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We consider the thermodynamics of rotating and charged asymptotically de Sitter black holes.
Using Hamiltonian perturbation theory techniques, we derive three different first law relations in-
cluding variations in the cosmological constant, and associated Smarr formulas that are satisfied
by such spacetimes. Each first law introduces a different thermodynamic volume conjugate to the
cosmological constant. We examine the relation between these thermodynamic volumes and asso-
ciated geometric volumes in a number of examples, including Kerr-dS black holes in all dimensions
and Kerr-Newman-dS black holes in D = 4. We also show that the Chong-Cvetic-Lu-Pope solution
of D = 5 minimal supergravity, analytically continued to positive cosmological constant, describes
black hole solutions of the Einstein-Chern-Simons theory and include such charged asymptotically
de Sitter black holes in our analysis. In all these examples we find that the particular thermody-
namic volume associated with the region between the black hole and cosmological horizons is equal
to the naive geometric volume. Isoperimetric inequalities, which hold in the examples considered,
are formulated for the different thermodynamic volumes and conjectured to remain valid for all
asymptotically de Sitter black holes. In particular, in all examples considered, we find that for fixed
volume of the observable universe, the entropy is increased by adding black holes. We conjecture
that this is true in general.

PACS numbers: 04.50.-h, 04.50.Gh, 04.70.Bw, 04.20.Jb

I. INTRODUCTION

That black holes have a temperature proportional to
their surface gravity and obey a version of the first law of
thermodynamics is a notion that has been of continued
interest for over three decades. Studies of black holes that
are asymptotically flat or anti de Sitter (AdS) have been
carried out in considerable detail, with many corrobora-
tive results indicating that such objects indeed behave as
thermodynamic systems. Thermodynamic equilibrium is
straightforward to define, and (depending on the kind of
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black hole and its asymptotics) a variety of interesting
phenomena emerge, such as large/small AdS black hole
phase transitions [1]. An interesting new development in
the study of black hole thermodynamics was the proposal
that the mass of an AdS black hole should be interpreted
as the enthalpy of the spacetime. This notion emerges
from geometric derivations of the Smarr formula for AdS
black holes which suggest that the cosmological constant
should be considered as a thermodynamic variable anal-
ogous to pressure in the first law [2–17]. Further, this no-
tion led to a reverse isoperimetric inequality conjecture
[8] for AdS black holes, which says that for fixed ther-
modynamic volume, the entropy of an AdS black hole is
maximized for Schwarzchild AdS. Since black holes in a
spacetime with positive Λ are of interest in cosmology, in
this paper we study these issues for de Sitter black holes.

Studies of asymptotically de Sitter (dS) black holes
are somewhat more sparse, and need to confront two in-
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teresting and related issues. It is fundamental to the
first law for asymptotically flat black holes that there is
a Killing field which is timelike everywhere outside the
black hole and hence can be used to define the mass.
Adding a multiple of the rotation Killing field to this
timelike Killing field gives the generator of the horizon,
and the Killing generator defines the temperature. The
same is true with negative cosmological constant. How-
ever in de Sitter there is no Killing field that is timelike
everywhere outside the black hole, including infinity. Al-
though generalizations of the first law in de Sitter were
considered quite some time ago [18], a further key is-
sue is that an observer in any static patch of the space-
time is between two horizons, each with its own distinct
constant surface gravity. It is consequently unclear how
to understand the thermodynamics of such spacetimes,
since there is neither thermodynamic equilibrium nor an
asymptotic region where a conserved mass-energy can be
defined1. Various approaches have been taken toward
addressing this problem, yielding mixed results.
In this paper we consider the thermodynamics of de

Sitter black holes, focusing on the cosmological constant
as a thermodynamic variable together with its conjugate
potential. To highlight the correspondence with classi-
cal thermodynamics we also work with the pressure P
related to the cosmological constant Λ according to

P = − Λ

8π
, (1.1)

as it would be in a perfect fluid stress-energy. The po-
tential conjugate to P is a volume V , which we will call
the thermodynamic volume as in [4, 8].
It was found in [3] that the thermodynamic volume of

a Schwarzschild-AdS black hole is equal to the geometric
volume V ′ of the black hole interior, computed using the
full D-dimensional volume element on a t equals constant
slice. The relation between thermodynamic and geomet-
ric volumes was studied in [8] for a variety of charged
and rotating AdS black holes. Equality between the two
volumes was found to hold only in the static case (includ-
ing charge), while with rotation the volumes differ by a
simple correction term. It was also conjectured in [8]
and verified for a variety of black hole spacetimes that
the thermodynamic volume satisfies an inequality with
respect to the black hole horizon area that is precisely
the reverse of the isoperimetric inequality of Euclidean
space.
In this paper we will carry out a similar exploratory

study of thermodynamic and geometric volumes for
asymptotically de Sitter black holes. An important new
feature in this case is the need to distinguish between

1 Some consideration has been given to defining a mass-energy-like
quantity at future/past infinity in asymptotically dS spacetimes
[19–21]. Positivity of a conformal mass defined in this context
was shown in [30]

several different thermodynamic volumes. The geomet-
ric derivation of the first law and Smarr formula for AdS
black holes [3] takes place on a timelike hypersurface
stretching outward from the black hole horizon to spa-
tial infinity. For dS black holes, we will see that addi-
tional relations are obtained by alternatively considering
the region stretching outwards to infinity from the black
hole and cosmological horizons, or the region between the
black hole and cosmological horizons. Each of these in-
troduces a different thermodynamic volume. We denote
the thermodynamic volumes associated in this way with
the black hole and cosmological horizons by Vh and Vc,
while reserving V for that associated with the region be-
tween the two horizons2. The different thermodynamic
volumes may be thought of as arising from different ther-
modynamic ensembles, e.g., Vh arises from varying the
cosmological constant with the black hole horizon area
held fixed, while Vc is relevant if instead the cosmologi-
cal horizon area is fixed.
Turning to specific examples, for Kerr-de Sitter black

holes we find that Vh and Vc are equal to their geometric
counterparts V ′

h and V ′
c only for static spacetimes, each

differing by a simple expression when the black hole has
angular momentum. These relations are the same as in
AdS [8]. However, for the region between the two hori-
zons the rotation-dependent differences cancel, so that
V = V ′ holds in the rotating case as well. In line with
this result, we find that the thermodynamic volumes Vh
and Vc satisfy reverse isoperimetric inequalities, while V
satisfies a true isoperimetric inequality. These inequal-
ities may be interpreted as bounds on combinations of
the black hole and cosmological entropies at a fixed ther-
modynamic volume. In particular, in all examples con-
sidered, we find that for fixed volume of the observable
universe, the entropy is increased by adding black holes.
We conjecture that this is true in general.
Our results for charged rotating black holes are less

general. In four dimensions, one has the Kerr-Newman-
de Sitter spacetimes and in this case we find results that
simply extend those of the zero charge case. In five di-
mensions we consider charged, rotating black holes of
D = 5 Einstein-Chern-Simons theory with positive cos-
mological constant.3 We find that an exact solution for
such black holes can be obtained from the gauged super-
gravity solution of Chong, Cvetic, Lu, and Pope [29], by
analytically continuing the gauge coupling to obtain posi-
tive values of the cosmological constant. We compute the
thermodynamic volumes Vh, Vc and V for these space-
times and verify that V coincides with the geometric vol-

2 Similar results have been obtained by Cai [22, 23] and by Sekiwa
[24] in more limited contexts (see also [25] and [26]). A study
of the thermodynamics of asymptotically flat and AdS rotating
black holes that included both inner and outer horizons, which
has elements in common with our approach, was recently carried
out [27].

3 For a discussion of higher-dimensional charged rotating (A)dS
black holes constructed numerically see, e.g., [28].
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ume. While we are able to analytically verify the isoperi-
metric inequality for a singly-rotating Chong-Cvetic-Lu-
Pope black hole, because of the complexity of the expres-
sions we have not been able to analytically complete the
study of isoperimetric inequalities for the most general
case. We have, however, strong indications from numer-
ical analysis that such inequalities remain satisfied.

The outline of our paper is as follows. In the next
section the three first laws and the corresponding Smarr
formulae are derived using the Hamiltonian perturbation
techniques. The thermodynamics of the Kerr-deSitter
black holes in all dimensions is discussed in Sec. III while
the isoperimetric inequalities involving the correspond-
ing thermodynamic volumes are discussed in Sec. IV.
The charged de Sitter black holes, their thermodynam-
ics and isoperimetric inequalities are studied in Sec. V.
Sec. VI displays results on compressibility and speed of
sound for black hole horizons. Sec. VII is devoted to
the summary. Appendix A discusses the Nariai limit and
the corresponding thermodynamic volume in between the
horizons.

II. FIRST LAW AND SMARR FORMULA

In this section we apply the Hamiltonian formalism of
general relativity [31–33] to derive the first law relations
for rotating dS black holes including variations in the cos-
mological constant. As noted above, we will actually find
three different first law relations associated with different
choices for the hypersurface and the Killing vector which
enter the derivation. Two of these relations are linearly
independent. Each version of the first law leads to an
associated Smarr relation via an overall scaling.

A. Gauss’ law for perturbations with δΛ

The essence of this Hamiltonian perturbation theory
method is as follows. In Einstein gravity with cosmolog-
ical constant, suppose one has a black hole solution with
a Killing field. Now consider solutions that are pertur-
batively close to this background solution, but are not
required to have the original Killing symmetry. The lin-
earized Einstein constraint equations on a hypersurface
can be expressed in the form of a Gauss’ law (see [31]), re-
lating a boundary integral at infinity to a boundary inte-
gral at the horizon. The physical meaning of this Gauss’
law relation depends on the choice of Killing field, as well
as on the choice of hypersurface. Taking the generator la

of a Killing horizon, together with an appropriate choice
of a spacelike hypersurface, yields the usual first law for
variation of the mass [32] for asymptotically flat or AdS
black hole spacetimes.

Assume we have a foliation of a spacetime by a family
of hypersurfaces denoted by Σ and the unit timelike nor-
mal to the hypersurfaces na, n · n = −1. The spacetime

metric can then be written as

gab = sab − nanb , (2.1)

where sab is the metric on the hypersurfaces Σ and satis-
fies sa

bnb = 0. As usual, the dynamical variables in the
Hamiltonian formalism are the metric sab and its canon-
ically conjugate momentum πab = −√

s(Kab − Ksab).
Here Kab = sa

c∇cnb is the extrinsic curvature of a hy-
persurface Σ and K stands for its trace, K = Ka

a. (Sim-
ilarly later we define π = πa

a and h = haa.) We consider
Hamiltonian evolution along the vector field ξa, which
can be decomposed into its components normal and tan-
gential to Σ according to

ξa = Fna + βa , (2.2)

with F = −ξ · n denoting the lapse function and βa the
shift. The gravitational Hamiltonian which evolves the
system along ξa is then given by H = FH + βaHa with

H ≡ −2Gabn
anb = −R(D−1) +

1

|s|
( π2

D − 2
− πabπab

)

,

Hb ≡ −2Gacn
ascb = −2Da(|s|−

1
2 πab) . (2.3)

Here R(D−1) is the scalar curvature for the metric sab
and Da is the derivative operator on the hypersurface
Σ. With a cosmological constant stress-energy 8πT a

b =
−Λgab , the constraint equations become

H = −2Λ , Hb = 0 . (2.4)

Let gab be a solution to the Einstein equation with
cosmological constant, and assume that ξa is a Killing
vector of gab. Now let the metric g̃ab = gab + δgab be the
linear approximation to another solution to the Einstein
equations with cosmological constant Λ+δΛ. Denote the
Hamiltonian data for the background metric by sab, π

ab,
the corresponding perturbations to the data by hab =
δsab and p

ab = δπab, and the linearized Hamiltonian and
momentum constraints by δH and δHa .
It was shown in [31–33] that a particular linear com-

bination of the perturbed constraints can be written as
a total derivative, FδH + βaδHa = DaB

a, where the
vector Ba is given by

Ba[ξ] = F (Dah−Dbh
ab)− hDaF + habDbF

+
1
√

|s|
βb
(

πcdhcds
a
b − 2πachbc − 2pab

)

. (2.5)

On the other hand, since hab, p
ab solve the linearized

constraint equations with the cosmological constant per-
turbed by δΛ we also have FδH + βaδHa = 2δΛξana =
−2δΛF and therefore

DaB
a = −2FδΛ . (2.6)

This has the form of a Gauss’ law relation with source
proportional to FδΛ. In [3, 34] it was shown that since
ξa is a Killing vector, this source may also be written as
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a total derivative. We define the Killing potential ωab as-
sociated with ξa to be an antisymmetric tensor satisfying

∇cω
cb = ξb . (2.7)

The lapse function can now be written as F =
−Dc(ω

cbnb) and the relation (2.6) becomes

Da(B
a − 2δΛωabnb) = 0 . (2.8)

Let V̂ be a volume contained in Σ which has inner and
outer boundaries ∂V̂in,out. Integrating the differential re-

lation (2.8) over V̂ gives

∫

∂V̂out

darc
(

Bc[ξ]− 2δΛωcbnb

)

=

∫

∂V̂in

darc
(

Bc[ξ]− 2δΛωcbnb

)

.

(2.9)

Here we have let rc denote the unit normal on each
boundary, with the convention that rc points into V̂ on
the inner boundary and out of V̂ on the outer bound-
ary, i.e. “towards infinity” on both boundaries. In the
following we will consider different cases, in which these
boundaries may be taken to be at the black hole horizon,
the de Sitter horizon, and at infinity.
The different boundary integrals have important ge-

ometrical meanings. For an asymptotically flat or AdS
black hole the variation in the ADM mass and angu-
lar momentum are given by the boundary integrals at
infinity using the time translation (∂/∂t)a and rotation
(∂/∂ϕ)a Killing vectors, respectively. Also, the integral
of the boundary term over the horizon using the horizon
generating Killing vector is proportional to the surface
gravity times the change in area of the black hole. Ex-
plicitly,

16πδM = −
∫

∞
darcB

c[∂/∂t] , (2.10)

16πδJ =

∫

∞
darcB

c[∂/∂ϕ] , (2.11)

2κhδAh = −
∫

h

darcB
c[∂/∂t+Ωh∂/∂ϕ] , (2.12)

where M and J are the ADM mass and momentum, κh
is the surface gravity, and Ah is the area of the black
hole. When evaluating the boundary term on the black
hole horizon we have assumed that it is a bifurcate Killing
horizon and made use of the fact that the Killing gener-
ator vanishes on the bifurcation sphere.
Hence for Λ ≤ 0, we see that taking V̂in to be the

black hole horizon and V̂out the boundary at infinity,
equation (2.9) with δΛ ≡ 0 gives the usual first law
δM = κhδAh/(8π) + ΩhδJ . We now turn to evaluating

the boundary terms in (2.9) for different choices of V̂in
and V̂out and now with the variation in the cosmological
constant assumed to be non-vanishing.

B. First law in de Sitter with δΛ and Smarr

formula

There are several features of dS spacetime that are
different from AdS or Minkowski that make the nature
of a first law in dS distinct. Infinity in an asymptoti-
cally dS spacetime is a spacelike surface. Cosmological
space-like slices asymptote to one corner of the confor-
mal diagram. In Schwarzchild-like coordinates, surfaces
of constant tschw become timelike outside the cosmolog-
ical horizon, and end at spacelike infinity. Likewise, the
static Killing field ξa = (∂/∂tschw) is space-like outside
the horizon to infinity. One can use this Killing field to
define an ADM charge at infinity, but it does not have the
usual interpretation of a mass in the sense of Noether’s
theorem. On the other hand ξa is timelike between the
black hole and cosmological horizon. This situation leads
to three natural first law constructions in a black hole dS
spacetime—from the black hole horizon to infinity, from
the cosmological horizon to infinity, and between the two
horizons. Only two of these are independent, as the con-
struction between the horizons is the difference between
the other two.
We first consider the first law construction outlined

above for the region V̂ contained between the black hole
and cosmological horizons, rather than running the inte-
grals out to infinity as in the asymptotically flat or AdS
cases. This will give a relation between the variations
of the two horizon areas, and does not include a mass
parameter.
Let us first consider the contribution generated by the

Killing vector (∂/∂ϕ)a. The variation δJ in the angu-
lar momentum is still given by equation (2.11), but now
evaluated in an asymptotically de Sitter spacetime. Us-
ing equation (2.9) with the inner boundary taken to be
the de Sitter horizon and the outer boundary at infinity
one has

16πδJ =

∫

∞
darcB

c[∂/∂ϕ] =

∫

dS

darcB
c[∂/∂ϕ] .

(2.13)
So δJ is also given by evaluating the boundary integral
on the de Sitter horizon. The Killing potential term does
not contribute because we can connect the boundaries
with a slice having normal na proportional to ∇at, and
hence the lapse function F = −na(∂/∂ϕ)

a in equation
(2.6) vanishes.
Substituting the generator of the black hole horizon

(∂/∂t)a +Ωh(∂/∂ϕ)
a into the boundary integrand on the

black hole gives the same result as in the asymptotically
flat case, so that equation (2.12) continues to hold. The
generator of the de Sitter horizon (∂/∂t)a +Ωc(∂/∂ϕ)

a

substituted into the boundary term on the de Sitter hori-
zon gives a similar result

2|κc|δAc =

∫

dS

daraB
a[∂/∂t+Ωc∂/∂ϕ] , (2.14)

with appropriate care taken for the signs. We have intro-
duced the explicit absolute value signs on κc for clarity,
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since the definition of surface gravity gives κc < 0. Fi-
nally, noting that the boundary vector (2.5) is linear in
the Killing field, one finds that the integral of the bound-
ary term for the black hole horizon generator over the de
Sitter horizon may be written as

∫

dS

daraB
a[∂/∂t+Ωh∂/∂ϕ] = (2.15)

2|κc|δAc + 16π(Ωh − Ωc)δJ .

The derivation of the first law is then completed by
substituting the generator of the black hole horizon
∂/∂t+Ωh∂/∂ϕ into the Gauss’ law integral identity (2.9)
and using (2.12) and (2.15) to arrive at

κhδAh

8π
+

|κc|δAc

8π
+
V δΛ

8π
+ (Ωh − Ωc)δJ = 0 , (2.16)

where the positive [cf. expression (3.15) below] thermo-
dynamic volume V is defined by

V = −
(
∫

dS

darcnbω
cb −

∫

bh

darcnbω
cb

)

. (2.17)

The Smarr relation for rotating black holes in de Sitter
spacetime follows by integrating the first law under a
scaling transformation. The scaling dimensions of A and
J are D − 2 , while Λ has dimension −2, giving

κhAh

8π
+

|κc|Ac

8π
+ (Ωh − Ωc)J =

V Λ

4π(D − 2)
. (2.18)

Let us now identify the positive cosmological constant
Λ with the negative thermodynamic pressure as in (1.1),
P = − Λ

8π < 0, commensurate with the definition in the
anti de Sitter case [13]. With this definition we get the
following forms for the first law and the Smarr relation
respectively (including the possibility of more than one
rotation parameter)

0 = ThδSh + TcδSc

+
∑

i

(Ωi
h − Ωi

c)δJ
i − V δP , (2.19)

0 = ThSh + TcSc

+
∑

i

(Ωi
h − Ωi

c)J
i +

2

D − 2
PV , (2.20)

where we identified the horizon area with the entropy
S = A

4 and have defined the cosmological and black hole

temperatures to be the positive quantities Tc =
|κc|
2π and

Th = κh

2π .

C. Going to infinity

One can essentially repeat the derivation of section II B
in two additional cases: i) one takes the slice to go from
the black hole horizon to infinity (passing through the dS
horizon), and ii) the slice extends from the cosmological

horizon to infinity. Consequently one obtains two addi-
tional first law relations and associated Smarr formulae,
one for each horizon. In both cases, the expressions in-
volve a quantityM which would be the ADM mass in the
flat and AdS cases. In the dS case however, such a quan-
tity is “conserved in space” (rather than in time) due to
the spacelike character of the Killing field (∂/∂t)a in the
region near infinity. Keeping this (important) distinction
in mind, we shall refer to M as the “mass” [20], and use
it as a book-keeping device.
For the black hole horizon we then get the first law

relation

δM = ThδSh +
∑

i

(Ωi
h − Ωi

∞)δJ i +VhδP , (2.21)

where the quantities Ωi
∞ allow for the possibility of a

rotating frame at infinity (see, e.g., reference [35]), δM
is given via the boundary integral

16π δM = −
∫

∞
darc

(

Bc[∂/∂t] +2 δΛωcd
dS nd

)

, (2.22)

and the thermodynamic volume Vh is given by the ex-
pression

Vh =

∫

∞
darcnd(ω

cd−ωcd
dS)−

∫

bh

darcndω
cd . (2.23)

The quantity ωab
dS appearing in equations (2.22) and

(2.23) is the Killing potential of the background de Sitter
spacetime, without the black hole. These contributions
serve to make each of the quantities δM and Vh finite.
See reference [3] for an in depth discussion of this point in
the asymptotically AdS case. The corresponding Smarr
formula, obtained from the first law by overall scaling, is
then given by

D − 3

D − 2
M = ThSh+

∑

i

(Ωi
h−Ωi

∞)J i− 2

D − 2
PVh , (2.24)

We see from the first law (2.21) that the thermodynamic
volume Vh may be interpreted as the change in the mass
under variations in the cosmological constant with the
black hole horizon area and angular momentum held
fixed.
For the cosmological horizon, we use the Gauss’ law

relation (2.9) with the corresponding horizon generating
Killing vector (∂/∂t)a+Ωc(∂/∂ϕ)

a to obtain the first law

δM = −TcδSc +
∑

i

(Ωi
c − Ωi

∞)δJ i +VcδP . (2.25)

The minus sign in the first term on the right hand side
arises because the surface gravity κc of the de Sitter hori-
zon is negative, while the corresponding temperature Tc
is taken to be positive. The thermodynamic volume Vc
for the cosmological horizon is given by

Vc =

∫

∞
darenf (ω

ef−ωef
dS)−

∫

dS

darenfω
ef . (2.26)
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Finally, the Smarr relation that follows from (2.25) by
scaling is given by

D − 3

D − 2
M = −TcSc +

∑

i

(Ωi
c − Ωi

∞)J i− 2

D − 2
PVc ,

(2.27)
We see from the first law (2.25) that the thermodynamic
volume Vc gives the variation in the mass assuming that
the area of the cosmological horizon, as well as the angu-
lar momentum, is held fixed, which is distinct from the
conditions defining the thermodynamic volume Vh.
The first law (2.19) discussed in the previous section,

which concerns only the region between the black hole
and cosmological horizons, can now be understood as
a consequence of subtracting the formulas (2.21) and
(2.25). We see from the explicit expressions of the ther-
modynamic volumes V in (2.17) and Vh, Vc in (2.23) and
(2.26) that they satisfy the relation

V = Vc − Vh . (2.28)

The Smarr formula (2.20) for the region between the hori-
zons is similarly given by the difference between equa-
tions (2.24) and (2.27).

III. THERMODYNAMICS OF

KERR-DESITTER BLACK HOLES.

We now turn to the example of Kerr-deSitter black
holes. TheD-dimensional Kerr-(A)dS spacetimes [36, 37]
are solutions to the Einstein equations

Rab =
2Λ

(D − 2)
gab

that generalize the asymptotically-flat rotating black hole
solutions of [38]. The thermodynamics for the Kerr-AdS
case was studied in [35]. In the asymptotically dS case
the metric in ‘generalized’ Boyer-Lindquist coordinates
takes the form

ds2 = −W (1− g2r2)dt2 +
2m

U

(

Wdt−
N
∑

i=1

aiµ
2
i dϕi

Ξi

)2

+

N
∑

i=1

r2 + a2i
Ξi

(µ2
i dϕ

2
i + dµ2

i ) +
Udr2

X − 2m
+ ǫr2dν2

+
g2

W (1− g2r2)

(

N
∑

i=1

r2+a2i
Ξi

µidµi+ǫr
2νdν

)2

, (3.1)

where 2Λ = (D − 1)(D − 2)g2 and

W =

N
∑

i=1

µ2
i

Ξi
+ ǫν2 , X = rǫ−2(1− g2r2)

N
∏

i=1

(r2 + a2i ) ,

U =
Z

1− g2r2

(

1−
N
∑

i=1

a2iµ
2
i

r2 + a2i

)

, Ξi = 1 + g2a2i . (3.2)

Here N ≡ [(D − 1)/2], where [A] means the integer part
of A, and we have defined ǫ to be 1 for D even and 0 for
odd. The coordinates µi are not independent, but obey
the constraint

N
∑

i=1

µ2
i + ǫν2 = 1 . (3.3)

A. Even dimensions

In even dimensions (D = 2N +2), the thermodynamic
quantities are calculated as follows. For the cosmological
horizon, we have

Sc =
1
4AD−2

∏

i

r2c + a2i
Ξi

=
Ac

4
,

Tc = −rc(1 − g2r2c )

2π

∑

i

1

r2c + a2i
+

1 + g2r2c
4πrc

,

Ωi
c =

(1− g2r2c )ai
r2c + a2i

, (3.4)

while the ‘mass’ and angular momenta read

M =
mAD−2

4π
∏

j Ξj

∑

i

1

Ξi
, Ji =

maiAD−2

4πΞi

∏

j Ξj
, (3.5)

where the cosmological horizon radius rc and black hole
horizon radius rh are solutions to

2m =
1

rc
(1−g2r2c )

∏

i

(r2c+a
2
i ) =

1

rh
(1−g2r2h)

∏

i

(r2h+a
2
i ) .

(3.6)
The quantity AD−2 is the volume of the unit-radius

(D − 2)-sphere, and is given by

AD−2 =
2π(D−1)/2

Γ[(D − 1)/2]
. (3.7)

Using the Smarr relation (2.27) one finds that the ther-
modynamic volume Vc associated with the de Sitter hori-
zon is given by

Vc =
rcAc

D − 1

[

1 +
1− g2r2c
(D − 2)r2c

∑

i

a2i
Ξi

]

(3.8)

=
rcAc

D − 1
+

8π

(D − 1)(D − 2)

∑

i

aiJi . (3.9)

Given that the Smarr formula (2.27) was derived from the
first law (2.25), it also follows that the quantities (3.4),
(3.5), and (3.8) satisfy the cosmological horizon first law.
Similarly, for the black hole horizon we have

Sh = 1
4AD−2

∏

i

r2h + a2i
Ξi

=
Ah

4
,

Th =
rh(1− g2r2h)

2π

∑

i

1

r2h + a2i
− 1 + g2r2h

4πrh
,

Ωi
h =

(1− g2r2h)ai
r2h + a2i

, (3.10)
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while the thermodynamic volume calculated from (2.24)
reads

Vh =
rhAh

D − 1

[

1 +
1− g2r2h
(D − 2)r2h

∑

i

a2i
Ξi

]

(3.11)

=
rhAh

D − 1
+

8π

(D − 1)(D − 2)

∑

i

aiJi . (3.12)

The horizon quantities (3.10), (3.5), and (3.11) then sat-
isfy the black hole horizon first law (2.21).
The expressions for the thermodynamic volumes Vc in

(3.9) and Vh in (3.12) have the same form as one another
and also as the result for Vh in the Kerr-AdS case [8]. As
in [8] the first terms in these expressions for Vc and Vh
are equal to geometric volumes, respectively denoted by

V ′
c =

rcAc

D − 1
, V ′

h =
rhAh

D − 1
, (3.13)

contained within the horizon, which are obtained by in-
tegrating the full D-dimensional volume element over the
region on a t equals constant slice between r = 0 and the
horizon radius.4

We see from (3.9) and (3.12) that the thermodynamic
volumes Vc and Vh differ from their geometric counter-
parts V ′

c and V ′
h by precisely the same amount. It then

follows that the thermodynamic volume V = Vc−Vh that
enters the first law (2.19) and Smarr relation (2.20) for
the region between the two horizons is exactly equal to
its geometric counterpart V ′ = V ′

c − V ′
h, with

V = V ′ =
rcAc

D − 1
− rhAh

D − 1
. (3.14)

In particular, for the Schwarzschild-dS spacetimes we get
the following ‘manifest’ geometric relation

V =
AD−2

D − 1

(

rD−1
c − rD−1

h

)

. (3.15)

The quantities (3.4), (3.5), (3.10), and (3.14) satisfy the
first law of black hole thermodynamics (2.19) and the
Smarr relation (2.20).

B. Odd dimensions

In odd dimensions (D = 2N + 1), the following ther-
modynamic quantities get modified: the mass

M =
mAD−2

4π
∏

j Ξj

(

∑

i

1

Ξi
− 1

2

)

, (3.16)

4 A similar formula holds also in odd dimensions, but the integra-
tion now proceeds between r

2 = −a
2

min
where a

2

min
is the small-

est among the values of the squares of the rotational parameters
a
2

i
. Note that in an even dimension such a

2

min
automatically

equals zero.

the cosmological horizon entropy and temperature

Sc =
AD−2

4rc

∏

i

r2c + a2i
Ξi

=
Ac

4
,

Tc = −rc(1− g2r2c )

2π

∑

i

1

r2c + a2i
+

1

2πrc
,

and the black hole horizon entropy and temperature

Sh =
AD−2

4rh

∏

i

r2h + a2i
Ξi

=
Ah

4
,

Th =
rh(1− g2r2h)

2π

∑

i

1

r2h + a2i
− 1

2πrh
. (3.17)

The other quantities, including Ωi
h and Ωi

c, and Ji remain
of the same form, with m related to the cosmological and
black hole horizon radii according to

2m =
1

r2c
(1−g2r2c )

∏

i

(r2c+a
2
i ) =

1

r2h
(1−g2r2h)

∏

i

(r2h+a
2
i ) .

(3.18)
It is easy to verify that the thermodynamic volumes V ,
Vc and Vh again take the form (3.14), (3.8) and (3.11) and
that all the quantities satisfy the Smarr relations (2.20),
(2.24), (2.27) and the first laws (2.19), (2.21) and (2.25).

IV. ISOPERIMETRIC INEQUALITIES

A. Euclidean space

The isoperimetric inequality for the volume V of a con-
nected domain in Euclidean space ED−1 whose area is A
states that the ratio

R =
((D − 1)V

AD−2

)
1

D−1
(AD−2

A
)

1
D−2

(4.1)

obeys R ≤ 1, with equality if and only if the domain is
a standard round ball. That is, for a fixed volume, the
area that surrounds the volume is minimized when the
volume is a ball.

B. Reverse isoperimetric inequalities for Vh and Vc

Kerr-AdS black holes have been shown to satisfy a
‘reverse’ isoperimetric inequality [8], with the thermo-
dynamic volume bounded from below, rather than from
above, in relation to the horizon area. We find similar
results in this subsection for the thermodynamic volumes
Vh and Vc associated with the black hole and de Sitter
horizons. Both satisfy reverse isoperimetric inequalities
in relation to the corresponding horizon areas. Novel re-
sults will arise, however, when we consider the region
between the horizons. We will find that a true isoperi-
metric inequality bounds the thermodynamic volume V
of this region from above in terms of the horizon areas.
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Consider first the black hole horizon where we take
the volume V entering the isoperimetric inequality to be
given by the thermodynamic volume of the black hole
horizon

V ≡ Vh =
rhAh

D − 1

[

1 +
1− g2r2h
(D − 2)r2h

∑

i

a2i
Ξi

]

, (4.2)

and the area A to be the black hole horizon area

A = Ah =

{ AD−2

rh

∏

i
r2
h
+a2

i

Ξi

, D odd

AD−2

∏

i
r2
h
+a2

i

Ξi
, D even .

(4.3)

The statement now is that the corresponding ratio R
defined in (4.1), similar to the AdS case, satisfies the
reverse isoperimetric inequality,

R ≥ 1 , (4.4)

with equality if and only if there is no rotation. This may
be rephrased as stating that for Kerr-dS spacetimes with

a fixed thermodynamic volume Vh the black hole entropy

Ah/4 is maximized for Schwarzchild-dS. As in the AdS
case [8], we conjecture that a similar statement holds for
any asymptotically dS black hole.
The proof of (4.4) for Kerr-dS follows closely the one

for Kerr-AdS in [8]. We define a dimensionless quantity

z =
(1− g2r2h)

r2h

∑

i

a2i
Ξi
, (4.5)

and consider RD−1. In odd dimensions we find

RD−1 = rh

[

1 +
z

D − 2

] [ 1

rh

∏

i

(r2h + a2i )

Ξi

]− 1
D−2

=
[

1 +
z

D − 2

] [

∏

i

(r2h + a2i )

r2h Ξi

]− 1
D−2

≥
[

1+
z

D−2

] [ 2

D−1

(

∑

i

1

Ξi
+
∑

i

a2i
r2h Ξi

)]− (D−1)
2(D−2)

=
[

1 +
z

D − 2

] [

1 +
2z

D − 1

]− (D−1)
2(D−2) ≡ F (z) , (4.6)

where the inequality follows from the AG inequality (in-
equality relating the arithmetic and geometric means)

(

∏

i

xi
)1/N ≤ 1

N

∑

i

xi (4.7)

for non-negative quantities xi, and the equality follows
from (4.5) and the definition Ξi = 1+ g2a2i . Noting that
F (0) = 1, and that

d logF (z)

dz
=

(D − 3) z

(D − 2)(D − 2 + z)(D − 1 + 2z)
, (4.8)

which is positive for non-negative z in D > 3 dimensions,
it follows that F (z) ≥ 1, and hence the reverse isoperi-
metric inequality (4.4) is satisfied by all odd-dimensional
Kerr-dS black holes.

In even dimensions the calculation is similar. One finds
that

RD−1 = rh

[

1 +
z

D − 2

] [

∏

i

(r2h + a2i )

Ξi

]− 1
D−2

=
[

1 +
z

D − 2

] [

∏

i

(r2h + a2i )

r2h Ξi

]− 1
D−2

≥
[

1 +
z

D − 2

] [ 2

D − 2

(

∑

i

1

Ξi
+
∑

i

a2i
r2h Ξi

)]− 1
2

=
[

1 +
z

D − 2

] [

1 +
2z

D − 2

]− 1
2 ≡ G(z) . (4.9)

Thus G(0) = 1 and d logG(z)/dz ≥ 0, and so again we
conclude that R ≥ 1. Thus the reverse isoperimetric in-
equality holds for even-dimensional Kerr-dS black holes
also. It further follows via direct substitution that identi-
cal results hold for the cosmological thermodynamic vol-
ume Vc and horizon area Ac. One can therefore state
that for Kerr-dS spacetimes having a fixed value of the

cosmological thermodynamic volume Vc, the cosmological

horizon entropy Ac/4 is maximized by the Schwarzchild-

dS spacetime.

C. True isoperimetric inequality for the

thermodynamic volume V between the horizons

Let us now focus on the thermodynamic volume V of
the region between the black hole and de Sitter horizon.
Recall that in section III we found that for Kerr-deSitter
spacetimes V coincides with the geometric volume V ′ be-
tween the horizons. We now want to ask whether V sat-
isfies some sort of inequality with respect to the horizon
areas.
Consider the Kerr-dS black hole in any dimension. For

the purposes of establishing a bound, we will choose to
work with the volume parameter V given by the geomet-
ric volume of the de Sitter horizon,

V ≡ rcAc

D − 1
≥ V =

rcAc

D − 1
− rhAh

D − 1
, (4.10)

which is manifestly greater than or equal to the thermo-
dynamic volume V . For the area A we take the area of
the de Sitter horizon

A ≡ Ac ≤ Ac +Ah ≡ A (4.11)

which is less than or equal to the total area A of the black
hole and de Sitter horizons. With these choices for V and
A we then find, following [8], that the ratio R defined by
(4.1) is given in all dimensions D by

R =
(

∏

i

Ri

)− 1
(D−1)(D−2)

, Ri =
1 + a2i /r

2
c

1 + g2a2i
. (4.12)

Since one always has 1
r2
c

≥ g2 each term Ri ≥ 1; conse-

quently

R ≤ 1 . (4.13)
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On the one hand, this inequality might look trivial, since
the volume and area being compared are as in Euclidean
space. The interesting thing is that this simple geometric
volume is what arises in the Smarr relation, and that this
is true even with rotation.
The quantities V and A, and hence also the quantities

V and A, therefore satisfy a true isoperimetric inequality.

Equality , R = 1, is attained in (4.13) if and only there
is no black hole (V = V ), in which case r2c = 1/g2. Since
in this case we also have A = A we may formulate the
following result: For a fixed thermodynamic volume V in

between the black hole and dS horizons the total entropy

S = A/4 is minimized if there is no black hole. Note
that if instead choosing (V ,A) as in (4.10) and (4.11) we
chose V = V and A = A the departure of R from equality
would be even more severe.
We have seen that the thermodynamic volume V be-

tween the two horizons is the same as the geometrical
volume V ′, even with rotation. So fixing V is like fixing
the size of the observable universe. Hence another way
of stating the isoperimetric inequality is that for a given
size of the observable universe, the entropy interior to
the cosmological horizon is increased by adding a black
hole, even though the black hole pulls in the cosmolog-
ical horizon [41]. By assuming that non-black hole in-
homogeneities follow the same entropy rule, this entropy
increase has been used to estimate the probability that
inflation occurs for a universe in “the landscape” [40]. It
is interesting that V ′ arises naturally as part of the free
energy balance between the cosmological and black hole
horizons, and that it applies to black holes with angular
momentum.
Lastly, we emphasize that this situation is opposite to

asymptotically AdS or flat case [8], where the reverse

isoperimetric inequality for the thermodynamic volume
was proved for Kerr-AdS black holes in any dimension.
We conjecture that this feature may remain valid for any
asymptotically de Sitter black hole.

V. CHARGED BLACK HOLES

In this section, we will extend our analysis to various
charged and rotating de Sitter black hole solutions. It is
straightforward to extend the Hamiltonian perturbation
theory analysis of section II to include U(1) charges in
the first laws and Smarr relations holding for different
sets of boundaries. We then consider the examples of
the Kerr-Newman-deSitter solution in D = 4 and the
de Sitter versions of the Chong-Cvetic-Lu-Pope charged,
rotating solutions in minimal D = 5 supergravity [29],
which includes a Chern-Simons interaction for the U(1)
gauge field.
For Kerr-Newman black holes, we find results that

match those of section III. The black hole and cosmo-
logical thermodynamic volumes Vh and Vc each satisfy
reverse isoperimetric inequalities. The thermodynamic
volume V is again equal to the geometric volume V ′ for

the region between the horizons and again satisfies a true
isoperimetric inequality. For Chong-Cvetic-Lu-Pope-dS
black holes our results are less complete. Whereas we are
able to show analytically that a similar set of inequalities
hold subject to a certain limitation on the range of the
charge and rotational parameters, in the general case we
have only numerical support for this claim. Equality of
the thermodynamic volume V with the geometric volume
V ′ between the horizons, however, is shown to hold over
the entire parameter range.
We find that the modifications to the first laws and

Smarr relations for the various sets of boundaries are as
one would expect. For the region between the black hole
and de Sitter horizon the new formulas are given by

0 = ThδSh + TcδSc +
∑

j

(Φj
h − Φj

c)δQ
j

+
∑

i

(Ωi
h − Ωi

c)δJ
i − V δP , (5.1)

0 = ThSh + TcSc +
D − 3

D − 2

∑

j

(Φj
h − Φj

c)Q
j

+
∑

i

(Ωi
h − Ωi

c)J
i +

2

D − 2
V P , (5.2)

where Φi
h and Φi

c are the potentials for the electric (and
magnetic) U(1) charges evaluated at the black hole and
de Sitter horizons.
For the regions stretching respectively from the black

hole and de Sitter horizons out to infinity we have the
first laws and Smarr relations

δM = ThδSh +
∑

j

(Φj
h − Φj

∞)δQj

+
∑

i

(Ωi
h − Ωi

∞)δJ i + VhδP , (5.3)

D − 3

D − 2
M = ThSh +

D − 3

D − 2

∑

j

(Φj
h − Φj

∞)Qj

+
∑

i

(Ωi
h − Ωi

∞)J i − 2

D − 2
VhP , (5.4)

and

δM = −TcδSc +
∑

j

(Φj
c − Φj

∞)δQj

+
∑

i

(Ωi
c − Ωi

∞)δJ i + VcδP , (5.5)

D − 3

D − 2
M = −TcSc +

D − 3

D − 2

∑

j

(Φj
c − Φj

∞)Qj

+
∑

i

(Ωi
c − Ωi

∞)J i − 2

D − 2
VcP . (5.6)

where additionally the quantities Φi
∞ are the values of the

electric and magnetic potentials at infinity. As before,
subtracting respectively (5.6) from (5.4) yields (5.2), and
subtracting respectively (5.5) from (5.3) yields (5.1).
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A. Kerr-Newman-dS black hole

The D = 4 Kerr-Newman-deSitter metric for a rotat-
ing, charged black hole with positive cosmological con-
stant reads

ds2 = −∆

ρ2

(

dt− a sin2θ

Ξ
dϕ

)2

+
ρ2

∆
dr2

+
ρ2

S
dθ2 +

S sin2θ

ρ2

(

adt− r2 + a2

Ξ
dϕ

)2

, (5.7)

where the various functions entering the metric are given
by

∆ = (r2 + a2)(1 − r2g2)− 2mr + ẑ2 (5.8)

S = 1 + a2g2 cos2θ , ẑ2 = q2e + q2m , (5.9)

ρ2 = r2 + a2 cos2θ , Ξ = 1 + a2g2 , (5.10)

and the vector potential is

φ = −qer
ρ2

(

dt− a sin2θ

Ξ
dϕ
)

− qm cos θ

ρ2

(

adt− r2+a2

Ξ
dϕ
)

.

(5.11)
The thermodynamic quantities in Kerr-Newman-AdS
spacetimes were computed in [2]. From those results we
can infer the following formulas in the de Sitter case. For
the cosmological horizon we find

Sc =
π(r2c + a2)

Ξ
, Ωc =

aΞ

r2c + a2
(5.12)

Tc = −
rc

(

1− a2g2 − 3g2r2c − a2+ẑ2

r2
c

)

4π(r2c + a2)
, (5.13)

Φ(e)
c =

qerc
r2c + a2

, Φ(m)
c =

qmrc
r2c + a2

, (5.14)

where for magnetic charge we take the magnetic potential
analogous to the electric one [39]. The mass, the electric
and magnetic charges are given by

M =
m

Ξ2
, Qe =

qe
Ξ
, Qm =

qm
Ξ
, (5.15)

while the angular momentum and the angular velocity at
infinity read

J =
am

Ξ2
, Ω∞ = ag2 . (5.16)

From the Smarr formula (5.6) we compute the cosmolog-
ical thermodynamic volume

Vc =
rcAc

3

[

1 +
a2

2Ξr2c

(

1− g2r2c +
ẑ2

r2c + a2

)

]

, (5.17)

and easily verify that the first law (5.5) is satisfied. Since
Vc in the charged case is greater than or equal to the un-
charged one, while the Ac has the same form, the reverse
isoperimetric inequality for the cosmological thermody-
namic volume (4.4) remains valid.

Similarly, for the black hole horizon we have the fol-
lowing expressions for the thermodynamic quantities

Sh =
π(r2h + a2)

Ξ
, Ωh =

aΞ

r2h + a2
(5.18)

Th =
rh

(

1− a2g2 − 3g2r2h − a2+ẑ2

r2
h

)

4π(r2h + a2)
, (5.19)

Φ
(e)
h =

qerh
r2h + a2

, Φ
(m)
h =

qmrh
r2h + a2

. (5.20)

The black hole thermodynamic volume is then given by
the expression

Vh =
rhAh

3

[

1 +
a2

2Ξr2h

(

1− g2r2h +
ẑ2

r2h + a2

)

]

(5.21)

which also satisfies the reverse isoperimetric inequality
(4.4).

Finally, the thermodynamic volume V in between the
horizons calculated from (5.2) again takes a simple geo-
metric form,

V =
1

3
(rcAc − rhAh) . (5.22)

Defining the volume V and area A as in Section IVC to
be

V ≡ rcAc

3
≥ V , A ≡ Ac ≤ Ac +Ah ≡ A , (5.23)

we find that the isoperimetric inequality (4.13) holds also
for Kerr–Newman-deSitter black holes.

B. Charged-dS rotating black hole in D = 5

The rotating charged-AdS black hole with electromag-
netic Chern-Simons term was constructed by Chong,
Cvetic, Lu, and Pope [29]. We find that a corresponding
rotating charged-dS black hole exists as an exact solu-
tion to the Einstein-Chern-Simons equations with posi-
tive cosmological constant, obtained via analytic contin-
uation g → ig. This black hole solution reads

ds2 = −S
[

(1 + g2r2)ρ2dt+ 2qν
]

dt

ΞaΞbρ2
+

2qνω

ρ2

+
f

ρ4

(

Sdt

ΞaΞb
− ω

)2

+
ρ2dr2

∆
+
ρ2dθ2

S

+
r2 + a2

Ξa
sin2θdϕ2 +

r2 + b2

Ξb
cos2θdψ2 ,

φ =

√
3q

ρ2

(

Sdt

ΞaΞb
− ω

)

, (5.24)
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where

ν = b sin2θdϕ+ a cos2θdψ ,

ω = a sin2θ
dϕ

Ξa
+ b cos2θ

dψ

Ξb
,

S = 1 + a2g2 cos2θ + b2g2 sin2θ ,

∆ =
(r2 + a2)(r2 + b2)(1− g2r2) + q2 + 2abq

r2
− 2m,

ρ2 = r2 + a2 cos2θ + b2 sin2θ ,

Ξa = 1 + a2g2 , Ξb = 1 + b2g2 ,

f = 2mρ2 − q2 − 2abqg2ρ2 . (5.25)

In the case of a negative cosmological constant [29], the
solution describes an asymptotically AdS charged rotat-
ing black hole in a certain range of parameters m, a, b
and q. It is easy to check that there exists a range for
these parameters in which the function ∆ in Eq. (5.25),
admits three positive real roots. Hence in this range the
solution describes an asymptotically dS charged rotating
black hole. To our knowledge this is the first demonstra-
tion of the existence of such black hole solutions.
The thermodynamic quantities are [29]

M =
πm(2Ξa + 2Ξb − ΞaΞb)− 2πqabg2(Ξa + Ξb)

4Ξ2
aΞ

2
b

,

Ja =
π(2am+ qb(1− a2g2)]

4Ξ2
aΞb

,

Jb =
π(2bm+ qa(1− b2g2)]

4Ξ2
bΞa

,

Q =

√
3 πq

4ΞaΞb
. (5.26)

For the black hole horizon we have

Th =
r4h[1− g2(2r2h + a2 + b2)]− (ab + q)2

2πrh[(r2h + a2)(r2h + b2) + abq]
,

Sh =
π2[(r2h + a2)(r2h + b2) + abq]

2ΞaΞb rh
,

Φh =

√
3 qr2h

(r2h + a2)(r2h + b2) + abq
,

Ωa
h =

a(r2h + b2)(1 − g2r2h) + bq

(r2h + a2)(r2h + b2) + abq
,

Ωb
h =

b(r2h + a2)(1 − g2r2h) + aq

(r2h + a2)(r2h + b2) + abq
. (5.27)

The Smarr formula (5.4) then leads to an expression for
the black hole thermodynamic volume

Vh =
rhAh

4

[

1 +
1− g2r2h

3r2h

(

a2

Ξa
+
b2

Ξb

)

+
q2d2 + abq(d2 + r2h − r2ha

2b2g4)

3ΞaΞbr2h[(r
2
h + a2)(r2h + b2) + abq]

]

. (5.28)

where d2 = a2+ b2+2a2b2g2. When we switch off one of
the rotations (e.g. by setting a = 0) the reverse isoperi-
metric inequality (4.4) still holds. However, because of

the complexity of the expressions we have not been able
to analytically establish or disprove this result in the gen-
eral case and we leave the question for future study. We
have, nevertheless, confirmed the plausibility of this con-
jecture by a numerical study.
Similarly, for the cosmological horizon we have

Tc = −r
4
c [1− g2(2r2c + a2 + b2)]− (ab+ q)2

2πrc[(r2c + a2)(r2c + b2) + abq]
,

Sc =
π2[(r2c + a2)(r2c + b2) + abq]

2ΞaΞb rc
,

Φc =

√
3 qr2c

(r2c + a2)(r2c + b2) + abq
,

Ωa
c =

a(r2c + b2)(1 − g2r2c ) + bq

(r2c + a2)(r2c + b2) + abq
,

Ωb
c =

b(r2c + a2)(1 − g2r2c ) + aq

(r2c + a2)(r2c + b2) + abq
, (5.29)

which gives

Vc =
rcAc

4

[

1 +
1− g2r2c

3r2c

(

a2

Ξa
+
b2

Ξb

)

+
q2d2 + abq(d2 + r2c − r2ca

2b2g4)

3ΞaΞbr2c [(r
2
h + a2)(r2c + b2) + abq]

]

. (5.30)

Finally, using the Smarr relation (5.2), we find that
the thermodynamic volume in between the horizons is

V =
1

4
(rcAc − rhAh)

=
π2

2ΞaΞb

[

(r2c+a
2)(r2c+b

2)−(r2h+a
2)(r2h+b

2)
]

, (5.31)

which again, coincides with the naive geometric one. For
abq ≥ 0 and taking

V =
π2

2ΞaΞb
(r2c+a

2)(r2c+b
2) ≥ V ,

A = Ac ≤ Ac +Ah , (5.32)

we realize that the isoperimetric inequality (4.13) holds.
Numerical investigations indicate that this inequality
survives provided we took V = V and A = Ac for all
admissible parameters a, b,m and q for which the metric
(5.24) describes an asymptotically dS charged rotating
black hole.

VI. COMPRESSIBILITY AND SPEED OF

SOUND FOR BLACK HOLE HORIZONS

Given the notion of the thermodynamic volume of a
black hole, we can proceed to explore further thermody-
namic properties, such as the compressibility and speed
of sound, that make use of the volume. Here we will find
the effective compressibility and speed of sound of the
black hole. For purposes of illustration, we shall restrict
ourselves to the case D = 4 in which there is only one
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angular momentum. The adiabatic compressibility of the
black hole horizon is defined as

βSh
= − 1

Vh

(

∂Vh
∂P

)

Sh,J

, (6.1)

βSh
was computed for rotating black holes in Anti-de

Sitter in [6]. The same formula continues to hold in de
Sitter space-time

βSh
=

36Shj
4

(3 + 8 p) (3 + 8 p+ 3 j2) (6 + 16 p+ 3 j2)
, (6.2)

where p = PSh and j = 2πJ
Sh

, so in de Sitter p is neg-
ative. One can check that at fixed entropy, the angular
momentum is a maximum for the extremal case and that
the compressibility is greatest when Th = 0. One finds
that the angular momentum is given by

j2max =
(

1 +
8p

3

)

(1 + 8p), (6.3)

the compressibility is

βS |extremal =
2S (1 + 8 p)2

(3 + 8 p)
2
(1 + 4 p)

, (6.4)

and, for p ≤ 0, this is a maximum when p = 0, which is
Λ → 0. Expressing the entropy in terms of the black hole
mass M the greatest possible compressibility is then

βSh
|p=0,j=1 =

2Sh

9
=

4πM2G3

9 c8
, (6.5)

where equation (3.5) has been used with D = 4 and New-
ton’s constant and the speed of light have been made ex-
plicit. For a black hole of a few solar masses, (6.5) is
three orders of magnitude less than the compressibility
due to neutron degeneracy pressure in a neutron star of
the same mass [6]: in other words the black hole equation
of state is very stiff.

A thermodynamic “speed of sound”, vs, can be defined
by making use of the thermodynamic volume to define a
black hole density ρ = M

Vh

. Then

v−2
s =

∂ρ

∂P

∣

∣

∣

∣

S,J

= 1 +
9 j4

(6 + 16 p+ 3 j2)
2 , (6.6)

Thus 0.9 ≤ v2s ≤ 1. A non-rotating de Sitter black hole
always has v2s = 1, whereas v2s is smallest as j → 1 and
p→ 0.

Of course this “speed of sound” is not associated with
any kind of surface wave on the event horizon; rather it is
a measure of the susceptibility of the black hole to chang-
ing its mass and volume when the pressure is changed,
keeping the area constant.

VII. SUMMARY

We have shown that it is possible to identify a nega-
tive thermodynamic pressure with a positive cosmolog-
ical constant, allowing us to make sense of the thermo-
dynamics of asymptotically de Sitter black holes. Both
the first law of black hole thermodynamics and the corre-
sponding Smarr relation were demonstrated to hold, and
we illustrated our resulting formulae by applying them
to various rotating (and charged) black holes, including
Kerr-dS black holes in all dimensions. We found that in
all studied examples the thermodynamic volume in be-
tween the horizons coincided with the naive geometric
one, being equal to the difference of products of cosmo-
logical and black hole horizon radii and horizon areas.
We also studied the thermodynamics of the cosmologi-
cal horizon and the black hole horizon separately. This
allowed us to define the corresponding cosmological and
black hole thermodynamic volumes. In all the examples
we considered (except for the doubly-rotating Einstein-
Chern-Simons-dS black hole for which we have only nu-
merical evidence), we showed that the reverse isoperi-
metric inequality holds provided we take the thermody-
namic volume to be that of either the black hole or the
cosmological horizon; should we take the volume to be
the naive geometric volume in between the horizons then
the isoperimetric inequality holds. We conjecture that
these relations will remain valid for any asymptotically
de Sitter black holes.
An interesting case to consider for future study is the

production of black holes in inflation. Without the black
holes, the cosmological constant decays from the fluctu-
ations in the scalar field that go into cosmological per-
turbations, and the cosmological horizon shrinks accord-
ingly. If black holes are produced as well, then provided
δAh > 0 the first law tells us that either, or both, of
(Ac,Λ) must decrease. Perhaps there is an isoperimetric
inequality that would have an interpretation in terms of
such a process.
Note added. We notice some overlap of our work with

recent paper [42].
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Appendix A: A remark on the Nariai limit and the

thermodynamic volume

For asymptotically de Sitter black holes there exists
an interesting so called Nariai limit, see [43, 44] and also
[45, 46], in which the cosmological and black hole hori-
zons coincide (an analogue of the mass=charge extremal
Reissner–Nordström black hole). In this limit, interest-
ingly, the region in between the horizons does not shrink
to zero. In fact when one ‘zooms’ into it, it can be demon-
strated that (when also the time coordinate is rescaled)
the metric remains finite and well defined. It is then
an interesting question (for which we are grateful to the
anonymous referee) to see what happens to the thermo-
dynamic volume in between the horizons in such a limit.

For simplicity we consider only the uncharged, non-
rotating, Schwarzschild-dS solution

ds2 = −fdτ2 + dr2

f
+ r2(dθ2 + sin2θdϕ2) ,

f = 1− 2m

r
− 1

3
Λr2 , (A1)

and consider its Nariai limit, m → 1
3
√
Λ

and rc → rh.

Following Ginsparg and Perry [44] we define new coordi-
nates

ǫ cosχ =
√
Λ(r − r0), ψ =

√
Λ ǫ t, (A2)

and consider the limit ǫ→ 0, while we set

9m2Λ = 1− 3 ǫ2 , r0 =
1√
Λ

(

1− ǫ2

6

)

. (A3)

It follows that

rc = r0 +
ǫ√
Λ
, rh = r0 −

ǫ√
Λ
, (A4)

and the line element becomes that of dS2 × S2

ds2 =
1

Λ

(

dχ2 − sin2 χdψ2 + dθ2 + sin2 θ dϕ2
)

, (A5)

with 0 ≤ χ ≤ π and 0 ≤ ψ < 2π. The original black hole
horizon is now located at χ = 0 whereas the cosmological
horizon occurs at χ = π. We remark that the Nariai
meric (A5) possesses a finite four-volume

V4 =
16π2

Λ2
. (A6)

Let us now turn to the thermodynamic volume in be-
tween the horizons, which in the original coordinates
reads

V =
1

3

(

rcAc − rhAh

)

=
4π

3

(

r3c − r3h
)

. (A7)

We shall now argue that such a volume vanishes, despite
the fact that the region does not shrink to zero. Indeed,
using (A4) one finds

V =
4π

3

(

r3c − r3h
)

≈ 8π ǫ

Λ3/2
, (A8)

which clearly vanishes as ǫ → 0. This is consistent with
the fact that, as noted previously, the four-volume V4
remains finite. Since 0 ≤ ψ < 2π requires 0 ≤ t < 2π√

Λ ǫ
=

tmax, in Schwarzschild coordinates this finite 4-volume
comes from

Vtmax =

(

8π ǫ

Λ3/2

)(

2π√
Λ ǫ

)

=
16π2

Λ2
. (A9)

As ǫ → 0 we have V → 0 and tmax → ∞ . Note finally
that, if instead of taking the Nariai limit of the original
expression (A7), we started with the metric (A5) and cal-
culated the thermodynamic volume in between the hori-
zons (situated at χ = 0 and χ = π), using for example
the Smarr relation, we would find that such a volume
necessarily vanishes as both horizons have the same ar-
eas and temperatures. In this sense the calculation of the
volume of Nariai spacetime commutes with the limit and
in both instances we recover a vanishing quantity.
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[37] G. W. Gibbons, H. Lü, D. N. Page, and C. N. Pope,
The general Kerr-de Sitter metrics in all dimensions, J.
Geom. Phys. 53 (2005) 49–73, [hep-th/0404008].

[38] R. C. Myers and M. J. Perry, Black holes in higher
dimensional space-times, Ann. Phys. (N.Y.) 172 (1986)
304–347.

[39] G. Barnich and A. Gomberoff, Dyons with potentials:
Duality and black hole thermodynamics, Phys.Rev. D78

(2008) 025025, [arXiv:0705.0632].
[40] A. Albrecht and L. Sorbo, “Can the universe afford

inflation?,” Phys. Rev. D 70, 063528 (2004)
[hep-th/0405270].

[41] G. W. Gibbons and S. W. Hawking, “Cosmological
Event Horizons, Thermodynamics, and Particle
Creation,” Phys. Rev. D 15, 2738 (1977).

[42] S. Bhattacharya and A. Lahiri, Mass function and
particle creation in Schwarzschild-de Sitter spacetime,
arXiv:1301.4532.

[43] H. Nariai, Science Reports of the Tohoku Univ. 35
(1951) 62; On New Cosmological Solution of Einstein’s
Field Equations of Gravitation, Gen. Relativity and
Gravitation 32 (1999), 963.

[44] P. Ginsparg and M.J. Perry, Semiclassical perdurance of
de Sitter space, Nuc. Phys. B222 (1983) 245.

[45] R. B. Mann and S. F. Ross, Cosmological production of
charged black holes pairs, Phys. Rev. D 52 (1995) 2254,
[gr-qc/9504015].

[46] I. Booth and R. Mann, Cosmological pair production of
charged and rotating black holes, Nucl.Phys. B539

(1999) 267–306, [gr-qc/9806056].

http://arxiv.org/abs/1108.2205
http://xxx.lanl.gov/abs/1108.2205
http://arxiv.org/abs/1204.3696
http://xxx.lanl.gov/abs/1204.3696
http://arxiv.org/abs/1201.2340
http://xxx.lanl.gov/abs/1201.2340
http://arxiv.org/abs/1205.0559
http://xxx.lanl.gov/abs/1205.0559
http://arxiv.org/abs/1208.6251
http://xxx.lanl.gov/abs/1208.6251
http://arxiv.org/abs/1210.4617
http://xxx.lanl.gov/abs/1210.4617
http://arxiv.org/abs/1204.1062
http://xxx.lanl.gov/abs/1204.1062
http://arxiv.org/abs/1212.5044
http://xxx.lanl.gov/abs/1212.5044
http://arxiv.org/abs/1212.6128
http://xxx.lanl.gov/abs/1212.6128
http://arxiv.org/abs/hep-th/0110108
http://xxx.lanl.gov/abs/hep-th/0110108
http://arxiv.org/abs/hep-th/0111217
http://xxx.lanl.gov/abs/hep-th/0111217
http://arxiv.org/abs/hep-th/0201004
http://xxx.lanl.gov/abs/hep-th/0201004
http://arxiv.org/abs/hep-th/0111093
http://xxx.lanl.gov/abs/hep-th/0111093
http://arxiv.org/abs/hep-th/0112253
http://xxx.lanl.gov/abs/hep-th/0112253
http://arxiv.org/abs/hep-th/0602269
http://xxx.lanl.gov/abs/hep-th/0602269
http://arxiv.org/abs/0903.4230
http://xxx.lanl.gov/abs/0903.4230
http://arxiv.org/abs/hep-th/0506233
http://xxx.lanl.gov/abs/hep-th/0506233
http://arxiv.org/abs/1206.2015
http://xxx.lanl.gov/abs/1206.2015
http://arxiv.org/abs/0806.1583
http://xxx.lanl.gov/abs/0806.1583
http://arxiv.org/abs/hep-th/0506029
http://xxx.lanl.gov/abs/hep-th/0506029
http://arxiv.org/abs/hep-th/0206105
http://arxiv.org/abs/gr-qc/0103106
http://xxx.lanl.gov/abs/gr-qc/0103106
http://arxiv.org/abs/0804.1832
http://xxx.lanl.gov/abs/0804.1832
http://arxiv.org/abs/hep-th/0408217
http://xxx.lanl.gov/abs/hep-th/0408217
http://arxiv.org/abs/hep-th/0409155
http://xxx.lanl.gov/abs/hep-th/0409155
http://arxiv.org/abs/hep-th/0404008
http://xxx.lanl.gov/abs/hep-th/0404008
http://arxiv.org/abs/0705.0632
http://xxx.lanl.gov/abs/0705.0632
http://arxiv.org/abs/hep-th/0405270
http://arxiv.org/abs/1301.4532
http://xxx.lanl.gov/abs/1301.4532
http://arxiv.org/abs/gr-qc/9504015
http://xxx.lanl.gov/abs/gr-qc/9504015
http://arxiv.org/abs/gr-qc/9806056
http://xxx.lanl.gov/abs/gr-qc/9806056

