form between Cx40, Cx43,

Cx45, as well as other mammalian and insect connexins that have not been discussed

[191, 26, 10, 79, 140]. The variety of possible junctions between cells though diverse

shows preference in connexin combination. This has been observed using HeLa cells30

transfected with Cx40, Cx43 and Cx45. The results shown that heterologous cell pairings

of Cx40/Cx43 do not form junction plaques between contacting Cx40 and Cx43 trans-

fected HeLa cells, but form cell couplings between HeLa cells with weak conductance

properties. It has been further suggested this is the result of intermediate coupling stages

with Cx45 connexins forming heterotypic Cx40/Cx45 and Cx43/Cx45 junctions, for de-

tails the reader is referred to [140].

30HeLa cells are an immortal cell line derived from cervical cancer cells that are mass cultured for used
in medical research.
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1.4 Physiology of the brain.

1.4.1 A General Introduction

The brain like the heart is an organ with various regions of specialisation. Here the reader

is given a brief overview of the functional aspects of the neural system and its various

constituent parts.

1.4.2 Structure of the Central Nervous system

The central nervous system is made up of the brain and the spinal cord.

The brain itself can be coarsely divided into three basic units; the forebrain, the mid-

brain and the hindbrain. The forebrain31, consisting primarily of the cerebrum, is

the largest and most developed part of of the human brain. The cerebrum is responsible

for the higher order functions of the brain such as cognition[188, p 2]. This region is

greatly effected by diseases such as Alzheimer’s [192].

The midbrain32 is responsible for functions such as vision, motor control and sleep wake

cycles[23, p 45]. The thalamus which is considered a part if the forebrain is found near

the midbrain and also contributes to the regulation of consciousness sleep and alertness33.

The hindbrain34 is the region of the brain which is most responsible for the control of

muscle movement35.

Brain

Forebrain Midbrain Hindbrain

Cerebrum Diencephalon Medulla Oblongata Pons Cerebellum

Figure 1.27: Basic division of the brain into the forebrain, midbrain and hindbrain.
Adapted from [162, p 5].

Typically there is a complex interplay between the various regions of the brain from

stimulus to thought and then action, which is well illustrated by the somatosensory

31In the medical literature this region is also referred to as the posencephalon when an organism is in
its developmental stage.

32In the medical literature this region is also referred to as the mesencephalon when an organism is in
its developmental stage.

33The thalmus is located between the midbrain and the cerebral cortex and thus also contributes to
the relay of motor signals and spatial awareness.

34referred to as the rhombencephalon in an organisms development stage.
35This excludes the movement of the eyes which is controlled by the midbrain.
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system show in Fig 1.28

(a) Schematic showing the location of the
Cerebrum (forebrain), the (hindbrain) Cerebellum,

Pons, Medulla and the Spinal cord.

(b) The somatosensory system.

Figure 1.28: The Central Nervous system and the somatosensory system.

A thorough introduction to the function and role of the various compartments and struc-

tures present in the brain is not the focus of this thesis and thus the reader is referred to

the following texts [14, 162, 23] for further reading.

1.4.3 The Neuron

The central nervous system is made up of two main classes of cells; neurons and glia.

Though there are on the order order of 109−−1011 neurons in the human brain, glial cells

vastly outnumber neurons [14, p 24]. The distinction between these cells is important to

note; neurons are cells that sense changes in the environment, communicate the changes

and send response commands to the body. Glial cells are thought to contribute to the

brain function by insulating, supporting and nourishing neighbouring cells [14, p 24]. The

role of glial cells still play a significant role when one considers the response of the central

nervous system to disease and immune interactions with sensory systems such as pain, a

review of which can be found in [187].

Within the class of cells known as neurons and glia there is a large variety of different

categories of cells, based on function, structure, size and chemistry. It is however believed
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that neurons are the cells through which the majority of the brains information processing

is conducted. Neurons, like cardiomyocytes, are excitable cells. Unlike cells found in

the rest of the body, neurons do not undergo cell division and replication [69, p 39].

Neuroscientists are still unable to categorise all neurons in a complete manner, the hope

being that one can study the effect of a complete group of similar neurons and draw

conclusions regarding the other members of the category [153].

The structure of a neuron

Neurons can be found in the central nervous system in a variety of different sizes and

shapes. However all neurons possess a structure known as a cell body from which a

number of structures, known as neurites, project.

Spinal 
Cord

(a) Figure depicting a large
neuron in the brain, taken from

[69, p 556]

(b) Detailed depiction of a neuron

Figure 1.29: The structure of a neuron.

The main components of a neuron are:

Definition 1.4.1 (The Soma). This is is the region of the neuron which contains the

cell’s nucleus and hence DNA. The soma is also often referred to as the cell body. The

soma is also the region from which a cells neurites project.
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From the soma we have the neurites that make up the

Definition 1.4.2 (Dendrites). These are nerve fibres which are responsible for recieving

information from a neuron and conducting it toward the cell body.

A further neurite that makes up a typical cell is

Definition 1.4.3 (Axon). The axon is a single long tubular neurite which conducts

information away from the cell body.

The intracellular fluid of a cell is predominantly made up of a gel like substance known

as cytoplasm. This allows suspension of the various cell organelles which are necessary

for the metabolic processes that support the cell.

The axon, which is connected to the soma at the axon hillock, is covered by a layer of

insulating material known as

Definition 1.4.4 (Myelin sheath). This is an electrical insulating material that covers

the axon, allowing for the rapid conduction of ions through the axon via saltatory con-

duction. The Myelin sheath is a tubular case and is made up of glial cells called Schwann

cells.

Damage to the myelin sheath can lead to paralysis, sensory disturbances, visual impair-

ment and multiple sclerosis [167]. The Myelin sheath reduces the flow of ions through

the cell membrane by approximately 5000-fold compared to the axon of a nonmyelinated

axon[69, p68]. The Myelin sheath around the axon has a number of openings that are

approximately 2 - 3 µm in length known as the

Definition 1.4.5 (Nodes of Ranvier). The nodes of ranvier are points along the axon

at the openings in the myelin sheath that allow the movement of ions between the extra-

cellular and intracellular space. Along the axon the nodes of ranvier are the only place

where action potentials occur.

The nodes of ranvier in essence act as a signal boost through which the ion movements

due to saltatory conduction can be supplemented with an action potential which draws

upon ions in the extracellular fluid. The advantage to having myelinated fibres is that

they allow for more rapid conduction of potential through long nerve fibres, myelinated

fibres have a conduction velocity that is 5 - 50 times greater than their non myelinated

counterparts[69, p69].

The axon terminates at the axon terminus leading to a number of synapses.

Definition 1.4.6 (synapse). A synapse is a structure which allows the flow of electrical

charge or chemicals from one neuron to another cell.
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Synapses come in two types, electrical or chemical. Electrical synapses are infact gap

junctions which have been discussed earlier. Chemical synapses however transmit infor-

mation from a neuron to another neuron by a more intricate nature than gap junctions.

The transmission occurs via a complex chemical known as a neurotransmitter. The neu-

ron is capable of producing neurotransmitters and stores them in the synapse within

a structure known as a vesicle. The vesicle is a small structure within the cytoplasm

which is made of phospholipid bilayer and serves as a container. The process of moving

neurotransmitters into a vesicle is known as vesicular transport.

Syanpse

Syanptic 
Cleft

Vesicle

Neurotransmitter

Presynaptic Neuron

Postsynaptic 
Neuron Receptor

Figure 1.30: The main substructures associated with a chemical synapse.

Conduction of Action Potential Through a Neuron

Typically neurons communicate with one another by the movement of neurotransmitters

from the synapse of the the presynaptic neuron to the soma and dendrites of the post

synaptic neuron. The post synaptic neuron produces action potentials in this manner

by allowing the passage of ions through ion channels in the cell membrane that are

neurotransmitter gated. Once the potential difference reaches the activation potential

of the sodium channels, previously described, located at or near the axon hillock the

transmission of electrical activity through the axon of a myelinated neuron is governed

by saltatory conduction.

Definition 1.4.7 (Saltatory conduction). This is the mechanism by which action po-

tentials jump from one node of ranvier along a myelinated neuron to another node of

ranvier.

The axon of a myelinated cell is covered in insulating cells, in the peripheral nervous

system these are known as Schwann cells while in the central nervous system the myelin
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is made up of oligodendrocytes. Both these cells that act as myelin have similar electrical

properties namely, they are both poor capacitors and excellent resistors. The myelin

however does not cover the entire length of a myelinated neuron. The points along the

axon that are not covered by the myelin are the nodes of ranvier. It is only at the nodes of

ranvier that the myelinated axon possesses ion channels that are capable of passing ions

into and out of the cell membrane. The movement of charge through the axon between

the nodes of ranvier is via the passive movements of ions due to an electrotonic potential.

(a) Oligodendrocyte covering the axon of a
myelinated neuron in the central nervous

system.

(b) Cross section of a myelinated axon
showing how a Schwann cell (blue) wraps
around the axon (yellow) of a neuron [56].

Figure 1.31: Myelinated neurons in the CNS and PNS.

The electrotonic conduction through the myelinated axon occurs in the following manner

1. Voltage gated ion channels are activated (due to AP conduction from another neu-

ron or from electrotonic conduction from a prior section of the myelinated axon)

allowing the influx of positive ions (Na) into the axon.

2. The influx of positive charge causes a local build up of positive charge within the

axon at the node of ranvier. This local positive charge induces ions within the axon

to be electrostatically pushed, producing a current. This current also activates

gates responsible for the efflux of ions through the membrane (K) producing the

action potential response at the node of ranvier.

3. The electrotonic pressure causes the influx channels at the next node to become

activated thereby triggering the mechanism to repeat itself.

There are a number of consequences of saltatory conduction in myelinated neurons as

opposed to action potential conduction through demyelinated cells [188, p23]
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1. Open Channel allows in�ux of 
positive charge

2. Local positive charge pressure results 
in a current

3. Electrotonic conduction
opens gates at the next node.

Figure 1.32: Electrotonic conduction through a myelinated axon.

1. Energy requirements for impulse conduction for myelinated fibres is lower, thus the

metabolic cost of conduction is lower.

2. Myelination results in increased conduction speed. Thus signals can be sent more

rapidly through long axons which of vital importance for reflexive activities and

rapid information processing.
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Figure 1.33: Conduction velocity of a myelinated fibre and a nonmyelinated fibre,
reproduced from [188, p23]
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Conduction of Action Potential From Neuron to Neuron Via a Chemical

Synapse

Chemical synapses are the main means by which a neuron communicates with other

neurons. Synapses can be divided into two broad classes based on their effect on the

postsynaptic neuron,

• Excitatory: This type of neuron increases the probability of firing in the post-

synaptic neuron [inducing depolarization].

• Inhibitory: This type of neuron decreases the probability of firing in the post-

synaptic neuron [inducing hyperpolarization].

Communication between a presynaptic and postsynaptic neuron takes place across an

extension of the extracellular space (approx 30µm) know as the synaptic cleft. The

communication is achieved via the diffusion of molecules known as neurotransmitters.

Ca++
Ca++

Ca++

Ca++

Ca++

Syanpse

Syanptic 
Cleft

Vesicle

Neurotransmitter

Presynaptic Neuron

Postsynaptic 
Neuron Receptor

Calcium
Channel

SNARE
Protein

Calcium
Signal to 

SNARE

Figure 1.34: The chemical synapse, illustration shows a calcium channel, the influx of
calcium ions and signaling to the SNARE proteins.
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The neurotransmitter is contained in the presynaptic neuron within a vesicle. Vesicles are

themselves connected to cell membrane of the synapse by SNARE36 proteins. SNARE

proteins are themselves intensively studied structures are capable of fusion cell membranes

together, a topic not here discussed however the reader is referred to [178] for further

reading.

Activation of the SNARE proteins occurs due to the presence of calcium ions in the

synapse. The result is the release of neurotransmitter into the synaptic cleft. The neu-

rotransmitters bind to receptors on the postsynaptic neuron. This binding triggers the

operation of present ligand-gated channels. These channels allow the flow of sodium

and potassium ions much like their voltage gated counterparts, they are however triggered

by the presence of neurotransmitter.

After conformational changes of the ligand-gated channels have taken place, the neuro-

transmitter is re-released into the synaptic cleft from the receptor site. At this point

reuptake proteins return the neurotransmitter to the presynaptic neuron.

36Acronym from SNAP soluble NSF attachment protein and REceptor.
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1.5 Chapter Summary

• Both neural and cardiac systems are composed of cells with are capable of producing

action potentials. These cells are neurons and cardiopmyocytes respectively.

• Action potentials are potential differences measured across a cells membrane.

• The shape of an action potential is dictated by the movement of ions into and out of

a cell. The movement of ions is mediated by chemical gradients maintained by the

active process of ion pumps and the selective passage of ions through ion channels.

• There are cells in both the cardiac and neural system which can intrinsically produce

action potentials without the need for stimulus. Such cells are said to have the

property of automaticity. Action potentials are more typically produced by neurons

and cardiomyocytes in response to a voltage based stimulation. There is a threshold

voltage required to stimulate an excitable cell to produce an action potential.

• Action potentials are produced by cells which are stimulated by an external volt-

age. This is due to the ion channels being voltage gated, i.e. they can change

conformational shape when stimulated by an external current.

• Once a cell is stimulated to produce an action potential, intrinsically or otherwise,

there is a period of time over which the cell will not produce an action potential

even if stimulated with a suprathreshold stimulus. This period is known as the

refractory period.

• Physiologically, the refractory period is the time that the cell requires in order to

set up the ionic gradients required to produce an action potential.

• Action potentials are transmitted from cardiomyocyte to cardiomyocyte via protein

structures known as gap junctions. Gap junction connections are physical connec-

tions between cell membranes and can also be found between neurons.

• Neurons predominantly transmit action potentials through a synapse. Synaptic

transmission of action potentials is achieved when a presynaptic neuron releases

neurotransmitter into the gap between the neighbouring neurons and the postsy-

naptic neurons ligand gated ion channels are stimulated to open.
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Chapter 2

Fitzhugh-Nagumo Single Cell

Dynamical Analysis

2.1 Chapter Introduction and Aim

The aim of this chapter is to introduce the reader to the Fitzhugh-Nagumo (FHN) sys-

tem of ordinary differential equations and to explore their dynamical behaviour using

techniques from nonlinear dynamical systems theory.

Before treating the FHN system the reader is introduced to the Electrophysiological model

due to Hodgkin and Huxley[77]. The FHN system is a reduction of the HH model for a

neuron. This introduction also serves as a bridge between the physiological information

in the previous chapter and mathematical modeling of action potentials.

The FHN system is introduced to the reader with reference to its historical formulation

and context. After defining the FHN system a phase plane analysis is conducted and

the systems parameters are interpreted in terms of the effect they have on the existence

and stability of dynamical equilibrium points. The flow of trajectories in phase space

are treated with particular attention to the systems nullclines and a number of results

concerning the existence of equilibria are found.

The FHN system is shown to be a Lienard type differential equation which allows a theo-

rem stating sufficient conditions on the system parameters in order to admit unique limit

cycle solutions.

The fast-slow dynamics of the FHN system are explored after introducing the relevant

results from classical perturbation theory. The result of the perturbation analysis is in

finding the fold points of the FHN system, the systems slow manifold the fast-foliation.
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This brings analytic insight into the approximate shape and of the limit cycles that are

produced in the phase space of the FHN system.

A mechanism for limit cycle production through a Hopf bifurcation is treated. The condi-

tions under which the FHN system undergoes a Hopf bifurcation are analytically treated

and the stability of the resulting limit cycle oscillations are also derived.

Finally the phase space of the FHN system is probed using numerical continuation meth-

ods with greater emphasis on investigating the bifurcation structure of the system with

respect to its parameters.

2.2 From Biological System to Mathematical Model

- The Hodgkin-Huxley (HH) Model.

The invention of the voltage-clamp experimental method by Cole and Marmont[112] in

the 1940s, led two researchers, Hodgkin and Huxley, studying the action potential of the

squid’s giant axon (a very large neuron which made experimentation practical). In a se-

ries of five papers published in 1952[77], Hodgkin and Huxley presented the relationship

between the sodium, potassium and leak (mainly carried by chlorine ions) ionic currents

on the action potential. Their model will be described in detail in the next chapter. The

two won the Nobel Prize in 1963 for this ground-breaking work.

The Squid Giant Axon:
The giant axon of the squid is part of a neu-

ron that runs down the length of the squid

mantel. When the squid wishes to move

quickly it sends a number of action potentials

down the length of it’s giant axon to initi-

ate the contraction of muscles in it’s mantel.

The muscle contractions cause the ejection

of a fluid jet, propelling the squid in the op-

posite direction; this being the squid’s main

defense mechanism from predators. The

conduction velocity of the action potentials

within this axon is rather quick with a pulse

traveling at 20ms−1.

Figure 2.1: Squid and giant axon.

The pioneering work in the field of electrophysiology describing the firing of action poten-
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tials was conducted in the 1940-50s by Cole, Curtis, Hodgkin and Huxley. In a series of

four papers Hodgkin and Huxley presented both their experimental findings concerning

the conductivity properties of the squid axon and their theoretical model of the action

potential. Their experiments involved recording the response of the squid neuron in var-

ious chemical baths (Na and K) and recording the response of the neuron to electrical

stimulus. This in itself was a never before conducted piece of science, however H & H con-

tinued to produce a complete theoretical framework for their findings based on a system

of ordinary differential equations. This formulation of the system is now the fundamental

framework governing the majority of research in the field of electrophysiology.

When formulating their model for action potential generation HH considered the phos-

pholipid bilayer which makes up a neurons membrane as a capacitor, with capacitance

Cm. The total transmembrane current, Im, is related to the sum of all the ionic currents

Iion which move across the cells membrane, see Figure 2.2, and the rate of change of

current across the membrane Vm, according to Ohm’s law we have

Cm

ENa

INa

Ek El

Ik Il

glgKgNa

+
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+
-

-
+

Vm

Outside

Inside

Figure 2.2: Circuit representation of Hodgkin and Huxley’s model of a squid giant axon.

Im = Cm
Vm
dt

+
∑

Iion.

From Kirchoff’s loop rule, the sum of all the currents going into and out of the cell is
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zero, Im = 0 and

Vm
dt

= − 1

Cm

∑
Iion.

This forms the basic frame of Hodgkin and Huxley’s model, what is required is an ex-

pression for each of the ionic currents involved in the sum. Each of the ion currents are

modeled in terms of the channels conductance1 gion, the cell’s membrane voltage Vm and

Eion, the Nernst reverse potential.

Iion = gion(Vm − Eion)

The Nernst potential acts as a voltage source, the source is related to the semipermeable

nature of the cell membrane which allows the flow and build up of ions inside and outside

of the membrane. More specifically the Nernst potential is the voltage required to oppose

the concentration-gradient flow across the semipermiable membrane for a particular ion:

Eion =
RT

zionF
ln

(
[ion]o
[ion]i

)
where R is the universal gas constant, T is the temperature in Kelvin, zion is the valency

of the ion, F is Farady’s constant, [ion]o is the concentration of ‘ion’ outside the cell and

[ion]i is the concentration of ‘ion’ inside the cell.

Another complication arises when considering the conductance of a particular ion channel.

The conductance not a constant as the flow of ions (via the ion channels) is related to

the voltage across the cell membrane. Thus it is necessary to specify how the “gating”

of ion channels behaves dynamically. The study of ion channels and their changes in

conformation is still an intensive area of research referred to as ion channel kinetics, we

however H& H took a rather simplistic view on the ion channel2, which is here described.

An ion channel is considered a simple gate on the cell membrane that can either allow

or block the entrance of a specific ion. In this view the gate can either be in an Open

state or a Closed state. The transitions of state from Closed→ Open or Open→ Closed

occur at different rates

C
α


β
O

where α and β are the transition rate constants which are themselves functions of voltage.

1Conductance being the reciprocal of the resistance.
2first order kinetics.
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A gating variable is introduced to the model which can be interpreted as the fraction of

gates that are open or equivalently as the probability that a given gate will be open3. For

the potassium (K+) current this gating probability is given by n and is modeled by

dn

dt
= αn(1− n)− βnn

From their experiments H&H found that one gate isn’t sufficient to specify the dynamics

of the sodium current, as such H&H used two gating probabilities: m the activation

variable and h the inactivation variable.

dm

dt
= αm(1−m)− βmm,

dh

dt
= αh(1− h)− βhh

These gating variables lead to the replacement of the ion channel’s conductance gion(t, V )

with the product of the channels maximal conductance ḡion, which is a constant, and the

fraction of open channels4 of that specific ion throughout the cell membrane.

Hodgkin-Huxley Equations:

We have the following set of 4 coupled ODEs:

dV

dt
= − 1

C
[ḡNam

3h(V − ENa) + ḡKn
4(V − EK) + ḡL(V − EL)− Istim]

dm

dt
= αm(1−m)− βmm

dh

dt
= αh(1− h)− βhh

dn

dt
= αn(1− n)− βnn

where the maximum conductances are experimentally obtained to be

ḡNa = 120 mS cm−2, ḡK = 36 mS cm−2, ḡl = 0.3 mS cm−2

and the reversal potentials are obtained to be

3H&H did not make this interpretation, they believed that there existed carrier particles n, m and
h that moved the ion across the cell membrane. The probabilistic interpretation was brought forward
after a better understanding of ion channels developed.

4One will notice that in the H&H equations the fraction of open channels or the probability of having
an open channel are raised to certain powers; these powers had been deduced by experimentation, in fact
higher powers fit the data better but H&H did not have access to computers during their work having
to do all the ‘curve’ fitting by hand calculation!
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ENa = +55mV , EK = −72mV , El = −49.387mV

the cells capacitance (ability to hold electrical charge) is taken to be C = 1µF . The α∗

and β∗ functions are exponential functions that are fit appropriately from experimental

data

αm = 0.1

(
V + 35

1− exp(−(V + 35)/10)

)
βm = 4 exp

(
−(V + 60)

18

)
αh = 0.07 exp

(
−(V + 60)

20

)
βh =

1

exp

(
−(V + 30)

10

)
+ 1

αn = 0.01

 V + 50

1− exp

(
−(V + 50)

10

)
 βn = 0.125 exp

(
−(V + 60)

80

)
.

2.3 The FHN System

The Fitzhugh-Nagumo (FHN) equations where introduced as a reduction of the HH-

model[77] of the squid giant axon. The FHN model is a modified set of equations based

around the Van der Pol oscillator5 which itself was used as a cardiac model [136, 135].

Another influence on Fitzhugh’s work was

the experimental work conduced Bonhoef-

fer [20] concerning the activation of iron in

an acid solution. Fitzhugh modified Van

der Pols oscillator to take into account Bon-

hoeffer’s results and named the equations

the Bonhoeffer-van der Pol equations[57].

Nagumo and colleagues working on circuit

representations of electrical transmission in

nerves, the circuit is shown in Figure 2.3, ar-

rived at the same set of equations publishing

a paper in the following year[119].

L

R
E

C
TD

v

Figure 2.3: The Nagumo circuit
[119]. C is a capacitor, E a

(battery) voltage source, R a
resistor, L an inductor, TD is a

tunneling diode and v is the
potential that represents the nerve

action action potential.

This lead to the what is currently known as the FitzHugh-Nagumo equations. The FHN

5this being a relaxation type oscillator
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equations fall under the class of excitable systems. The main properties of excitable sys-

tems are [133, p. 93]

• In response to superthreshold stimulus they generate a spike called an action poten-

tial. Subthreshold stimuli do not cause any response, or the response is negligibly

small.

• Immediately after the action potential excitable systems are refractory, i.e. they do

not respond to stimuli of any amplitude.

FitzHugh’s original paper uses the specific form

ẋ = c(y + x− x3/3 + z)

v̇ = −(x− a+ by)/c (2.3.0.1)

Here the two dynamical variables, x and y, are the known as the activator and inhibitor

respectively in a general dynamical systems context. In terms of physiology (of neural and

cardiac systems) the variables are, qualitatively, related to the transmembrane voltage and

recovery. The resulting system is a reduction of the 4-Dimensional system of equations

formulated by Hodgkin and Huxley in 1952[77]. z represents an injected current, in its

most general form is a function of time z = z(t) while a,b and c are parameters. The

special case of parameter values a = b = I = 0 corresponds to the van der Pol oscillator.

Typical parameter values used by Fitzhugh[57]

a = 0.7 b = 0.8 c = 3.0

with constraints

1− 2b/3 < a < 1, 0 < b < 1, b < c2.

There are a number of variants of the form of the equations used in the literature; through-

out this thesis however we will be concerned with the following form of the equations

ẋ = x− x3/3− y + I

ẏ = ε(x+ a− by). (2.3.0.2)

This form being preferred as it introduces the small parameter ε which can later be ex-

ploited when examining the asymptotic structure of the FHN system.
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Though this system can be further simplified by absorbing a parameter (such as ‘a’)

into the definition of one of our variables, we choose to omit doing so to maintain the

interpretable features of a neuron (such as negative rest potentials).

2.3.1 Phase Plane Analysis

The predominant advantage the FHN model offers over more complex models from elec-

trophysiology (see table 1.10) is that it is a two variable system whose phase space can be

visually realised and investigated. Fitzhugh’s original work suggested and showed that

projecting the HH-model on R2 produces a qualitatively similar phase space as that of

the van der Pol oscillator. This reduction was made possible as the 4D system of ODEs

could be reduced into a 2D system of ODEs when one took into account that there are

variables that track each other during an action potential6.

Nullclines

We begin the phase plane analysis by examining the nullclines of the FHN system,

Definition 2.3.1 (Nullcline).

Given a dynamical system

ẋ = f(x)

where x ∈ Rn. The nullclines of the dynamical system are given by the curves defined

by

ẋi = 0

There are two nullclines from (2.3.0.2) which satisfy the nullcline condition.

The Nullclines of the FHN system are given by

y = x− x3/3 + I (2.3.1.1)

y =
x+ a

b
(2.3.1.2)

6FitzHugh found that the V and m variables tracked each other and thus one could be expressed as
an algebraic expression of the other, the same was also found to be true for the variables h and n.
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provided b 6= 0.7

We refer to (2.3.1.1) and (2.3.1.2) as the ‘x-nullcline’ and the ‘y-nullcline’ respectively.

Given the polynomial form of the nullclines we can make some observations concerning

their shape with little effort.

The x-nullcine:

• Intercepts the x-axis at most three times which occur whenever x3 − 3x− 3I = 0.

• Intercepts the y-axis at (x, y) = (0, I).

• Has a maxima at (xmx, ymx) =

(
1,

2

3
+ I

)
and a minima at (xmn, ymn) =

(
−1,−2

3
+ I

)
.

The y-nullcline:

• Intercepts the x-axis at (x, y) =
(

0,
a

b

)
.

• Intercepts the y-axis at (x, y) = (−a, 0).

• Is a monotonic increasing function if b > 0 and a monotonic decreasing function if

b < 0.

This allows us to produce the following qualitative picture of the nullclines, an example

of which is shown in Figure 2.4

x-Nullcline

y-Nullcline

x

y

10.5

-0.5

2/3

- 2/3

-1

Figure 2.4: The Nullclines of the FHN system; parameters I = 0, a = 0.5 and b = 1.

7if b = 0.

y = x− x3/3 + I, and x = −a.
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These curves define the regions in space where the vector field defined by the right hand

side (RHS) of the FHN system (2.3.0.2) is made up of purely vertical (x-nullcline) and

horizontal (y-nullcline) vectors.

Nullcline Parameter dependance

The equations for the nullclines given by (2.3.1.1) and (2.3.1.2) clearly depend on the

system parameters a, b and I. The x-nullcline with equation given by (2.3.1.1)

y = x− x3/3 + I

depends on I the external current; taking I to be constant (which corresponds to ex-

amining an excitable cell under voltage clamp) it is clear that variation of I result in

translation of the x-nullcline in the y-direction.

Pictorially, we have

x

y

y-Nullcline

x

y

x-Nullcline

I = 1.0

y-Nullcline

x

y

x-Nullcline

I = 0.5

x-Nullcline

y-Nullcline

x

y

I = -0.5

x-Nullcline

y-Nullcline

x

y

x-Nullcline

I = -1.0

Figure 2.5: The nullclines of the FHN system on variation of the parameter I. The
fixed parameters are a = 0 and b = 1.

The y-nullcline, given by

y =
x+ a

b

is a straight line whose slope varies with b.
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x

y

x-Nullcline

b = 2.0b = -2.0

x

y

x-Nullcline

b = 1.0

b = -1.0

x

y

x-Nullcline

b = 0.5
b = -0.5

x

y

x-Nullcline

b = 0.25

b = -0.25
x

y

Figure 2.6: The nullclines of the FHN system on variation of the parameter b. The fixed
parameters are a = 0 and I = 0.

Variation of the parameter a, for constant b, results in translation of the y-nullcline in

the x-direction.

x

y

x

y

x-Nullcline

y-Nullcline

a = 1.0

x

y

x-Nullcline

y-Nullcline

a = -1.0

y-Nullcline

x

y

x-Nullcline

a = 1.5

x

y

x-Nullcline

y-Nullcline

a = -1.5

Figure 2.7: The nullclines of the FHN system on variation of the parameter a. The
fixed parameters are I = 0 and b = 0.5.

Equilibrium points and nullclines

The first note of interest concerning the nullclines of a system is that all the systems

equilibrium points are found precisely at points in space where all the nullclines intersect.
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Definition 2.3.2 (Equilibrium point).

An equilibrium point of a dynamical system

ẋ = f(x)

where x ∈ Rn, is a point x̄ ∈ Rn such that

f(x̄) = 0

Fixed points are points of no dynamical change in a system, in other words points at

which a system will never escape from in time unless acted upon by an external agent.

The fact that this occurs at the intersection of all the nullclines should be clear as at the

nullcline intersections

ẋ = 0.

Now from (2.3.1.1) and (2.3.1.2) we have

The fixed points of the FHN system given by (2.3.0.2) must satisfy

bx̄3 + 3(1− b)x̄+ 3(a− bI) = 0 (2.3.1.3)

ȳ =
x̄+ a

b
(2.3.1.4)

From virtue of (2.3.1.3) being a cubic polynomial and (2.3.1.4) being a linear equation

it is clear that there exists at most three fixed points in the system for any combination

of parameters. This could also have been seen from the graphs of both nullclines and

realising that any combination of translations of the x-nullcline and translations plus

rotations of the y-nullcline can only produce at most three intersections.

Flows and nullclines

In the previous subsection we briefly saw that nullclines can be useful when looking for

fixed points which are a static dynamical state. Nullclines also provide information on

the behaviour of trajectories that venture near the nullclines. Since the nullclines are

points where the rate of change of one of the state variables is zero. Thus the vector flow
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on a nullcline should have zero direction in at least one dimension in state space.

Since the FHN system is only a two dimensional system of autonomouos ODEs, this

means that the flow on the nullclines point ‘vertically’ or ‘horizontally’. The flow thus is

pictorially representable as

x-Nullcline

y-Nullcline

x

y

Figure 2.8: Arrows representing the vector field defined by the FHN system on the
nullclines.

Equilibrium points

We have seen from the previous section that the system can have one, two or three

equilibria, in this section we set about deriving conditions for their existence and finally

provide an expression for the equilibria.

The number of equilibrium points

We begin by finding the resultant associated with the cubic given by (2.3.1.3)

p(x) = bx3 + 3(1− b)x+ 3(a− bI).

The resultant of p(x) is the determinant of the Sylvester matrix of p(x) and its derivative

[137, p 20]

p′(x) = 3bx2 + 3(1− b).
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The Sylvester matrix of interest is given by

S(p, p′) =



b 0 3(1− b) 3(a− bI) 0

0 b 0 3(1− b) 3(a− bI)

3b 0 3(1− b) 0 0

0 3b 0 3(1− b) 0

0 0 3b 0 3(1− b)


(2.3.1.5)

The Resultant can now be computed by taking the determinant of (2.3.1.5)

R(p, p′) = det (S(p, p′))

= (−1)2+53(a− bI) det

∣∣∣∣∣∣∣∣∣∣∣∣∣

b 0 3(1− b) 3(a− bI)

3b 0 3(1− b) 0

0 3b 0 3(1− b)

0 0 3b 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
+ . . .

+ (−1)5+53(1− b) det

∣∣∣∣∣∣∣∣∣∣∣∣∣

b 0 3(1− b) 3(a− bI)

0 b 0 3(1− b)

3b 0 3(1− b) 0

0 3b 0 3(1− b)

∣∣∣∣∣∣∣∣∣∣∣∣∣

= −9b(a− bI)(−1)3+2 det

∣∣∣∣∣∣∣∣∣
b 3(1− b) 3(a− bI)

3b 3(1− b) 0

0 3b 0

∣∣∣∣∣∣∣∣∣+ . . .

+ 32(1− b)2

(−1)1+3 det

∣∣∣∣∣∣∣∣∣
0 b 3(1− b)

3b 0 0

0 3b 3(1− b)

∣∣∣∣∣∣∣∣∣+ (−1)3+3 det

∣∣∣∣∣∣∣∣∣
b 0 3(a− bI)

0 b 3(1− b)

0 3b 3(1− b)

∣∣∣∣∣∣∣∣∣


= 27b(a− bI)2(−1)1+3(3b)2 + 32(1− b)2

{
3b(−1)2+1 (−6b(1− b)) + (−1)1+1b (−6b(1− b))

}

= 27b(a− bI)2(3b)2 + 3212b2(1− b)3

= 33b2
{

9b(a− bI)2 + 4(1− b)3
}
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Which can finally be used to obtain an expression for the discriminant8 ,

D(p) = = (−1)3R(p, p′)

b

= −
33b2

{
9b(a− bI)2 + 4(1− b)3

}
b

The equilibria of the FHN system satisfy the equation

p(x) = bx3 + 3(1− b)x+ 3(a− bI) = 0

given in (2.3.1.3). The discriminant of p(x) is given by

D(p) = −33b

{
9b(a− bI)2 + 4(1− b)3

}
(2.3.1.6)

The discriminant of a polynomial is simply made up of the product of the difference

between its roots squared; that is for a polynomial

P (x) = anx
n + an−1x

n−1 + · · ·+ a0

the discriminant is

D(P ) = a2(n−1)
n

∏
∀i<j

(xi − xj)2

where the xi and xjs are the roots of P (x). Thus it is clear that for a cubic polynomial

• D < 0 Tells us that there is 1 real root and a pair of complex conjugate roots.

• D = 0 Tells us that there is at least one repeated root.

• D > 0 Tells us that there are three distinct real roots.

8The discriminant of a polynomial

p(x) = anx
n + an−1x

n−1 + · · ·+ a0

is given by

D(p) = (−1)
1
2n(n−1)

R(p, p′)

an

where R(p, p′) is the resultant, which is equivalent to the determinant of the Sylvester matrix, of the
polynomial and its derivative.
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For the FHN system we have the following result concerning the fixed points

From the discriminant

D = −33b

{
9b(a− bI)2 + 4(1− b)3

}
one can conclude that the FHN system (2.3.0.2) has

• 1 equilibrium point if D < 0

• At least 1 equilibrium and definitely not 3 equilibrium points if D = 0 and

• 3 equilibrium points if D > 0.

An inspection of (2.3.1.3)

bx̄3 + 3(1− b)x̄+ 3(a− bI) = 0

shows that we have a triply repeated real root under the following condition

The FHN system (2.3.0.2) has only one equilibrium point when

b = 1 and a = I

Furthermore the system has only one distinct equilibrium point when

D < 0

−33b

{
9b(a− bI)2 + 4(1− b)3

}
< 0

assuming that b 6= 0 and dividing through by b2 we have

−33

(
9(a− bI)2 +

4(1− b)3

b

)
< 0

The FHN system (2.3.0.2) has one equilibrium point if

0 < b ≤ 1

One can make these assertions concerning the number of equilibrium points as we nec-

essarily require them to be real and thus disregard the complex conjugate solutions that

are possible.
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The stability of equilibrium points

Given an equilirbium point x̄ = (x̄, ȳ) of a 2D dynamical system9

ẋ = f(x, y)

ẏ = g(x, y)

the behaviour of solutions “near” an equilibrium point can be approximated by looking

at the linearised system. To see this one begins by Taylor expanding the vector field

defined by f(x, y) and g(x, y) about an equilibrium point x̄ which yields

f(x, y) = f(x̄, ȳ) +
∂f

∂x

∣∣∣∣
(x̄,ȳ)

(x− x̄) +
∂f

∂y

∣∣∣∣
(x̄,ȳ)

(y − ȳ) +O
(
(x− x̄)2

)
+O

(
(y − ȳ)2

)
+ . . .

g(x, y) = g(x̄, ȳ) +
∂g

∂x

∣∣∣∣
(x̄,ȳ)

(x− x̄) +
∂g

∂y

∣∣∣∣
(x̄,ȳ)

(y − ȳ) +O
(
(x− x̄)2

)
+O

(
(y − ȳ)2

)
+ . . .

In order to turn the problem/system into a relatively straightforward one it is desirable

to remove the nonlinear terms. One can safely neglect the nonlinear terms when

(x− x̄)2 << |(x− x̄)| and (y − ȳ)2 << |(y − ȳ)|

this being precisely what is meant by “near” an equilibrium point. Furthermore making

a change of variables

X = x− x̄

Y = y − ȳ

which is equivalent to translating the system so that the fixed point of interest is located

at the origin


dX

dt

dY

dt

 =


∂f

∂x

∣∣∣∣
(x̄,ȳ)

∂f

∂y

∣∣∣∣
(x̄,ȳ)

∂g

∂x

∣∣∣∣
(x̄,ȳ)

∂g

∂y

∣∣∣∣
(x̄,ȳ)


 X

Y



= J (x̄, ȳ)

 X

Y

 (2.3.1.7)

9The generalisation to higher dimensions is the natural one.
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Where the symbol J has been introduced for the Jacobian matrix. Equation (2.3.1.7)

is known as the linearised system. The eigenvalues of the Jacobian matrix provides

insight into the nature of solution trajectories to the linearised system. The attraction

and repulsion of trajectories in the full nonlinear system in a small neighbourhood around

the equilibrium points, and hence the stability of the equilibrium point, is given by the

eigenvalues of the linearised system.

Building a little notation let

A =
∂f

∂x
, B =

∂f

∂y
, C =

∂g

∂x
and D =

∂g

∂x

thus the Jacobian can be written as

J =

 A B

C D


The characteristic equation for the eigenvalues λ1 and λ2 can be written as

λ2 − (A+D)λ+ (AD −BC) = 0 (2.3.1.8)

which alternatively can be written as

λ2 − τλ+ ∆ = 0 (2.3.1.9)

where, τ = tr(J) = A + D is the trace of the Jacobian and ∆ = det(J) = AD − BC is

the Jacobian determinant.

The characteristic equation has solutions, after a little simplification

λ1,2 =
(A+D)±

√
(A−D)2 + 4BC)

2
(2.3.1.10)

this can also be written in terms of the trace and determinant of the Jacobian as

λ1,2 =
τ ±
√
τ 2 − 4∆

2
(2.3.1.11)

The equilibrium points are thus categorised as shown in Figure 2.9
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Figure 2.9: Division of the different local behaviour that a 2D system can have in terms
of the trace, τ , and the determinant δ of the system’s Jacobian matrix. The x’s signify
the sign and nature of the eigenvalues in the complex plane associated with each local

phase portrait. The figure is a modified one based on[86, p 104.]

Stability of the FHN equilibrium points

To examine the stability conditions of the FHN system we begin by finding the Jacobian

of the FHN system given by

ẋ = x− x3/3− y + I

ẏ = ε(x+ a− by)

which when evaluated at an equilibrium point (2.3.1.3) is given by

J(x̄, ȳ) =


∂f

∂x

∣∣∣∣
(x̄,ȳ)

∂f

∂y

∣∣∣∣
(x̄,ȳ)

∂g

∂x

∣∣∣∣
(x̄,ȳ)

∂g

∂y

∣∣∣∣
(x̄,ȳ)

 =

 1− x̄2 −1

ε −εb

 . (2.3.1.12)

Implementing (2.3.1.10) we have
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The stability coefficient of the equilibrium points of the FHN system (2.3.0.2) are

λ1 =
(1− x̄2 − εb) +

√
(1− x̄2 + εb)2 − 4ε)

2
(2.3.1.13)

λ2 =
(1− x̄2 − εb)−

√
(1− x̄2 + εb)2 − 4ε)

2
(2.3.1.14)

The trace of the Jacobian is given by

tr(J(x̄, ȳ)) = 1− x̄2 − εb (2.3.1.15)

and the determinant is given by

det(J(x̄, ȳ)) = εbx̄2 + ε(1− b) (2.3.1.16)

Looking for stable equilibrium points requires

tr(J(x̄, ȳ)) < 0 (2.3.1.17)

det(J(x̄, ȳ)) > 0. (2.3.1.18)

Interestingly, these are rather strict conditions on the system’s equilibrium points. From

(2.3.1.17) we find that

1− x̄2 − εb < 0

⇒ x̄ < −
√

1− εb or x̄ >
√

1− εb

and from (2.3.1.18) we have

εbx̄2 + ε(1− b) > 0

⇒ x̄ < −
√

1

b
− 1 or x̄ >

√
1

b
− 1

Thus we have the following result

Theorem 2.3.1.1. The FHN system (2.3.0.2) possess a stable equilibrium point when-
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ever a solution to (2.3.1.3)

bx̄3 + 3(1− b)x̄+ 3(a− bI) = 0

satisfies one of the conditions from A and B given by

Condition A


x̄ < −

√
1− εb, or

x̄ >
√

1− εb

and

Condition B


x̄ < −

√
1− 1

b
, or

x̄ >

√
1− 1

b

Our previous result is dependant on the square roots being real. However when the roots

are complex we can return to the basic requirements of (2.3.1.17) and (2.3.1.18) find the

special case

Given the FHN system (2.3.0.2) with

εb > 1 and 0 < b ≤ 1

the system always contains at least one stable equilibrium point, provided

bx̄3 + 3(1− b)x̄+ 3(a− bI) = 0

has at least one real solution.

Stability of the branches of the x-nullcline The result found in Theorem 2.3.1.1

dictates when equilibrium points are stable in the FHN system and in fact there are two

intervals over which the equilibrium point is stable

x̄ ∈
(
−∞,−

√
1− εb

)
∪
(√

1− εb,∞
)
.

It has also been shown that the equilibrium point(s) must be on the nullclines; the

equations of which are given by (2.3.1.1) and (2.3.1.2). A closer examination of the
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x-nullcline

y = x− 1

3
x3 + I

reveals that the maxima and minima occur at the points (1, I) and (−1, I) respectively.

Defining the follow sets

Definition 2.3.3 (Nullcline branches). Define the sets

L =

{
(x, y) : x < −1 and y = x− 1

3
x3 + I

}

C =

{
(x, y) : −1 ≤ x ≤ 1 and y = x− 1

3
x3 + I

}

R =

{
(x, y) : 1 < x and y = x− 1

3
x3 + I

}
then the x-nullcline of the FHN system is simply a union of these three sets which

will be referred to as the Left, Center and Right branches of the x-nullxline

Now we have

Theorem 2.3.1.2. If an equilibrium point of the FHN system falls on the left or right

branch of the x-nullcline then it must be stable.

The stability of the fixed point is not exactly lost (gained) on entering (leaving) the center

branch of the x-nullcline, however when looking at systems with |εb| → 0 the stability is

exactly lost (gained) on entering (leaving) the center branch from the left.10

10Taking ε to be a small parameter is essential if one is interested in excitable dynamics, it is in fact
the interplay between the two effective times scales which produces action potential like dynamics.
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x-Nullcline

x

y

Center Branch

Right Branch

Left Branch

-1
1

Figure 2.10: The branches of the x-nullcline. In the limit as εb→ 0 the red branches are
the ‘stable’ branches on which one would find a stable fixed point if y-nullcline would
interest there, which the blue curve is where there would be an unstable equilibrium.

The saddle node

The FHN system (2.3.0.2) is capable of having a saddle node equilibrium point, these

are points at which the Jacobian matrix has a negative determinant. In other words one

requires

∆ = det (J (x̄, ȳ)) < 0.

From (2.3.1.16) the condition is

εbx̄2 + ε(1− b) < 0

and thus

A saddle node equilibrium point will occur in the FHN system (2.3.0.2) only when

b > 1

The eigenvalues of the system’s Jacobian given by (2.3.1.13) and (2.3.1.14) are

λ1 =
(1− x̄2 − εb) +

√
(1− x̄2 + εb)2 − 4ε)

2

λ2 =
(1− x̄2 − εb)−

√
(1− x̄2 + εb)2 − 4ε)

2
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and have respective eigenvectors 11

These being the directions along which the stable and unstable manifolds evolve from the

saddle node.

v1 =

 −1

λ1 − (1− x̄2)

 and v2 =

 −1

λ2 − (1− x̄2)


2.4 Fitzhugh-Nagumo As a Lienard System

2.4.1 Transforming The FHN system to Lienard Form.

Given the FHN system

ẋ = x− x3/3− y + I

ẏ = ε(x+ a− by) (2.4.1.1)

We wish to transform the system into a Lienard system which is a second order ODE

system given by the following form

ẍ+ f(x)ẋ+ g(x) = 0 (2.4.1.2)

where we have overloaded the role of the variable x to keep standard notation for (2.4.1.1)

and (2.4.1.2).

Firstly we eliminate the constant term appearing in the right hand side of the ẏ in (2.4.1.1)

11A arbitrary 2x2 matrix

M =

(
a b

c d

)

has eigenvalues

λ1,2 =
τ ±
√
τ2 − 4∆

2

where τ = a+ d and ad− bc. Eigenvectors corresponding to these eigenvalues are given by

v1 =

[
b

λ1 − a

]
v2 =

[
b

λ2 − a

]
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by making the change of variables

y → z +
a

b
. (2.4.1.3)

Equation (2.4.1.1) can now be expressed as

ẋ = x− x3/3− z − a

b
+ I

ż = ε(x− bz). (2.4.1.4)

Now relabeling

z → y
a

b
+ I → I ′

we have a more compact expression for the FHN system given by

ẋ = x− x3/3− y + I ′

ẏ = ε(x− by). (2.4.1.5)

In order to rewrite the (2.4.1.5) in the form of equation (2.4.1.2) we start by taking the

derivative of the ẋ equation found in (2.4.1.5) which on application of the chain rule

yields

ẍ = ẋ− x2ẋ− ẏ + İ ′

now want to eliminate reference to ẏ and so substitute the expression for ẏ found in

(2.4.1.5)

ẍ = ẋ− x2ẋ− εx+ εby + İ ′.

The Lienard system however demands that we have functions of only one variable ap-

pearing in the second order equation and thus we remove reference to y by noticing

that

y = x− x3/3− ẋ+ I ′
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which finally allows us to expression the FHN system as

ẍ = ẋ− x2ẋ− εx+ εb
(
x− x3/3− ẋ+ I ′

)
+ İ ′. (2.4.1.6)

After a little simplification this can be expressed as

Theorem 2.4.1.1. FHN System in Lienard form

ẍ+ f(x)ẋ+ g(x) = 0 (2.4.1.7)

where

f(x) = x2 + εb− 1 (2.4.1.8)

g(x) =
εb

3
x3 + εx(1− b)− εbI ′ − İ ′ (2.4.1.9)

As is standard in the literature when dealing with Lienard systems we define

The function,

F (x) =

x∫
0

f(ω) dω =
x3

3
+ (εb− 1)x (2.4.1.10)

and the variables

x =

x1

x2

 =

 x

ẋ+ F (x)


This allows us to write (2.4.1.7) as a pair of first order differential equations of the form

ẋ =

ẋ1

ẋ2

 =

x2 − F (x1)

−g(x1)


2.4.2 Existence of Limit cycles in Lienard Systems

We begin with a theorem concerning limit cycles in Lienard type systems
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Theorem 2.4.2.1. The equation

ẍ+ f(x)ẋ+ g(x) = 0

has a unique periodic solution if f and g are continuous, and

(i) F (x) is an odd function.

(ii) F (x) is zero only at x = 0, x = a, x = −a, for some a > 0.

(iii) F (x)→∞ as x→∞ monotonically for x > a.

(iv) g(x) is an odd function and g(x) > 0 for x > 0

A proof of Theorem 2.4.2.1 can be found in [89, p. 395].

For the FHN system we found

f(x) = x2 + εb− 1

g(x) =
εb

3
x3 + εx(1− b)− εbI ′ − İ ′

which are both continuous functions as they are of polynomial type. Furthermore we

have also found that

F (x) =
x3

3
+ (εb− 1)x.

The first condition stated by Theorem 2.4.2.1 concerns the symmetry of F (x), which we

can show is odd ∀x ∈ R

F (−u) =
(−u)3

3
+ (εb− 1)(−u) = −

(
u3

3
+ (εb− 1)u

)
= −F (u)

as required.

F (x) is an odd function.

The second requirement concerns the roots of F (x). Solving

x3

3
+ (εb− 1)x = 0
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one finds the three roots

x1 = 0, x2 = −
√
−3(εb− 1) and x3 =

√
−3(εb− 1)

F (x) has three roots that are given by,

x1 = 0, x2 = −
√
−3(εb− 1) and x3 =

√
−3(εb− 1)

The third requirement asks us to show that

F (x)→∞, when x >
√
−3(εb− 1) and x→∞

Beginning with √
−3(εb− 1) ∈ R+

so that F (x) has three distinct real roots, we have the constraint

εb < 1.

defining the quantity

η =
√
−3(εb− 1) + δ, δ > 0

We want

F (η)→∞, when η →∞

Now,

F (η) = 2δ − 2εbδ +
√
−3(εb− 1)δ2 +

δ3

3

The constraint εb < 1 tells us that 2δ − 2εbδ > 0 and thus we can conclude

F (x)→∞

monotonically when

x >
√
−3(εb− 1) and x→∞
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provided

εb < 1.

Finally we examine the situation where I = 0 though this can be somewhat relaxed 12

Thus we require

g(x) =
εb

3
x3 + εx(1− b).

to be odd and g(x) > 0 when x > 0. We can say

g(x) is clearly odd and is positive definite for all x > 0 if one constrains the parameter

b ≤ 1.

Finally we have covered all the requirements for 2.4.2.1 and state the following existence

theorem for the FHN system

Theorem 2.4.2.2. FHN Limit Cycle Existence 1

The FHN system (2.4.1.1) has one unique limit cycle if

• I = 0

• b ≤ 1

• εb < 1

12One can examine the case where there are no current (I) terms in the expression for g(x). What is
required is a time varying external current that satisfies

İ ′ = εbI ′

Leaving the expression

g(x) =
εb

3
x3 + εx(1− b).
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2.5 Fast Slow Dynamics in the FHN system

In this section the aim is to derive a number of results concerning the interplay between

fast and slow dynamics in the FHN system. This is thus a departure from the study

of equilibrium points in the system but is nevertheless related to the nullclines of the

system.

2.5.1 Classical Perturbation Method

Before starting the analysis of the FHN system it is useful to state a number of useful

definitions,

Definition 2.5.1 (Smooth Manifold).

Let Rp be a p dimensional Euclidean space. A set of points U ⊂ Rp is said to be a smooth

or differentiable manifold of dimension q with q ≤ p if there exists a neighbourhood

around every point P ∈ U that is C∞ diffeomorphic to Rq.

Given the fast variables x ∈ Rn, the slow variables y ∈ Rm and the parameter ε, the

system

ẋ = F (x,y, ε)

ẏ = εG(x,y, ε) (2.5.1.1)

along with a full set of initial conditions is known as the full system with asymptotic

structure (m,n). The fast system is defined by setting ε to zero,

Definition 2.5.2 (Fast system).

The fast system associated with the full system (2.5.1.1) is given by

ẋ = F (x,y, 0)

ẏ = 0 (2.5.1.2)

For sufficiently small ε and time intervals the full system (2.5.1.1) and the fast system

(2.5.1.2) differ only “slightly” for every choice of x and y. In fact solutions of the full

system (2.5.1.1) converge to the corresponding initial value problem in the fast system

(2.5.1.2) as ε → 0 for an appropriately short interval of time, this is a consequence of
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the Theorem of Continuous Dependence on Parameters [95, p 87]. Thus one can view

the full system as being the fast system subject to continuous perturbation [7, p 64]. To

study the behaviour of the full system over longer time intervals than those over which

the fast system is comparable one introduces the change of variables

τ = εt

where τ is referred to as the slow time. The change of variables to slow time transforms

the full system (2.5.1.1) to

εẋτ = F (x,y, ε)

ẏτ = G(x,y, ε)

where the overdot and tau subscript mean differentiation with respect to the slow time

tau. The slow time scale defines the slow or reduced system by taking the small parameter

ε to zero13

Definition 2.5.3 (Slow system).

The slow system associated with the full system (2.5.1.1) is given by

F (x,y, 0) = 0

ẏτ = G(x,y, 0) (2.5.1.3)

Reducing the generalisation from an (n+m)-dimensional system to a system in R2. The

slow system given by (2.5.1.3) defines the slow manifold if one assumes there exists at

least one real root to

F (x, y) = 0

for every y. Which gives us

x = φ(y)

the equation of the slow manifold. This allows us to further rewrite the equations gov-

erning the slow manifold using (2.5.1.3)

13If the small parameter is not well approximated by zero we can still find an approximation to the
slow manifold with higher order terms of epsilon represented and make a truncation at whatever order
is reasonable O(ε), O(ε2), etc. For the FHN system such an expression has been shown in the appendix.
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ẏτ = G(x, y, 0)

x = φ(y) (2.5.1.4)

Important features of the slow manifold occur at fold points :

Definition 2.5.4 (Fold Points).

Fold points are points on the slow manifold where the linearisation of the fast variable

has at least one zero eigenvalue.

The fold points are thus points where the slow manifold switches from being attractive

to repulsive or viceversa.

Finally one comes to an important theorem concerning slow-fast systems due to Tikhonov

[173, 182]. Before we can state the theorem and its underling assumptions we require the

following definitions:

Definition 2.5.5 (Lyapunov Stability of Equilibrium Points).

Given the system

ż = H(z, t)

with H being a vector field and ż denoting the derivative with respect to t. A point

z = z0 is called a Lyapunov stable equilirbium point of the system if

• H(z0, t) = 0, ∀t ≥ 0

• For every given µ > 0 there exists a δ = δ(µ) such that for any solution z(t) of the

given system satisfying

|z0 − z(t0)| < δ

then

|z0 − z(t)| < ε, ∀ t > t0, t0 ∈ R.

Further more an equilibrium point is said to be asymptotically stable if:
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Definition 2.5.6 (Asymptotic Stability of Equilibrium Point).

Given the system

ż = H(z, t)

A point z = z0 is called an asymptotically stable equilibrium point of the system if

• It is a Lyapunov stable equilibrium point.

• There exists a constant η > 0 such that, if

|z0 − z(t0)| < η

then,

lim
t→∞
|z0 − z(t)| = 0

Now the Tikhonov theorem states,

For the system given by (2.5.1.1)

ẋ = F (x,y, ε)

ẏ = εG(x,y, ε)

subject to the following conditions

1. F and G are continuous

2. There exists a continuous function φ(y) such that

F (φ(y), y, 0) = 0

3. There exists η > 0, such that

|x− φ(y)| < η, x 6= φ(y)

implies

F (x, y) 6= 0
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4. The equilibrium point x = φ(y) of the fast system (2.5.1.2) is asymptotically stable.

5. The full system (2.5.1.1) and the slow system (2.5.1.3) have unique solutions in an

interval

0 ≤ τ ≤ T

for any choice of ε.

Theorem 2.5.1.1 (Tikhonov’s Theorem). Given that the above conditions hold for

a given system. Let (x0, y0) be a point in the basin of attraction of the equilibrium

(φ(y0), y0) of the fast system (2.5.1.2), which is assumed to exist for the interval of time

[0, T ]. Then the solution (x(τ, ε), y(τ, ε)) to the full system (2.5.1.1) for sufficiently small

ε on the interval [0, T ] is related to the solution of the slow system

(xs(τ), ys(τ)), xs(τ) = φ(ys)

by the relations,

lim
ε→0

x(τ, ε) = xs(τ) = φ(ys(τ)),

lim
ε→0

y(τ, ε) = ys(τ), 0 < τ < T0

where 0 < T0 ≤ T .

The structure of the FHN system

In order to look at the asymptotic structure of the FHN system

ẋ = x− x3

3
− y + I

ẏ = ε(x+ a− by)

it is necessary to make a small parameter assumption on ε,

0 < ε� 1

which imposes two times scales on the system. Thus the fast subsystem is given by
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The fast system associated with the FHN equations is given by

ẋ = x− x3

3
− y + I

y = constant (2.5.1.5)

The slow system is obtained by switching the full system to the slow time, t = ετ ,

εẋτ = x− x3

3
− y + I

ẏτ = x+ a− by

and setting the small parameter ε = 0. 14

The slow system associated with the FHN equations is given by

y = x− x3

3
+ I

ẏτ = x+ a− by (2.5.1.6)

The slow manifold is given by the equation for the x-nullcline

y = x− x3

3
+ I

Which has fold points wherever the derivative

dy

dx
= 1− x2 + I

vanishes. Thus

The fold points of the FHN system occur at

xfold = ±
√

1 + I

At the fold points the branches of the stable slow manifold looses stability at which point

the dynamics are approximated by the fast system. The fast system (2.5.1.5) shows that

14If the small parameter is not negligibly small but can be considered negligibly small at higher orders
one can still find an expression for the invariant slow manifold as is shown in the appendix.
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the dynamics move along lines where

y = constant

These curves (lines) of the fast system partition the full system’s phase space and are

referred to in the literature as the fast foliation. After moving along the fast foliation a

trajectory of the full system will again meet a branch of the stable slow manifold, shown

in Figure 2.11, along which it will again flow until it reaches a point where the slow

manifold is unstable again or an equilibrium point of the system.

fold point

fold point

Stable 
Slow Manifold

Unstable 
Slow Manifold

Stable 
Slow Manifold

Fast Foliation

Fast Foliation
y = constant

Flow on 
Fast Foliation

Figure 2.11: A schematic diagram showing the slow manifold and fast flow across
representative lines on the fast foliation. If the only equilibrium present in the system is
an unstable one the system will undergo the cycle from slow manifold to fast foliation to

slow manifold repeatedly giving rise to limit cycles/oscillations.
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2.6 Andronov-Hopf Bifurcation in the FHN system

This section looks at the formation of limit cycles in the FHN system through an

Andronov-Hopf bifurcation. The formation of limit cycles are of central importance

in the study of biological systems as they are they are the structures which introduce

oscillation into the system.

2.6.1 The Hopf Bifurcation

Definition 2.6.1 (Bifurcation of an equilibrium point).

An equilibrium point x = x̄ of a vector field is said to undergo a bifurcation at the

parameter µ = µ̄ if the flow near x̄ when µ ' µ̄ is qualitatively different to the flow near

x̄ when µ = µ̄.

As a consequence of the above definition there are a number of useful remarks to make

that can be found in [193, p 363], one of which is concerned about the hyperbolicity of an

equilibrium point:

Definition 2.6.2 (Hyperbolic Point).

An equilibrium point, x̄ of a dynamical system

ẋ = f(x)

is said to be hyperbolic if the, linearised system, Jacobian at the equilibrium point only

has eigenvalues with nonzero real parts.

Now we make the remark found in [193, p 363] that states:

The condition that an equilibrium point is nonhyperbolic is a necessary but not sufficient

condition for a bifurcation to occur in one-parameter families of vector fields.

A Hopf bifurcation is defined as follows [63, p 66–67]:

Definition 2.6.3 (Hopf Bifurcation).

Given a set of ODEs with state variables x ∈ Rn and parameter µ ∈ R

ẋ = F (x, µ)
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Then given

• An equilibrium point of the system x̄ dependent on µ.

• The linearised system at the equilibrium point x̄ has a pair of complex conjugate

eigenvalues

λ1,2 = α(µ)± iω(µ)

such that

1. at a critical bifurcation parameter µ = µc

α (µc) = 0 and
dα

dµ

∣∣∣∣
µ=µc

6= 0

2. the remaining n − 2 eigenvalues of the Jacobian have strictly negative real

parts

The system is said to undergo a Hopf-bifurcation at µ = µc and there appears a limit

cycle from the equilibrium point x̄.

2.6.2 The Hopf point in the FHN system

We begin with the now familiar FHN system

ẋ = x− x3

3
− y + I

ẏ = ε(x+ a− by)

The equilibrium points have been shown to be solutions to

bx̄3 + 3(1− b)x̄+ 3(a− bI) = 0, ȳ =
x̄+ a

b

they are dependant on all of the parameters in the system and their existence and stability

have been discussed earlier. As such we simply take an equilibrium of the system to be

x̄ = (x̄, ȳ)

and assume it adheres to the various existence criteria. The second requirement for the

Hopf bifurcation from definition 2.6.3 is that the linearised system has complex conjugate

95



eigenvalues. Recalling the Jacobian evaluated at the equilibrium point is given by

J (x̄, ȳ) =

 1− x̄2 −1

ε −εb


with trace

τ = 1− x̄2 − εb

and determinant

∆ = εbx̄2 + ε(1− b)

The eigenvalues are given by

λ1,2 =
τ ±
√
τ 2 − 4∆

2
.

To have purely imaginary eigenvalues one requires

τ = 0 and ∆ > 0

which yields

x̄2 = 1− εb and bx̄2 + (1− b) > 0

Substituting the expression for x̄2 into the inequality we have the condition for nonzero

imaginary part of the eigenvalue being

ε2b3 − 2εb2 + 1 > 0.

The transitivity condition asks us to examine

d

dx̄
(Real (λ1,2))

∣∣∣∣
x̄=±

√
1−εb

= −2x̄|x̄=±
√

1−εb = ±2(1− εb)

which is nonzero provided

εb 6= 1.

Thus the equilibrium point x̄ undergoes a Hopf bifurcation. The Hopf bifurcation point
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occurs at

x̄2 = 1− εb.

It has already been shown that when

x̄ < −
√

1− εb or x̄ >
√

1− εb

the equilibrium point is stable as it is on the stable branch of the x-Nullcline. Thus a

Hopf bifurcation occurs in the system when the equilibrium point is moved to the unsta-

ble branch of the x-Nullcline from a stable branch.

A Hopf bifurcation occurs in the FHN system when

x̄ = ±
√

1− εb

whenever the equilibrium point x̄ moves from a stable branch of x-Nullcline to the un-

stable branch.

2.6.3 The stability of the limit cycle resulting from the Hopf

bifurcation

Even thought the conditions for a Hopf bifurcation are satisfied by the FHN system,

one does not know if the resulting limit cycle is stable or unstable. In order to infer

the stability of the resulting limit cycle we continue the analysis and calculate the first

Lyapunov exponent associated with the formed limit cycle. We use the methods outlined

in [100, 96–104] and begin by transforming the system so that the equilibrium point x̄

occurs at the origin by introducing the change of variables

x = x̄+ h1 and y = ȳ + h2

which transforms the FHN system

ẋ = x− x3

3
− y + I

ẏ = ε(x+ a− by)
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to the system

ḣ1 = (x̄+ h1)− 1

3
(x̄+ h1)3 − (ȳ + h2) + I

ḣ2 = ε(x̄+ h1 + a− bȳ − bh2)

which when expanded yields

ḣ1 =

{
x̄− 1

3
x̄3 − ȳ + I

}
+ h1 −

1

3

(
3x̄2h1 + 3x̄h2

1 + h3
1

)
− h2

ḣ2 =

{
ε(x̄+ a− bȳ)

}
+ ε(h1 − bh2)

The terms in the curly brackets however are both equal to zero as (x̄, ȳ) is an equilibrium

point of the FHN system15, thus the translated system is given by

ḣ1 = h1 −
1

3

(
3x̄2h1 + 3x̄h2

1 + h3
1

)
− h2 ≡ F1(h1, h2)

ḣ2 = ε(h1 − bh2) ≡ F2(h1, h2) (2.6.3.1)

Which now has the equilibrium point of interest translated to the origin. Equation

(2.6.3.1) can be expressed an terms of symmetric multilinear vector functions that result

from the multidimensional Taylor expansion of F1 and F2 as [100, p 93]

ḣ = Ah +
1

2
B(h,h) +

1

6
C(h,h,h) +O(|h|4)

where h = [h1, h2], A is the Jacobian matrix at the Hopf point

The multilinear function B(x, y) is given by

Bi(x, y) =
2∑

i,j=1

∂2Fi(h1, h2)

∂hj∂hk
xjyk

Which for (2.6.3.1) yields

15These are infact the equations of the x and y-nullclines which are points in which there the curves
upon which the flow reduces to having at most one dimension.
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B(x, y) =

2x̄x1y1

0


C(x, y, u) is given by

Ci(x, y, u) =
2∑

i,j,l=1

∂3Fi(h1, h2)

∂hj∂hk∂hl
xjykul.

Which for (2.6.3.1) yields

C(x, y, u) =

2x1y1u1

0


The Jacobian matrix of (2.6.3.1) at the Hopf point h = (0, 0), x̄2 = 1− εb is

A =

εb −1

ε −εb

 (2.6.3.2)

which has purely imaginary eigenvalues

λ1,2 = ±iω = ±
√
ε2b2 − ε (2.6.3.3)

The complex eigenvector associated with the eigenvalue λ1 = iω from (2.6.3.3) of (2.6.3.2)

can be given as

q ∼

 1

εb− iω


It is also necessary to find the eigenvector of AT associated with the eigenvalue λ2 = −iω

p ∼

 ε

−εb− iω


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these are proper eigenvectors such that

Aq = iωq, ATp = −iωp.

Before using these vectors as the basis to find the first Lyapunov exponent of the Hopf

bifurcation one needs to ensure that the vectors are normalised such that

〈p, q〉 = 1

where 〈p, q〉 is the usual inner product in C2

〈p, q〉 = p̄1q1 + p̄2q2

here the overbar means complex conjugate. For the p and q given

〈p, q〉 = ε− ε2b2 + 2εbωi+ ω2

= 2ω2 + 2εbωi

and thus taking the eigenvectors to be

q =

 1

εb− iω

 , p =
1

2ω2 + 2εbωi

 ε

−εb− iω

 (2.6.3.4)

yields the desired normalised eigenvectors. The difficult work is complete and all that

is left is to find an expression for the first Lyapunov exponent which is given by [100, p 99]

l =
1

2ω2
Re (ig20g11 + ωg21)

where

g20 = 〈p,B(q, q)〉, g11 = 〈p,B(q, q̄)〉, and g21 = 〈p, C(q, q, q̄)〉

with a little work these quantities are

g20 =

〈
1

2ω2 + 2εbωi

 ε

−εb− iω

 ,

2x̄

0

〉 =
εx̄

ω2 − εbωi
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Recall that x̄ is the x-coordinate of the equilibrium undergoing a Hopf bifurcation and is

given by x̄ = ±
√

1− εb, this is in contrast to p̄ which signifies the complex conjugate of

p, now noticing that B(q, q) = B(q, q̄) we have

g11 =

〈
1

2ω2 + 2εbωi

 ε

−εb− iω

 ,

2x̄

0

〉 =
εx̄

ω2 − εbωi

lastly

g21 =

〈
1

2ω2 + 2εbωi

 ε

−εb− iω

 ,

2

0

〉 =
ε

ω2 − εbωi

The quantity that requires some simplification in order to extract its real part is

ig20g11 + ωg21 =
iε2x̄2

(ω2 − εbωi)2 +
εω

ω2 − εbωi

Making use of the conjugate of the denominator offers a little more simplification

ig20g11 + ωg21 =
εω3

ω4 + ε2b2ω2
− 2ε3bx̄2ω3

(ω4 + ε2b2ω2)2 +

(
ε2x̄2ω4 − ε4b2x̄2ω2

(ω4 + ε2b2ω2)2 +
ε2bω2

ω4 + ε2b2ω2

)
i

Finally we have the first Lyapunov number for the FHN systems Hopf bifurcations

l =
1

2ω2

{
εω3

ω4 + ε2b2ω2
− 2ε3bx̄2ω3

(ω4 + ε2b2ω2)2

}
(2.6.3.5)

where,

ω2 = ε− ε2b2 > 0 and x̄2 = 1− εb > 0

ε and b are real. A plot of l vs. b is show in Figure 2.12 for a fixed value of ε.
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First Lyapunov Number vs parameter b for fixed ε = 0.01

Figure 2.12: Typical plot of the first lyapunov number of the FHN system resulting
from the Hopf bifurcation, ε = 0.01. Notice that depending on the parameter b one can

have stable (l1 < 0) or unstable (l1 > 0) limit cycle appearing. Of further note is the
point at which l1 = 0 where one can find Generalised Hopf/Bautin Bifurcations.
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2.7 Bifurcations of the FHN system: Numerical

In this section we examine the bifurcation structure of the FHN system using numerical

methods offered by continuation packages available for the study of nonlinear systems.

The majority of results shown here involve using the MATCONT toolbox which is avail-

able as an extension to the MatLab environment. The package has been further set to

utilise the symbolic mathematics toolbox which is based on the MAPLE engine. The

simulations utilised the following

• MatLab R2011a - 64-bit edition

• MAPLE 15

• Microsoft Visual C++ 2010 Express

• Matcont 4.1

The simulations have been run on a 64-bit machine running Windows 7 with the following

hardware

• Processor: Intel i7-920xm 8M Cache, 2.00GHz-3.20GHz, 4 cores and 8 threads.

• RAM: 16Gb DDR3.

The default ODE solver used throughout this thesis is MatLabs ode45 solver. This is

an adaptive timestep solver utilising a fourth order Runga-Kutta scheme. An adaptive

solver is particularly useful when looking at the FHN system due to the presences of the

small parameter ε. The smaller this parameter is made the “stiffer” the set of ODEs that

require solving, this leading to increased computational times.

Unless stated otherwise the simulations in this thesis use ε = 0.1. This value of ε has

been chosen as it maintains the essential “excitable dynamics” that one is interested in

when looking at the FHN systems in a biological context while offering little stiffness in

the ODE system.

2.7.1 The Hopf Bifurcation Curve

Locating an equilibrium

In order to examine the Hopf bifurcation curve in the system it is necessary to find a

particular instance of a Hopf bifurcation occurring in the system as a starting point.

To achieve this for a set of parameters one finds an equilibrium point of the system.

Numerically one picks an initial condition within an equilibrium points basin of attraction

and numerically solves the system of ODEs until one arrives at the equilibrium.
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Figure 2.13: Convergence to the equilibrium point of the FHN system

The parameters used to generate figure 2.13 are

ε = 0.1, a = 1.0, b = 1.0 and I = 0.

The initial point was chosen to be

x0 =

1

1


and the equilibrium point is found after 1000 time units to be

x̄ =

 −1.441746686

−0.4423078901

 .
Locating Hopf bifurcations upon variation of a single parameter

After converging to an equilibrium of the system one is now in a position to vary a partic-

ular parameter of the system while tracing the location of the equilibrium and computing

the eigenvalues of the linearised system about the equilibrium point.
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The MatCont toobox provides a simple means to achieve this. One selects the equilibrium

point and the appropriate bifurcation parameter, the (parameter) increment size and the

option to track the changes in the systems eigenvalues.

The result of incrementing the parameter both forward and backward (positive and neg-

ative increments respectively) are shown in Figure 2.14 for variation of the parameter ‘a’.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

6

AA

X

Subcritical Hopf

Subcritical Hopf
l1 = 0.45

l1 = 0.45
H

H

Figure 2.14: The subcritical Hopf bifurcations when ε = 0.1, b = 1 and a is allowed to
vary. Axes show the value of x in the FHN system against the parameter a.

The Hopf bifurcations in figure 2.14 occur at the points

x̄1 ≈

−0.95

−0.66

 , a ≈ 0.28

and

x̄2 ≈

0.95

0.66

 , a ≈ −0.28
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The first Lyapunov coefficient for these Hopf bifurcations are given by

l1 = 4.545543× 10−1 and l2 = 4.545419× 10−1

indicating that the bifurcation limit cycle is unstable making the Hopf bifurcations sub-

critical.

The Hopf Curve

Once a Hopf point has been located one can find the curve over which Hopf Bifurcations

will occur on variation of two free parameters. This is achieved by again tracking the

eigenvalues of the system when varying the two parameters and following the direction

which admits only imaginary eigenvalues.

While tracking the Hopf curve through parameter space one can also locate codimension-2

bifurcations such as

• The Bogdanov-Takens Bifurcation

• The Generalised (Bautin) Hopf Bifurcation

by checking for their relevant conditions and nondegeneracy conditions.

The bifurcations shown in figure 2.15 have the following properties from bottom to top

1. The first bifurcation and last are labeled BT signifying Bogdanov-Takens bifurca-

tion, these points are

x1 ≈

−1.147271

−0.643913

 a ≈ 3.18 b ≈ −3.16

and

x ≈

1.147271

0.643913

 a ≈ −3.183516 b ≈ −3.162298

However the ‘Normal Form’ coefficients of the bifurcations cannot be computed

signifying that they are both degenerate BT bifurcations.
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Figure 2.15: The Hopf curve obtain by two parameter variation a and b shown in the
x− a plane. The points labeled BT signify locations where a Bogdanov-Takens

bifurcation has taken place. Points labeled GH are points where a generalised Hopf
bifurcation has taken place.

2. The second and fifth bifurcations are labeled GH which represent Generalised Hopf

(Bautin) bifurcations. These occur at

x ≈

−0.974004

−0.665997

 a ≈ 0.632 b ≈ 0.513

and

x ≈

0.974004

0.665997

 a ≈ −0.63 b ≈ 0.51

these are nondegenerate as they have nonzero second Lyapunov numbers given by

l2 ≈ −0.242 and l2 ≈ −0.2419903

respectively.
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3. The third and fourth bifurcations are BT bifurcations occurring at

x ≈

−0.826905

−0.638434

 a ≈ −1.19 b ≈ 3.16

and

x ≈

0.826905

0.638434

 a ≈ 1.19 b ≈ 3.16

Both are nondegenerate with the normal form coefficients given by

α1 = 0.2493215, α2 = 1.576846

and

α1 = −0.2493215, α2 = −1.576846

respectively.

In the a− b parameter plane we have Figure 2.16
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Figure 2.16: The Hopf curve with the degenerate BT bifurcations in red
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Supercritical Hopf bifurcation and the Generalised Hopf bifurcation

Thus far it has been shown that Hopf bifurcations that occur when ε = 0.1 and b = 1 is

subcritical. The Hopf curve has also been shown for variation in the parameter b as well.

It was shown that there are two nondegenerate generalised Hopf bifurcations that occur

at the parameters (shown in Figure 2.17)

a ≈ 0.632 b ≈ 0.513 and

a ≈ −0.63 b ≈ 0.513
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Figure 2.17: The Hopf curve (orange) shown when one varies both parameters a and b
and the equilibrium curve when one varies a and keeps b = 1 (blue).

Generalised Hopf points, also referred to as Bautin points, are points where the first Lya-

punov number is zero. Recalling that the sign of the first Lyapunov number determines

if a bifurcating limit cycle from a Hopf bifurcation is stable or unstable and that a Hopf

bifurcation is supercritical (subcritical) if the bifurcation limit cycle is stable(unstable).

Then it should be clear that the generalized Hopf points are points at which the subcritical

and supercritical branches of the Hopf bifurcation meet.
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Figure 2.18: Hopf Curve (orange), equilibrium curves for b = 1 (blue) and b = −1
(green). The Generalised Hopf points GH divide the supercritical and subcritical

branches of the Hopf curve.

The Hopf bifurcations shown on the green curve of Figure 2.18 occur at the points

x =

−1.048808

−0.664246

 , a = 1.713053, with l1 = −1.565675

and

x =

1.048808

0.664246

 , a = −1.713053, with l1 = −1.565672

making them both supercritical Hopf points. The points labeled LP shown in figure 2.18

represent limit points which are also known as saddle-node bifurcation points. Saddle-

node bifurcations are codimension-1 bifurcations and occur when one has exactly one

zero eigenvalue about the linearised system. This type of bifurcation occurs when two

equilibrium points collide at a particular set of parameters and the nondegeneracy con-

dition requires one to find a nonzero parameter α related to the order two terms of the

taylor expansion of the systems vector field. For the particular cases shown in figure 2.18
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we have

x =

−1.414212

−0.471406

 , with a = 1.885618, with α = 0.1111118

and

x =

1.414212

0.471406

 , with a = −1.885618, with α = 0.1111118
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2.8 Chapter Summary

The following is a summary of the main results concerning the single FHN system, dis-

cussed in greater depth in the preceding chapter.

• The FHN system is a 2D set of ODEs,

ẋ = x− x3/3− y + I

ẏ = ε(x+ a− by)

Derived from the quantiative electrophysiological Hodgkin-Huxley model. The vari-

able x is a qualitative representation of a cells transmembrane potential, y represents

the cells recovery (from action potential generation) variable. The parameter ε < 1

controls the difference in timescale between the fast and slow dynamics in an action

potential profile.

• The nullclines of the FHN system are given by

y = x− x3/3 + I

y =
x+ a

b
.

The system parameters a and b effect the location of the y-nullcline. While the

external current term I effects the x-nullcline in the system’s phase space.

• All the equilibria (x̄, ȳ) of the FHN system satisfy

bx̄3 + 3(1− b)x̄+ 3(a− bI) = 0

ȳ =
x̄+ a

b
.

The number of equilibria in the system depends on the descriminant From the

discriminant

D = −33b

{
9b(a− bI)2 + 4(1− b)3

}

If

– D < 0 the system has 1 equilibrium

– D = 0 the system has at least 1 equilibrium.
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– D > 0 the sustem has 3 equilibiria.

• Equilibria that lay on the Left or Right branch of the x-nullcline are stable equilibria

while equilibria found on the centre branch are unstable.

• The FHN system is a Lienard type system and as such it can be show that the

system will have one unique limit cycle if

I = 0, b ≤ 1 and εb < 1

• Classical perturbation theory yields the fold points (points where the systems slow

manifold loses stability) of the FHN system occur at

xfold = ±
√

1 + I.

At these points trajectories leave the systems slow manifold and closely follow the

system’s fast foliation, which are curves

y = constant.

• The FHN system can produce limit cycles by undergoing a Hopf bifurcation. Hopf

bifurcations occur at

x̄ =
√

1− εb.

The stability of the resulting limit cycle depends on the sign of the systems first

Lyapunov number l

l =
1

2ω2

{
εω3

ω4 + ε2b2ω2
− 2ε3bx̄2ω3

(ω4 + ε2b2ω2)2

}
where,

ω2 = ε− ε2b2 > 0 and x̄2 = 1− εb > 0

ε and b are real.
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Chapter 3

Synchronisation of FHN systems.

3.1 Synchronisation in biological systems

The first well documented observation of synchronisation in physical systems was due to

Christiaan Huygens, whom at the time was working on a method to accurately determine

the longitude of a vessel for the purposes of maritime navigation.

(a) Christiaan Huygens (b) Huygens
Clock

Figure 3.1: Huygens and his pendulum clock. Schematic taken from his manuscript
Horolgium Oscillorium published in 1673.

Huygens had invented the pendulum clock in 1657 and believed that with modification to

withstand sea travel his pendulum clocks would be the answer. In a letter to his father,

while briefly ill in his room, Huygens described that while observing two of his pendulum

clocks, hung on a bean on his wall, that they would swing with the same frequency and

180◦ out of phase with each other. Furthermore when he disturbed one of the pendulums

it would fall into the same anti phase state within half an hour and remain so indefinitely.

This being the first documented observation of synchrony in physical systems, referred

to as mutual sympathy. For further reading on this historical event the reader is referred

to [16] and references therein.
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3.1.1 The role of synchronisation in physiological organisms

Synchronisation has become a rich area of nonlinear dynamical research finding many

applications in systems that are not traditionally studied in physics [134, 168]. Syn-

chronisation and complex rhythmic processes are ubiquitous in living organisms and are

central to life [65]. Most plants and animals posses accurate endogenous time-measuring

machinery known as circadian clocks, whose mechanisms are an area of intensive study in

molecular biology [204]. The early signs of a circadian clock came from experiments con-

ducted by the French geophysicist and chronobiologist Jean-Jacques d’Ortous de Mairan

in 1729. Jean de Mairan discovered that haricot bean plants have leaves that move up

and down with the daily cycle of light and darkness [204].

(a) The synchronous and well timed
contraction of cardiomyocytes in the atria and
ventricles results in effective pumping of blood

through the circulatory system.

Right 
Bundle 
Branch

Left 
Bundle 
Branch

Bacmann’s 
Bundle

AV - Node
SAN - Node

Internodal 
Tracts

Purkinje Fibres

Bundle of His

(b) The cardiac conduction system which
transmits and delays the action potential

signal throughout the cardiac tissue.

Figure 3.2: Synchrony in the cardiac conduction system is essential for the en mass
contraction of myocardial cells.

More obvious signs of synchrony in living organisms include the rhythmic motion of

walking and the coordination of human limbs, wake sleep patterns in mammals and the

monthly menstrual cycle [65]. Rhythms such as wake sleep patterns are synchronised

to the like dark cycle typically due to the sun, in the absence of this cycle shows that

humans can fall into a default rhythm that is longer than the 24hour period. The effect

has a multitude of effects on human physiology such as temperature fluctuation, changes

in plasma phosphates and excess urinary electrolyte concentrations [117].

Less obvious rhythms that are present in living organisms which also depend on synchro-

115



nisation include the release of hormones, regulation of growth and metabolism and the

digestion of food [65].

The heart is an organ which vitally depends on synchronisation for its function as has

been described in an earlier chapter. The disturbance in the regular rhythms in a healthy

adult can lead to fatality. Synchrony plays a vital role in the cardiac conduction system

Figure 3.2.

However it is not only the loss of synchrony which causes negative effects on a living

organism, synchrony can also produce undesirable effects on the functioning of an organ-

ism. An example of which is found in patients diagnosed with Parkinson’s disease.

(a) An x-ray of a patient with
an implanted brain pacemaker.

(b) A schematic of the brain pacemaker
in relation to a human.

Figure 3.3: Deep brain stimulation has been shown to reduce the 5Hz tremor associated
to patients suffering from Parkinson’s.

Parkinson’s disease is a progressive age-related neurodegenerative disorder, which is char-

acterised by poverty of voluntary movements, slowness or involuntary movements, muscle

rigidity and tremor of the limbs at rest. It has been found that humans with Parkin-

son’s disease have abnormally high levels of synchronised neurons in the mid part of their

brain, namely at the ganglia-cortical loop [70]. Such neurodegenerative disorders require

an understanding of the synchronisation process underlying them in order to find effec-

tive treatments for them. One of the leading treatments of the tremors resulting from

Parkinson’s disease is that of Deep Brain Stimulation (DBS), where a brain pacemaker

is surgically implanted within a patient and is used to controllably pulsate the affected

areas [130], Figure 3.3. However the mechanism responsible for the the successes found

by using DBS are still ill understood and as a result not optimal.
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3.2 Chapter Aim and Context

The aim of this chapter is to define and use the property of synchronisation measures

to characterise coupled neural cells. Synchronisation and FHN systems has been studied

from a number of different perspectives in the literature.

Intensive area of study concerns synchronisation of externally driven FHN cells [55, 106,

91, 98], Synchronisation of FHN cells influenced by noise [9, 120, 90, 96, 174, 158, 2], and

Control [142, 148, 186, 145]. The FHN system is also used in reaction-diffusion systems

where one examines wave propagation across a continuous sheet of FHN cells. More

recent work in this direction have focused on synchronisation and control [6], numerical

investigation of the parameter dependencies in the resulting reaction diffusion system

[33], and action potential propagation in chains of stimulated FHN cells [144].

In contrast the results in this chapter mainly concern systems that are not externally

driven. This chapter focuses on the emergence and decline of synchronisation phenomena,

intrinsic to a coupled set of excitable oscillators, with respect to factors such as coupling

strength. Furthermore keeping the system of study restricted to small discrete networks

not only allows for a clearer analytical treatment of coupled FHN systems but also relates

synchronisation to conduction of action potentials, via feedback, from a single cell to

another in a clear manner.

3.3 Defining Synchronisation

In order to put the following results concerning synchronisation of FHN systems into

perspective it is important to define what is meant by “synchronisation” in this thesis.

There are a number of definitions throughout the literature of what the synchronisation

phenomena is, however in a general context the working definition used in favour here is

that due to [134],

Synchronisation is the adjustment of rhythms of oscillating objects due to their

interaction.

Furthermore the aim will be to study self sustained oscillators.

Definition 3.3.1 (Self sustained oscillations).

These are nondecaying stable oscillations that occur in autonomous dissipative systems.
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In dissipative systems there is always energy lost to the environment, such as is the case

in the real word be it due to friction, heat, conduction impurities, sound etc. Thus for

oscillations to repeatedly occur in a dissipative system they must contain an internal

energy source which counter balances this energy dissipation. This is precisely the case

when looking at biological oscillators such as cardiac cells and neurons as they derive

their energy from metabolic processes internal to the cell.

3.3.1 Definitions of synchrony

We begin with the definition of the strictest form of synchronisation.

Definition 3.3.2 (Complete Synchronisation (CS)). [131]

Given two oscillators with respective position vectors

x1(t) and x2(t)

and respective velocity vectors

ẋ1(t) and ẋ2(t).

Then the oscillations are said to be completely synchronised over the interval [t1, t2]

if and only if

x1(t) = x2(t) and ẋ1(t) = ẋ2(t),∀t ∈ [t1, t2]

Complete synchronisation (CS) is a rather narrow definition of sync as it requires the

systems involved to be completely homogenous1 [166], that is to be made up of the same

system of equations with identical parameter values and identical noise. As such it is an

impractical definition of synchronisation for research concerned with biological systems.

For inhomogenous systems or systems that are influenced by external noise (which is

often the case in real systems), the coupled systems may reach a state that is referred

to here as a state of imperfect complete synchronisation and else where as practical or

disturbed synchronisation.

1except for an initial phase difference
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Definition 3.3.3 (Imperfect Complete Sychronisation (ICS)). [166, p. 5]

Given two oscillators with respective trajectories in phase space

x1(t) and x2(t)

The system is in imperfect complete sycnhronisation over the interval [t1, t2] if

|x1(t)− x2(t)| < ε

where ε is a small parameter such that

ε << sup |x1(t)− x2(t)| ,∀t ∈ [t1, t2]

Lastly it is useful to define a synchronous state that occurs when oscillators behave in a

similar fashion up to a temporal translation.

Definition 3.3.4 (Lag Synchronisation (LS)). [18, p. 35]

Given position and velocity as stated in Definition 3.3.2, the two oscillators are said to

be lag synchronised over the interval [t1, t2] if ∃ τ ∈ R, known as the lag, such that the

approximate equalities x1(t) ≈ x2(t− τ) and y1(t) ≈ y2(t− τ) hold ∀t ∈ [t1, t2].

Definitions 3.3.2, 3.3.3 and 3.3.4 are concerned with the coincidences of the amplitude

and frequency of the oscillators involved. In both cardiac and neural systems however it

is believed that the most important component of action potential propagation is timing.

The assumption here is that neurons transmit binary information, firing (1) or not firing

(0). For cardiac systems it is somewhat more transparent as the action potential directly

causes contraction of the myocyte. Action potentials are transmitted by cells that elicit

all-or-nothing responses much like integrate-fire oscillators. Both cardio-myocytes and

neurons have a stimulus threshold. Stimuli above this threshold result in a complex set

of ionic movements across the cell membrane which ultimately leads to relatively2 large

potential differences being generated across the cell. In such systems one would not be

concerned with the amplitude of the elicited action potentials given that the APs pro-

duced are supratheshold should suffice.

In order to reach a definition of synchrony based on the timing of the potentials it is

necessary to define a phase for action potentials themselves.

2relative to the threshold stimulus.
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3.4 Synchrony in an electrically coupled system of

FHN oscillators.

3.4.1 Electrically coupled FHN cells

To examine synchrony between two FHN cells it is necessary to introduce a coupling term

within the original FHN system.

Definition 3.4.1 (Electrically coupled FHN cells).

A system of n FHN cells are electrically coupled if they are of the form

ẋi = xi − x3
i /3− yi +

n∑
i 6=j,j=1

gi,j(xi − xj)

ẏi = εi(xi + ai − biyi)

where i, j ∈ [1, n] ⊂ N and gi,j 6= 0,∀i.

Notes concerning the Electrically coupled FHN system

The dynamics of the electrically coupled FHN system are rich, most notably the admis-

sion of chaos which is discussed in the subsequent chapter.

The diffusion coupling term is placed on the voltage-like variable x. Where the parameter

gi,j represents the conductance of the voltage from cell j to cell i. The term (xi − xj) is

the voltage difference between cell i and cell j. This constant flow of communication from

cell j to cell i, is representative of a gap junction connection between the cells, where cells

have a physical connection between their cell membranes as described in earlier chapters.

Such connections occur commonly between cardiomyocytes. Gap junction connections

are also found between neurons, however they are not as common as synaptic connections

which are discussed later.

3.4.2 Sync between two electrically coupled FHN cells

The two electrically coupled FHN system is given by

ẋi = xi − x3
i /3− yi +

2∑
i 6=j,j=1

gi,j(xi − xj) (3.4.2.1)

ẏi = ε(xi + a− byi)
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Here we have chosen the parameters for both the cells to be the same except for the

coupling strength which is allowed to be different. This introduces the least amount of

inhomogeneity and allows an analytic treatment of the problem.

Define the “distance” between the two neurons as

r =
√

(x2 − x1)2 + (y2 − y1)2 =
(
∆x2 + ∆y2

)1/2

where for convenience of notation ∆x = (x2 − x1) and ∆y = y2 − y1.

Complete synchronisation occurs if this distance tends toward zero at some finite point

in time. To show that this occurs it is convenient to define U = r2, whose derivative is

given by

U̇ = 2rṙ.

the derivative

ṙ =
(
∆x2 + ∆y2

)−1/2
(∆x∆̇x+ ∆y∆̇y)

and thus

U̇ = 2rṙ = 2
(

∆x∆̇x+ ∆y∆̇y
)

Substituting expressions ẋi and ẏi from (3.4.2.1) into our expression for U̇ yields

rṙ = ∆x

{
∆x− 1

3
(x3

2 − x3
1)−∆y + g2,1∆x+ g1,2∆x

}
+ ε∆y {∆x− b∆y}

The aim now is to find an upper bound for the product rṙ which linearises the problem

at hand and ultimately solve for r. To achieve this one can examine the nonlinear terms

that arise namely the product (∆x)(x3
2 − x3

1)

(x2 − x1)(x3
2 − x3

1) = x4
2 − x2x

3
1 − x1x

3
2 + x4

1

= (x2
2 + x2x1 + x2

1) (x2 − x1)2

=

((
x2 +

x1

2

)2

+
3

4
x2

1

)
(x2 − x1)2

=

(x2 +
x1

2

)2

+

(√
3

2
x1

)2
 (x2 − x1)2 ≥ 0
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This inequality gives an upper bound to rṙ given by

rṙ ≤ ∆x {∆x−∆y + g2,1∆x+ g1,2∆x}+ ε∆y {∆x− b∆y}

multiplying through and grouping terms we have the inequality

rṙ ≤ (1 + g2,1 + g1,2)∆x2 − εb∆y2 + (ε− 1)∆x∆y.

Making a switch to polar coordinates,

∆x = r cos (θ)

∆y = r sin (θ)

produces a system which can be further bounded,

rṙ ≤ r2(1 + g2,1 + g1,2) cos2(θ)− εbr2 sin2(θ) + r2(ε− 1) sin(θ) cos(θ).

The trigonometric functions themselves have upper bounds as,

∣∣cos2(θ)
∣∣ =

∣∣∣∣12(cos(2θ) + 1)

∣∣∣∣ ≤ 1

∣∣sin2(θ)
∣∣ =

∣∣∣∣12(1− cos(2θ))

∣∣∣∣ ≤ 1

|sin(θ) cos(θ)| =
∣∣∣∣12 sin(2θ)

∣∣∣∣ ≤ 1/2.

This yields another upper bound for rṙ given by,

rṙ ≤ r2(1 + g2,1 + g1,2)− εbr2 +
r2

2
(ε− 1).

and the differential equation bounding the synchronisation distance between the two FHN

oscillators is given by

ṙ ≤
(

1

2
+ g2,1 + g1,2 + ε

(
1

2
− b
))

r = αr

where α =
1

2
+ g2,1 + g1,2 + ε

(
1

2
− b
)

. This is a first order ODE which can be solved to

yield,
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rupper(t) = r(0)eαt

Thus choosing parameters such that α < 0 guarantees that the coupled system will

exponentially converge to a synchronous state.

Numerical simulation of synchrony between two inhonogenously coupled FHN

oscillators

Imperfect complete synchrony between two FHN cells is guaranteed to occur between

two cells if one chooses parameters such that

1

2
+ g2,1 + g1,2 + ε

(
1

2
− b
)
< 0

The result proven analytically in the preceding section can be demonstrated with the aid

of numerics. Choosing parameters for the cells

b1 = b2 = b = 0.5, a1 = a2 = a = 0.1 and ε1 = ε2 = ε = 0.01

with no coupling

gi,j = 0.

Results in two FHN cells which are in a state of independent self-sustaining oscillations.
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Figure 3.4: The uncoupled system, a = 0.1, b = 0.5, ε = 0.01 and gi,j = 0.
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For the chosen system parameters the derived sync condition reduces to

g2,1 + g1,2 < −
1

2

choosing the coupling strengths

g1,2 = −0.1 and g2,1 = −0.45

the system falls into a state of imperfect complete synchronisation
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(a) The voltage time series of the coupled
FHN oscillators.

1 1.02 1.04 1.06 1.08 1.1

x 10
4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(x
1 −

 x
2)

t

Sample of the voltage difference.

(b) The voltage difference between the two
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Figure 3.5: Sync in the inhomogenously coupled system g2,1 = −0.45 and g1,2 = −0.1.

with

|x1 − x2| < 3× 10−3

Time varying coupling strength

The role of the coupling strengths, gi,j, with regards to synchrony can be further appre-

ciated if one allows the coupling strength to vary in time. From the numerical simulation

it becomes clear that there are definite coupling strengths where the system falls into

synchrony by examining the voltage difference between the two oscillators.

To achieve this the system parameters have been set to

a = 0.1, b = 0.5, ε = 0.01 and g2,1 = −0.1 g1,2 = −0.15.

The introduction of time varying coupling strength is simply achieved with the following
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iterative process

gi,j ← gi,j + A sin(ωt)

and gi,i = 0 ensuring there is no self coupling in the system. Here A is the amplitude

of the coupling variation and ω is the frequency over which the coupling strength is to

change. This frequency should be taken to be small enough compared to the natural

frequency of the oscillators so as to allow the system to reach a state of synchrony before

greatly changing the coupling strength. For the chosen system the time varying coupling

term parameters they have been set to

A = 0.5 and ω = 1× 10−3.
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Figure 3.6: Time varying coupling strength

As can be seen in Figure 3.6 the system moves from a state of imperfect complete sync to a

state of out of phase synchrony when moving from negative coupling strengths to positive

coupling strengths. Of further note is that the oscillations themselves even through are

out of phase maintain a 1:1 firing patter, that is an AP response from cell i results in a

single AP response from cell j. Thus the 1:1 firing pattern is still maintained even though

the cells are firing out of phase with each other.

3.5 The Phase of an oscillator

Given a dissipative autonomous system of ODEs

ẋ = f(x), x ∈ Rn (n ≥ 2) (3.5.0.2)
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a nonconstant solution to (3.5.0.2), x(t) is said to be periodic if ∃ T > 0 such that

x(t) = x(t+ T ).

Denote this periodic orbit as γ and an arbitrary point on γ as x0. In phase space this is

an isolated trajectory, namely a limit cycle. A point moving along the curve γ represents

oscillations of a self sustained oscillator.

X1

X2
γ

Figure 3.7: An example of a limit cycle γ in 2D phase space.

Any point on γ can be specified by the time θ since passing through x0. The variable

χ is the phase of oscillation which is bounded by T . Typically one normalises the phase

by a factor of T/2π, thus bounding the phase by 2π, the normalised phase is denoted by φ.

Since the limit cycle repeats itself every T time steps, it should be clear that the rate of

change of the phase is a constant, i.e.

dφ

dt
= ω0

where ω0 is known as the natural frequency of the oscillator. It is also possible to

define a phase outside of γ with the notion of an isochrone [197]. Given that the limit

cycle is stable any orbits starting from initial conditions within the limit cycles basin

of attraction will converge to the limit cycle. To construct the isochrones begin with

(3.5.0.2) containing a stable limit cycle orbit γ of period T . Stroboscopically observing

the evolution of trajectories, with period T , one finds the isochrones with the mapping

x(t)→ x(t+ T ) ≡ Φ(x)
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Points x0 in the basin of attraction of the point x ∈ γ under the action of Φ(x), define

an (n−1) dimensional manifold known as isochrone which passes through the limit cycle

at x.

X1

X2

γ

Isochrone

x0
x

x

Figure 3.8: Isochrones associated the with limit cycle γ.

3.5.1 The phase of an FHN oscillator

The FHN system is a second order ODE and as such its dynamical behaviour is easily

visualised using a phase plane diagram. A definition of phase is also easily made for a

simple closed curve in whose dynamics are restricted on a phase plane. If a limit cycle is

centered around the origin (otherwise a simple translation of the axis is needed) then a

geometric phase can be defined as

θ(t) = arctan

(
x2(t)

x1(t)

)
.

The phase for a chaotic oscillator however is somewhat more difficult to define. For at-

tractors that exist in higher than 2-D space it is often possible to find a projection of the

attractor onto a plane (x, y) such that the projection is reminiscent of a smeared limit

cycle. One can then define a Poincare map attributing a 2π increase in phase with each

successive intersection with the secant surface. If one can find such a Poincare map then

it is also possible to define the phase according to the same rule above, ie θ = arctan
(
y
x

)
.

In practice finding an appropriate Poincare section can be difficult.

Engineering fields such as signal processing have faced the problem of extracting infor-

mation from noisy signals; be it temporal measurement, operation on or analysis of.
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The Hilbert transform is a method of finding the phase and amplitude of a signal. It

is particularly useful when dealing with experimental data or noisy data sets. The in-

stantaneous phase and amplitude of a signal s(t) can be found by examining its analytic

signal

ζ(t) = s(t) + iH [s(t)] = A(t)eiφ(t)

where H [s(t)] is the Hilbert transform of the signal s(t), A(t) is the instantaneous am-

plitude and φ(t) is the instantaneous phase. Formally the Hilbert transform is found by

evaluating the following indefinite integral

H [s(t)] =
1

π

∫ ∞
−∞

s(τ)

t− τ
dτ

=
1

π

∫ ∞
−∞

s(t− τ)

τ
dτ

This integrand however has a singularity at t = τ . The Hilbert transform is more accu-

rately defined as the Cauchy principal value of the above integral which is given by

H [s(t)] =
1

π
lim
ε→0+

(∫ t−ε

t−1/ε

s(τ)

t− τ
dτ +

∫ t+1/ε

t+ε

s(τ)

t− τ
dτ

)

=
1

π
lim
ε→0+

(∫ −ε
−1/ε

s(t− τ)

τ
dτ +

∫ 1/ε

ε

s(t− τ)

τ
dτ

)

The evaluation of such an integral is computationally expensive, however it is possible to

evaluate the Hilbert transform of a signal with two fourier transforms the algorithms of

which are highly optimised [113].

From the analytic signal ζ(t) one can find the instantaneous phase of the oscillator, by

translating the center of the closed curve in the (s,H(s)) plane, as

φ(t) = arctan

(
H(s(t))

s(t)

)
.

Furthermore the instantaneous frequency ω(t) can also be found by taking the derivative

of the phase with respect to time

ω(t) =
d

dt
[φ(t)]
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3.5.2 Phase Synchronisation and the Order Parameter

Definition 3.5.1 (Phase Synchronization (PS)). Given the phase of two oscillators φ1(t)

and φ2(t) respectively. The system is said to be phase synchronised if φ1(t) ≈ φ2(t).

There is a weaker form of synchronisation than PS that is also relevant to studies of

biorhythms which concerns the frequency of oscillation. The frequency of an oscillator

can be simply defined using its phase.

The average time rate of change of an oscillator’s phase is known as its winding number

Ω = 〈 ˙φ(t)〉 = lim
T→∞

1

T

∫ T

0

φ(t) dt (3.5.2.1)

which we will use here as the intrinsic frequency of an oscillator within a system of coupled

oscillators.

Definition 3.5.2 (Frequency Synchronisation). Given two oscillators within a system

with respective frequencies Ω1 and Ω2, the oscillators are said to be frequency synchro-

nised if Ω1 ≈ Ω2.

Thus far a number of definitions concerning synchronisation have been introduce; com-

plete synchronisation (CS), imperfect complete synchronisation (ICS), phase synchro-

nisation (PS) and frequency synchronisation (FS). There is a hierarchy concerning the

strictness of these definitions of synchronisation represented by

CS⇒ ICS⇒ PS⇒ FS

an important representation of phase synchronisation comes in the form of the order

parameter.

The order parameter

An order parameter is a normalised parameter which indicates the degree of order within

a system. Typically order parameters in the context of synchronisation takes a value of 0

to indicate a completely non synchronous state while a value of 1 indicates a completely

synchronous state. One of the most extensively studied models of synchronisation is

due to Kuramoto see [3] and references therein for a review. Following the Kuramoto

scheme a collective amplitude ρ(t) and phase ψ(t) is defined using the phase of each of

our oscillators φi(t) with the relation

ρ(t)eiψ(t) =
1

N

N∑
i=1

eiφi(t)
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where N is the number of coupled oscillators. Kuromoto originally defined the order

parameter ρ as the time average of the collective phase

ρ ≡ 〈ρ(t)〉t

For excitable systems however this order parameter leads to a certain level of ambiguity.

There are two situations where one can find the system in perfect sync, the first is a

dynamical one in which all the units fire synchronously ρ = 1 here means full sync. The

other situation is a static one, which occurs when units are all at rest at a stable fixed

point [171].

To discern the dynamical state from the static state it is useful to define the order

parameter according to another order parameter also due to Kuramoto

ζ =
〈∣∣ρ(t)eiψ(t) − 〈ρ(t)eiψ(t)〉

∣∣〉
which removes the possible ambiguity.

Time Varying Coupling Strength phase and order parameter

Revisiting the inhomogenously coupled FHN Cells with time variation one can see the

gain and loss of synchrony at a glance with the aid of the defined order parameter.

As before the system parameters for the electrically coupled system are chosen to be

a = 0.1, b = 0.5, ε = 0.01 and g2,1 = −0.1 g1,2 = −0.15.

the time varying coupling strength terms being modulated by

gi,j :

gi,j ← gi,j + A sin(ωt) if i 6= j

0 otherwise

and the periodic terms having parameters

A = 0.5 and ω = 1× 10−3.

After numerical integration of the coupled FHN system the analytic signal of each of the

cell voltage variables are reconstructed using the Hilbert transform, φ(t) = arctan
(

H(s(t))
s(t)

)
.

After calculation of the phase of each oscillator from the analytic signals one finds the
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(a) Analytic Signal for Cell 1
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(b) Analytic Signal for Cell 2.

Figure 3.9: Time varying coupling strength, analytic signal for cell 1 and cell 2 - used to
ensure the curve is centered after appropriate translation to calculate the resulting

phase of the oscillators.

order parameter ρ(t) using Kuramoto’s formulation

ρ(t)eiψ(t) =
1

N

N∑
i=1

eiφi(t)

which here results in
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Figure 3.10: The order parameter for electrically coupled FHN cells with time varying
coupling strengths.

The order parameter tells us that the system is in a state of synchronisation when ρ = 1

and a completely non synchronous state when ρ = 0. Further examining the onset and

loss of complete sync with relation to the variation in coupling strength as shown in figure

3.11.

A striking feature of figure 3.11 is when the order parameter reaches ρ = 1 and when

the synchronous state is lost again. The system shows that once it is in a state of

synchrony there is a reluctance for the system to break the synchronous state. At a time

of approximately 1.3×104 time units the system looses its state of synchrony at a coupling
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Figure 3.11: The order parameter for electrically coupled FHN cells with time varying
coupling strengths and hysteresis.

adjustment of ≈ 0.3. At which point the synchrony is lost rapidly to a value of ρ ≈ 0.

On decreasing the coupling adjustment again the system is reluctant to reach a state of

synchrony once more requiring a negative coupling strength (this being a phase attractive

coupling strength) to reach a state of synchrony again. Here it is clear that the phase

transitions from synchronous to non synchronous states possesses hysteric properties.

3.5.3 Synchronisation between inhomogenously coupled subsys-

tems by means of nonlinear control

Here we examine the possibility of synchronising a system of coupled FHN cells (the

subsystem) to another system of FHN cells (the main system) by means of a nonlinear

control scheme. The aim here is to show that a semi-analytic approach can be used to

force a network of cells undergoing one type of dynamic behaviour to the dynamical be-

haviour of another set of cells which have a different network structure3. Both the main

and subsystems are composed of identical cells that are inhomogenously coupled. The

coupling strengths however between the cells in the subsystem are here considered to be

different to those of the main system. This introduces a certain level of inhomogeneity

between the two systems.

3The network structure difference here refers to the coupling strengths between cells.
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The main system is given by

ẋ(M,i) = x(M,i) −
1

3
x3

(M,i) − y(M,i) +
∑
j 6=i

j∈Neigh(i)

gi,j(x(M,i) − x(M,j))

ẏ(M,i) = ε(x(M,i) + a− by(M,i)).

The subsystem is given by

ẋ(S,i) = x(S,i) −
1

3
x3

(S,i) − y(S,i) + µxi
(t) +

∑
j 6=i

j∈Neigh(i)

hi,j(x(S,i) − x(S,j))

ẏ(S,i) = ε(x(S,i) + a− by(S,i)) + µyi
(t).

The µxi and µyi are the nonlinear control functions that are yet to be determined. The

aim is to show that convergence to synchrony between the main and subsystem can be

achieved with appropriately chosen µ(t) despite the systems being made up of different

intercellular coupling strength. To achieve this one begins by examining the difference

between the corresponding FHN cells and thus defining an error signal between the two

systems,

Exi = x(M,i) − x(S,i)

Eyi = y(M,i) − y(S,i).

The rate of change of the error signals defined above can be written as

Ėxi = (x(M,i) − x(S,i))−
1

3
(x3

(M,i) − x3
(S,i))− (y(M,i) − y(S,i))+

+
∑
j 6=i

j∈Neigh(i)

(gi,j(x(M,i) − x(M,j))− hi,j(x(S,i) − x(S,j)))− µxi
(t)

Ėyi = ε((x(M,i) − x(S,i))− b(y(M,i) − y(S,i)))− µyi
(t).
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We are free to choose the nonlinear control functions µ∗(t). Choosing

µxi
(t) = −1

3
(x3

(M,i) − x3
(S,i)) + κxiExi . . .

+
∑
j 6=i

j∈Neigh(i)

(gi,j(x(M,i) − x(M,j))− hi,j(x(S,i) − x(S,j)))

µyi
(t) = κyiEyi ,

where the parameters denoted by κ are control constants, reduces the error system to

Ėxi = (1− κxi)Exi − Eyi
Ėyi = εExi − (κyi + εb)Eyi .

This is a homogenous set of constant coefficient ordinary differential equations. It is

also clear that the system has a fixed point at the origin. In order to synchronise the

subsystem to the main system, we require the values of Exi and Eyi tend to zero in finite

time. In other words we require the fixed point at the origin of the error system defined

above to be both the only fixed point and a stable fixed point. Rewriting the system in

matrix form we have

Ėx1

Ėy1
...

Ėxn

Ėyn


︸ ︷︷ ︸

Ė

=



(1− κx1) −1 · · · 0 0

ε −(κy1 + εb) · · · 0 0

...
...

. . .
...

...

0 0 · · · (1− κxn) −1

0 0 · · · ε −(κyn + εb)


︸ ︷︷ ︸

A



Ex1

Ey1
...

Exn

Eyn


︸ ︷︷ ︸

E

One can solve this system in general with the aid of a matrix exponential however in

practice this can be a difficult task. Finding the eigenvalues of the matrix A can be made

a simpler task with the aid of tools such as Maple or Mathematica, if the number

of cells in the system is kept small (≤ 3) for larger systems however one can use tools

developed in the field of computational and numerical algebraic geometry which involve

the discriminant variety and Gröbner basis [101].

134



Solution for the two cell system

Here the analysis is continued for a system of two cells which is tractable without being

overly cumbersome. The system to solve is

Ėx1

Ėy1

Ėx2

Ėy2


︸ ︷︷ ︸

Ė

=



(1− κx1) −1 0 0

ε −(κy1 + εb) 0 0

0 0 (1− κx2) −1

0 0 ε −(κy2 + εb)


︸ ︷︷ ︸

A



Ex1

Ey1

Ex2

Ey2


︸ ︷︷ ︸

E

The system

Ė = AE

has solution

E = xeλt

where x is a vector of constants and λ is a scalar decay/growth coefficient. Now by

substitution

Ė = λxeλt = AE = Axeλt

and division by eλt, results in the usual eigenvalue equation

λx = Ax.

The eigenvalues and corresponding eigenvectors of A are found to be

λ1,2 =
1

2

{
a+ b±

√
(a− b)2 − 4ε

}
, x1,2 =



− 2

b− a±
√

(a− b)2 − 4ε

1

0

0


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and

λ3,4 =
1

2

{
c+ d±

√
(c− d)2 − 4ε

}
, x3,4 =



0

0

− 2

d− c±
√

(c− d)2 − 4ε

1


where

a = 1− κx1 , b = −(κy1 + εb), c = 1− κx2 and d = −(κy2 + εb).

In order to achieve the synchronisation of the subsystem to the main system using the

proposed nonlinear control signals it is necessary for the error signal E to exponentially

decay to zero. As the ODEs governing E has a unique fixed point at the origin, the only

requirement is for the derived eigenvalues λ∗ to be negative and real.

Numerical simulation for the n = 2 case

To see the synchronisation of the subsystem to the master system we take the following

parameters

a = 1.23, ε = 0.1 and b = 0.06.

The main system has the following adjacency matrix 4

g =

0 1

1 0


and the subsystem is subject to the adjacency matrix h

h =

 0 0.3

0.7 0

 .

The uncoupled systems (no nonlinear control signal present) have the following oscillatory

profiles, Figure 3.12

4An adjacency matrix is simply a matrix representation of the coupling strengths of a network of
elements, typically used in the literature of network systems.
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(b) The subsystem’s voltage responses.

Figure 3.12: Time Series responses of the main and subsystem before implementation of
the nonlinear control signal.

The main system has a chaotic5 high frequency firing response while the subsystem is

undergoing regular 1:1 oscillations with a smaller frequency than that of the main system.

Applying the control signals out-

lined earlier with control parame-

ters

κx1 = κx2 = 4 and κy1 = κy2 = .4

results in an error system with re-

peated eigenvalues

λ1,3 ≈ −0.45

λ2,4 ≈ −2.96.

Thus the fixed point at the origin

of the error system is a stable node

and one is guaranteed synchrony

between the main system and the

subsystem.
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Figure 3.13: Voltage response of the cells in the
main system and cells in the subsystem. The control

signal is initiated at t = 1500.

The control signal is applied to the subsystem at t = 1500, Figure 3.13.

5This chaotic system will be introduced to the reader in subsequent chapters.

137



The analytic signals are constructed for each of the cells in order to define their phase,

shown in Figure 3.14.
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(b) Main Cell 2
Analytic signal.
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(c) Sub Cell 1
Analytic signal.
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(d) Sub Cell 2
Analytic signal.

Figure 3.14: Analytic signals of each cell in each system.

After defining the phase the order parameter is computed, clearly showing, Figure 3.15,

the onset of synchrony after the control signal is initiated at t = 1500.
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(a) Order parameter for main cell 1 and sub
cell 1.
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(b) Order parameter for main cell 2 and sub
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Figure 3.15: Order parameter showing the onset of synchrony after implementation of
the control signal.

3.6 Sinusoidally Forced FHN Cell and Wenckenbach

Rhythms

Arrhythmias, irregular rhythms, in heart cells can lead to ineffective pumping of blood

through the cardiovascular system in living organisms. One type of arrhythmia named

after the Dutch atonomist Karl Frederick Wenckebach, named the Wenckenbach phe-

nomenon, is characterised by improper conduction of action potentials from the atria

to the ventricles. In patients suffering from Wenckenbach type rhythmic behaviour M

contractions of the atria leads to N contractions of the ventricles where N < M . In the
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medical literature Wenckenbach rhythms are categorised under second-degree atrioven-

tricular block and manifest in two types

• Type 1: Considered a nonfatal arrythmia and is typically due to defects at the

atrioventricular node.

• Type 2: Is considered a more serious form of arrhythmia which can lead to sudden

cardiac death. Arrhythmias are usually due to defects in the Bundle of His-Purkinje

system.

To gain insight into these arrhythmia we introduce a sinusoidal current term into the

voltage like variable of the FHN system. The model is

ẋ = x− x3/3− y + A cos(ωt)

ẏ = ε(x+ a− by). (3.6.0.1)

System (3.6.0.1) is not in autonomous form as the ẋ equation contains time dependant

terms, one can rewrite (3.6.0.1) as

ẋ = x− x3/3− y + A cos(ψ)

ẏ = ε(x+ a− by)

ψ̇ = ω. (3.6.0.2)

Equation (3.6.0.2) is a set of three autonomous coupled ordinary differential equations.

The dynamics of this system compared to that of the unforced FHN system is richer in

that it can admit chaotic dynamics6. The aim will be to find Weckenbach rhythms as

well as more complex chaotic rhythms on variation of the frequency (ω) of forcing.

3.6.1 Numerical treatment of the forced FHN system

The cardiac conduction system is composed of cells capable of producing autonomous

self sustained oscillations, as described earlier. Picking parameters that produce typical

suprathreshold action potential like oscillations7 in the unforced system, such as

ε = 0.05, a = 0.1 and b = 0.5

6Chaos can not appear in the unforced FHN system due to the Poincare-Bendixon theorem, which
states that trajectories governed by a 2D system of ODEs will either converge to an equilibrium point
or a limit cycle.

7These are parameters that admit stable limit cycles and not equilibrium points.
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(b) Action Potential Time
series (zoom) of unforced FHN

system.
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(c) Phase space plot of
unforced FHN system.

Figure 3.16: The unforced FHN system, a = 0.1, b = 0.5 and ε = 0.05.

Defining a Poincaré section

Σ : x = 0, and ẏ < 0

gives us a return map which catches the action potential crossing zero during its repolar-

isation. From the return times the unforced oscillations have a period of

TCell = 50.13± 0.03

thus the natural frequency of the

firing cell without forcing is

ω0 ≈ 0.02

Introducing the external current

with

A = 0.25

and using the forcing frequency as a

bifurcation parameter, we have the

bifurcation plot shown in figure 3.17

after taking the Poincaré section.
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Poincare Section − Bifurcation Plot. Amp = 0.25

Figure 3.17: Bifurcation plot on variation of the
forcing frequency ω

The bifurcation plot clearly shows bands of complex dynamical behaviour at the low

frequency scale giving way to regular behaviour that once again leads to complex bands.

Taking a narrower look at the bifurcation plot gives further insight into the transition

from regular-complex-regular behaviour in the forced system
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Figure 3.18: Bifurcation plot on variation of the forcing frequency ω = 0.15 to ω = .25.

Looking for Wencheback rhythms it is useful to examine the regions of figure 3.18 where

the rhythmic behaviour is not extremely complex, these being the frequencies where the

cell punctures the Poincaré surface in only 1, 2 or 3 places and making a direct comparison

to the frequency of the forcing term.

1:1 Cell response to ω = 0.16

With ω = 0.16 the forcing term has a period of

TForce =
2π

0.16
≈= 39.37

which has a frequency

ωforce = 0.0255.

The resulting action potentials have the following form

From the Poincaré map the forced cell has period and frequency of

TCell ≈ 39.27 and ωCell = 0.0255

We thus have 1:1 phase locking and frequency synchronisation between the forcing term
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(a) Long Term action potential response.

2000 2050 2100 2150 2200
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

t

x

Voltage Response and Forcing Signal ω = 0.16

 

 
Cell Voltage
Forcing Signal

(b) Zoom of the action potentials and the
forcing current

Figure 3.19: Voltage response of the forced FHN system with A = 0.25, ω = 0.16,
a = 0.1, b = 0.5 and ε = 0.05.

and the action potential response.

3:2 Cell response to ω = 0.2

At this frequency of forcing figure 3.18 shows that the Poincaré surface is punctured in

two places a doubly folded limit cycle in phase space. Which is indeed the case as is

shown in the figure
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y

Figure 3.20: Cross section of the phase space for the forced FHN system with A = 0.25,
ω = 0.2, a = 0.1, b = 0.5 and ε = 0.05.

The action potential profiles reflect this showing that there are consecutive doublets of

action potentials being elicited by the forced cell.
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(a) Long Term action potential response.
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Figure 3.21: Voltage response of the forced FHN system with A = 0.25, ω = 0.2,
a = 0.1, b = 0.5 and ε = 0.05.

The forcing frequency for ω = 0.2 is

ωforce = 0.0318

With the cell producing an action potential firing at a frequency of

ωCell ≈ 0.0213.

From the frequency ratios we have

ωforce

ωCell

≈ 3

2

which shows a 3:2 phase locking response and the presence of of a Wenckebach rhythm.

4:3 Cell response to ω = 0.185

Figure 3.18 implies there is a triply folded limit cycle in phase space for this forcing

frequency, which is the case

with action potential responses as shown in the figure.

The frequency of the forcing term and the frequency of the cell’s action potential response

are found to be

ωforce = 0.0294 and ωCell ≈ 0.0222
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Figure 3.22: Cross section of the phase space for the forced FHN system with A = 0.25,
ω = 0.185, a = 0.1, b = 0.5 and ε = 0.05.
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Figure 3.23: Voltage response of the forced FHN system with A = 0.25, ω = 0.185,
a = 0.1, b = 0.5 and ε = 0.05.

resulting in a 4:3 phase locking response.

ωforce

ωCell

=
0.0294

0.0222
≈ 1.3333
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3.6.2 Phase Locking and Arnold Tongues in the forced FHN

Continuing the analysis one finds bands of frequencies over which the Wenckenbach

rhythms of various phase locking regimes are expressed

0.15 0.2 0.25
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Forced FHN Bifurcation Figure and Frequency Ratio

ω

y,
 ω

C
el

l/ω
F

or
ce

 

 
Frequency Ratio
Poincare return

Figure 3.24: The phase locked regions and the frequency ratio
ωcell

ωForce

A number of illustrated Wenchebach rhythms are indicated in figure 3.25, the cells voltage

responses are shown for typical simulations within the indicated frequency bands for

illustration.
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Arnold Tongues

Thus far there has been no treatment of the effect that the amplitude of the forcing term

has on the forced FHN cell. With stronger amplitude of the forcing term one finds a

greater tendency of the FHN cell to entrail its oscillations with the cosine wave. This

phenomena is best represented by a plot of the systems phase locking regions as a func-

tion of the amplitude and frequency of the external force. Such regions are commonly

referred to as Arnold Tongues.

Finding the boundaries of a system’s Arnold Tongues is a rather computationally intensive

task. It involves scanning a two parameter phase space, integrating the system of ODEs

to be examined and calculating the frequency of the oscillator (using a Poincaré map or

otherwise) and deciding if the system is phase locked at each point of the parameter space.

The basic algorithm for finding the boundaries of an Arnold tongue are as follows:

1. Set all initial conditions for the FHN system of ODEs

2. Find the natural frequency of the unforced system

• Using Peak Detection Methods

• Integrate the system with an adaptive Runge-Kutta algorithm. Calculate the

Power Spectrum using a fast fourier transform and approximate the frequency

at the peak energy.

3. Set the locking mode, e.g 1:1, 2:1 etc.

4. Set the forcing frequency to the appropriate multiple of the oscillators natural

frequency.

5. Set the amplitude of the forcing term.

6. Find the upper bound of the Arnold tongue boundary

• Pick a large forcing frequency (compared to the multiple of the natural fre-

quency) such that the system is not phase locked at this upper frequency.

• Run a bisection root finding algorithm to find the boundary point.

– Integrate the system and use peak detection to find the frequency of the

resulting forced system.
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– If the system is not phased locked return a +1 (forcing frequency up-

per bound) to the bisection method. If it is locked return a -1 (forcing

frequency lower bound).

– Continue this narrowing of the upper and lower bound, by taking the

midpoint between the upper and lower estimate and testing it for phase

locking, for a set number of iterations, typically 1× 103.

• Return the resulting frequency.

7. Find the lower bound for the Arnold tongue boundary

This is performed in an almost identical manner to finding the upper bound.

8. Increase the amplitude of the forcing term and repeat the search for the upper and

lower boundary of the Arnold Tongue at this amplitude.

The advantage of finding the frequency of the forced oscillator using a peak detection

algorithm over a Poincaré section, is computational speed. Finding when a system passes

through the Poincaré surface involves interrupting the integrator and having it listen to a

number of events testing each one of them at every iteration of the integrator. After find-

ing the return times and storing them, which takes memory and time, it is still necessary

to find the frequencies from the return times again adding to the computational effort.

The fourier power spectrum on the other hand is very efficient since it depends on taking

an appropriate combination of fast fourier transforms which are very well optimised for

computational tasks.

Furthermore using a root finding algorithm instead of the simply iterating through every

frequency until one no longer has a phase locking response greatly reduces the number of

iterations one must take in order to estimate the Arnold tongue boundary. The bisection

method also continuously increases the accuracy of the frequency at which the boundary

occurs when the distance between the upper and lower estimate tends to zero.

Using the power spectrum to estimate the frequency has the disadvantage of not giving

the user a guaranteed proper ‘frequency’ for the oscillator, the oscillations may in fact be

chaotic making the period infinite which leads to no proper definition of frequency, this

also being an issue when looking at Poincaré sections. What can be said however is that

there is locking between the external forcing terms and the dominant frequency of the

FHN cells power spectrum, which can be of use when examining chaotic oscillations.
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Taking the forced FHN system given by Equation (3.6.0.1) with parameters8

a = 0.1, b = 0.5 and ε = 0.01

The 1:1 Arnold tongue is found and plotted in figure 3.26.

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

ωForce

Fo
rc

in
g 

A
m

pl
itu

de

1:1 Phase locking of Force FHN system

1:1

Figure 3.26: The 1:1 Arnold Tongue for the forced FHN system.

The 1:1 Arnold tongue shows that forcing the system with larger amplitudes of forcing

leads to wider frequency ranges that the 1:1 locking regime is expressed over. Looking

for higher order locking terms one finds
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Figure 3.27: Higher order Arnold Tongues for the forced FHN system.

The root finding algorithm fails to find the boundaries of the higher order phase locking

regimes. The starting point for the algorithm depends on bracketing the upper (lower)

8Reducing the value of epsilon to ε = 0.01 from ε = 0.05stiffens the ODEs costing more computational
time while making the transition between fast a slow dynamics more marked.
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boundary between the appropriate multiple of the cells unforced natural frequency and

a relatively large (small) frequency. In the FHN system however the Arnold tongues are

not centered about multiples of the cells natural frequency for larger amplitudes of the

forcing term. This can be seen with a more intensive study of the forcing terms parameter

space, a coarse grained figure is shown in Figure 3.28
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Figure 3.28: The N : 1 Arnold Tongues for the forced FHN system

The higher order locking regions can be found if one again opts for finer detail in the

parameter space, finding 2 : X and 3 : X rhythms which are shown in Figure 3.29.
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3.7 Frequency Sync In the Master-Slave Electrically

coupled FHN system

A natural extension to the results concerning the sinusoidally forced FHN cell, is an anal-

ysis of a master-slave coupled FHN system.

The two cell Master-Slave FHN system is given by the following 4D set of coupled ODEs

˙xM = xM − x3
M/3− yM

ẋS = xS − x3
S/3− yS + gM,S (xS − xM)

˙yM = ε(xM + aM − bMyM)

ẏS = ε(xS + aS − bSyS). (3.7.0.1)

Master slave coupling such as the one described here can be considered simplified mod-

els of the interaction of cardiac pacemaker cells9 with the bulk myocardium and the

interaction of neural pacemaker cells10 with cells awaiting action potential signals.

3.7.1 Self sustained master and excitable slave: Variation of

Coupling Strength

In contrast to the forced FHN system here the analysis begins with a self sustained FHN

cell (the master) and a FHN cell at equilibrium (the slave). Before coupling the systems

together, typical action potential profiles for the self sustained FHN system have the

appearance of those shown in figure 3.30(a)

Parameters: aM = 0.1, bM = 0.5 and εM = 0.01

which possesses a stable limit cycle shown in figure 3.30(b).

The parameters for the slave cell are chosen such that it posses a stable equilibrium point,

here

Parameters: aS = 0.7, bS = 0.5 and εS = 0.01

which possesses a stable equilibrium point at

x̄ = −1.0328 ȳ = −0.6656.

9For example in the sinoatrial node.
10The circadian cells.
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Figure 3.30: Action potential profile and limit cycle of the self sustained FHN master
cell with aM = 0.1, bM = 0.5 and εM = 0.01.
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Bifurcation in the Master-Slave system due to changes in coupling strength

In order to characterise the slave cells response to the master cell’s oscillations a Poincaré

surface is used in a similar fashion to that used in the force FHN system. Taking a section

of the 4D system in the (xS, yS) plane and looking at punctures through the surface

Σ : xS = 0 and
dys

dt
< 0.

defines a firing event in the slave cell to have occurred whenever the voltage like vari-

able passes through x = 0 in the negative direction. Computation can be memory and

processor intensive as transient phenomena must be allowed to decay making for longer

integration times. Allowing the coupling strength to vary from gM,S = −1 attractive

coupling11 and gM,S = +1 repulsive coupling12 in increments of 0.01, one finds a course

bifurcation diagram shown in figure 3.32(a). The frequency ratio between the firing cell

and the slave cell shown in figure 3.32(b) shows the regions over which the system is

frequency synchronised.
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(b) Frequency ratio plot.

Figure 3.32: Coarse bifurcation plot of the master slave coupled FHN system on
variation of the coupling strength.

From figure 3.32(a) one can see that there are a number of irregularities over the gM,S ∈
(−0.2, 0.6) which warrant finer detail. These namely are regions where the slave cell

transitions from a 1:1 frequency response to a 2:1 frequency response and viceversa.

11Named attractive as negative coupling strengths as cells are drawn together. Negative coupling
strengths are those that are most close in nature to gap junctions, allowing (relatively) positive currents
from one cell to cause a positive current input into the coupled cell. Here the coupling strength is limited
to unity implying that the maximum voltage like stimulus the FHN cell can have is complete conduction
of the voltage difference. Thus ruling out amplification of the voltage difference by the coupling junction

12Named repulsive as positive coupling strengths between cells tend to put cells in an anti-phase state.
Such coupling strengths serve as a basic model of inhibitive synapses between neurons.

152



Transition from 1:1 to 2:1 frequency response

Figure 3.32(b) shows a transition from 1:1 frequency locking to 2:1 frequency locking over

the attractive coupling strength

gM,S ∈ (−0.1− 0.05).

After reduction of the coupling strength incremental step size to 0.0001 the finer structure

within the bifurcation plot at the transition can be seen more clearly in figure 3.33.
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Figure 3.33: Bifurcation figure of zoomed in region. Inset graph shows the large scale
bifurcation diagram shown in figure 3.32(a)

153



The frequency synchronised regions over this transition are shown in figure 3.34.
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Figure 3.34: Bifurcation diagram is in blue while the frequency ratio is in red. The
frequency ratio has been inverted here for ease of visualisation.

The transition over from 1:1 to 2:1 frequency locking regions shows a devils staircase

like structure, typical action potential responses have been included in figure 3.35 for

reference.
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Figure 3.35: The devils staircase like structure and the action potential responses for
the frequency synchronised transition from 1:1 to 2:1 locking in the attractively coupled

master slave FHN system.
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Transition from 2:1 to 1:1 frequency response

The transition from a 2:1 frequency ratio to a 1:1 frequency ratio can be seen in figure

3.32(b) occurring over the repulsive coupling strength interval

gM,S = (0.35, 0.52)

A close look at this bifurcation region is shown in figure 3.36
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Figure 3.36: Bifurcation figure over the 2:1 to 1:1 frequency locking transition. Here the
coupling strength increment is set to 0.0001.

The frequency synchronised regions over this coupling strength are shown in figure 3.37
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Figure 3.37: The frequency locking regions over the 2:1 to 1:1 transition.
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In contrast to the attractive coupled system the transition does not follow a devils stair-

case like structure.
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Figure 3.38: Regions of frequency synchronisation over the transition from 2:1 to 1:1
locking in the repulsively coupled master slave FHN system. Typical action potential

profiles are included as reference.

Of note concerning repulsive coupling

strengths in the master slave system

is the type of phase synchrony that is

present, namely anti-phase syncrhon-

isation between the master and the

slave cell. This can be clearly seen

(Figure 3.39) when examining coupling

strengths gM,S > 0.44 where one has a

1:1 firing response between master and

slave cells.
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Figure 3.39: Anti-phase
syncrhonisation between cells couple in

a master slave system.
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3.7.2 Arnold Tongues in the Self Sustained Master and Ex-

citable Slave System.

In order to examine the Arnold tongues of the Master Slave FHN system it is necessary

to have a means to adjust the frequency of the driving master system.

Frequency dependence of the FHN system on the parameter ε.

The single cell FHN system

ẋ = x− x3/3− y

ẏ = ε(x+ a− by)

undergoes a Hopf bifurcation for appropriately chosen values of the parameter a and b,

which is independent of the parameter ε. The limit cycle resulting from the supercritical

Hopf bifurcation results in stable self sustained oscillations in the system. The parameter

ε controls the rate at which phase space trajectories transition from along the systems

slow manifold, which results in changes in the frequency, and to a lesser extent the shape,

of the limit cycle trajectories.

Taking

a = 0.1, b = 0.5 and ε ∈ (0.001, 0.1)

and recording the cell’s frequency results

in the relationship shown in Figure 3.40.

Figure 3.40 depicts a typical frequency

Vs. ε graph, which can be seen if one

examines the cells frequency for various

values of b (provided a stable limit cycle

exists for the chosen parameters).
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Figure 3.40: FHN cell frequency
response as a function of ε, taking

a = 0.1 and b = 0.5.

The loglog plot shown in figure 3.41(b) suggest that the frequency of the limit cycle

formed during a supercritical Hopf bifurcation in the FHN system follows a power law.
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Figure 3.41: The frequency of the FHN cell follows a power law relationship with the
parameter ε.

Arnold Tongues in the Master Slave FHN system

As noted in the previous sections there is a relationship between the parameter ε and the

frequency of the limit cycle created in the FHN system. To examine the Arnold tongues

of the master slave FHN system an excitable slave cell is electrically coupled to a self

sustained master cell. The two control parameters are the coupling strength gM,S and the

parameter ε for the master cell which controls the frequency at which the slave cell will

be forced.

After extensive simulations over both attractive and repulsive coupling strengths

gM,S ∈ [−1, 1]

and master cell frequencies over the parameter range

εM ∈ [0.001, 0.1].

The frequency synchronised regions are shown in figure 3.42 for the master slave system

(3.7.0.1) with parameters

aM = 0.1, aS = 0.7, bM = bS = 0.5 and εS = 0.01.
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Figure 3.42: 2D view of the frequency synchronised regions of the Master Slave FHN
system

The highest Master Freq : Slave Frequency responses occur in the relatively weak coupling

strength interval |gM,S| < 0.5 as can be seen in figure 3.43,
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Figure 3.43: 3D view of the frequency synchronised regions of the Master Slave FHN
system

Although figure 3.43 shows a rich structure of frequency locking regions between the

master and slave cells the only frequency locking regions that are clearly visible are of

the form

M : N where M ≥ N

implying that 1 action potential response from the master cell only gives forth to 1 or
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more action potential responses from the slave. This however is not the case as for very

low frequency oscillatory behaviour of the master cell (corresponding to small values of

εM) one finds frequency ratios of the form

M : N such that M ≤ N

which can be seen in a more intensive parameter sweep at smaller values of ε, shown in

figure 3.44.
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Figure 3.44: 3D view of the frequency synchronised regions of the Master Slave FHN
system, for small values of ε ∈ [0.001, 0.05].
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Bursting behaviour in the Master Slave FHN system

Bursting behaviour in neurons can be found in the central nervous system of mammals

in neocortical pyramidal neurons [196] and has been linked to the reward circuit in the

brain, addiction learning and memory [34].

Cortical CH neuron

Cortical IB Neuron

pre-Botzinger bursting neuron

thalamocortical TC neruon

Figure 3.45: Examples of bursting action potentials from in vitro experiments on neural
cells, figure adapted from [86]

Although certain neurons are capable of bursting behaviour on their own, there exist

a multitude of neurons which produce bursting behaviour due to forcing; such as those

found in the vocal sequencing of songbirds [54] and weakly electric fish [47].

Action potential bursting is the term given to a series of action potentials occurring in

quick succession followed by a period of quiescence.

The bursting behaviour in the master slave FHN system occurs when the master cell

which is driving the the slave cell produces an action potential response that is on a

much longer timescale than the intrinsic action potential behaviour of the slave. The

result of the master cells long action potential on the slave cell is a prolonged period of

current input into the slave cell. The long plateaux present in the master cell’s action

potential effectively acts as a constant bias current on the slave cell. The slave cell is
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unable to maintain the long plateaux response of the master cell as it’s recovery variable

(which dictates if the cell is able to produce an action potential or not) does not full

return to its recovery, before having to produce another action potential. The result is a

series of smaller action potentials in the slave system without a return to its rest state.

An example of this behaviour can be seen in figure 3.46.

1000 1500 2000 2500 3000 3500 4000 4500 5000
−4

−2

0

2

4
Master Cell − Action Potential

x M

1000 1500 2000 2500 3000 3500 4000 4500 5000
−3

−2

−1

0

1

2
Slave Cell − Bursting Action Potential Response

x S

t

Figure 3.46: Bursting in the Master Slave FHN system. Parameters: aM = 0.1,
aS = 0.7, bM = bS = 0.5, εM = 0.005, εS = 0.01 and gM,S = −0.8 (attractive coupling).

Interestingly the same bursting response is not present in the repulsive (gM,S < 0) regime.

Instead for parameter differences such that
εM
εS

< 0.1 one finds the usual anti-phase

synchrony with the exception that firing patterns of the form

M Firings of the master cell : N Firings of the save cell, such that M < N

are readily found. Examples of which are shown in figure 3.47
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(a) Action potential response with gM,S = 0.01
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(b) Action potential response with gM,S = 0.05
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(c) Action potential response with gM,S = 0.08
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(d) Action potential response with gM,S = 0.1
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(e) Action potential response with gM,S = 0.35

1000 1500 2000 2500 3000 3500 4000 4500 5000
−4

−2

0

2

4
Master Cell − Action Potential

x M

1000 1500 2000 2500 3000 3500 4000 4500 5000
−4

−2

0

2

4
Slave Cell − Action Potential Response

x S

t

(f) Action potential response with gM,S = 1

Figure 3.47: Multiple action potential responses in the phase repulsive FHN system.
Parameters are aM = 0.1, aS = 0.7, bM = bS = 0.5, εM = 0.001, εS = 0.01 and the

repulsive coupling strengths indicated in the sub figure captions.
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3.8 Chapter Summary

A summary of the results concerning synchronisation of FHN systems is here presented.

• A system of n FHN cells are electrically coupled (gap-junction like coupling), the

model taking the form

ẋi = xi − x3
i /3− yi +

n∑
i 6=j,j=1

gi,j(xi − xj), ẏi = εi(xi + ai − biyi)

where i, j ∈ [1, n] ⊂ N and gi,j is the coupling strength imposed on cell i. The

coupling imposed on cell i’s voltage like variable and is dependent on the “potential

difference” between cell i and cell j, i.e. (xi − xj).

• Two electrically coupled cells with parameters ε1 = ε2 = ε, a1 = a2 = a, b1 = b2 = b

and inhomogeneous coupling strengths is analytically shown to fall into a state of

imperfect complete synchrony provided

1

2
+ g2,1 + g1,2 + ε

(
1

2
− b
)
< 0

• An appropriate definition for the phase, φ, of a coupled FHN oscillator is introduced

in terms of the Hilbert Transform, a technique taken from the field of Engineering,

namely signal processing. Furthermore an order parameter ρ and a collective phase

ψ for N FHN oscillators is defined as

ρ(t)eiψ(t) =
1

N

N∑
i=1

eiφi(t)

• On variation of the coupling strength between two electrically coupled FHN cells

it is shown that the phase transition from a synchronous state to an asynchronous

state posses hysteric properties.

• Semi-analytical methods are used to show that a system of n identical FHN systems

(electrically coupled to one another inhomogeneously) can be syncrhonised to an-

other system of n identical FHN cells (with a different set of intracellular electrically

coupling strengths) by means of a nonlinear control scheme.

• The Arnold tongues for a sinusoidally forced FHN system are numerically explored

and discussed. It is also shown that the m : n firing response represented by the

Arnold tongues can be found as an emergent property natural to a master-slave

system of FHN systems without forcing.
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Chapter 4

Emergent Chaos in Coupled FHN

systems.

4.1 Chaos in biological systems

The role of chaos in neural systems is not currently fully understood however it has been

hypothesised since the 1980s that cognitive functions depend on them, such as those in-

volved in olfactory system, perception and more generally as a ground state for the neural

perceptual apparatus [161]. Intensive studies have been conducted both experimentally

and theoretically into the presence of chaotic behaviour in the brain, with experimental

findings proving to be difficult to produce though present [97]. The primary difficulties

with finding chaos experimentally are due to the level of noise associated with measure-

ments concerning neural activity. The debate on the presence of chaos vs measurement

noise in the brain is still an active one, leading to much work concerning measures of

different types of complexity found in neural dynamics, the reader is referred to [60] and

references therein for details.

Cardiac systems are more amenable in the detection of chaos, in the form of heart rate

variability (HRV). Interestingly it has been shown that patients with a lower HRV are

more susceptible to cardiac arrhythmias [105]. There are a multitude of tools that allow

clinical physicians and researchers to study HRV, with comparative studies having being

conducted in transplant patients [94], however there are discrepancies between the various

measures of chaos; correlation dimension, return maps and Lyapunov exponents can give

rise to conflicting results when looking at chaotic models of HRV [185] suggesting that

there are significant difficulties. Investigation of nonlinear dynamical behaviour, inclusive

of chaos, in cardiac systems remains active amongst theorists investigating the mechanism

of the different arrhythmias of the heart, a review of which can be found in [31]. There
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is a focus on finding new methods of analysing the risk a patient has of suffering from

arrhythmias such as sudden cardiac death [64] and finding a means to implement findings

in a clinical setting, though difficult [66].

4.2 Chapter Objective and Model Outline

The focus of this chapter is in the emergence of chaotic dynamics due to communication

between nonchaotic subunits, without external forces. Chaotic firing patterns have been

observed in experiments conducted on bursting neurons [97], there are a number of models

that can be used in order to study this behaviour from mappings such as those due to

Aihara [4]

y(t+ 1) = ky(t)− αf(y(t)) + a

where for example the function f(y(t)) is a chaotic map such as the logistic function

f(y(t)) =
1

1 + exp(−y(t))/ε

and k, α, a are parameters known as the decay factor, scaling factor of refractoriness, and

the external current respectively.

Sets of ODEs can produce inherent bursting behaviour, such as those found in the

Hindmarsh-Rose (HR) model [76] of a bursting neuron

ẋ = y + ax2 − x3 − z + I

ẏ = 1− bx2 − y

ż = r(s(x− xr)− z)

where the parameters a, b, r are related to ion channel kinetics, I is the external current

and s and xr are two further parameters that can be varied.

Unlike the 3-dimensional HR model the FHN system of equations can not admit chaotic

solutions unless acted upon by an external force. This being due to the Poincare-Bendixon

theorem the 2-dimensional set of ODEs making up the FHN system can not give rise to

a strange attractor. Thus the FHN system has no intrinsic means of producing chaotic

dynamics. By coupling FHN systems together one produces a system (with dimension

greater than 3) which may admit chaotic dynamics. Such chaotic solutions are due to the

passage of information between the constituent FHN systems. Making chaos an emergent

166



phenomenon that is directly consequent on the cells interacting with one another.

The objective of this chapter are to show

• Chaos is present in attractive/repulsive/mixed electrically (gap junction - like) cou-

pled FHN systems.

• Chaos is present in chemically coupled (synapse-like) coupled FHN systems.

• The chaotic solutions can be found in both homogenous and inhomogenous param-

eter regimes within parameter regimes that maintain the integrity of biophysical

interpretation.

Within the literature chaos in Fitzhugh-Nagumo systems has previously been reported.

These reports are typically of chaos found when FHN cells are forced by an external

current [141, 121]. Choas in couple FHN systems has also been found if one introduces

time variation in gap junction conduction properties between couple cells [145]. Studies

have also been conducted on the control of space-clamped chaotic FHN systems [190].

Chaotic firing patterns in FHN cells have also found application in robotic AI, in [8] the

authors find that chaotic FHN cells can be used to produce a ‘dancing’ response in robots

to music stimulus.

Most relevant to the following work are the chaotic results reported in [59], where the

authors successfully find chaotic parameters in an electrically coupled system of FHN

cells without the use of a time varying current. The authors report chaos for a system

of homogenous FHN cells which show a diffusion like coupling term and find that the

chaotic solutions integrity is maintained even with increasing system size. Unlike the work

in [59] the aim here is to show that chaotic solutions in coupled FHN cells is possible

in homogenous and inhomogenous systems be they electrically coupled in an attractive,

repulsive or mixed manor, or if they are coupled with a synaptic-like (chemical) coupling

term.

4.2.1 The bidirectionally Electrically coupled FHN system.

In the model neurons are coupled together bidirectional with a simple linear diffusive

coupling term. Let N be a set of nodes in our graph with i, j ∈ N and {i, j} ∈ E be the

set of directed edges in the graph
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ẋi = xi −
1

3
x3
i − yi +

∑
j||{i,j}∈E

gij (xi − xj) , (4.2.1.1)

ẏi = εi(xi + ai − biyi)

The gij are the coupling strengths between coupled neurons in the graph. If gij > 0 then

node i is repulsively dependent on the voltage difference between itself and node j, and

increase/decrease in the voltage of node j causes a decrease/increase in voltage in node

i, this will be refereed to as ‘phase repulsive’ coupling. For gij < 0 node i is attractively

dependent on the voltage difference between itself and node j, an increase/decrease in the

voltage of node j causes an increase/decrease of voltage in node i, this will be referred

to as ‘phase attractive’ coupling. This model has been explored in previous chapters

showing complex rhythmic behaviour, here the emphasis is placed on chaotic behaviour.

4.2.2 The chemically coupled FHN system

Synaptic coupling between neurons involves transmission of electrical signals through

chemical transmitters. Synaptic connections are not direct electrical connections between

neurons, which is the case with gap-junctions. The chemical synapse behaves as a pulse

coupling between the neurons which has a timescale of it’s own. The model used can be

found adapted from [102, 44, 189]

ẋi = xi −
1

3
x3
i − yi +

∑
j||{i,j}∈E

gijsj (xi − vSyni) ,

ẏi = εi(xi + ai − biyi)

ṡi =
1

εi
βiα(xi)(1− si)−

si
τSyn

α(xi) =
α0

1 + exp(−xi/Vshp)

where g is now the adjacency matrix holding the maximal synaptic conductance for each

edge of the graph, τSyn is the time scale over which the synapse is active, vSyni is the

synaptic reverse potential and α is the activation rate. s ∈ [0, 1] ⊂ R is the synaptic

coupling variable. The synaptic coupling equation can be reduced [189] to

ṡi = βH(xi)(1− si)− δεisi

where H is the heaviside function and the parameters β and δ are the activation and

decay rate of the synapse respectively.
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4.2.3 Finding and Characterising Chaos

In order to find parameters which produce chaotic dynamics it is essential to firstly have

a measure of chaos in the system. A system is said to be chaotic if it

• Exhibits exponential sensitivity to initial conditions.

• Forms a dense set of periodic orbits in its phase space.

One typically examines the largest Lyapunov exponent, denoted Λ, of the system under

study taking a positive Lyapnuov exponent as being a signature of chaos.

Numerical calculation of Lyapunov exponents

• The Largest Lyapunov Exponent - using secondary trajectories.

• Wolf Algorithm - to calculate the Lyapunov Spectrum.

Numerical Calculation of the Largest Lyapunov Exponent .

Given a set of coupled ODEs

ẋ = f(x, α)

where x ∈ Rn are the system variables and α ∈ Rm are the systems parameters. The

maximum Lyapunov exponent λM (shortened to λ) is a measurement of the rate of sepa-

ration of two trajectories in phase space that are initially infinitesimally separated from

one another.

Given an initial point x0 and a neighboring point x1 and denoting the initial separation

as

d0 = |x1 − x0|

and the separation after a time t is denoted

dt = |x1(t)− x0(t)|

the maximum Lyapunov exponent is defined as

λ = lim
t→0

lim
d0→0

1

t
ln

(
dt
d0

)
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The Lyapunov exponent measures the divergence of nearby trajectories as

dt ≈ exp(λt)d0

The algorithm is as follows

1. Solve the ode system with initial condition x0 allowing the trajectory to reach the

attractor.

2. Take the point that is on the attractor and define this point as x0.

3. Pick a neighboring point in phase space which is a small distance away (ensuring

the distance is larger than the accuracy of the machine) label it x1.

4. Track the orbits originating from x0 and x1 simultaneously in time for a time step

δt.

5. Compute the distance between the two orbits at this time.

6. Store the value of
1

δt
ln

(
d1

d0

)
.

7. Computer the running average of
1

δt
ln

(
d1

d0

)
8. Adjust the secondary orbit so that it again is a distance d0 from the primary orbit

which is now at x0(δt). This adjustment is made along the line of separation

between x0(δt) and x1(δt).

9. Redefine x0(δt) → x0 and x1(δt) → x1, repeat 4 to 8 until the running average

stabilises. Typically over a time T >> δt.

x0

x0(δt)

x1

x1(δt)

d0

d1

The initial separation

The separation after δt
time steps

x0

x0(δt)

x1

x1(δt)

d0

d1

Rescale the distance

The new separation after δt
time steps

x0

x0(δt)
x1

x1(δt)

d0

d1

Rescale the distance

Figure 4.1: Rescaling the secondary trajectory after every δt time steps.
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Numerical Calculation of the Lyapunov Spectrum .

For an n−dimensional system there are in fact n Lyapunov exponents. To see this it is

useful to consider the evolution of an n−sphere of initial conditions perturbed from a point

x0 on the chaotic attractor. During the time evolution of the sphere of initial conditions

the sphere is stretched and compressed into an n−dimensional ellipsoid. Letting

dk(t), k = 1, 2, . . . , n

denote the length of the kth principal axis of the ellipsoid at time t, the expansion will

follow

dk(t) ≈ dk(0) exp (λkt)

where λk is a Lyapunov exponent.

Trajectory
x0(t)

x0(δt)

Sphere of Initials
Ellipsoid after time δt

S(0)
S(δt)

x1

x2

x3

x1

x2

x3

Contraction

Expansion

Figure 4.2: Evolution from a sphere to an ellipsoid. x1 is in the tangential direction of
the flow, with zero expansion of contraction (zero Lyapunov exponent). x2 is an
expansion direction (positive Lyapunov exponent). x3 is a contraction direction

(negative Lyapunov exponent).

The collection of Lyapunov exponents λk yields the Lyapunov spectrum for the system

Λ = [λ1, λ2, . . . , λn]

Computation of Lyapunov spectra was conducted using Wolf’s algorithm [200] with a

Gram-Schmidt orthonormalisation process. Wolf’s algorithm involves solving the ode
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system1

x = f(x, α)

and its associated linearised system, often referred to as the tangent system, given by

T = J(x, α)T

where T is an n−dimensional vector and J is the n× n Jacobian matrix associated with

f(x, α). The perturbation from the trajectory on the attractor is measured by following

the evolution of n−orthogonal vectors which evolve in time according to the linearised

system.

A key step to find the spectrum is to reorthogonalise the n−orthogonal vectors after every

δt time steps where δt < | 1
λmax
|. Without a reothogonalisation all of vectors evolving with

respect to the linearised system will eventually move to point in the direction of greatest

increase, leaving only an estimate of the largest Lyapunov exponent for the system. The

reorthogonalisation process is conducted as follows

1. Record the length of the first (k = 1) of the n−orthogonal vectors (this will be the

direction of greatest divergence).

2. By computing the inner product between the k = 1 vector and the remaining

k = 2, . . . , n vectors: remove the component of the k = 1 vector from all of the

other vectors. This leaves only the second largest divergence direction for the

remaining vectors to converge towards.

3. Repeat this process removing the k = 2 component from the k = 3, . . . , n vectors,

recording the length of the k = 2 vector.

4. Continue this process of removing the components of the vectors found higher up

in the hierarchy from all the n orthogonal vectors.

5. Record the running sum of the log of the lengths of each of the orthogonal vectors.

6. Renormalise the vectors.

The orthonormal set of vectors

e1, e2, . . . , en

1where x ∈ Rn is the state space vector holding the n−dimensial system’s variables α is a vector
holding the system parameters.
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initially taken to be the standard basis for Rn evolve according to the linearised system.

The Gram-Schmidt process involves taking

u1 = e1(δt), The vector ek after δt time steps.

and then,

uk = ek(δt)−
k−1∑
i=1

〈ui, ek(δt)〉
〈ui,ui〉

ui.

Finally renormalisation all the vectors simply involves

ek =
uk

|uk,uk|

and the vectors are ready for the next step of integration.

This process of tracking orbits and the expansions of orthogonal vectors in the linearised

system is continued until the mean value of the computed λk no longer varies. The

resulting spectrum will consists of the Lyapunov exponents in decreasing order of size

one of which being zero2.

Finding Chaotic parameters

One can treat finding chaotic parameters in a given system of differential equations as

an optimization problem, where one is trying to maximise the systems largest Lyapunov

exponent. Here the method of simulated annealing is briefly described.

Annealing is a concept taken from thermodynamics and is used to change the properties

of metals through a process of heating and cooling. Annealing with solids occurs when

a solid is heated and allowed to slowly cool until it reaches its minimum lattice energy

state, leaving a regular lattice which is free from defects and is associated with superior

structural integrity compared to an untreated solid. A system in thermal equilibrium at

a temperature T has its energy distributed probalistically according to the Boltzmann

distribution

P (E) = exp

(
− E

kT

)
.

2The zero exponent is the exponent derived from the orthonormal vector which lies in the direction
of the trajectory on the attractor. As such there will be no relative divergence from the trajectory in
this direction. This zero exponent must appear in ODE systems whose exponents are calculated in this
manner, however Poincare section methods would not have such a zero exponent, see[24]. This zero
exponent can also serve as an estimate to the error in computing the spectrum.
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This probability suggests that at large values of T the system has a uniform probability

of being at any given energy state. However at smaller values of T it only has a small

probability of being at a higher energy state. Simulated annealing (SA) works upon this

principal.

Conventional global optimisation algorithms work in the following manner; given an

objective function Y (x) that one wishes to minimize (maximize) given control of the

input vector x then one accepts a change to the input vector xx0 → x1, Accept this change

Y 0 → Y 1, if Y 0 > Y 1, (Y 0 < Y 1)

Under SA the above criteria is also adhered to like most conventional optimisation algo-

rithms. SA however has a further acceptance/rejection policy. If one finds thatx0 → x1, leads to

Y 0 → Y 1, such that Y 0 < Y 1, (Y 0 > Y 1)

then the change from x0 → x1 should not be instantly rejected, instead it should be

rejected with a probability, given by a Boltzman distribution

P (∆Y ) = exp

(
−∆Y

Y

)
Where the “change in energy” is analogous to the change in the objective function, “Boltz-

mann’s constant” is taken to be unity and the “temperature” is taken to be the average

value of the objective function at a number of points3. This probabilistic approach to

optimisation makes SA a stochastic optimisation algorithm.

The change in the input parameters x from

x0 → x1

is conducted with a random walk. The random perturbation of x0 depends on the param-

eter constraints for the components of the input parameters which are the components

of x. Typically one takes the midpoint of the interval which one wants to constrain the

3Before beginning the simulated annealing process one must have an initial temperature for the
system. This is found by taking a number of arbitrary values for x within the parameter constraints
that are desired, evaluating the objective function at these arbitrary xi and taking their mean
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parameter within and use this as the mean for a normal distribution4. One performs this

same sampling for every parameter which makes up the input vector x in order to choose

a new value x1.

If the change from x0 → x1 minimises (maximises) the objective function it is accepted,

otherwise one produces a random number between R ∈ [0, 1] ⊂ R and accept the change

x0 → x1 if

R ≤ exp

(
−∆Y

Y

)
After this initial iteration and having made a move from x0 → x1 one must perform a

cooling of the system. Thus we no longer define the temperature as Y but introduce the

cooling

T → αT

where α ∈ (0.8, 0.99) ⊂ R.

Initial Paramaters

terminate
Get Initial 

Temperature

Evaluate the 
objective function

Change parameters

Update best
parameter

Perform cooling

Accept

end 
search

Change
temp

yes

yes

yes

no

no

no

Figure 4.3: Flow chart describing the SA algorithm

4The standard deviation of the normal distribution is chosen such that 99% (3σ) of all random sample
values from the distribution will lie between the constraints for the parameter of interest
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4.2.4 Chaos in Electrically Coupled FHN Cells

In this section chaos is reported in, attractive, repulsive and mixed N = 2 and N = 3

electrically coupled FHN cells. The parameters, here and in all the subsequent cases,

which lead to chaotic solutions are found using a simulated annealing optimisation al-

gorithm. Furthermore each of the parameters are tested around a local neighbourhood

about the reported values and the following results are found to be representative of those

locally perturbed cases.

The two cell electrically coupled system is given by

ẋ1 = x1 −
1

3
x3

1 − y1 + g12 (x1 − x2) ,

ẋ2 = x2 −
1

3
x3

2 − y2 + g21 (x2 − x1) ,

ẏ1 = ε1(x1 + a1 − b1y1)

ẏ2 = ε2(x2 + a2 − b2y2). (4.2.4.1)

The three cell electrically coupled system

ẋ1 = x1 −
1

3
x3

1 − y1 + g12 (x1 − x2) + g13 (x1 − x3)

ẋ2 = x2 −
1

3
x3

2 − y2 + g21 (x2 − x1) + g23 (x2 − x3) ,

ẋ3 = x3 −
1

3
x3

2 − y3 + g31 (x3 − x1) + g32 (x3 − x2) ,

ẏ1 = ε1(x1 + a1 − b1y1)

ẏ2 = ε2(x2 + a2 − b2y2)

ẏ3 = ε3(x3 + a3 − b3y3). (4.2.4.2)

The coupling strength for these

systems is restrained to

−1 ≤ gij ≤ 1, with gii = 0.

The case where |gij| = 1 im-

plies full transmission (gij =

−1 being) of an action poten-

tials from cell j and i. Further-

more the timescale parameter

is taken to be ε = 0.1. The

ODE system becomes progres-

sively stiffer as ε → 0, mak-

ing error free (numerical) inte-

gration of the ODE system in-

creasingly difficult.

Phase Repulsive Electrical Coupling

Repulsive coupling between electrically coupled FHN cells effectively behaves as a means

of periodically kicking a cell. Repulsive coupling also has a tendency to push cells into

a state of antiphase synchrony, where the peak of one cell’s action potential response

coincides with the trough of another cell’s action potential. In such systems there is

a spring like tension between the cells. The further the action potentials are from one

another the stronger the repulsion, the cells however are bounded in the period of time

they are capable of producing an action potential response. After producing an action

potential the system must return to a state of quiescence before becoming capable of
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producing another action potential response. During this period of quiescence the cell

is in a refractory state making it unable to respond to stimulus. Here we report chaotic

dynamics for small systems (2 and 3 neurons) that are phase repulsively coupled.

For repulsive coupling we require

gij > 0 and gii = 0.

Chaos in homogenous cells with phase repulsive coupling

System Label System Parameters

xxxxx g =

 g11 g12

g22 g21

 a = [a1, a2]

b = [b1, b2]

ε = [ε1, ε2]

E2HR1 g =

 0 1

1 0

 a = [1.23, 1.23]

b = [0.06, 0.06]

ε = [0.1, 0.1]

Two homogenous FHN cells

with electrically repulsive cou-

pling strengths. The computed

Lyapunov spectrum

Λ =



0.016

0.000

−2.044

−7.939


shows that there is a positive

exponent in the system.
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Figure 4.4: Voltage Time Series Plots of system E2HR1 undergoing chaotic dynamics.
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Three homogenous FHN cells with electrically repulsive coupling strengths.

System Label System Parameters

E3HR1 g =


0 1 1

1 0 1

1 1 0


a = [0.2, 0.2, 0.2]

b = [0.2, 0.2, 0.2]

ε = [0.1, 0.1, 0.1]

Lyapunov spectrum

Λ =



0.009

0.000

−0.025

−1.471

−7.750

−10.516


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Figure 4.5: Voltage Time Series Plots of system E3HR1 undergoing chaotic dynamics.
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Both systems shown (E2HR1 and E3HR1) above consist of completely homogenous neu-

rons, that is for every pair of cells indexed i and j

a = ai = aj, b = bi = bj, ε = εi = εj, and g = gij = gji

the only difference is in terms of the initial conditions given to each of the neurons.

The voltage like variables time series in both cases shows that the system falls into an

antiphase synchrony. The peak of one cell’s action potential coincides with the trough of

another.
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Figure 4.6: Inter spike intervals of E2HR1. Large figure shows the inter spike interval
between both cells.

The chaotic process in these examples doesn’t effect the order in which the cells fire how-

ever there is a marked variability in the inter-spike intervals. The inter-spike interval is

one of the leading candidates by which the mechanism for information encoding[177] and

processing is mediated in the brain [146, 157]. While HRV (Heart Rate Variability) has

seen connections between depressive disorders[165], a possible indicator for the suitability

of a candidate to undergo anesthesia before surgery [29] and a measure for recovery of

patients suffering from arrhythmia [172].

Figures 4.6 and 4.7, show the the inter spike interval between the two cells in the E2HR1

system and the distribution of those spiking intervals respectively. The large figure shows

the spiking intervals between consecutive spikes of both of the cells action potential time

series’ superimposed, while the smaller figures show the inters pike intervals for each of

the individual cells.
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Figure 4.7: Distribution of inter spike intervals of E2HR1.
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Figure 4.8: Distribution of inter spike intervals of E3HR1.

Phase Attractive Electrical Coupling

Attractive coupling between homogenous oscillators typically leads to in phase synchro-

nised oscillations. Given two oscillators, A and B, an increase in A causes and increase in

B while a decrease in A causes a decrease in B (the same influence is exerted by oscillator

B on A when the oscillators are bidirectionally coupled). This push and pull dynamic

often leads to both cells falling completely in line with each other. There is however

obvious limitations to achieving synchrony when the oscillators are inhomogeneous. Two

different oscillators are limited5 by their own intrinsic dynamical behaviour and are in-

5An assumption here is that interactions are of similar magnitude to the intrinsic oscillatory behaviour
of the oscillators themselves.

180



capable of producing perfect synchrony with one another. Here we show that even under

the strict condition of homogeneity between FHN cells with attractive coupling to one

another one can find dramatically chaotic behaviour emerging from the system.

The ODE systems are the same as those state in (4.2.4.1) and (4.2.4.1), examining at-

tractive coupling implies

gij < 0 gii = 0

while the homogeneity constraint is to take

a = ai = aj, b = bi = bj, ε = εi = εj, and g = gij = gji

Chaos in homogenous cells with phase attractive coupling

System Label System Parameters

E2HA1 g =

 0 −0.6

−0.6 0

 a = [0, 0]

b = [−0.8,−0.8]

ε = [0.1, 0.1]

The computed Lya-

punov spectrum

Λ =



0.0122

0.000

−0.891

−2.905


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Figure 4.9: Voltage Time Series Plots of system E2HA1 undergoing chaotic dynamics.
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Examining the inter spike intervals for this system using a Poincare section we have
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Figure 4.10: Inter spike intervals of E2HA1. Large figure shows the inter spike interval
between both cells.
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Figure 4.11: Distribution of inter spike intervals of E2HA1.
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System Label System Parameters

E3HA1 g =


0 −1 −1

−1 0 −1

−1 −1 0


a = [0, 0, 0]

b = [−1,−1,−1]

ε = [0.1, 0.1, 0.1]

Lyapunov spectrum

Λ =



0.013

0.005

0.000

−0.572

−2.253

−3.374


The presence of two positive Lyapunov exponents tells us that the system is hyperchaotic.
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Figure 4.12: Voltage Time Series Plots of system E3HA1 undergoing chaotic dynamics.

Examining the inter spike intervals of the system we have Figure 4.13 and Figure 4.14.
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Figure 4.13: Inter spike intervals of E3HA1. Large figure shows the inter spike interval
between three cells.

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

ISI bins

fr
eq

ue
nc

y

Distribution of ISIs

0 100 200 300
0

50

100

ISI bins

fr
eq

ue
nc

y

Cell 1 ISI Distribution

25 30 35 40 45
0

10

20

ISI bins

fr
eq

ue
nc

y

Cell 2 ISI Distribution

0 50 100 150 200
0

50

100

ISI bins

fr
eq

ue
nc

y

Cell 3 ISI Distribution

Figure 4.14: Distribution of inter spike intervals of E3HA1.

Mixed Electrical Coupling

Mixed coupling types introduces heterogeneity into the system. In such systems a number

of cells are repulsively coupled to its neighbours while others are attractively coupled.

This introduces a push pull dynamic where attractive cells are moving toward a syn-

chronous state with it’s neighbour and the repulsive cells are attempting to move to an

anti-phase regime. The push pull dynamic is akin to the stretch-fold nature of a chaotic

attractor making it less surprising that one finds chaos in such systems.
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The restraint on systems (4.2.4.1) and (4.2.4.1), is

sgn(gij) 6= sgn(gnm), for at least one set of ij and nm.

System Label System Parameters

E2IM1 g =

 0 1

−0.2 0

 a = [.7, .6]

b = [.7, .4]

ε = [0.1, 0.1]

Lyapunov spectrum

Λ =



0.022

0.000

−0.196

−1.018



System Label System Parameters

E3IM1 g =


0 0.1 0.7

0.15 0 1

0.21 −0.29 0


a = [0, 0.53, 0.2]

b = [0.4, 0.17, 1]

ε = [0.1, 0.1, 0.1]

Lyapunov spectrum

Λ =



0.025

0.000

−0.188

−0.226

−2.496

−4.107


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(a) E2IM1 Timeseries
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(b) E3IM1 Timeseries

Figure 4.15: Voltage Time Series Plots of system E2IM1 and E31M1 undergoing chaotic
dynamics.
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(a) E2IM1 Inter Spike Intervals.
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Figure 4.16: Inter spike intervals of E2IM1 and E3IM1.
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(a) Distribution of inter spike intervals of E2IM1.
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Figure 4.17: Distribution of inter spike intervals for mixed electrical coupling.
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4.2.5 Chaos in Chemically Coupled FHN Cells

In this section chaos is reported in a system of N = 2 and N = 3 synaptically coupled

FHN cell.s

The two cell synaptically coupled system FHN system

is given by

ẋ1 = x1 −
1

3
x3

1 − y1 + g12s2 (x1 − vSyn1)

ẋ2 = x2 −
1

3
x3

2 − y2 + g21s1 (x2 − vSyn2)

ẏ1 = ε1(x1 + a1 − b1y1)

ẏ2 = ε2(x2 + a2 − b2y2)

ṡ1 = βH(x1)(1− s1)− δε1s1

ṡ2 = βH(x2)(1− s2)− δε2s2 (4.2.5.1)

The three cell chemically coupled system

ẋ1 = x1 −
1

3
x3

1 − y1 + g12s2 (x1 − vSyn1) + g13s3 (x1 − vSyn1)

ẋ2 = x2 −
1

3
x3

2 − y2 + g21s1 (x2 − vSyn2) + g23s3 (x3 − vSyn2)

ẋ3 = x3 −
1

3
x3

3 − y3 + g31s1 (x3 − vSyn3) + g32s2 (x3 − vSyn3)

ẏ1 = ε1(x1 + a1 − b1y1)

ẏ2 = ε2(x2 + a2 − b2y2)

ẏ3 = ε3(x3 + a3 − b3y3)

ṡ1 = βH(x1)(1− s1)− δε1s1

ṡ2 = βH(x2)(1− s2)− δε2s2

ṡ3 = βH(x3)(1− s3)− δε3s3 (4.2.5.2)

A number of simplifica-

tions are introduced to

(4.2.5.1)-(4.2.4.2). The

parameter

ε = 0.1

In order to keep the differ-

ential equations from be-

coming very stiff for nu-

merical integration. The

parameters

vSyni = 0, ∀i

Giving every synapse

in the system the same

reverse potential and

reducing the dimension

of the parameter space.

Due to the discontinuity

of the heaviside function,

H(x), the calculation

of they Lyapunov spec-

trum, which involves the

system’s Jacobian and

hence the derivative of the

heaviside function, runs

into difficulty.

As a compromise the heaviside function is approximated with a hyperbolic tangent func-

tion, namely

H(x) ≈ 1

2
(1 + tanh(Ax))
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where A >> 1 is taken to be sufficiently large, in the following results A = 100. Further-

more the parameter

τSyni
= δiεi

is used to reduce the number of operations and τSyni
is ‘interpretable’ as the timescale of

the synapse.

Chaos in 2 and 3 Chemically coupled Cells

System Label System Parameters

C2HA1 g =

 0 0.2

0.2 0


a = [0.71, 0.71]

b = [0.4, 0.4]

ε = [0.1, 0.1]

β = [1, 1]

τsyn = [1/1.2, 1/1.2]

Vsyn = [0, 0]

Lyapunov spectrum

Λ =



0.013

0.000

−0.055

−0.191

−1.179

−1.719



System Label System Parameters

C3HA1 g =


0 0.2 0.2

0.2 0 0.2

0.2 0.2 0



a = [−0.5,−0.5,−0.5]

b = [1, 1, 1]

ε = [0.1, 0.1, 0.1]

β = [1, 1, 1]

τsyn = [1/1.2, 1/1.2, 1/1.2]

Vsyn = [0, 0, 0]

Lyapunov spectrum

Λ =



0.018

0.000

−0.058

−0.263

−0.461

−0.884

−5.630

−9.192

−10.944


Comparing the oscillatory behaviour of the voltage like variable when using the hyper-

bolic tangent function approximation to that of the Heaviside function shows that even

during chaotic motion the difference is negligible for system C2HA1 while much of the

characteristics in system C3HA1 is kept.
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(a) Comparison for system C2HA1

9550 9600 9650 9700 9750 9800 9850 9900 9950 10000
−1.5

−1

−0.5

0

0.5

1

1.5

2

Comparing tanh and heaviside forms: x
1
 Vs t

t

x 1

 

 
tanh
heavi

(b) Comparison for system C3HA1

Figure 4.18: Typical comparison of oscillations using a hyperbolic tangent
approximation to the heaviside function

The time series plot of C2HA1 shows that both cells fall into out of phase 3 spike regime,

each cell dropping an action potential when it’s neighbour produces it’s third AP.
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Figure 4.19: Voltage time series of C2HA1, showing out of phase action potential
triplets of action potential.
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(a) C2HA1 Inter Spike Intervals.
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(b) Distribution of inter spike intervals of
C2HA1 Inter Spike Intervals.

Figure 4.20: Inter spike intervals of C2HA1 and their distribution.

In a homogenous system of three chemically coupled FHN cells one can find rich dynam-

ical behaviour. The time series shows two of the cells have a phase like behaviour while

the third is completely out of phase with the other two.
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Figure 4.21: Voltage time series of C3HA1. The homogenous cells showing in and out of
phase behaviour.

The inter spike intervals of C3HA1 shows a rich variety in spiking times, with one of the

cells producing action potentials that have a plateaux which is twice as long as the other
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two cells.
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(b) Distribution of inter spike intervals of C3HA1 Inter Spike Intervals.

Figure 4.22: Inter spike intervals of C3HA1 and their distribution.
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Conclusions and Future Research

This thesis is concerned with the study of cardiac and neural cells. The majority of this

thesis is concerned with the rhythmic disorders and the emergence of these disorders as

an inherent result of the most basic characteristics of cardiac and neural cells.

One of the primary aims was to show that biological oscillators which posses refractory

periods and action potential like wave forms can undergo a complex and rich change in

dynamical attributes when coupled.

The FHN system[57] is an ideal candidate for this line of research as it is a reduced model

for excitable cells derived from the quantitative Hodgkin-Huxley model[77] of a neuron.

As a 2D system of ODEs the FHN system is itself unable to intrinsically produce chaotic

behaviour, which can be found in vitro neurons and cardiomyocytes, however it itself

possess many of the properties that action potentials produced by neurons and cardiac

cells have.

I show some of the bifurcation structure of a single FHN cell with a mixture of both

analytical methods and computational methods from nonlinear dynamical systems the-

ory. Paying particular attention to parameter regions where an FHN cell has a transition

from equilibrium and quiescence to oscillations. These parameter regions in which the

system can produce limit cycles give a qualitative view of a phase portrait of a full model

of a cardiac cell or a neuron. The bifurcation analysis conducted on the single cell later

serves as an important means of constraining the analysis of coupled cells to regions of

parameter space where cells are excitable or oscillating self sustainably.

I show that introduction of a linear coupling term between FHN cells which qualitatively

behaves as a gap junction between excitable cells produces in phase and anti-phase syn-

chronous regimes. Excitable cells such as neurons and cardiac cells do not produce waves

in a traditional sense as they do not interfere with one another, the action potentials

do not have a superposition principle. Instead action potentials behave as triggers to
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neighbours; if a neighbour is not in a refractory state and the coupling is large enough for

a supratheshold potential to be transmitted then a neighbouring cell will elicit an action

potential response. Methods from the study of synchronisation theory introduce a num-

ber of useful dynamical measures of dynamical behaviour that can be used to quantify

the emergent dynamics of the coupled system. I define an order phase variable by means

of a Hilbert transform that can be used in vitro experiments for analysis of cell-cell inter-

actions, needing only a measurement of the action potential signal. The phase variable

in turn allows the definition of an order parameter to quantify the synchrony of a sys-

tem in terms of the relative times at which the constituent cells produce action potentials.

I analytically find and show a sufficient condition for the emergence of synchrony be-

tween FHN cells coupled electronically with inhomogeneous coupling strengths and ver-

ify the result numerically showing a particular instance. Furthermore it is shown that

varying the coupling strength between neighbouring cells that once in a synchronous or

non-synchronous state coupled cells can show a reluctance to make a transition from syn-

chronous to asynchronous (or viceversa) behaviour. The coupled system is a hysteretic

system in this respect; variation of the strength of coupling between the cells shows that

it is not only important what coupling strength is currently being imposed on the sys-

tem but also what the coupling strength was imposed on the system while varying the

coupling strength and looking for transitions from synchrony to asynchrony.

With rhythmic disorders an immediate question that arises is: how can the rhythms

be controlled? In this thesis I show analytically that identical electrically coupled FHN

cells which are inhomogeneously coupled can be synchronised to another, separate, set

of identical neurons that possess a different coupling strength structure. By means of

nonlinear control signals applied to the constituent FHN cells that are to be controlled

the system can be forced into a synchronous state relative to a second system of FHN

cells. This result is illustrated for a system of two two-cell systems both analytically and

numerically. This shows that at least for systems of cells that have had their conduc-

tion pathways compromised it is theoretically possible to adjust their action potential

responses with respect to an uncompromised system of cells with a cell by cell control

sequence. Ideally however such a control mechanism would not need to be administered

to all the constituent cells but rather to key cells within the network structure.

For coupled FHN cells I investigate the frequency locking regions of a master-slave sys-

tem as a function of the coupling strength from master to slave. For repulsive coupling

strengths the FHN system shows a rich variety of frequency responses over relatively nar-
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row coupling strengths. Such frequency locking regions have implications for Wenchen-

bach rhythms in cardiac systems where contractions of the atria do not always lead to

contraction of the ventricles. I show that between action potential generating cells it is

not simply a complete block of conduction between cells that can cause action potentials

to be dropped but more simply functioning junctions with relatively small changes in

repulsive coupling strengths can lead to dramatic changes in relative frequency responses

between the cells. These results are illustrated with numerical simulations drawing from

the techniques earlier developed in studying the synchrony between cells. Additionally

bursting behaviour which individual neurons can themselves exhibit, can be generated as

an emergent property of a system of master-slave coupled cells whose activity timescales

differ by an order of magnitude. This suggests that bursting signals need not be a direct

result of intrinsic bursting in a cell and can be generated as an emergent property in a

coupled system.

Finally in this thesis I show that coupled FHN cells can produce chaotic dynamics when

they are electrically or chemically coupled together. The chaos present in the system is an

emergent phenomenon directly resulting from communication between the cells. Chaotic

firing patterns in forced neurons have been found both experimentally and theoretically

[5]. In this thesis the chaos reported is not that of a forced system which can be found

in [32]. The chaotic dynamics, which each individual cell is incapable of producing, is

a result of coupling the cells together. This suggests that in real neural or cardiac sys-

tems where one finds chaotic behaviour one may have success in successfully eliminating

or enhancing the chaotic signals by targeting the conductivity of the gap junctions and

synapse between cells rather than the intrinsic properties of the cells themselves.

There are a multitude of topics to examine in the future. Most notable are topics in

nonlinear control and complex networks. A means to control the synchrony of a group

of coupled FHN cells by simply influencing a small subset of the cells in a system would

make for a more practical basis for medical implementation. There are a number of chal-

lenges that such a study would entail, firstly one must find a means of finding the most

influential cells in a network which are the most likely targets for network control and

then one must find a combination of nonlinear control signals to administer a desired

control throughout the network.

The role of the network structures found in cardiac and neural systems is also an open

problem. This thesis has shown that a number of emergent properties can occur when

coupling cells together in an all-to-all or master-slave regime. In reality however car-
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diac and more so neural networks are made up of neurons connected in complex network

structures. These structures have small-world and scale-free type characteristics that are

found in communication networks such as the internet, social networks and even collab-

oration networks between researchers. The study of such systems is vitally important in

terms of the structure of the internet but also in understanding how neural systems are

assembled. The neural system is a system capable of learning, optimising and restruc-

turing all of which lead to evolving network structures. These ideas will be important to

investigate when one is interested in neural plasticity.

Examining complex networks of dynamical nodes is still in its infancy and will require

new developments in mathematics and new approaches in dynamical systems theory to

adequately, identify, characterise and control dynamical systems that live on a complex

network whose functional properties are a result of the systems topology.
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Appendix A

FHN slow manifold expansion in

terms of the small parameter

Here we find an expression for the slow manifold of the FHN system when ε is a small

parameter. We follow the formulation found in [63, p 74].

The FHN system after transformation to slow time τ = εt is given by

εẋτ = f(x, y) = x− x3

3
− y + I

ẏτ = g(x, y) = x+ a− by

The aim is to find a function

y = Y (x, ε)

which is locally a slow invariant manifold of the slow time FHN system. The slow manifold

takes the following form

Y (x, ε) = Y0(x) + εY1(x) + ε2Y2(x) +O
(
ε3
)

where the functions Yi, i = 0, 1, 2 are to be determined. From [63, p 75-76] these

functions are found by looking at the invariance property

∂Y

∂x
f(x, Y ) = εg(x, Y )
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using it in the Taylor series expansion of f(x, y) to yield

(
∂Y0

∂x
+ ε

∂Y1

∂x
+ ε2

∂Y2

∂x

)[
f(x, Y0) + (εY1 + ε2Y2)

∂f

∂y
+

1

2!

(
εY1 + ε2Y2

)2 ∂2f

∂y2

]
= εg(x, Y0) + ε(εY1 + ε2Y2)

∂g

∂y
+
ε

2!

(
εY1 + ε2Y2

)2 ∂2g

∂y2

Solving the above by order we have at O(ε0)

∂Y0

∂x
f(x, Y0(x)) = 0 ⇐⇒ y = Y0(x)

at order O(ε1)

ε
∂Y1

∂x
f(x, Y0(x)) + εY1

∂Y0

∂x

∂f

∂y
= εg(x, Y0)

we have f(x, Y0(x)) = 0 and thus

Y1(x) =
g(x, Y0(x))

∂Y0
∂x

∂f
∂y

at order O(ε2) we have

Y2(x)
∂Y0

∂x

∂f

∂y
+
Y 2

1 (x)

2

∂Y0

∂x

∂2f

∂y2
+ Y1(x)

∂Y1

∂x

∂f

∂y
+
∂Y2

∂x
f(x, Y0(x)) = Y1(x)

∂g

∂y
.

Again since f(x, Y0(x)) = 0 we have

Y2(x) =
Y1(x)∂g

∂y
(x, Y0(x))− Y 2

1 (x)

2
∂Y0
∂x

∂2f
∂y2

(x, Y0(x))− Y1(x)∂Y1
∂x

∂f
∂y

(x, Y0(x))

∂Y0
∂x

∂f
∂y

(x, Y0(x))
.

For the slow time FHN system we thus have,

Y0(x) = x− x3

3
+ I

197



The O(ε) term requires a number of derivatives,

∂Y0

∂x
= 1− x2,

∂f

∂y
= −1

and thus

Y1(x) =
x+ a− bx+ bx3

3
+ bI

(1− x2) (−1)

which can be written more compactly as

Y1(x) =
(1− b)x− bx3

3
+ a+ bI

x2 − 1
.

Finally the O(ε2) term requires the derivatives

∂g

∂y
= −b, ∂Y0

∂x
= 1− x2,

∂2f

∂2y
= 0,

∂f

∂y
= −1

∂Y1

∂x
=

(1− b)− bx2

x2 − 1
+

2

{
bx4

3
− (1− b)x2 − (a+ bI)x

}
(x2 − 1)2

After a little simplification one can write

Y2(x) = −1

9

(3x− 3xb− bx3 + 3a+ 3Ib) (4bx4 − 12bx2 + 3x2 + 6ax+ 6Ibx+ 3)

(x2 − 1)4

The slow manifold equation for the FHN system is given by

y = Y0(x) + εY1(x) + ε2Y2(x) +O(ε3)

where,
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Y0(x) = x− x3

3
+ I

Y1(x) =
(1− b)x− bx3

3
+ a+ bI

x2 − 1

Y2(x) = −1

9

(3x− 3xb− bx3 + 3a+ 3Ib) (4bx4 − 12bx2 + 3x2 + 6ax+ 6Ibx+ 3)

(x2 − 1)4
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Appendix B

The FHN cell in second order form

B.1 The single cell

Beginning with the FHN system

ẋ = x− 1

3
x3 − y + I (B.1.0.1)

ẏ = ε(x+ a− by) (B.1.0.2)

we can differentiate the equation for ẋ to obtain

ẍ = ẋ− x2ẋ− ẏ + İ

assuming that the external current is a constant we have İ = 0. The aim is to completely

write this system in terms of x and its derivatives and thus we eliminate the ẏ term using

(??),

ẍ = ẋ− x2ẋ− ẏ

= ẋ− x2ẋ− εx− εa+ εby.

On rearranging (B.1.0.1) we find that

y = x− ẋ− 1

3
x3 + I.
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Thus,

ẍ = ẋ− x2ẋ− εx− εa+ εbx− εbẋ− εb

3
x3 + εbI.

Finally we have the second order ODE given by

ẍ = (1− εb− x2)ẋ+

(
εb− ε− εb

3
x2

)
x+ εbI − εa (B.1.0.3)

B.2 The electrically coupled system

The system of N electrically coupled FHN cells is given by

ẋi = xi −
1

3
x3
i − yi + Ii +

N∑
j=1
j 6=i

gij (xi − xj) (B.2.0.4)

ẏi = εi(xi + ai − biyi) (B.2.0.5)

Again it can be useful to write this in terms of coupled second order ODE systems and

proceed to differentiate (B.2.0.4) and obtain

ẍi = ẋi − x2
i ẋi − ẏi + İi +

N∑
j=1
j 6=i

gij (ẋi − ẋj) .

As before we look at the case where the external currents are constant and so İi = 0 for

all i and use (B.2.0.5) to eliminate the ẏi and find

ẍi = ẋi − x2
i ẋi − εixi − εiai + εibiyi +

N∑
j=1
j 6=i

gij (ẋi − ẋj) .

Rearrangement of (B.2.0.4) yields an expression for yi,
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yi = xi − ẋi −
1

3
x3
i + Ii +

N∑
j=1
j 6=i

gij (xi − xj)

Now the set of coupled second order equations can be written as

ẍi = ẋi − x2
i ẋi − εixi − εiai + εibi

xi − ẋi − 1

3
x3
i + Ii +

N∑
j=1
j 6=i

gij (xi − xj)

+
N∑
j=1
j 6=i

gij (ẋi − ẋj)

and finally we have

ẍi = (1− εibi − x2
i )ẋi +

(
εibi − εi −

εibi
3
x2
i

)
xi + εibiIi − εiai+

+
N∑
j=1
j 6=i

gij (xi − xj) +
N∑
j=1
j 6=i

gij (ẋi − ẋj) (B.2.0.6)

202



\ddot{x} \dot{x}

x

x

f(x)=−x^2 − eps*b + 1

x^2

\dot{x}*(−x^2 − eps*b + 1)

eps*b
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x

x( eps*b − eps 
− (1/3)*eps*b*x^2 )

x( eps*b − eps 
− (1/3)*eps*b*x^2 ) 
+ eps*b*I − eps*a

x2

x2

x

(x−x2)

g12*eps*b

g12*eps*b*(x1−x2)

eps*b

\dot{x}

\dot(x)−\dot(x2)

g12*(\dot(x − \dotx2))

−(\dot(x)−\dot(x2))

x1

x2
Out2
2

Out1
1

square1
u2

square
u2

g21
−1

g12
−1

epsilon
0.1

eps2
0.1

eps*b2

eps*b*I1eps*b*I

eps*b

eps*a2
eps*a

b2
1

b
0.3

a2
−0.1

a
1

\dot{x}*f(x)

Scope1
Scope

Product9

Product8

Product7

Product6

Product5

Product4

Product3

Product2

Product10

Product1

Product

Integrator3
1/s

Integrator2
1/s

Integrator1
1/s

Integrator
1/s

I2
0

I
0

Gain1
−K−

Gain
−K

Constant1
−1

Constant
−1

Figure B.1: The Simulink schematic for two electrically coupled FHN cells.
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