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Abstract

The rapid growth of wireless networks has led to increasing interest in designing

new algorithms that can efficiently reduce the energy consumption of routers

and other devices. We present a new formulation of the Network Flow problem

that takes into account the energy consumption of the data flows, and reduces

the overall network energy expenditure.

We introduce an energy model for wireless connections and analyse its valid-

ity with real measurements. Then we propose a convex optimization problem

that establishes energy constraints on the links, and encourages energy savings

that induce sparsity (shut-off of links). We propose several algorithms that can

be computed in a distributed fashion for different types of capacity constraints.

Finally we justify the sparsity of the solution by using the theory of proximal

methods and present simulations for different scenarios. Our algorithms have

application both in wired networks as well as in TDMA and 802.11 wireless

networks.



Chapter 1

Introduction

Energy saving is currently a subject of much interest, with efforts to reduce

the energy consumption of Communication Technologies being targeted at both

infrastructure and user devices. New protocols are being devised to increase the

battery life of mobile terminals, and also algorithms that increase the efficiency

of wired and wireless networks by using only as much energy as is needed. With

this in mind, opportunities for saving energy are particularly great during idle

periods of communication, or when traffic is low. These periods can be used to

place the network elements to a lower energy consumption state, or sleep, and

reduce the energy expenditure from the case when the device is always on.

In this thesis we consider the problem of how to allocate the traffic from

users in networks with multiple routing paths. We analyse the potential energy

savings that can be achieved while maximising network utility for users. We

formulate this task as a convex optimization that allows a distributed imple-

mentation with network cooperation. The proposed distributed algorithm max-

imizes a utility function for every user [20], while respecting network capacity

constraints and minimising the energy costs associated with data transmission.

Capacity constraints are studied for different network technologies, specific-

ally we focus on constraints for wired networks, wireless TDMA (Time Division

Multiple Access), and 802.11 networks. The first type of constraints are linear in
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form, with traffic rates bounded by a capacity threshold. The 802.11 constraints

use a Markovian model of successful packet transmissions, collisions, and idle

periods that allow for a log-convex representation of the requirements [21, 22].

Both cases are analysed and solved in a distributed fashion.

We analyse energy constraints for different networks, producing a linear

model that can faithfully represent the energy use of wireless networks such as

802.11 routers, UMTS or LTE basestations, and femtocell routers. We analyse

real measurements of these technologies to validate the model, and explore the

literature [31, 16, 14, 18]. This model is then included as a loss function in the

network flow problem.

These energy constraints are specified as the norm of flows that run through

links, which are added as penalties. The kind of norm chosen for the links

influences the flows that are penalized in favour of others. We explore the

effects that the l1-norm encourages as well as the l1/l∞-norm exploiting group

graph structure [4]. Our interest here is in solutions that encourage sparsity,

meaning a complete shut-off of links, as well as to limit user rates so as to allow

energy saving on underused links. Finally we present simulations to evaluate

the algorithms convergence and performance.

Other works that study energy savings specifically for wireless networks are

[10, 25, 29, 30], who consider cell zooming and size scaling of the cell size to adapt

dynamically to traffic demands and save energy by shutting down redundant

base stations. In [12] they consider the problem of sleep and wake-up transients

of basestations, to dynamically react to user demands.

Regarding the problem of a whole network, [2] studied the routing problem

of provisioning guaranteed flow rates for a given demand matrix while minimiz-

ing energy consumption. They analyse different models of energy consumption,

linear and polynomial, and show that for most other functions it is a NP-hard

problem. In a different work [1], the same authors present a routing and peri-

odic scheduling algorithm, that given a network and traffic matrix, minimizes

switching among routers and delays among packets.
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In [15] the authors present a minimum edges routing problem of a network.

Given a set of demands and capacity constraints on the links they show this is

an NP-hard problem and it is impossible to find a polynomial-time constant-

factor approximation algorithm to solve it. After this statement they present

heuristics to find energy-efficient routing, consisting of balancing load from the

links.

In [28], the authors present two forms of power management that reduce en-

ergy consumption over networks, either adapting the rate of network operation,

or putting network elements to sleep during idle times with small and controlled

increase in latency. With a similar idea but applied to LTE cells, the authors in

[14] propose discontinuous transmission (DTX) on the base station side. This

methodology would allow significant energy reductions in a lightly used LTE

network without damaging service availability.

Our contribution in this area is to present fair solutions to the multipath

problem considering power consumption of links and routers. Our algorithms

optimize a whole network in a distributed fashion, choosing the traffic routes

that minimize energy, while providing some traffic utility to every user, e.g.

proportional fairness, rather than simply meeting a specified traffic demand.
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Chapter 2

Energy Usage by Wireless

Routers

2.1 Introduction

We present in this chapter an overview of energy measurements of wireless

networks and analyse the validity of a linear model for these cases. More spe-

cifically, we use results from [31, 16] corresponding to the analysis of a femtocell

transmitting router and a 802.11 Access Point, respectively.

There are not many other studies available in the literature that offer meas-

urements for wireless networks. Apart from the ones already mentioned and

their included references, [14] considers power consumption in 3G and LTE

Networks and presents a linear model similar to the one in Figure 2.1. It dis-

cusses the possibility of DTX (Discontinuous Transmission) for existing HSPA

and LTE networks and the corresponding energy savings, and analysed the po-

tential savings in data acquired from 300 cells in a large European city.

Regarding 802.11n wireless networks, in [18] they analyse the energy con-

sumption of MIMO routers controlling different aspects for transmission such

as channel width, transmit power, rates, antenna selection, etc. In their results
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they show that adding antennas to achieve higher rates changes the total power

consumption to a high degree, but this is not so significant with a fixed selection

of antennas. In addition, they analyse the heuristic of transmitting at highest

speed and then racing to sleep, concluding that due to the increased power when

using extra antennas, it might not be the optimal strategy.

More studies consider the energy savings from disconnecting router elements

in idle states, or reducing transmission rates to save energy. For instance, [28]

proposes an algorithm that buffers arriving data, and uses the long gaps from

these acquisitions to set network interfaces in sleep mode while establishing a

controlled delay for packets, an approach they call “buffer-and-burst”. The art-

icle also proposes another alternative based on reducing traffic rate transmissions

which can also deliver substantial savings. One reason they mention is the lower

consumption of electronic components when operating more slowly, but also the

possibility of using Dynamic Voltage Scaling (DVS) in lower operating frequen-

cies, which also reduces power consumption. They measure energy saving gains

in percentage of disconnected elements in time, and in rate reductions from the

average for each method respectively.

2.2 Energy Model

We consider the following simple model of wireless device energy consumption,

P = w(d)sat(x, d) + v(d)H(x) + c (2.1)

where P is the device power consumption in Watts, x is the offered load in

Mbps, d is the datagram size in bytes and
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sat(x, d) =


x 0 ≤ x ≤ xmax(d)

0 x ≤ 0

xmax(d) x > xmax(d)

(2.2)

H(x) =


1 x > 0

0 otherwise
(2.3)

In this model, w(d) captures the dependence of power consumption on offered

load, v(d) the dependence on datagram length when the offered load is held

fixed and c captures the baseline power consumption when the device is idle

(powered on but no data transmitted or received). This is illustrated in Figure

2.1, where the “fixed-term” refers to c+ v(d)H(x) and the “variable term” refers

to w(d)sat(x, d).

Power [W]

Rate [B/s]

}
}

Variable Term

Fixed Term

Figure 2.1: Energy Model

2.3 Femtocells

We report detailed measurements of the electrical energy consumption of a com-

mercial 3G femtocell base station. The work in this section is based on data

from [31].
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Femtocell

basestation

User deviced

Ethernet

backhaul

Figure 2.2: Network topology

2.3.1 Experimental Setup

2.3.1.1 Network setup

The test environment is composed of a single femto–cell and up to four end–user

devices, see Figure 2.2.

The femtocell basestation is an Alcatel–Lucent device (model 9361 Home

Cell V2-V). The femtocell acts as a standard 3G basestation and uses a SIM

card which is active on the cellular network and that has been registered for

use with the femtocell. The femtocell basestation is equipped with an Ethernet

port that must be connected to a suitable broadband connection to provide

backhaul access to the network operator. In the experiments the femtocell is

connected to the campus network. During bootstrap the femtocell establishes

an encrypted VPN connection to the network operator which is used to carry

all the traffic to/from end–user devices in the cell. This traffic may include

voice/video calls and data transfer sessions. The femtocell supports up to four

simultaneous end–user devices.

End-user devices studied included one mobile broadband modem and three

mobile phones. The mobile broadband modem used during the measurements

is a Huawei K3770. This device supports HSUPA/HSDPA/UMTS standards on

the 2100 MHz/900 MHz bands and the GSM/GPRS/EDGE standards on the

850/900/1800/1900 MHz bands. The device is rated for 2 Mbps HSUPA and

7.2 Mbps HSDPA date service. Mobile phones were Samsung model Galaxy S2.
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2.3.1.2 Measuring electrical energy consumption

A custom Energino instrument was used to measure the electrical energy con-

sumption of the femtocell basestation. Energino is a plugload meter designed to

monitor the energy consumption of DC devices. It consists of a hardware and

a software components both based on the Arduino platform. A management

backend written in Python is used to configure Energinos operating paramet-

ers, e.g. sampling rate and resolution, to turn the monitored device on/off, and

to gather the energy consumption statistics. Energino supports sampling rates

up to 10 KHz and measures electrical power with an accuracy of approxim-

ately 1 mW. See [16, 17] for further details. In the experiments the Energino

instrument was located between the electrical power plug of the basestation

and the wall socket, and so measures the power consumption of the complete

basestation.

2.3.1.3 Traffic generation

Several types of traffic were generated on the end-user devices, including 3G

voice calls, SMS, MMS, 3G data (youtube, browsing) and CBR and VBR UDP

data traffic. UDP data traffic was generated using iperf, with traffic transmitted

from the end-user device to a public machine.

2.3.2 Measurements

In the following sections we present representative measurements of energy con-

sumption when the basestation is idle (powered on but with no end-user devices

associated to the cell), as the offered load is varied and as the datagram size

used is varied.

2.3.2.1 Basestation idle

Figure 2.3 shows measured electrical power consumption vs time when the bas-

estation is idle. It can be seen that the power consumption consists of a baseline
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Figure 2.3: Measured power consumption of the femtocell basestation when idle
(no end-user devices associated).

value of around 7.77 W (with some variability around this mean value), periodic

spikes (with period 10s) and a number of less regular spikes. From inspection

of tcpdump traces on the wired backhaul link, we find that the spikes in power

are correlated with communication on this link and so appear to be related to

network management functions.

2.3.2.2 Energy consumption vs offered load

Figure 2.4 presents measurements of the mean power consumption of the femto-

cell basestation when a single end-user device is associated and is transmitting

UDP data traffic. Results are shown of power consumption as the offered load

is varied. Figure 2.4 (a) shows measurements when the UDP datagram size is

1536 B, while Figure 2.4 (b) shows measurements when the UDP datagram size

is 128 B. Also indicated are the 2σ confidence intervals.
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Figure 2.4: Average power consumption at the Femtocall as a function of the
bitrate size for a constant datagram length. Packet loss was lower than 5% for
bitrates equal to or lower than 1 Mbps. The femtocell is acting as receiver.

It can be seen that the power consumption increases with offered load before

reaching a plateau. For a given offered load, the power consumption is uniformly

higher for the small datagrams than for the large datagrams, e.g. at 0.5 Mbps

the mean power consumption is 8.07 W with 1536 B datagrams and 8.12 W

with 128 B datagrams. The rate of increase with offered load is also somewhat

higher with smaller datagrams.

The plateau in power consumption correlated with the offered load reaching

the network capacity. With 1536 B datagrams the maximum network through-

10



0 200 400 600 800 1000 1200 1400 1600
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

packet size d (Bytes)

x
m

a
x
(d

) 
(M

b
p
s
)

Figure 2.5: Measured maximum network throughput vs datagram size.

put is observed to be 1.09 Mbps – at offered loads above this level, significant

packet loss is observed and the net goodput remains constant at 1.09 Mbps.

With 128B datagrams, the maximum network throughput is observed to be

1.05 Mbps. Measured values for other datagram sizes are shown in Figure 2.5.

It can be seen that the maximum throughput increases monotonically with da-

tagram size, and is significantly reduced at the smallest datagram size of 64 B.

This is as expected, since fixed network overheads (framing, ARQ and con-

trol overheads etc) are amortised across more data bits as the datagram size is

increased.

2.3.2.3 Energy consumption vs datagram size

Figure 2.6 plots measurements of power usage vs UDP datagram size. Figure

2.6(a) shows data when the offered load is 0.2Mbps and Figure 2.6(b) shows

the corresponding data when the offered load is 1Mbps. Also indicated are the

2σ confidence intervals. It can be seen that the power consumption tends to

decrease as the datagram size is increased. As the datagram size is increased,

the number of datagrams sent per second decreases when the offered load in

Mbps is held fixed. Per datagram overheads (framing, ARQ, etc.) are therefore

reduced and presumably this is the source of the reduction in power consump-

tion. Observe that the power consumption appears to rise again for datagrams
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above about 1470 B. We believe that this is due to fragmentation of these larger

datagrams – from separate downlink tcpdump measurements, we estimate the

wireless link MTU to be 1368 B.

2.3.2.4 Energy Model

From Figure 2.3 parameter c is approximately 7.77 W. Figure 2.5 gives the

measured values for xmax. When the dependence of w(d) on datagram size is

primarily due to the contribution of fixed overheads per datagram (framing etc,

as already noted), we can select

w(d) = ω0(1 +
ω1

d
) (2.4)

where ω0, ω1 are parameters. ω1 can be thought of as the per datagram over-

head, specified in bytes, while ω0 is a factor converting between units of bytes

and energy.

Using this choice of structure for w(d), we find that with the parameter

values given in Table 2.1 and the v(d) values shown in Figure 2.7 this simple

model provides a good fit to the measurements across the full range of operating

conditions considered. For example, the model energy consumption predictions

are indicated by the red lines in Figures 2.4 and 2.6. Similar predictive accuracy

is obtained for other datagram sizes and offered loads.

Observe that structure of the proposed model is simple yet intuitively reas-

onable. c and xmax can be directly measured. The function w(d) varies in

accordance with fixed overheads. From Figure 2.7 it can be seen that v(d) de-

creases with increasing datagram size until a datagram size of around 1300B is

reached and then increases again. This increase is consistent with the onset of

fragmentation commented upon previously.
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Figure 2.6: Average power consumption at the Femtocall as a function of the
datagram size for a constant traffic generation rate of 1Mb/s. Packet loss is
lower that 2% for all measurements, except for the one with datagram length
set to 64 bytes where packet loss is 26%. The femtocell is acting as receiver.

Parameter Value
ωo 0.06 W/Mbps
ω1 70 B
c 7.77 W

Table 2.1: Energy model parameter values for femtocell basestation
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Figure 2.7: Energy model v(d) values for femtocell basestation.

2.4 802.11

We present here an analysis of energy consumption in 802.11g networks, and

how this data fits in the model from the previous section. The data for this

analysis has been taken from [16], where we tried to motivate our energy model

from the measurements in their figures.

2.4.1 Experimental Setup

The authors from [16] used a setup consisting of one computer transmitting to

an Access Point (AP) connected to a plug load meter and to the power grid.

Figure 2.8 shows their setup. They performed tests both when the AP was in

receiver mode and in transmitter mode, but we will only refer to results from

the later.
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Figure 2.8: 802.11 Measurement Topology

The measurement testbed consisted of an Access Point built around a PCEn-

gines ALIX 2C2, two processor board 802.11a/b/g wireless interfaces (Atheros

AR5123A chipset), operating system OpenWRT 10.3.01-rcl and MadWifi Wire-

less NIC driver. The computer was a DELL D630 notebook equipped with a

wireless adapter Atheros AR5212 chipset. Measurements were taken on fre-

quency of operation 2.412 GHz (channel 1), rate control was set on auto and

transmission power to 18dBm (~63.1mW).

Traffic generation was performed at the AP using the freely available traffic

generator Multi-Generator MGEN, that can inject both TCP and UDP traffic.

Finally, power consumption was measured using a plug load Watts up? and

connected through a USB port to acquire the measurements.

2.4.2 Model validation

Authors from [16] carry out a number of experiments to analyse the average

power consumption behaviour of the AP in different scenarios. Namely, chan-

ging packet size while keeping the bitrate constant, and changing rates with

fixed packet length.

The first observation is that the power consumption level in an idle state is

a constant 5.3 W. This corresponds in our model to the defined constant c, and

can be checked in all of their figures.

Furthermore, considering the test that analyses traffic load vs consumed
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power for fixed packet size of 1280 bytes, a linear relation can be obtained from

their data. More specifically, we present our fitted curve with the estimated

data from their graphs, and show our model in Figure 2.9.
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Figure 2.9: Average power consumption at the AP as a function of traffic rates,
and constant message size of 1280 bytes.

The model parameters we found to fit this data are presented in Table 2.2.

Additionally, we used values from Figure 2.10 for parameter v(d), and xmax =

6.7W was extracted from their figure (valid when transmitting 1280 B packets).

Parameter Value
ω0 0.15 W/Mbps
ω1 70 B
c 5.3 W

Table 2.2: Energy Model parameter values for 802.11 AP.
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Figure 2.10: Energy model v(d) values for 802.11 AP.

Another test analysed power consumption vs message size for a fixed trans-

mission rate. They considered two transmission rates, 100 KB/s and 1 Mb/s.

We exported their data to Figure 2.11, and fitted our model to their curves.

Our curves reasonably represents this data.
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Figure 2.11: Average power consumption for different message sizes, and con-
stant transmission rates.

Finally, in another experiment [16] considered two different transmission

power levels, i.e. 10 and 18dBm for fixed packet size and transmission rate.
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In this case they did not observe relevant power consumption variations for the

constant message size (1280 bytes). This fact also confirms that our linear model

does not need to take this aspect into account.

18



Chapter 3

Fair Energy-Optimal

Scheduling

In this chapter we address the problem of fair rate control and routing in com-

munication networks while taking into account the energy consumption of links

and routers. We formulate this task as a utility-fair optimization problem that

includes an energy cost component associated with the router’s consumption

(or link interfaces).

3.1 Problem Setup

3.1.1 Network Model

We consider a network with a set of stations N connected by a set of links

L. We model this by a graph G : (N,L). We let F denote the set of flows

carried by the network, where each flow f ∈ F has a source, a destination, a

route rf consisting of a set of links in L connecting the source and destination,

and a transmission rate xf . We can summarise this routing information using

a binary matrix A, with rows indexed by flow identifiers and columns indexed

by link identifiers. That is, the (f, l)th element afl = 1 if link l ∈ rf , and zero
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otherwise. We also define for each link l ∈ L the set Fl := {f : f ∈ F , l ∈ rf}

consisting of the flows that use the link.

We model the network link capacity constraints using inequalities of the form

gl (x) ≤ 0, l ∈ L (3.1)

where x denotes the vector of network flow rates. The precise form of function

gl(·) depends on the characteristics of the link considered. We will analyse the

following options.

Wired Networks

In wired networks, the router interfaces have a limit on the total rate they

can transmit, where all flow rates in the link add towards that limit. We can

express such restrictions as the linear constraints,

∑
f∈Fl

xf ≤ cl, l ∈ L (3.2)

That is, gl (x) :=
∑
f∈Fl xl − cl. Equivalently, in matrix form we have

ATx ≤ C (3.3)

where C is the vector with elements consisting of the link capacities cl, l ∈ L

and A is the routing matrix defined earlier.

TDMA Wireless Networks

In wireless networks that use Time Division Multiple Access (TDMA) the

routers communicate on assigned slots which are decided by a scheduler, each

flow getting an allocated slice of time to forward the information. Suppose the

network consists of a set of cells L, with a single scheduler controlling each cell,

and consider a scheduler that assigns a time slice Tf,l in a round robin fashion for

each flow f and wireless cell l, satisfying the constraint
∑
f∈Fl Tf,l ≤ Tl where Tl
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is the period of schedule. Let the rate of transmission of flow f in cell l be given

by wf,l in symbols/second, which is determined by the modulation, spectral

bandwidth and coding used for the transmitting signal in the specified cell.

Therefore, given the rate of transmission, xf = wf,lTf,l encoded symbols are

sent through the link corresponding to flow f on every slot time. Considering

the TDMA scheduling for all flows, we arrive at the following constraint per

wireless cell

∑
f∈Fl

xf
wf,l

≤ Tl, l ∈ L (3.4)

That is, gl (x) :=
∑
f∈Fl

xf
wf,l
− Tl. Observe that this is similar in form to equa-

tion 3.2

802.11 Wireless Mesh Networks

Consider a wireless network composed of a set of 802.11 e/n WLANs. Within

each WLAN we divide time in MAC slots, where each slot can be a physical idle

period, a successful transmission, or a colliding transmission. Following [21, 22],

we define the following:

Nl Set of stations in a WLAN l

L Set of WLAN cells

τi Probability that the station i is attempting transmission

Psucc,i = τi ·
∏
j 6=i (1− τj) i ∈ N

Pidle =
∏
j∈N (1− τj)

Pcoll = 1−
∑
i∈N τi ·

∏
j 6=i (1− τj)−

∏
j∈N (1− τj)

Es = Pidle · σ + Pcoll · Tcoll +
∑
i∈Nc Psucc,i · Tsucc,i Average time slot duration

Tcoll the duration of a collision

Tsucc,i the duration of a successful transmission by station i
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Fi is the set of flows going through station i, Fi := {f : f ∈ F , i ∈ rf}

di is the number of bits sent in a successful transmission by station i (datagram

size)

The mean throughput of station i in cell l is given by

∑
f∈Fi

xf =
Psucc,i

Es
di

=
τi
∏
j 6=i (1− τj) di∏

j∈Nl
(1− τj)σ +

(
1−

∑
i∈Nl

τi
∏
j 6=i (1− τj)−

∏
j∈Nl

(1− τj)
)
Tcoll +

∑
i∈Nl

Tsucc,i
(
τi ·

∏
j 6=i (1− τj)

)
=

τi
1−τi

∏
j∈N (1− τj) di∏

j∈Nl
(1− τj)σ +

(
1−

∑
i∈N

τi
1−τi

∏
j∈Nl

(1− τj)−
∏
j∈Nl

(1− τj)
)
Tcoll +

∑
i∈Nl

(
τi

1−τi

∏
j∈Nl

(1− τj)
)
Tsucc,i

=
ξidi

σ +

(
1∏

j∈Nl (
1−τj)

− ξi − 1

)
Tcoll +

∑
i∈Nl

(ξi)Tsucc,i

=
ξi

di
Tcoll

σ
Tcoll

− 1 +
∏
j∈Nl

(1 + ξj) +
∑
i∈Nl

(
Tsucc,i
Tcoll

− 1
)
ξi

=
di

Tcoll

1

χl
ξi i ∈ Nl (3.5)

where ξi = τi
1−τi is a normalized transmission probability, and χl = σ

Tcoll
− 1 +∏

j∈Nl (1 + ξj)+
∑
j∈Nl

(
Tsucc,j
Tcoll

− 1
)
ξj is independent of the particular station.

The network capacity constraints can therefore be written as

∑
f∈Fi

xf ≤
di
Tcoll

1

χl
· ξi, i ∈ Nl (3.6)

These constraints are non-convex, but taking logs of both sides and changing

variables yields

log
∑
f∈Fi

ex̃f ≤ log
di
Tcoll

− logχl + ξ̃i (3.7)

where x̃f = log xf , ξ̃i = log ξi. That is,

gi(x̃) := log
∑
f∈Fi

ex̃f − log
di
Tcoll

+ logχl − ξ̃i ≤ 0 (3.8)

Since logχl is convex in ξ̃ [21, 22] and the log of a sum of exponentials is convex

[9], this constraint is convex.

For a WLAN with two stations, Figure 3.1 plots the set of achievable rates
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when Tsucc = Tcol = 10σ.
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Figure 3.1: Non-convex rate, and log-convex transformation

3.1.2 Utility-Fairness

We consider the family of utility fair objective functions introduced by Kelly

[20],

U (x) :=


x1−β−1
1−β x ≥ 0, β ≥ 0, β 6= 1

log (x) x ≥ 0, β = 1

(3.9)

These functions are strictly concave and continuously differentiable over x.

We collect all flows sharing the same source and destination into a bundle,

and let B denote the set of such bundles. We associate each bundle with a user,

and seek to achieve appropriate fairness between the aggregate rates allocated

amongst bundles. That is, we seek to maximise the sum-utility
∑
b∈B U

(∑
f∈b xf

)
.

See Figure 3.2 for an example, where the flow throughputs x1 and x2 belong to

the same bundle (user), and x3 belongs to a different one.
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Figure 3.2: Example of Network with multipath flows

We will generally focus on the special case of proportional fairness, corres-

ponding to a choice of β = 1 and sum-utility
∑
b∈B log

(∑
f∈b xf

)
.

3.1.3 Energy Model

We let Pl(x) denote the energy usage of link l ∈ L, which depends on the flow

rates x. We have seen in Chapter 2 that a linear model can be used to represent

the energy consumption of links and routers when used for transmission, con-

sisting in a fixed cost plus a term proportional to the rate when the link is on.

The model captures the behaviour of a range of different technologies.

When Pl(·) is non-convex, the utility fair optimisation problem typically

becomes difficult. For this reason, we will restrict our analysis to the case where

Pl(·) is convex. For example, in equation 2.1 we neglect the “fixed term” c+v(d)δ

and use

Pl (x) = wl
∑
f∈Fl

xf = wl ‖xFl‖p (3.10)

where xFl denotes the vector with elements xf , f ∈ Fl, and parameter wl

corresponds to the energy variation proportional to traffic flow. The saturation

term of equation 2.1 can still be included as a separate inequality constraint in

the problem formulation, as it is convex.

In addition to using the l1 − norm as an energy cost, we will also consider

a number of different norms. For this reason, we introduced parameter p in
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equation (3.10) to have a general representation. Specifically, the l∞ − norm

defined as ‖x‖∞ = maxi |xi| adds a cost equal for all flows in the link equal to

the maximum flow. Applying this norm to every link has the effect of generating

sparsity among groups, while encouraging equality among the flows in the same

group (they pay the same price). More generally, these norms are referred as

l1/l∞ − norm in the literature [5], for the linear cost among the groups, and

maximum cost among flows within the group. In the following chapters, we will

use the notation l1/lq −norm for the general analysis, and particularize for the

l1 − norm and l1/l∞ − norm when necessary. Equation 3.10 is the penalty we

will use in Chapter 4, which is convex.

3.2 Utility-fair Optimization

We are now in a position to formulate the following utility-fair energy optimiz-

ation problem

P1 : max
∑
b∈B

U

∑
f∈b

xf

− γ∑
l∈L

Pl(xFl) (3.11)

s.t. gl (x) ≤ 0 l ∈ L (3.12)

x ≥ 0 (3.13)

where γ is a price per energy unit, equation 3.12 are the network capacity

constraints and equation 3.13 constrains all flow rates to be non-negative.

Observe that in equation 3.11 the energy cost Pl(xFl) is treated as a penalty.
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An alternative formulation is P2,

P2 : max
∑
b∈B

U

∑
f∈b

xf

 (3.14)

s.t. Pl(xFl) ≤ sl l ∈ L (3.15)

gl (x) ≤ 0 l ∈ L (3.16)

x ≥ 0 (3.17)

where the energy requirements are now introduced as constraints.

Under mild assumptions and convexity, both problems have the same solu-

tions when parameters γ and sl are selected appropriately.

Proof. Assuming convexity for P1 and P2, consider the (reduced) formulation

of P1 as

max
xi

∑
b

U

(∑
i∈b

xi

)
− γ

∑
l∈L

Pl(xFl)

where xFl =
{

[xi . . . xk]
T |i, ..., k ∈ Fl

}
is the vector whose components are the

rates going through link l.

Differentiating the unconstrained problem from above, we get

U ′

(∑
i∈b

xi

)
− γ

∑
l∈ri

∂

∂xi
Pl(xFl) = 0 i ∈ N (3.18)

and solving the system of equations we get the optimal solution, which we call

x?1i .

The (reduced) formulation of P2 is

max
xi

∑
b

U

(∑
i∈b

xi

)

s.t.Pl(xFl) ≤ sl l ∈ L

and we choose sl = Pl(x
?1
Fl

), whose components are the optimal solution of P1.
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The Lagrangian and KKT conditions are

L = −
∑
b

U

(∑
i∈b

xi

)
−
∑
l

λl
(
Pl(xFl)− Pl(x?1Fl)

)
∂L

∂xi
= −U ′

(∑
i∈b

xi

)
+
∑
l∈ri

λl
∂

∂xi
Pl(xFl) = 0 i ∈ N (3.19)

λl
(
Pl(xFl)− Pl(x?1Fl)

)
= 0 l ∈ L (3.20)

We can see that the values x?2Fl = x?1Fl and λ
?
l = γ for all l, satisfy equations

3.19 and 3.20 by comparison with 3.18, and therefore it is an optimal solution.
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Chapter 4

Distributed Algorithms for

Energy-Optimal Scheduling

4.1 Convex Optimisation

When the utility function U(·) is concave and the network constraints gl(·) are

convex, P1 is a convex optimisation problem. When the interior of the network

rate region is non-empty, Slater’s condition is satisfied and strong duality holds

[9]. In this chapter we focus on wired and TDMA wireless networks where the

network capacity constraints are of the form in equation 3.3. The Lagrangian

is then

L(x, λ) =
∑
b∈B

U

∑
f∈b

xf

− γ∑
l∈L

wl ‖xFl‖p − λ
T
(
ATx− c

)
(4.1)

where λ is the vector of multipliers, and the KKT conditions for optimality are

∂L

∂xf
=U ′

∑
f∈b

x?f

−∑
l∈rf

(
γ∂xfwl

∥∥x?Fl∥∥p + λ?l

)
= 0 f ∈ F (4.2)

∂L

∂µl
=λ?l

∑
f∈Fl

x?f − cl

 = 0 l ∈ L (4.3)
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Note that the optimal solution may not be unique due to the multipath nature

of the optimization problem.

In the remainder of this chapter we present several distributed algorithms

for solving problem P1, and analyse the induced sparsity among the flows.

4.2 Lagrangian Algorithms

4.2.1 Alternating Direction Method of Multipliers

A standard method to solve convex optimisation problems is via the Altern-

ating Direction Method of Multipliers using subgradients, and Proximal Point

Methods (PPMs) [8, 7]. Algorithm 4.1 summarise the solution proposed in [23]

for multi-path network flow problems.

Algorithm 4.1 Alternating Direction Method of Multipliers
1. Initialize k = 0, yi(0) andλ (0).

2. Solve the Augmented Lagrangian problem for fixed λ (k)

x(k + 1) = arg max
x

L(x(k), λ(k))− 1

2

∑
b∈B

∑
f∈b

(xi − yi (k))
2

3. Update the variables introduced to the augmented Lagrangian

y (k + 1) = y (k) + α (x (k + 1)− y (k))

4. Update the Lagrangian variables

λ (k + 1) = λ (k) + α
(
ATx− c

)
5. Update k ← k + 1.

6. Repeat steps 2 to 4 until convergence.

However, Algorithm 4.1 requires the solution of a convex optimisation (to

find x(k + 1)) at every iteration, which is not necessarily distributed. In the

next subsections, we propose a distributed algorithm that avoids this problem.
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4.2.2 Lagrangian formulation with linear constraints

It was Kelly in [20] who first proposed a distributed algorithm for solving net-

work flow problems based on an iterative update of flow rates, while updating

the prices of the network links with a strictly concave function. His proof of

convergence to an optimum consisted of finding a Lyapunov function for the

dynamical system he proposed, and then showing asymptotic stability for the

strictly concave problem. However, his proof was only valid for a relaxed version

of the optimization problem, as the pricing coefficients he proposed depended

on a parameter ε > 0 which approximated the exact problem only as ε→ 0. In

addition, the generalization of his formulation to the multipath problem did not

fulfil all the conditions necessary to prove asymptotic stability in the Lyapunov

sense.

Due to the instability in the multipath version, Wang et. al. [33] presented

a modified version of the distributed algorithm using Proximal Point Methods

(PPMs), and referred for convergence proof to [3]. It was Feijer and Paganini in

[13] who extended the proof of convergence of this algorithm to the multipath

case, by adding a penalty that made the problem strictly concave. However,

this proof only analysed the continuous case in the dynamical system, and had

the limitation of not considering subgradient methods.

Our contribution here is to present a modified version of the original dynam-

ical system which addresses the energy consumption problem, while providing

asymptotic convergence to a ball around the optimum even without using PPMs

(Proximal Point Methods) in discrete time. We propose Algorithm 4.2 with a

system of difference equations and prove convergence for the general case. We

include a positive projection on the variables to guarantee positivity, namely

[w]
+

:= w if w > 0, and [w]
+

:= 0 otherwise.
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Algorithm 4.2 Lagrangian Method with linear constraints
1. Initialize all vectors x (0) and λ (0), and k = 0

2. Update all variables

x(k + 1) = [x(k) + α∂xL(x (k) , λ (k))]
+

λ(k + 1) = [λ(k) + α∂λL(x (k) , λ (k))]
+

where

∂xfL(x, λ) = U ′

∑
f∈b

xf

−∑
l∈rf

(
γ∂xfwl ‖xFl‖p + λl

)
f ∈ F

∂λL(x, λ) =
[
ATx− c

]+
λ

3. Update k ← k + 1.

4. Repeat step 2 and 3 until convergence.

Note that we do not add the slack variables y present in Algorithm 4.1, but

we will still have asymptotic convergence. The proof of convergence of Algorithm

4.2 is presented in the Appendix. Algorithm 4.2 makes use of subgradients in

every optimization step, so we can only guarantee convergence to a ball around

the optimum.

We present here the subgradients for the l1 − norm and the l∞ − norm. In

the case of the l1 − norm, the subgradients for a vector x ∈ RF where we have

F flows are given by

∂x ‖x‖1 =

(
∂x |x1| . . . ∂x |xp|

)T

where the individual components f = 1, . . . , F have the form

∂x |xf | =


1 if xf > 0

−1 if xf < 0

[−1, 1] if xf = 0

This is illustrated schematically for the scalar case in Figure 4.1, where we have
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drawn supporting planes to the epigraph of the function on the origin with

normal vectors of the form (∂x ‖x‖1 ,−1)
T .

Figure 4.1: Subgradients of absolute value function

For the l∞ − norm of vector x the subgradient is

∂x ‖x‖∞ =

(
δK1 . . . δKF

)T

where K = {i|i = arg maxf {xf}} is the set of positions of the maximum com-

ponents, and δKf := 1 if f ∈ K, and δKf := 0 otherwise. The normalized level

curves of the norms can be seen in Figure 4.2 for vector x ∈ R2.
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Figure 4.2: Level sets of l1 and l∞ norms

32



4.2.3 Lagrangian formulation with 802.11 constraints

The algorithm for 802.11 constraints presents some particular conditions that

requires Algorithm 4.2 to be adapted to the new variables. Specifically, the

range of variables x̃f = log xf and ξ̃f = log ξf is [−∞,∞), taking the −∞ value

when the flow is shut off. This condition is unsuitable for iterative algorithms,

so computation on the original variables is preferred.

We can convert updates of the form

x̃f (k + 1) = x̃f (k)− α∂x̃fL(x̃ (k) , λ (k))

into

xf (k + 1) = xf (k) · e−α∂x̃fL(x(k),λ(k))

by taking exponential form from the first equation. This can be done for both

variables x̃f and ξ̃f , allowing to work in the range [0,∞). Algorithm 4.3 shows

these steps. We note, that problem P1 with utility function as defined in

equation 3.9 is no longer convex for the choice of β = 1.
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Algorithm 4.3 Lagrangian Method with 802.11 constraints
1. Initialize all vectors x (0) and λ (0), and k = 0

2. Update all variables

x(k + 1) =
[
x(k) · e−α∂x̃L(x(k),ξ(k),λ(k))

]+
ξ(k + 1) =

[
ξ(k) · e−α∂ξ̃L(x(k),ξ(k),λ(k))

]+
λ(k + 1) = [λ(k) + α∂λL(x (k) , ξ (k) , λ (k))]

+

where

∂x̃fL(x, ξ, λ) = −xf · U ′
∑
f∈b

xf

+ xf ·
∑
i∈rf

(
γ +

λi∑
f∈Fi xf

)
∀f ∈ F

∂ξ̃iL(x, ξ, λ) =
1

χl
·
∑
k∈Nl

λk

∏
j 6=i

(1 + ξj) ξi +

(
Tsucc,i
Tcoll

− 1

)
ξi

− λi ∀i ∈ Nl, l ∈ L
∂λL(x, ξ, λ) =

[
ATx− c

]+
λ

χl (ξ) =
σ

Tcoll
− 1 +

∏
i∈Nl

(1 + ξi) +
∑
i∈Nl

(
Tsucc,i
Tcoll

− 1

)
ξi l ∈ L

3. Update k ← k + 1.

4. Repeat step 2 and 3 until convergence.

4.3 Proximal Gradient Methods

Given the structure of our optimization problem, we can also make use of prox-

imal gradient methods, which include tools normally used to solve sparse prob-

lems. In this section, we will introduce these methods, and analyse the induced

sparsity via the proximity operators for the norms of interest.

4.3.1 Framework formulation

We define the proximity operator as

x̂ = proxf2 (u) := arg min
x∈Rn

1

2
‖u− x‖22 + f2 (x) (4.4)
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where f2 (x) represents the norm constraint in the network flow problem. The

proximity operator was first introduced by Moreau in the 1960s [27], and prox-

imal gradient methods were derived by Combettes and Wajs in [11]. For an

introduction we also recommend [5, 6].

The proximal gradient method solves a general kind of problems formulated

as

min
x∈Rn

f1 (x) + f2 (x) (4.5)

where f1 (x) is a continuously differentiable function in a finite Euclidean space

Rn (we will also require convexity), and where f2 (x) is a proper closed and

convex function which is assumed subdifferentiable over its domain.

The well known gradient algorithm does not solve problem 4.5, where we

require new techniques to analyse it if we do not want to use subgradient meth-

ods as explained in Section 4.2. The gradient algorithm is based on an iterative

procedure where the points are produced by taking a small step along a steepest

descent direction, namely x1(k + 1) = x1(k) − α∇xf1(x) with a suitable step

size α. For problem 4.5, we can formulate an approximate objective function

that reasonably approaches the overall function around a point, and move along

a gradient direction that minimizes the differentiable objective. Thinking of a

quadratic model we can expand f1(x) with a Taylor expression around point y

and get

Q (x,y) = f1(y) + (x− y)
T ∇xf (y) +

1

2α
‖x− y‖2 + f2(x)

which can be equivalently formulated as

Q (x,y) =
1

2α
‖x− (y − α∇f1(y))‖ − α

2
‖∇f1(y)‖+ f1(y) + f2(x)

Minimizing the previous expression for x and disregarding constant terms,

35



we get

min
x

1

2α
‖x− (y − α∇f1(y))‖+ f2(x) = proxαf2 (y − α∇f1(y)) (4.6)

making use of the proximity operator as defined in equation 4.4. Relating this

formulation with the popular technique known as Majorization-Minimization

(MM) will allow us to enunciate the proximal gradient method. MM algorithm

constructs an approximate model to the objective function that satisfies

Q (x,x) = F (x) ∀x

Q(x,y) ≥ F (x) ∀x, y

Geometrically, this means that Q(x,y) lies above F (x) and is tangent to it in

x. This scheme implies that if

x (k + 1) = arg min
x∈Rn

Q (x,x(k))

Q (x (k + 1) ,x (k)) ≤ Q (x,x (k)) ∀x

and it follows

F (x (k + 1)) ≤ Q (x (k + 1) ,x (k)) ≤ Q (x (k) ,x (k)) = F (x (k)) for k ≥ 1

(4.7)

for some objective function F (x). See Figure 4.3.
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Figure 4.3: MM-method

Finally, we can introduce the prox-grad map from equation 4.6 as the update

x (k + 1) = proxαf2 (x (k)− αk∇f1 (x (k))) (4.8)

which is a majorizer of 4.5 if αk ≤ 1
L , where L is a Lipschitz constant of f1. We

can see the non-expansive property of 4.8 because of equation 4.7. Note, that

the local Lipschitz constant implies

f (x) ≤ f (y) + (x− y)
T ∇f (y) +

L

2
‖x− y‖2

which guarantees the property.

Convergence to the optimal point of 4.5 is guaranteed if the problem is

strongly convex. See [6] for a derivation of the proof. Otherwise it may only

converge to a fixed-point.

4.3.2 Network Flow Problem

We can apply the previous algorithm of proximal gradient methods to solve

problem P1. We propose Algorithm 4.4 that uses proximal operators to find

the optimal value. Note that due to the feasible region, a projection would be

required after computing the proximal operator. To avoid this approach, we

solve the Lagrangian problem, that simplifies the exposition.
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Algorithm 4.4 Proximal Gradient Method in the Network Flow Problem with
energy constraints

1. Initialize vectors x (0), λ (0), and k = 0

2. Compute
x (k + 1) = proxαf2 (x (k) + α∇f1 (x (k)))

where ∇f1 (x) = U ′
(∑

f∈b xf

)
−
∑
l∈rf λl and f2 (x) = γ

∑
l∈L wl ‖xFl‖p.

3. Calculate
λ(k + 1) = [λ(k) + α∂λL(x (k) , λ (k))]

+

where ∂λL(x, λ) =
[
ATx− c

]+
λ
.

4. Update k ← k + 1.

5. Repeat step 2, 3 and 4 until convergence.

We note that the proximity operator is applied to a group-norm of the form

lp/l1−norm, which does not have a closed form for every p. In the next section

we present an analysis of the p = 1 and p = ∞ cases, which can be solved

efficiently.

4.4 Sparsity

In this section we study problem P1 and analyse the induced sparsity by means

of the proximal operator.

4.4.1 Proximity operator of the l1 − norm

We analyse the case p = 1 where we use the l1 − norm as ‖x‖1 :=
∑
f∈Fl |xf |

for every link l. Then, the proximity operator for each component of x becomes

proxαkf2

(
xf (k) + α

∂

∂xf
f1 (xf (k))

)
∀f ∈ x

where f2 =
∑
l∈rf λl, and xf represents the corresponding flow rate, and rf is

the set of links (the route) of flow f .

The solution to the previous operator is the well known soft-thresholding
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operator, defined as

proxµ (u) = soft (u, µ) :=


u− µ if u > 0 andu > µ

0 if |u| ≤ µ

u+ µ if u < 0 andu < µ

Note, that since every flow rate is positive, the third case does not apply to our

problem.

Proof. We solve the operator for one variable when we have x (k + 1) = proxµ|x| (u) =

arg minx∈R
1
2 ‖u− x‖

2
2 − µ |x|. Taking subderivatives in x and making it equal

to zero we get− (u− x)− µ∂x |x| = 0. Therefore,

if x > 0⇒ x = u− µ

if x < 0⇒ x = u− µ

if x = 0⇒ u+ µ∂x |x| = 0

and the solution follows.

Figure 4.4: Soft-thresholding operator

The induced sparsity comes from the fact that for the range of values |u| ≤

µ the proximity operator yields x = 0. In our Network Flow problem, the
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proximity operator for flow f is calculated over µ =
∑
l∈rf γ, so we can guarantee

that flows where x?f ≤ µ will imply x?f = 0. Therefore, in our proposal of P1

with multipath flows per user we search for solutions that minimize the energy

consumption among the network exploiting sparsity.

We note also, that the soft-thresholding solution presents a shrinkage over

the variables when xf 6= 0, due to the induced linear cost on the objective

function. We will explain this effect in our simulations on Chapter 5.

4.4.2 Proximity operator of the l1/l∞ − norm

The motivation for using the group l1/l∞ − norm is due to the properties it

presents when exploiting the graph structure of the network. We define the

norm for the network as
∑
l∈L ‖xFl‖∞, where L represents the set of links and

xFl is the vector of flow rates going through link l. By applying a linear cost per

link we induce sparsity towards the links, but not towards the flows within the

link, as the l∞−norm only induces equality among the components. Intuitively,

flows that go through one link are charged the same fee (cost proportional to the

maximum of the flows in the link) and pay a unique cost on the objective func-

tion, so every flow tends to share links and avoid using connections exclusively.

Simulations in Chapter 5 will show this behaviour, and also its limitations.

The Network Flow problem is presented as follows,

min
∑
b∈B

U

∑
f∈b

xf

+ γ
∑
l∈L

wl ‖xFl‖∞ (4.9)

s.t.ATx− c ≤ 0

where, the added penalty induces a l1 − norm regularization among groups,

and flows belonging to the same group are affected by the l∞ − norm. We

note that solving this problem with the Proximal Gradient method explained

in Section 4.3 requires the solution of a convex optimization on every iteration.

The solution to the proximity operator for group norms does not have an explicit
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formula, which makes the computation generally inefficient. However, this can

be different for the l1/l∞−norm, where a simpler problem can be solved. We will

first show the derivation on how to solve the problem, and then the algorithm

itself.

The Lagrangian formulation for problem 4.9 is

L =
∑
b∈B

U

∑
f∈b

xf

− γ∑
l∈L

wl ‖xFl‖∞ − λ
T
(
ATx− c

)
where, assuming stability of the dynamical system, we can iterate over the

system 4.10 to solve the problem. Namely,

x (k + 1) = proxαf2 (x (k)− α∇xf1 (x (k))) (4.10)

λ (k + 1) = λ (k) + α∇λL (x (k) , λ (k))

where we have substituted f1 (x) =
∑
b∈B U

(∑
f∈b xf

)
− λT

(
ATx− c

)
and

f2 (x) = γ
∑
l wl ‖xFl‖∞ to simplify the notation.

The proximity operator is defined as

x̂ = proxf2 (u) := arg min
x∈Rn

1

2
‖u− x‖22 + f2 (x) (4.11)

but because the variables overlap among the groups, the solution of the proximal

problem is not immediate and does not have a direct form. However, we can

solve it via a dual formulation proposed in [24] and use their proposed lemma,

Lemma 1. Given u in Rp, the problem

min
ξ∈RpxL

1

2

∥∥∥∥∥u−∑
l∈L

ξl

∥∥∥∥∥
2

2

(4.12)

s.t.
∥∥ξl∥∥

1
≤ γwl l ∈ L

ξlj = 0 if j /∈ l
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where ξ =
(
ξl
)
l∈L is in RpxL, and ξlj denotes the jth coordinate of the vector ξl.

Then, every solution ξ∗ =
(
ξ∗l
)
l∈L satisfies x̂ = u−

∑
l ξ
∗l, where x̂ is solution

of 4.11.

In our problem, p is the dimension of x and refers to the total number of

flows in the network, and l ∈ L the different links in the network. Using this

result in our problem, we can again apply Lagrange duality

Ldual =
1

2

∥∥∥∥∥u−∑
l∈L

ξl

∥∥∥∥∥
2

2

+
∑
l∈L

νl
(∥∥ξl∥∥

1
− γwl

)

where νl are the Lagrangian variables, and get the following dynamical system

∂Ldual
∂ξlj

= −

uj −∑
l∈rj

ξlj

+ νl ∀l, j

∂Ldual
∂νl

=
∥∥ξl∥∥

1
− γwl ∀l

to solve the previous formulation.

The users compute only local variables ξlj and routers use only information

available on the links, so this algorithm could in principle be implemented in a

distributed fashion. However, the inner loop that solves the dual formulation

has to converge before updating the Lagrangian variables. Because of the in-

stability if we update both ν and λ simultaneously, the algorithm presents some

drawbacks that make it unsuitable for practical use. In that sense, it may be

easier to use the subgradient methods proposed in Section 4.2.

Finally, Algorithm 4.5 shows the required steps.
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Algorithm 4.5 Network Flow Problem with l1/l∞ − norm
1. Initialize vectors x (0), λ (0).

2. Calculate u = xk − ∇xf1
(
xk
)
where f1 (x) =

∑
b∈B U

(∑
f∈b xf

)
−

λT
(
ATx− c

)
.

3. Solve (in a distributed fashion) the Lagrangian Ldual =
1
2

∥∥u−∑l∈L ξ
l
∥∥2
2

+
∑
l∈L νl

(∥∥ξl∥∥
1
− γwl

)
using the difference equa-

tions

ξl(k + 1) = ξl (k)− α∂L (k)

∂ξlj

νl (k + 1) = νl (k) + α
∂L

∂νl

where

∂Ldual
∂ξlj

= −

uj −∑
l∈rj

ξlj

+ νl∀l, j

∂Ldual
∂νl

=
∥∥ξl∥∥

1
− γwl∀l

4. Update
λ (k + 1) = λ (k) + α

(
ATx− c

)
5. Update k ← k + 1

6. Repeat steps 2-5 until convergence
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Chapter 5

Simulation Results

In this chapter we present simulation results using the algorithms from the

previous chapter, and analyse their solutions. We will focus on simple examples

that highlight qualitative properties.

5.1 Multi-hop TDMA Wireless

In this section we show the behaviour of some simple examples and the effects

that penalties produce in the optimal solution. These examples are represent-

ative for applications that adapt their data rate depending on availability, such

as TCP, maximizing the transmission rates under channel capacity.

Note, that the optimal solutions in some of these examples might not be

unique, as balancing load among user flows can still produce the same value in

the objective function.

We will focus on the log utility function, corresponding to proportional fair-

ness, as this is widely considered in network flow problems. We will analyse

examples observing the effect of different penalties in the energy usage. To sim-

plify the examples, we will assume that all links consume the same energy, so

wl = 1, and capacity of links will also be equal cl = 1 for all l ∈ L .
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5.1.1 Multihop Scenario: 1 User, 2 Routes

x1

x2 x2

R1

R2

R3

Figure 5.1: 1 User, 3 nodes

We analyse the effects of adding energy constraints on network routes in the

simple case of only one user. This user has two routes, one that goes from

router R1 to R3 using one link, and a second one that uses two links and goes

through R2. We apply the l1−norm penalty to the original utility maximization

problem and get

min
x
− log (x1 + x2) + γx1 + 2γx2

s.t.ATx ≤ 1

Solving this problem for different values of λ, we can observe that the energy

penalty introduced provides a solution that favours the shortest communication

paths. Additionally, the effect of the l1−norm on the flows produces a shrinkage

on the transmission rates, as expected from computing a soft-thresholding. This

is shown in Table 5.1 where the longest route is shut down and all traffic is

transmitted through the shortest. Namely, links L1 and L2 are shut off when

increasing the cost. On the third column we show how much capacity is saved

when applying the penalty, which would allow energy savings as explained in

Chapter 2.
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γ Rate Links OFF Underused C

γ = 0 x =
[

1 1
]T None 0

γ = 0.5 x =
[

1 0
]T L1,L2 66%

γ = 1 x =
[

1 0
]T L1,L2 66%

γ = 10 x =
[

0.1 0
]T L1,L2 97%

Table 5.1: 1 User, 2 Routes

5.1.2 Multihop scenario: 2 Users, 5 links

x1
x1

x2

x2

x2

x3

x3

R3 R4

R5
R1

R2

Figure 5.2: 2 Users, 5 nodes

In this case we analyse the effect of using different norm penalties in the

network links. For instance, using the l1 − norm is intended when the network

is capable of saving energy from underused links, and we can observe that a

shortest path solution is optimal when constraints allow it. However, when the

network is not capable of switching off elements when underusing capacity, then

a l1/l∞−norm puts together flows under the same links, allowing to completely

switch off other nodes.

In this example we have two users, one transmitting from R1 to R5, and

another transmitting from R3 to R5. The first user has two possible routes x1

and x2 belonging to the same bundle, while the second user only has flow x3.
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When using the l1 − norm penalty, the problem to optimize is

min
x
− log (x1 + x2)− log (x3) + 2γx1 + 3γx2 + 2γx3

s.t.ATx ≤ 1

and when using the l1/l∞ − norm penalty is

min
x
− log (x1 + x2)− log (x3) + 2γx1 + γx2 + 2γ

∥∥∥(x2, x3)
T
∥∥∥
∞

s.t.ATx ≤ 1

Solutions to these problems are shown in Table 5.2. In the problem with the

first penalty, we observe flow x1 is preferred over x2 for the first user as it has

a shorter path, and only one link can be completely shut off. However, when

using the l1/l∞ − norm penalty for sufficiently large γ, the flows group under

the same links, allowing to completely switch off the route of x1. Specifically,

links L1 and L2 can completely be shut off, versus only L3 in the first case.

We can still observe shrinkage in the rates due to the linear cost of the

penalties.

l1 Rate Links OFF Underused C

γ = 0 x =
[

1 0 1
]T None 20%

γ = 0.5 x =
[

1 0 1
]T None 20%

γ = 1 x =
[

1
2 0 1

2

]T L3 60%
γ = 10 x =

[
1
20 0 1

20

]T L3 96%

l1/l∞ Rate Links OFF Underused C

γ = 0 x =
[

1 0 1
]T None 20%

γ = 0.5 x =
[

2
3

1
3

2
3

]T None 26%
γ = 1 x =

[
0 1

2
1
2

]T L1,L2 60%
γ = 10 x =

[
0 2

30
2
30

]T L1,L2 95%

Table 5.2: 2 Users, 5 links
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5.2 Femtocell Networks

5.2.1 Femtocell scenario: 3 Users, 2 Femtocells, 1 Macro-

cell

x1

x2

x3

x4

x5
x6

x7

U1 U2 U3

F1 F2 Macro

Figure 5.3: 3 Users, 2 Femtos, 1 Macro

In this example we consider a scenario where users can connect to several

femtocell routers and/or the macrocell, and we analyse how traffic is distributed

to minimise energy for different traffic demands. Note, that in this scenario

every route consists of only one hop, so the l1 − norm penalty that encourages

a shortest path route does not group traffic to unique femtocells, and it would

present multiple optimal solutions. For this reason, we will only analyse results

when using the l1/l∞ − norm. Nonetheless, using the l1 − norm penalty would

still have a shrinkage effect on the flow magnitudes, which can still be exploited

to use some energy scheme proposed in Chapter 2. The optimization problem

is then

min
x
− log (x1 + x2)− log (x3 + x4)− log (x5 + x6 + x7)

+ γ
∥∥∥(x1, x3, x5)

T
∥∥∥
∞

+ γx6 + λwmacro

∥∥∥(x2, x4, x7)
T
∥∥∥
∞

s.t.Ax ≤ 1
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where we have included a parameter wmacro to represent a different cost when

using this link. This cost can be bigger than one, when we would like to encour-

age user terminals to connect to femtocells to increase the device’s autonomy,

or smaller than one when in low traffic hours we would like to switch off the

femtocell routers and save more energy. Both considerations can be taken into

account depending on the purpose of the network provider.

In Table 5.3 we analyse the flow behaviour under different γ, specifically

for the case wmacro = 5. We observe that without adding further constraints

all link capacity is used and proportional fairness allocates every user the same

rate.

When the penalty is increased to γ = 1 terminals only connect to the femto-

cells, and the macrocell does not serve traffic from these users. Note in this case

rates are no longer equal, as user U3 receives more traffic than U1 and U2. This

happens because U3 does not have to share the connection with other users, as

its connection has less demand. Finally, when γ = 10, all traffic is served by

femtocell F1, and F2 can be switched off.

This example shows some versatility when controlling parameter γ, allowing

automatic control of femtocell availability.

γ Rate Cell OFF Underused C

γ = 0 x =
[

1
2

1
2

1
2

1
2 0 1 0

]T None 0%
γ = 1 x =

[
1
2 0 1

2 0 0 1 0
]T Macro 33%

γ = 10 x =
[

3
10 0 3

10 0 3
10 0 0

]T Macro & F2 66%

Table 5.3: 3 Users, 2 Femtocells, 1 Macrocell
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5.2.2 Femtocell scenario: 3 Users, 4 Femtocells

U1 U2 U3

F1 F2 F3 F4

x1
x2

x3
x4 x5

x6
x7

Figure 5.4: 3 Users, 4 Femtos

Here we consider an example where we analyse how the sets of users spread

among femtocells under different constraints, without considering a macrocell.

The optimisation problem is:

min
x
− log

(
3∑
i=1

xi

)
− log

(
5∑
i=4

xi

)
− log

(
7∑
i=6

xi

)

+ γx1+γ
∥∥∥(x2, x4)

T
∥∥∥
∞

+ γ
∥∥∥(x3, x5, x6)

T
∥∥∥
∞

+ γx7

s.t.ATx ≤ 1

Table 5.4 presents solutions to this problem for various parameter values

from which we can see again the effects of shrinkage when increasing γ and also

how flows group together for higher values. However, note that the distribution

of user flow rates is not unique, and vectors in which users transmit to differ-

ent femtocells simultaneously but that preserve their sum rate, would also be

optimal.
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γ Rate Cell OFF Underused C

γ = 0 x =
[

1 1
3 0 2

3
2
3

1
3 1

]T None 0%
γ = 1 x =

[
1
6

1
2

1
3

1
2

1
3

1
3

2
3

]T None 29%
γ = 10 x =

[
0 0 3

10 0 3
10

3
10 0

]T F1,F2, F3 77%

Table 5.4: 3 Users, 4 Femtocells

5.3 802.11 Wireless Mesh Networks

Figure 5.5: WLAN Network, 2 Users, 3 flows

In this section, we consider the example shown in Figure 5.5 with 802.11 network

constraints from Subsection 3.1.1 and the following utility function:

U (x) :=


x1−β−1
1−β x ≥ 0, β > 1

log (x) x ≥ 0, β = 1

The network constraints from this problem are log-convex and so we require

a change of variables to obtain the solution. The formulation of the optimization

51



problem is

min− U
(
ex̃1 + ex̃2

)
− U

(
ex̃3
)

+ 2γx̃1 + 3γx̃2 + γx̃3

s.t. log
(
ex̃1 + ex̃2

)
− ξ̃2 + logχ2 − log

d

Tcoll
≤ 0

log
(
ex̃1 + ex̃2

)
− ξ̃4 + logχ2 − log

d

Tcoll
≤ 0

ξ̃1 = ξ̃3 =∞⇐⇒ τ1 = τ3 = 1

where we have made the change of variables x̃i = log xi is the logarithm of the

flow rate, ξ̃i = log ξi is the logarithm of the normalized probability of trans-

mission τi, and χ = σ
Tcoll

− 1 +
∏
j∈N (1 + ξj) +

∑
j∈N

(
Tsucc,j
Tcoll

− 1
)
ξj is an

expression dependent of all stations in the cell. For the specific example in Fig-

ure 5.5, stations s1 and s3 cannot transmit packets that may collide, as they are

alone in their cells, and therefore, their probability of transmission is maximal.

β = 1.1

γ Rates Probabilities User rates (
[
x1 + x2, x3

]
)

γ = 0 x =
[

2.51 2.36 5.11
]T

ξ =
[

1 0.43 1 0.41
]T

xs =
[

4.87 5.11
]T

γ = 0.1 x =
[

2.95 0.6 6.43
]T

ξ =
[

1 0.43 1 0.31
]T

xs =
[

3.55.24 6.43
]T

γ = 1 x =
[

0.38 0.19 1.03
]T

ξ =
[

1 0.35 1 0.34
]T

xs =
[

0.57 1.03
]T

γ = 10 x =
[

0.06 0.03 0.15
]T

ξ =
[

1 0.34 1 0.34
]T

xs =
[

0.9 0.15
]T

β = 2

γ Rates Probabilities User rates (
[
x1 + x2, x3

]
)

γ = 0 x =
[

2.44 2.32 5.24
]T

ξ =
[

1 0.39 1 0.38
]T

xs =
[

4.76 5.24
]T

γ = 0.1 x =
[

1.4 0.7 3.1
]T

ξ =
[

1 0.35 1 0.35
]T

xs =
[

2.1 3.1
]T

γ = 1 x =
[

0.46 0.24 1
]T

ξ =
[

1 0.35 1 0.34
]T

xs =
[

0.7 1
]T

γ = 10 x =
[

0.14 0.07 0.32
]T

ξ =
[

1 0.34 1 0.34
]T

xs =
[

0.21 0.32
]T

Table 5.5: WLAN, 2 Users, 5 nodes

We select parameters Tsucc = Tcoll = σ = 1ms, d = 1000 bits and rates are

measured in Mbits/s. In addition, we use utility with parameter β 6= 1, which is

convex, and note that by making β close to 1 we can expect to obtain a similar
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solution to the proportional fair allocation.

From Table 5.5, we observe first that the effects of proportional fairness are

less present as β grows, moving towards max-min fairness as explained in [26].

Second, we observe that for γ = 0 flows x1 and x2 are similar, but as γ grows,

flow x2 is reduced to about half of x1. This is due to the effects on the energy

constraints, as the route from x2 is longer.
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Chapter 6

Conclusions

Wireless networks are expected to grow and develop increasingly rapidly in the

near future due to increasing data traffic demands. Consequently, the impact

of wireless network energy consumption is also expected to come to the fore,

with efficient management of energy resources becoming more necessary both

for environmental and economical reasons. At present times, wireless networks

are deployed to give full service for the whole day even if resources are underused

at certain hours, but more energy efficient solutions are possible.

In this context, the algorithms proposed here select traffic routes that can

reduce energy consumption in the whole network in a fair manner while max-

imising network utility for users. The energy savings come from grouping data

flows together and liberating resources, so that the network can switch off in-

terfaces and power amplifiers, send basestations to sleep, or simply reduce the

speed of links. This measures have the potential to greatly reduce energy con-

sumption.

We formulate an optimization problem that maximizes user utilities while

taking into account the energy costs of the transmission. We analyse an energy

model for several types of wireless networks, as well as capacity constraints

for different technologies. Dropping the constant term of the energy model in

the optimization objective allows for a convex formulation and a distributed
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solution, for which we prove convergence.

Future work includes dealing with non-convex formulations of the problem

which include the constant term from the energy model, although this can be

expected to significantly increase the problem difficulty. Additionally, dealing

with real time variations, and delays between deciding to switch off devices and

actually doing it, can become a matter of future study.
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Appendix A

Convergence of Lagrangian

Method

We give here a proof of convergence for the alternating variable update proposed

in Chapter 3.

Problem

Given a problem of the form

min f (x) (A.1)

s.t. gl (x) ≤ 0 l = 1, . . . ,m

where f (x) and gi (x) are convex in a compact set X, we assume it has a

finite optimum and Slater’s condition is satisfied (there is a vector xs so that

constraints are strictly feasible gl (xs) < 0, ∀l ). Then, under these conditions

the problem can be studied through the Lagrangian dual problem and strong

duality holds. The Lagrangian has the form

L (x, λ) = f (x) +

m∑
l=1

λlgl (x) (A.2)

where we do not assume differentiability for functions f (x) and gl (x), but
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we require existence of subgradients (indicated with ∂x and ∂λ) and uniform

boundedness for every x ∈ X, and λ ≥ 0 (λ ∈ Λ) where,

C ≥ sup {‖∂xL‖ |∂xL ∈ ∂xf (x)} ,

D ≥ sup {‖∂λL‖ |∂λL ∈ ∪ml=1∂xgl (x)}

To solve the Lagrangian dual problem we propose a discrete system of dif-

ference equations (A.3)-(A.4)

xi(k + 1) = xi(k)− α∂xiL(x(k), λ(k)) (A.3)

λi(k + 1) = λi(k) + α∂λiL(x(k), λ(k)) (A.4)

and will analyse uniform and asymptotic stability in the Lyapunov sense [19, 32].

We will establish that a sufficient condition for the system to be asymptotically

stable is that functions f (x) and gl (x) from (A.2) are radially unbounded,

meaning ‖x‖ → ∞ ⇒ |f (x)| → ∞. Note, we do not require problem (A.1)

to be strictly convex, as in previous works of Arrow et al. [3], or Feijer and

Paganini [13].

We propose function V (k) as a Lyapunov candidate for the previous system

V (k) =
1

2α
(x(k)− x)

T
(x(k)− x) +

1

2α

(
λ(k)− λ

)T (
λ(k)− λ

)
where

(
x, λ

)
is a saddle point of the Lagrangian from equation (A.2).

Theorem 2. Under the previous formulation, the function V (k) is a strict gen-

eralized Lyapunov function for the discrete dynamical system formed by equa-

tions (A.3)-(A.4), and the variables (x (k) , λ (k)) converge asymptotically in the

Lyapunov sense to a ball around the saddle point of the Lagrangian given by

Ω =
{
x, λ|L (x, λ) ≤ L

(
x, λ

)
+
α

2

(
C2 +D2

)
, x ∈ X, λ ≥ 0

}
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Proof. We have

V (k + 1) =
1

2α
(x(k)− x− α∂xL(x(k), λ(k)))

T
(x(k)− x− α∂xL(x(k), λ(k)))

+
1

2α

(
λ(k)− λ+ α∂λL(x(k), λ(k))

)T (
λ(k)− λ+ α∂λL(x(k), λ(k))

)
= V (k) + ∆(k)

where

∆(k) = − (x(k)− x)
T
∂xL(x(k), λ(k)) +

(
λ(k)− λ

)T
∂λL(x(k), λ(k)) +

α

2
ε

and

ε = ‖∂xL(x(k), λ(k))‖2 + ‖∂λL(x(k), λ(k))‖2

We need to show that ∆(k) ≤ 0 for (x(k)− x), (λ(k)− λ) sufficiently large

(alternatively, α sufficiently small). From the definition of subgradients, we

know L(x̄, λ) is convex for fixed λ, and L(x, λ̄) is concave for fixed x. Therefore,

L(x̄, λ)− L (x, λ) ≥ (x− x) ∂xL (x, λ)

L(x, λ̄)− L (x, λ) ≤
(
λ− λ

)
∂λL (x, λ)

Changing the sign and summing we get the relation

L(x̄, λ)− L(x, λ̄) ≥ − (x− x)
T
∂xL (x, λ) +

(
λ− λ

)T
∂λL (x, λ)

and particularizing for x (k) and λ (k),

∆(k) ≤ L(x̄, λ (k))− L(x (k) , λ̄) +
α

2
ε (A.5)

We need to prove that L(x̄, λ (k)) − L(x (k) , λ̄) ≤ 0 for all x (k) and λ (k),
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but we know

L(x̄, λ) = f(x) + λg(x) ≤ f(x)

L(x, λ̄) = f(x) + λg(x) ≥ f(x)

so it follows.

With relation (A.5) we can now establish the following statements

1. Function V (k) is decreasing along the trajectories of local flow F =

(K,X,Λ, ϕ), where k ∈ K, x ∈ X, λ ∈ Λ, and ϕ is a state transition

function given by the dynamics of equations (A.3)-(A.4), so that

ϕ (k0, x0, λ0) ⊂ X,Λ⇒ V (k, ϕ (k, x, λ)) ≤ V (k0, x0, λ0)

2. Additionally, the local flow F = (K,X,Λ, ϕ) is strictly F-decreasing away

from Ω, if it satisfies for every ε > 0

ϕ (k0, x0, λ0) ⊂ (X,Λ) \B (Ω, ε)⇒ V (k, ϕ (k, x, λ)) ≤ V (k0, x0, λ0)−γ (k − k0)

for some function γ (·) = γ (·; ε) : R+ → R+, satisfying limτ→∞ γ(τ) =∞.

A sufficient condition for the Lagrangian to satisfy the second statement, is that

functions f (x) and gl (x) from (A.2) are radially unbounded. Specifically, given

a ball Bε = {x, λ|d (x, λ; Ω) ≤ ε}, L(x̄, λ (k)) − L(x (k) , λ̄) ≤ −α2 ε + γ (k, ε),

where γ (k, ε) > 0 due to radially unbounded functions (closed sublevel sets).

This implies that

V (k + 1) ≤ V (k) + γk (ε)

V (k + n) ≤ V (k) + nγmin (ε)

where γmin (ε) = mink∈[k,k+n] γ (k, ε). Because V satisfies the previous two

statements for every k ∈ K, it is then a strict generalized Lyapunov function
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for F at Ω on (K,X,Λ).

Finally, we invoke the Stability Theorem from [19], page 223, and because

V is a generalized Lyapunov function, we can establish the following results

1. Ω is F − invariant and stable at any time k0 ∈ K.

2. V is upper bounded by V (x0, λ0), and therefore Ω is uniformly stable.

3. V is a strict generalized Lyapunov which is upper bounded, and therefore

Ω is uniformly asymptotically stable.

4. Under condition 3, there are lower and upper bound by W1 (x, λ) =

W2 (x, λ) = V (x (k) , λ (k)) that fulfil W1 (x, λ) ≤ V (k, x (k) , λ (k)) ≤

W2 (x, λ) for all k ∈ K, x ∈ X, λ ∈ Λ and W1,W2 satisfy statements

(1)-(2). Therefore, x ∈ X, λ ∈ Λ form the basin of attraction of Ω.
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