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Abstract
Time-domain modelling of wave-energy devices is

important. This is due to the need for information on
the device’s transient response characteristics; even
when linear potential theory is assumed when modelling
hydrodynamic loads, significant non-linearities may be
present in the system due to the power-take off (PTO),
mooring, and control subsystems. In this paper, an
approach for modelling multibody marine systems is
presented. The Newton-Euler equations with eliminated
constraints (NE-EC) are utilised to capture the rigid
body dynamics of the constrained multibody system.
This results in the convenient integration of active loads
(as opposed to interbodyconstraint forces) acting on
the multibody system. In this paper, the active loads
considered are: hydrodynamic, PTO, and mooring loads.
Keywords: multibody, time-domain, Newton-Euler equations,
modelling for control

1 Introduction
Research on modelling of multibody marine systems has

been conducted before. In the field of ocean wave-energy, early
contributions were made by [1–5]. More recently, Kraemer [6]
describes a method to simulate the motions of hinged-barge sys-
tems in regular seas. Rigid connections between bodies are
considered, and are modelled with a force-based approach, us-
ing free-body diagrams. The hydrodynamic modelling of the
method involves the use of scaled data from a vessel which is
geometrically similar to that of the individual barges; no hydro-
dynamic coupling between barges is considered, and radiation
coefficients for a given frequency are used to give motions ofthe
system in monochromatic waves at that same frequency. Moor-
ing and PTO subsystems are modelled as linear damper-springs,
and the viscous damping force due to vortex shedding around
a submerged damper plate is modelled as a quadratic damping
expression proportional to a drag coefficient.
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Additionally, Berntsen [7] developed models, of both high and
reduced complexity, of a futuristic offshore fish-farm concept
consisting of five interconnected semi-submersible modules. A
force-based approach was used to describe the connectors be-
tween the modules, which were modelled as damper-spring
elements at each of the four connecting corners of the mod-
ules; hence rigid connections between modules were not con-
sidered. Hydrodynamic data from a vessel geometrically simi-
lar to each of the semi-submersible modules was used with hy-
drodynamic coupling between modules neglected. No wave-
frequency forces were considered,i.e., radiation-induced loads;
only slowly-varying environmental loads were modelled. A
comprehensive model of a turret mounted spread-mooring sub-
system was applied, with internal elasticity together withexter-
nal viscous drag and hydrostatic loads captured via a finite el-
ement approach. Additionally a thruster and hydrofoil acted as
actuators to position the system as desired in cooperation with
the mooring system. A number of controllers were developed,
with and without the use of state-estimators, with the objective
of reducing the maximum loading on the lines.
This paper proposes an approach to multibody marine system
modelling which addresses a number of outstanding issues from
the previous work just described. The issues addressed are:

• Convenient integration of hydrodynamic data from poten-
tial theory programs dedicated to a specific multibody ge-
ometry, rather than use of scaled data from a geometrically
similar single vessel.

• Hydrodynamic coupling between connected bodies

• Implementation of recent research into the time-domain
models of radiation-induced loads

In addition, kinematic issues of PTO placement are treated,with
reconfiguration possible via a change in geometrical parameters.
The modelling approach is experimentally validated. The paper
is organised as follows: the next section, Section 2 describes the
general method, considering rigid-body dynamics as well ashy-
drodynamics. An example is presented in Section 3, providing
an specific application of the modelling method,i.e., a two-body
line-absorber wave-energy device; additional modelling of PTO,
hinge friction and mooring subsystems is considered in thissec-
tion. Experimental validation of the previous applicationexam-
ple is treated in Section 4. Section 5 provides some concluding



remarks on the implications of the results presented herein, as
well as suggestions for further work.

2 Dynamics
2.1 Constraints

For a free floating (unconstrained) marine vessel, the number
of degrees of freedom is equal to 6. The generalised Cartesian
coordinates recommended by [8] for such a free floating vessel
are independent, i.e.,η = [x, y, z, φ, θ, ψ]⊤. If we introduce
constraints between the bodies in a multibody system, the num-
ber of degrees of freedom (DOF) of the system is reduced. Some
of the Cartesian (generalised) coordinates thus become redun-
dant, so that it is possible to describe the motion of each body
in the system using fewer (independent) coordinates. In other
words, the number of independent coordinates is reduced due
to the constraints. Theindependent coordinatesof a multibody
systems are also called the systemdegrees of freedom[9]. In
this paper we will write the vector of independent variablesas
q ∈ R

nq , where the number of DOF is denotednq. The time
derivative of the independent variables will be contained in the
vectors ∈ R

nq .

2.2 Newton-Euler Equations of Motion
with Eliminated Constraints

[10] gives the Newton-Euler Equations of Motion with Elim-
inated Constraint Forces (NE-EC) as:
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where:

• n represents the inertialned-frame, also termed the north-
east-down coordinate frame.

• k is the number of the body under consideration, in a sys-
tem ofN bodies

• v
bk
ck

is the linear velocity of the center of gravityck of body
k, expressed in thebk-frame, i.e. the body-fixed frame in
bodyk.

• ω
bk

nbk
is the angular velocity of the body-fixedbk-frame

about the inertialn-frame, expressed in thebk-frame.

• f
bk
ck

andm
bk
ck

are the external forces and moments acting
on and about the center of gravity of each body.

•
∂v

b
k

c
k

∂s
is known as thepartial linear velocityfor bodyk.

•
∂ω

b
k

nb
k

∂s
is known as thepartial angular velocityfor body

k.

• mk is the mass of bodyk andIck
is the inertia matrix of

bodyk, about its center of gravityck.

• the skew symmetric matrixS is the matrix algebra equiv-
alent to the cross product,
e.g.,S(ω)r = ~ω × ~r.

Our goal is to express Equation 1 in a somewhat more compact
form. To this end, we begin by defining thevelocity transforma-
tion matrixP ∈ R

nq×6N :
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A useful formulation results from noticing [11]:
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whereνk = [vbk

ck

⊤,ω
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⊤]⊤. In addition,Mbk

RB ∈ R
6×6, the

rigid-body inertia matrix of bodyk, is unique and satisfies:

M
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andC
bk

RB(νk) ∈ R
6×6 is the non-unique Coriolis-Centripetal

matrix. One instance whereCbk

RB(νk) is skew-symmetricis as
follows [11]:
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Further, we write the generalised velocitiesν = [ν⊤
1 , ..., ν

⊤
N ]⊤

in terms ofs, the independent velocities:

ν = P
⊤
s (6)

and hence:
ν̇ = P

⊤
ṡ + Ṗ

⊤
s (7)

Drawing on Equations 1, 2, 3, 6 and 7, we arrive at the
following result:

M
g
RB ṡ + C

g
RB(q, s)s = τ

g
RB (8)

whereM
g
RB ∈ R

nq×nq is the generalised mass matrix for the
nq DOF multibody system, given by:

M
g
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RBP

⊤ (9)

whereMb
RB ∈ R

6N×6N = diag(Mb1
RB...M

bN

RB).
Also we have definedCg

RB(q, s) ∈ R
nq×nq , the generalised

Coriolis-Centripetal matrix for thenq DOF multibody system,
given by:

C
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On the right hand side of Equation 8, we have definedτ
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2.3 External Forces

Fossen [12] gives the external forces (as opposed to internal
hinge forces) acting on a single surface vessel as:

τ
bk

RB = −M
bk

A ν̇k − µk − G
bkη

bk

k + τ
bk

E + τ
bk (12)

whereM
bk

A ∈ R
6×6 is the added inertia matrix,Gbk ∈ R

6×6

is the hydrostatic restoring matrix, andτ bk ∈ R
6 is the con-

trol force acting on bodyk. Further, the wave-excitation forces
τ

bk

E ∈ R
6 are composed of:

τ
bk

E = τ
bk

F K + τ
bk

D (13)

where:

τ
bk

F K = generalised (Cartesian) Froude-Krylov forces

τ
bk

D = generalised (Cartesian) Diffraction forces

The µk represents the convolution integral term in Cummins
equation. Here a state-space approximation to the convolution
integral is applied [13]. The overall state space model for the
single vessel is thus given by:

η̇k = J
bkνk (14)

M
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RB(ν)ν + µk + G
bkη
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E + τ
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χ̇k = Arχk + Brνk (15)

µk = Crχk + Drνk (16)

whereχk(0) = 0.
Utilising Equations 11, 6 and 7, it becomes possible to extend
the state-space model (Equations 14:16) toN interconnected
surface vessels:
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M
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G
b = diag(Gb1 , ...,G
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bN ) (23)

andGbk ∈ R
6×6 is given by:

G
bk = diag(0, 0, ρgAWP (0), ρg∇GMT , ρg∇GML) (24)

Finally, we note that

µ
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bN

N
⊤]⊤,

2.4 Hydrodynamics

A hydrodynamic software package with multibody function-
ality (such as WAMIT), may be used to obtain added mass and
radiation damping coefficients. For example, the added mass
matrix for a two-bodysystem given by WAMIT isA(ω) ∈
R

12×12. With some transformations, detailed below, it becomes
possible to incorporate the6N × 6N added mass and radiation
damping matrices into the model developed in Section 3.1. This
is a significant advantage of the method presented.

The radiation damping matrix for frequencyω is given by
B(ω) ∈ R

6N×6N . Following frequency- to time-domain pro-
cessing discussed in Section 2.3 above, the resulting6N force
vector µk, expressed in thebk-frame, is easily incorporated
using the velocity transformation matrixP (Equation 11).

All quantities output by WAMIT are expressed in a Cartesian
data frame with origin on the free surface in the same vertical
line as the center of gravity, as shown in Figure 2.4.

Ok

Ck

Wk

Xbk

Zbk

Xhk

Zhk

~rgk

~rwk

waterline

Figure 1: Definitions of coordinate origins on bodyk: Wk (wa-
terline),Ck (centre of gravity) andOk (equations of motion).
Thehk-frame is located inWk and thebk-frame is located in
Ok

Hence it is necessary utilise the following transform, given in
[12]:

T
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R
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where:
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It now becomes necessary to transform the quantities above ex-
pressed in thehk-frame into thebk-frame. TheJhk transform
converts quantities from the coordinate frames used in hydrody-
namic software to the body-fixed frames convenient for control
modeling. We assume that the oscillationsδΘk of thebk-frame
about thehk-frame are given by the tranform[14]:

J
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whereδΘk signifies small angles, andRhk

bk
(δΘk) ∈ SO(3) is

given by:

R
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and we have assumedJ̇hk(δΘk) ≈ 06×6.



For many applications, the roll, pitch and yaw oscilla-
tions of thebk-frame with respect to thehk-frame, δφk, δθk

andδψk, will be small, such that:

Rhk

bk
(δΘk) ≈ I3×3 (30)

and:
J

hk(δΘk)
δΘ small
≈ H(rbk

wk
) (31)

The necessary transform, fully derived in [14], may be stated
here as:

τ
hk = J

hk(δΘk)τ bk (32)

3 Example: Two-Body Marine System
Wave-tank experiments were carried out on the hinged-barge

wave-energy system shown in Figure 2. A series of static, decay,

O1 O2C1 C2

{b1}
{b2}

body 1 body 2

wave direction

weights

Figure 2: Two-body hinged-barge system, where{b1} and{b2}
indicate the b-frames of bodies one and two, respectively.

regular and irregular wave tests were conducted on the device.
Full details are documented in [15].

3.1 Rigid Body Dynamics
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where where we have definedc21 = cos(θ2 − θ1), s21 =

sin(θ2 − θ1), and the rotation matrixRb2
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describing rotations,
in thex − z plane, of theb2-frame about theb1-frame is given
by:
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Now we chooseq = [θ1, θ2]
⊤. Hences = [θ̇1, θ̇2]

⊤, and it
follows that:
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This gives thepartial velocity matrixP ∈ R
2×12 as:
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From Equations 9 and 10 the following expression forM
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3.2 Hydrodynamics

Using the state-space approximation of [13] for the convolu-
tion term in the Cummins equation [16], we find:
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2×2 is given by:

µ
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Satisfactory agreement with the impulse response functions are
achieved using an Order 6 state-space model of the convolution
integral term.
A(∞) is taken at the highest value ofω calculated, i.e.ω = 12
rad/s. This is a somewhat crude approximation (a more formal
method is given in [17]); however the weakness of the state-
space approximation approach, such as that of [13] used here,
is that good values forA(∞) are difficult to obtain. This is due
to the need for ever smaller panel sizes as frequency increases,
and hence prohibitively long run-times. The method presented
in [18] overcomes the need for added-mass at infinite frequency
calculations. It is reasonably straightforward to incorporate the
latter model for radiation forces into the approach presented in
this paper.

Using the hydrostatic restoring matrix expression of 22
we findGg ∈ R

2×2:
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With reference to expressions developed in this sections, we
write the state-space model of the two-body system as follows:

q̇ = s (61)
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4 Validation Against Experimental Results
In experiments, regular head waves excited thetwo-bodysys-

tem shown in Figure 2. Waves of heightH = 60mm over a
range of 14 frequencies were applied, with the heave response
of body two inned-coordinates recorded over this interval. The
response of the model derived in Sections 3.1 and 3.2 is sim-
ulated over the same frequency range. Certain model parame-
ters were known from the experiments. In order to determine
the unknown model parameters, an optimisation algorithm us-
ing the simplex search method of [19] was applied. This is a
direct search method that does not use numerical or analyticgra-
dients. The objective function minimised calculated the sum of
the squared distances between corresponding points on the ex-
periments and simulations,i.e.,

error =
N
∑

i=1

|f̂i − fi|
2 (67)

where f̂i is elementi in the vector of peaks and lows in the
experimental measurements andfi is corresponding element
in the vector of peaks and lows from simulated measure-
ments. Note thatN is the number of peaks and lows for the
measurements being compared. The optimisation comprises
a least-squares fit of simulations to experiments across all
measured frequencies. Consequently, an overall mean squared
error (MSE) across all frequencies was determined:

MSE = 8.86 mm2

As a reference, the maximum amplitude considered is ap-
proximately25 mm, and the minimum is approximately8 mm.
Figure 3 gives a comparison of the simulated to experimental
frequency response of the heave of body two.
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Figure 3: Frequency response of the heave of body two for ex-
periments and simulations

Figure 4 shows the response in heave of body two for a fre-
quency ofω = 3.3 rad/s.
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Figure 4: Comparison of Body 2 heave response to regular
wave excitation of heightH = 60 mm andω = 3.3 rad/s

Figure 5 shows the response in heave of body two for a fre-
quency ofω = 7 rad/s. The oscillatory envelope in the experi-
ments are deemed to be due to unmodelled dynamics.
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Figure 5: Comparison of Body 2 heave response to regular
wave excitation of heightH = 60 mm andω = 7 rad/s



5 Conclusions
The modelling approach presented in this paper is:

• Useful for simulation: The models derived using this
method are easily implemented in SimulinkR©. Various
configurations of marine multibody systems may be con-
veniently tested by adjusting distance parameters between
simulations. Control designs may be tested within such
a simulation environment, which provides a detailed de-
scription of the actual physical process. The accuracy of
this so-calledprocess-plant modelis currently limited to
linear motions, which for a large number of multibody ma-
rine systems may be considered normal operating condi-
tions.

• Useful for control design: The Fossen formulation of the
modelling approach presented implies suitability for sys-
tem analysis and control design. System properties evi-
dent in matrix components of the system equations of mo-
tion may be exploited when doing control design. Addi-
tionally, process-plant models in the Fossen formulation
are conducive to simplification; such simplified mathe-
matical descriptions, usually linear, containing only the
main physical properties of the actual process, are often
calledcontrol-plant models, and are used for development
of state-estimators and controllers.

• Useful for wave-energy device modelling: The modelling
approach presented gives accurate time-domain models;
time-domain modelling of wave-energy devices is partic-
ularly important due to the need for information on the
device’s transient response characteristics. Modelling of
a line-absorber has been demonstrated in this paper as
well as in [15, 20], while modelling of a four DOF point-
absorber is treated in [15]. Complex PTO systems with
many moving parts may be integrated conveniently due to
the extendable nature of the modelling approach. Addi-
tionally, farms of devices can be modelled, with individual
device motions referred to the same inertial n-frame.

Further improvements should be made to the treatment of hydro-
dynamic loads: an analysis of which nonlinear hydrodynamics
effects become dominant in various operating conditions isre-
quired, followed by development of approximate models incor-
porating them into models already developed using the approach
presented. In addition, improved modelling of nonlinearities in
PTO and mooring subsystems is required.
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