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Abstract

Treating the cosmological constant as a pressure, in the context of black
hole thermodynamics, a thermodynamic volume for the black hole can be
defined as being the thermodynamic variable conjugate to the pressure, in
the sense of a Legendre transform. The thermodynamic volume is explicitly
calculated, as the Legendre transform of the pressure in the enthalpy, for
a rotating asymptotically anti-de Sitter Myers-Perry black hole in D space-
time dimensions. The volume obtained is shown to agree with previous
calculations using the Smarr relation. The compressibility is calculated and
shown to be non-negative and bounded.

Taking the limit of zero cosmological constant, the compressibility of a
rotating black hole in asymptotically flat space-times is determined and the
corresponding speed of sound computed. The latter is bounded above and
has an elegant expression purely in terms of the angular momenta, in the
form of quartic and quadratic Casimirs of the rotation group, SO(D − 1).
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1 Introduction

The thermodynamics of black holes has been an active area of research ever
since Bekenstein and Hawking’s seminal papers on the entropy and temper-
ature associated with the event horizon of a black hole, [1, 2]. Recently the
rôle of pressure and volume has come under scrutiny in this context. It was
pointed out in [3] that the presence of a cosmological constant, Λ, spoils the
otherwise successful Smarr relation [4] and a remedy was proposed: to raise
Λ to the status of a thermodynamic variable, on a par with the tempera-
ture, while at the same time the black hole mass should be interpreted as
the thermodynamic potential associated with the enthalpy, rather than the
heretofore more usual interpretation of internal energy. It is then very natu-
ral to identify Λ as being proportional to a pressure and the thermodynamic
variable conjugate to the pressure can be interpreted as a volume for the
black hole [5]. The idea of promoting Λ to the status of a thermodynamic
variable is not new, [6]-[11], but it is only recently that a volume has entered
the picture in this context. For a rotating black hole in four dimensions this
thermodynamic volume does not have any obvious relation to any geometric
volume, though they agree if the black hole is not rotating, [12]. Neverthe-
less, with the volume included, there is a remarkable similarity between the
black hole equation of state and that of a Van der Waals gas, [12]-[17].

An important physical quantity in any thermodynamics system that be-
haves like a gas is the compressibility, which was investigated for rotating,
asymptotically anti-de Sitter (AdS) black holes in 4-dimensions in [18], in-
cluding asymptotically flat space-times as a limiting case. In this paper the
investigation of the compressibility of asymptotically AdS black holes is ex-
tended to dimensions greater than four. To that end we first derive the
compressibility of a rotating asymptotically AdS Myers-Perry black hole in
D space-time dimensions. Our aim is to derive the compressibility and the
speed of sound for asymptotically flat Myers-Perry black holes, but we must
include a non-zero Λ in order to obtain the volume and the compressibility
before taking the limit Λ → 0. In this limit the expressions simplify con-
siderably and the compressibility and the speed of sound can be expressed
rather compactly in terms of the quadratic and quartic Casimirs of SO(D−1)
associated with the angular momenta of the black hole.

It turns out, as was emphasised in [12], that it is crucial that the black
hole be rotating: if it is not rotating the entropy S and the volume V are
both functions of the event horizon radius rh only — they are not indepen-
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dent and cannot be considered to be independent thermodynamic variables.
They become independent only when the black hole rotates, the Legendre
transform is not well defined in the limit of zero rotation.

We restrict the analysis here to asymptotically AdS and asymptotically
flat space-times. The thermodynamics of black holes in Λ > 0 space-times
is a notoriously delicate issue. First steps in understanding the rôle of a
thermodynamic volume of black holes in this case were taken in [20] but
unresolved issues remain, these are left for future work and are avoided here
by restricting to Λ ≤ 0.

In section §2 we summarise the relevant features of asymptotically AdS
Myers-Perry black holes, determine the thermodynamic volume and describe
the compressibility, the main result is the compressibility in equation (22). In
§3 the Λ → 0, asymptotically flat, limit is investigated; the compressibility,
given in (33) and speed of sound in (39), are derived and physical implications
are discussed, particularly in relation to ultra-spinning black holes in D > 4.
The conclusions discuss some implications of the results and possible future
directions. Finally some technical details are confined to two appendices.

2 AdS Myers-Perry black holes

Rotating black holes in D-dimensions must be treated slightly differently for
even and odd D because the rotation group SO(D− 1), acting on the event
horizon which is assumed to have the topology of a (D − 2)-dimensional
sphere, has different characterisations of angular momenta in the even and
odd dimensional cases. The Cartan sub-algebra has dimension D−2

2
for even

D and D−1
2

for odd D so a general state of rotation is specified by D−2
2

independent angular momenta in even D and D−1
2

in odd D. Let p =
⌊

D−1
2

⌋

,

the integral part of D−1
2

, be the dimension of the Cartan sub-algebra of
SO(D − 1), then there are p independent angular momenta Ji, i = 1, . . . , p.
It is notationally convenient to introduce a parameter ǫ = 1 for even D and
ǫ = 0 for odd D, so

p =
D − 1− ǫ

2
. (1)

In this notation the unit (D− 2)-dimensional sphere can be described in
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terms of Cartesian co-ordinates xa in RD−1 by

D−1
∑

a=1

x2
a = 1, (2)

and we can write this as
p
∑

i=1

ρ2i + ǫy2 = 1, (3)

where x2i−1 + ix2i = ρie
iφi, i = 1, . . . , p, are complex co-ordinates for both

the even and odd cases while y = xD−1 is only necessary for even D.
ρi, φi and y are then (redundant) co-ordinates that can be used to pa-

rameterise the sphere and, for the black hole, Ji are angular momenta in the
(x2i−1, x2i)-plane.

Myers-Perry black holes in D-dimensions with a cosmological constant,
Λ, were constructed in [21]: they are solutions of Einstein’s equations with
Ricci tensor1

Rµν =
2Λ

(D − 2)
gµν . (4)

We shall focus on Λ ≤ 0 here, as the thermodynamics is then better under-
stood and for notational convenience we define

λ = −
2Λ

(D − 1)(D − 2)
≥ 0. (5)

The line element in [21] can then be expressed, in Boyer-Linquist co-ordinates,
as2

ds2 = −W (1 + λr2)dt2 +
2µ

U

(

Wdt−
p
∑

i=1

aiρ
2
i dφi

1− λa2i

)2

+

(

U

Z − 2µ

)

dr2 + ǫ r2dy2 +
p
∑

i=1

(

r2 + a2i
1− λa2i

)

(dρ2i + ρ2idφ
2
i ) (6)

−
λ

W (1 + λr2)

(

p
∑

i=1

(

r2 + a2i
1− λa2i

)

ρidρi + ǫr2ydy

)2

,

1We use units with Newton’s constant and the speed of light set to unity, G = c2 = 1.
2The form given here differs slightly from that in [21] in that our ordinates, t and φi,

are related to those of [21], τ and ϕi, by dτ = dt and dφi = dϕi − λaidt.
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where the functions W , Z and U are

W = ǫy2 +
p
∑

i=1

ρ2i
1− λa2i

Z =
(1 + λr2)

r2−ǫ

p
∏

i=1

(r2 + a2i ) (7)

U =
Z

1 + λr2

(

1−
p
∑

i=1

a2i ρ
2
i

r2 + a2i

)

.

The ai are rotation parameters in the (x2i−1, x2i)-plane, restricted to a2i <
1/λ, and µ is a mass parameter.

Many of the properties of the space-time with line element (7) were de-
scribed in [21]. There is an event horizon at rh, the largest root of Z−2µ = 0,
so

µ =
(1 + λr2h)

2r2−ǫ
h

p
∏

i=1

(r2h + a2i ), (8)

with area

Ah =
̟

r1−ǫ
h

p
∏

i=1

r2h + a2i
1− λa2i

, (9)

where ̟ is is the volume of the round unit (D − 2)-sphere,

̟ =
2π

(D−1)
2

Γ
(

D−1
2

) . (10)

The Bekenstein-Hawking entropy is

S =
̟

4r1−ǫ
h

p
∏

i=1

r2h + a2i
1− λa2i

(11)

and the Hawking temperature is, with h̄ = 1,

T =
rh
2π

(1 + λr2h)
p
∑

i=1

1

r2h + a2i
+

(2− ǫ)(ǫλr2h − 1)

4πrh
. (12)

The angular momenta and the ADM mass, M , of the black hole are
related to the metric parameters via

Ji =
µ̟ai

4π(1− λa2i )
∏

j(1− λa2j )
, (13)
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M =
µ̟

8π
∏

j(1− λa2j )

(

D − 2 + 2λ
p
∑

i=1

a2i
1− λa2i

)

(14)

=
(D − 2)µ̟

8π
∏

j(1− λa2j )
+ λ

p
∑

i=1

Jiai,

while the angular velocities are

Ωi =
(1 + λr2h)ai
(r2h + a2i )

. (15)

It was argued in [3] that, in the presence of a cosmological constant, the
correct thermodynamic interpretation of the black hole mass is that it is the
enthalpy of the system

M = H(S, P, J), (16)

where J stands for all the Ji collectively, and the pressure is

P = −
Λ

8π
=

(D − 1)(D − 2)λ

16π
. (17)

The thermodynamic volume, V , is defined as the variable thermodynamically
conjugate to P [5, 12],

V =
∂M

∂P

∣

∣

∣

∣

∣

S,J

=
16π

(D − 1)(D − 2)

∂M

∂λ

∣

∣

∣

∣

∣

S,J

. (18)

Details of the calculation of the thermodynamic volume by this technique
are given in appendix A and here we quote the result (44)

V =
rhAh

D − 1

{

1 +
(1 + λr2h)

(D − 2)r2h

p
∑

i=1

a2i
(1− λa2i )

}

(19)

=
rhAh

D − 1
+

8π

(D − 2)(D − 1)

p
∑

i=1

aiJi.

With the substitution λ → g2 this agrees with the result [19] for the black
hole volume, derived from the assumption that the Smarr relation,

(D − 3)M = (D − 2)TS + (D − 2)
p
∑

i=1

ΩiJi − 2PV, (20)
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holds. For D = 4 it reproduces the corresponding expression in [12]. With
the substitution λ → −g2, (20) agrees with the black hole thermodynamic
volume quoted in [20] for Λ > 0, again determined by assuming the Smarr
relation holds, but avoiding the complication of the existence of the cosmo-
logical horizon that is present in this case.

It is now possible to define the adiabatic compressibility of the black hole
[18] as

κ = −
1

V

∂V

∂P

∣

∣

∣

∣

∣

S,J

. (21)

With the explicit form of the thermodynamic volume in (20) the compressibil-
ity can be computed using the technique outlined in appendix B: it evaluates
to

κ =
16π(1 + λr2h)

(D − 1)(D − 2)2

{

∑p
i=1

a4
i

1−λ2a4
i

− 1
(D−2)

(

∑p
i=1

a2
i

1−λa2
i

)(

∑p
i=1

a2
i

1+λa2
i

)}

{

r2h +
(1+λr2

h
)

(D−2)

∑p
i=1

a2
i

1−λa2
i

}{

1− 2λ
(D−2)

∑p
i=1

a2
i

1+λa2
i

} .

(22)
It is shown in the appendix that κ ≥ 0. It is also not difficult to prove that

it is bounded above for λ > 0: to see this first observe that the denominator
never vanishes because

D − 2− 2λ
p
∑

i=1

a2i
1 + λa2i

= ǫ− 1 + 2
p
∑

i=1

1

1 + λa2i
≥

D − 3− ǫ

2
, (23)

with equality when all the ai achieve the maximum value, a21 = · · · a2p = 1
λ
.

The numerator can diverge though, if any or all of the a2i approach 1
λ
, but

when this happens the first factor in curly brackets in the denominator also
diverges, the singularities cancel and κ remains finite. For example, if m of
the a2i approach 1/λ, with 1 ≤ m ≤ p, and the others are all zero, then

κ →
8π

(D − 1)(D − 2)λ
=

1

2P
, (24)

reflecting the fact that V ∝ 1√
P
in this limit.

A thermodynamic speed of sound, cs, can be defined by using the homo-
geneous density,

ρ =
M

V
=

(D − 1)(D − 2)(1 + λr2h)

16πr2h

(

1 + 2λ
D−2

∑p
i=1

a2
i

1−λa2
i

)

(

1 +
(1+λr2

h
)

(D−2) r2
h

∑p
i=1

a2
i

1−λa2
i

) . (25)
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The usual thermodynamic relation can then be used to obtain a speed of
sound,

1

c2s
=

∂ρ

∂P

∣

∣

∣

∣

∣

S,J

= 1 + ρκ ≥ 1. (26)

so 0 ≤ c2s ≤ 1. Again, for example, taking m of the a2i to approach 1/λ with
the others all zero,

ρ →
(D − 1)(D − 2)λ

8π
, (27)

and ρκ → 1, giving c2s =
1
2
.

3 Isentropic processes in asymptotically flat

Myers-Perry space-times

When the cosmological constant vanishes many of the expressions in the
previous section simplify considerably. In particular

M =
(D − 2)̟µ

8π
, S =

̟

4r1−ǫ

p
∏

i=1

(r2h + a2i ) =
4π

D − 2
Mrh

Ji =
2Mai
D − 2

, Ωi =
ai

r2h + a2i
. (28)

In this section we shall focus on isentropic processes, for which it is con-
venient to define the dimensionless angular momenta

Ji =
2πJi

S
=

ai
rh

(29)

in terms of which the mass is

M =
(D − 2)

16π
̟rD−3

h

p
∏

i=1

(1 + J 2
i ), (30)

and the entropy is

S =
̟

4
rD−2
h

p
∏

i=1

(1 + J 2
i ). (31)

The thermodynamic volume is

V =
rhAh

D − 1

(

1 +

∑

i J
2
i

D − 2

)

= V0

p
∏

i=1

(1 + J 2
i )

(

1 +

∑

iJ
2
i

D − 2

)

, (32)
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where V0 =
̟rD−1

h

D−1
is the volume of an ordinary D − 1 dimensional sphere of

radius rh.
The λ → 0 limit of (22) is finite:

κ =
16πr2h

(D − 1)(D − 2)2

{

(D − 2)
∑

i J
4
i − (

∑

iJ
2
i )

2

D − 2 +
∑

i J
2
i

}

, (33)

with

r2h =

{

4S

̟
∏

i(1 + J 2
i )

} 2
D−2

. (34)

Thus at fixed S the compressibility is simply expressible entirely in terms of
quadratic and quartic Casimirs of SO(D − 1).

For D ≥ 4, κ is positive, and it is identically zero in D = 3: this latter
result is in intuitive accord with the fact that gravity has no dynamics in
the bulk in 3-dimensions, all of the interesting physics is in the boundary
conditions.

To understand κ fully, it is necessary to take account of the constraints
imposed by the condition that T ≥ 0. For λ = 0

T =
1

2πrh

(

p
∑

i=1

1

1 + J 2
i

− 1 +
ǫ

2

)

⇒
p
∑

i=1

1

1 + J 2
i

≥ 1−
ǫ

2
. (35)

For D > 4 it is possible for some of the Ji to tend to infinity, but not all of
them — the well known phenomenon of ultra-spinning black holes.3

Equation (35) says that the locus of allowed temperatures is thus bounded
by hyperbolae in J -space. The case for D = 6 is plotted in figure 1 below.

3Note that, although an ultra-spinning black hole has a large Ji, the corresponding
angular velocity need not be large: indeed Ωi → 0 as Ji → ∞. The inverse of the
isentropic momentum of inertia tensor is

I−1

ij =
∂Ωi

∂Jj

∣

∣

∣

∣

S

=
1

Mr2h

{

(D − 2)

2

(1 − J 2

i )

(1 + J 2

i )
2
δij +

JiJj

(1 + J 2

i )(1 + J 2

j )

}

. (36)

For large Ji, I
−1 develops a negative eigenvalue and a negative moment of inertia implies

that Ωi decreases as Ji increases. Indeed if one of the Ji tends to infinity as Ji = L → ∞,

at constant finite S, then rh ≈ L−

2

D−2 , from (31), and the corresponding element of

I−1 ≈ −L
4

D−2
−2 → 0 as L → ∞, provided D > 4. Ultra-spinning black holes do not have

large angular momenta because they have large angular velocity, they have large angular
momenta because their moment of inertia diverges as Ji → ∞.
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This is very similar to plots in [22], except there the Ji are normalised using
the appropriate power of the mass, relevant for isenthalpic processes, while
here the entropy is used, for isentropic processes.

-2-4

-4

j_2

4

2

20

-2

4

j_1

0

Figure 1: The locus of extremal black holes, T = 0, forD = 6. T > 0 requires
the angular momenta to lie inside the region bounded by the hyperbolae.

When all the Ji are small the compressibility is small and the equation
of state is very stiff, the black hole is completely incompressible for Ji = 0.
However the compressibility can diverge if some Ji are kept small while
others are sent to infinity. For example, if J1 = · · · = Jp−m = 0 and
Jp−m+1 = · · · Jp = L, then T ≥ 0 for L → ∞ provided m ≤ D−3

2
. Also (34)

implies that r2h ∝ L− 4m
D−2 so

κ ∼ L
2(D−2m−2)

D−2 , (37)

which diverges if m < D−2
2

, so κ diverges for 1 ≤ m ≤ D−3
2

with this config-
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uration of angular momenta. The divergence is fastest for m = 1.
When the compressibility becomes large the black hole equation of state

is very soft. For example the compressibility for D = 6 is plotted in figure
2 and it grows indefinitely for large angular momenta along either the J1 or
the J2 axis, i.e. m = 1.

-4

-2

j_20

2

4

-4
-2

0
2 j_1

40

2

4

6

8

10

12

Figure 2: The compressibility of a black hole in D=6 as a function of J1 and
J2.

It was suggested in [23] that ultra-spinning black holes should be dynam-
ically unstable for large angular momentum, and subsequent numerical and
analytical work supports this proposal [24]-[30]. Large compressibility can
be taken as a sign of an instability setting in, although there is no indica-
tion in equation (33) of a boundary in J -space were a dynamical instability
might manifest itself, the expression for the compressibility implies that the
instability sets in more quickly when only one angular momentum is taken
to be large compatible with the pancake structure of [24].
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Again a thermodynamic speed of sound can be defined using

ρ =
(D − 1)(D − 2)2

16πr2h

1

(D − 2 +
∑p

i=1 J
2
i )

(38)

which gives, with (33) in (26),

c2s =
1

(D − 2)

(D − 2 +
∑

i J
2
i )

2

(D − 2 + 2
∑

i J
2
i +

∑

i J
4
i )

. (39)

It is not immediately clear how the thermodynamic speed of sound might
be related to a fluid dynamical speed of sound, but it is noteworthy that the
thermodynamic speed of sound is least when the compressibility is greatest,
as one would expect for a soft equation of state. Indeed 1

D−2
≤ c2s ≤ 1

with cs = 1 for Ji = 0 and c2s → 1
D−2

as any one Ji → ∞ with all others
remaining finite. It is possible that the thermodynamic speed of sound is
related to the velocity of the kind of waves and vibrations envisaged in figure
6 of [24] associated with the instability of an ultra-spinning black hole, at
least for D > 4.

4 Conclusions

A cosmological constant spoils the Smarr relation for black hole thermody-
namics unless it is given the status of a thermodynamic variable, most nat-
urally interpreted as proportional to a pressure. A consistent interpretation
of the ADM mass of the black hole, in terms of thermodynamic potentials, is
that it is the enthalpy of the black hole. A thermodynamic volume can then
be defined as being the thermodynamic variable conjugate to the pressure,
in terms of Legendre transforms.

The main results are the thermodynamic volume (20), computed explic-
itly as the Legendre transform variable conjugate of the pressure rather than
by assuming the Smarr relation, and the compressibility (22) for Myers-Perry
black holes in asymptotically anti-de Sitter, D-dimensional, space-time. The
corresponding expressions for asymptotically flat space-times then follow eas-
ily from the Λ → 0 limit, and the corresponding quantities for asymptotically
flat Myers-Perry black holes are given in equations (20) and (33) respectively.
In addition the speed of sound can be expressed in terms of Casimirs of the
rotation group, SO(D − 1), and is given in (39).
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We emphasise again that it is crucial that the black hole is rotating.
It is clear from equations (9), (11) and (20) that, when all ai → 0, the
entropy S(rh, λ, ai) and the volume V (rh, λ, ai) are both functions of the event
horizon radius rh only, we then have V (rh) and S(rh) and V can be written
uniquely as a function of the single variable S: they cannot be considered
to be independent thermodynamic variables in this limit. The volume is
an independent thermodynamic variable only when the black hole rotates,
otherwise the Legendre transform is not well defined, as was first pointed out
in [12]. This is reflected in the fact that the isentropic compressibility (22)
vanishes as Ji → 0: fixing S fixes V when the black hole is non-rotating,
hence it is incompressible.

The discussion here has been restricted to electrically neutral rotating
black holes, leaving open the question of how electric charge might affect
compressibility.

It would be very interesting to develop these ideas in the context of pos-
itive Λ, but we immediately hit the problem of having two horizons to con-
tend with, a black hole horizon and a cosmological horizon, leading to two,
in general different, temperatures and raising the question of how to define
thermodynamic potentials for such a system. A preliminary discussion of
thermodynamic volumes in this context was given in [20], but only by treat-
ing the two horizons as essentially independent and defining two independent
volumes. The volume associated with the black hole horizon in [20] was the
same as (20), but with λ = −g2 negative, and it is perhaps significant in this
context that κ in (22) remains positive under this continuation to negative
λ, provided r2h < − 1

λ
. However a completely consistent integrated thermo-

dynamic treatment of asymptotically de Sitter space-times still eludes us.

A Thermodynamic volume

The thermodynamic volume is calculated by differentiating the mass (14)
with respect to λ, keeping the entropy and the angular momenta fixed. To
this end we note that (8), (11), (13) and (14) allow us to write

Ji =
S

2πrh

(1 + λr2h)

(1− λa2i )
ai (40)

12



and demanding dJi|S = 0 then gives

dai =
ai

(1 + λa2i )(1 + λr2h)

{

(1− λr2h) (1− λa2i )
drh
rh

− (r2h + a2i ) dλ

}

. (41)

A second relation between dai, drh and dλ follows from dS|Ji = 0 in (11),
allowing the elimination of dai to give

drh =







∑

i
a2
i

1+λa2
i

D − 2 + 2λ
∑

i
a2
i

1+λa2
i





 rh dλ, (42)

and we have all the ingredients necessary to calculate ∂
∂λ

∣

∣

∣

S,J
acting on any

function of λ, rh and ai.
The thermodynamic volume is perhaps most easily calculated by combin-

ing (8), (11), and the mass in (14), to write

M =
S

4π

(1 + λr2h)

rh

(

D − 2 + 2λ
p
∑

i=1

a2i
1− λa2i

)

. (43)

Using this equation (41) and (42) yields the following formula for the volume

V =
16π

(D − 1)(D − 2)

∂M

∂λ

∣

∣

∣

∣

∣

S,J

=
4rhS

D − 1

{

1 +
(1 + λr2h)

(D − 2)r2h

p
∑

i=1

a2i
(1− λa2i )

}

=
4rhS

D − 1
+

8π

(D − 2)(D − 1)

p
∑

i=1

aiJi. (44)

B Compressibility

The compressibility can be evaluated by pushing the analysis of appendix A
one step further and calculating

κ = −
16π

(D − 1)(D − 2)

1

V

∂V

∂λ

∣

∣

∣

∣

∣

S,J

(45)

A tedious, but straightforward calculation, gives

κ =
16π(1 + λr2h)

(D − 1)(D − 2)2

{

∑p
i=1

a4
i

1−λ2a4
i

− 1
(D−2)

(

∑p
i=1

a2
i

1−λa2
i

)(

∑p
i=1

a2
i

1+λa2
i

)}

{

r2h +
(1+λr2

h
)

(D−2)

∑p
i=1

a2
i

1−λa2
i

}{

1− 2λ
(D−2)

∑p
i=1

a2
i

1+λa2
i

} .

(46)

13



We can show that κ ≥ 0. First note that

D − 2− 2λ
p
∑

i=1

a2i
1 + λa2i

= ǫ− 1 + 2
p
∑

i=1

1

1 + λa2i
> 0, (47)

hence both factors in curly brackets in the denominator of (46) are positive.
It remains to show that the curly bracket in the numerator is positive. To
this end define

X±
i =

a2i
1± λa2i

(48)

and express the curly bracket in the numerator in terms of the bi-linear form,

X+. X− :=
1

(D − 2)

p
∑

i,j=1

X+
i KijX

−
j . (49)

Kij here are the components of the p× p matrix

K = (D − 2)1− I (50)

where I is the p× p all of whose entries are 1. The eigenvectors of K are the
same as the eigenvectors of I and the latter has one eigenvalue equal to p
and p− 1 degenerate zero eigenvalues, hence K has one eigenvalue equal to
D − 2 − p = D−3+ǫ

2
and p− 1 eigenvalues equal to D − 3. All that concerns

us here is that K is positive definite. We can use the identity

X+. X− =
1

2
((X+ +X−).(X+ +X−)−X+. X+ −X−. X−), (51)

with X+
i +X−

i =
2a2

i

1−λ2a4
i

, to arrive at

X+. X− =
p
∑

i,j=1

(1− λ2a2ia
2
j )a

2
i a

2
j

(1− λ2a4i )(1− λ2a4j )
Kij

≥ (1− λ2a2
Max

)
p
∑

i,j=1

a2i
(1− λ2a4i )

Kij

a2j
(1− λ2a4j )

,

where a2
Max

= max(a21, . . . a
2
p). Since all ai satisfy a2i ≤

1
λ
we have 1−λ2a2

Max
≥

0 and hence X+. X− ≥ 0. The compressibility is thus bounded from below.
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[21] G.W. Gibbons, H. Lü, D.N. Page and C.N. Pope,
Phys. Rev. Lett. 93 (2004) 171102, [hep-th/0409155];
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