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Abstract

In this paper a preliminary study about the
problem of forecasting the wave elevation some
seconds ahead, at a particular point on the sea
surface, basing on past observations at the same
point, is presented. It is discussed how, in the field
of wave energy, short term wave forecasting plays a
key role for energy extraction optimization. Some
simple linear techniques from time series theory
are analyzed and then tested both on linear simu-
lated data and on real sea data. Along with these
methodologies, a way to preprocess the data from
a wave energy perspective, is proposed.

1 Introduction

The main application field for short term wave
forecasting is in the implementation of optimum
control algorithms for wave energy devices. In [1]
and [2] full motivation, about the role played by
future wave elevation knowledge in wave energy
extraction optimization, is provided.

The optimum condition in order to achieve the
maximum power absorption of an oscillating body
from the waves is the following [2]:

u(ω) =
Fe(ω)
2Ri(ω)

(1)

where u(ω) is the oscillation velocity, Fe(ω) is the
excitation force due to the incoming wave (i.e. the
hydrodynamic force acting on the system) and Ri

is the intrinsic mechanical resistance of the sys-
tem. This condition can be split up in a phase
condition and an amplitude condition, respectively
expressed as the following:

φu = φFe (2)

|u| =
|Fe|
2Ri

(3)

where φu and φFe are the phases of u(ω) and Fe(ω)
respectively. An optimum control is achieved
by satisfying both conditions (2) and (3), but it
presents a number of difficulties, as condition (3)
requires some energy to be supplied during part
of the wave cycle (it is an active control) [3]. A
sub-optimal control technique exists, which tries

to accomplish the only phase condition (2) (it is a
passive control), and it is termed, therefore, phase
control or latching control (for details refer to [4]).
While implementing either the optimal or the sub-
optimal control law, however, two are the main
reasons why next wave estimation is needed:

1. In the time domain, the excitation force act-
ing on a body is obtained by the convolution
of the incident wave amplitude with a ker-
nel function depending on the geometry of
the body itself, the latter function being non-
causal, so that future wave elevation is needed
for computing the excitation force (and so the
optimal body velocity required to maximize
the energy extraction), and

2. the system to control has some inertia (time
lag) and optimization can only be achieved by
knowing the wave excitation force some time
in advance (and so the future wave elevation).

The approaches so far presented for short term
wave forecasting concern the prediction of the
wave elevation at a distant site from the obser-
vation point. Among the main solutions provided
is a Deterministic Sea Wave Prediction (DSWP)
technique (Belmon et al in [5]), which performs
the forecasts at the prediction site by means of
several linear filters (one for each dominant swell
detected) estimated through the data collected at
the observation sites. The numerical results pre-
sented show good accuracy for a few tens of sec-
onds ahead in the case of a single long crested
swell. When more than two swells are involved,
however, the computational effort becomes really
significant and make this technique less attrac-
tive. An alternative solution is presented in [6],
where the observed wave elevations are fitted to a
pure harmonic model (sum of sines and cosines)
and then the wave propagation is assumed to be
governed by the linear dispersion relation. How-
ever it is only preliminary work and the tech-
nique is tested in simplified conditions (mono-
directionality, wavetrains consisting of a small
number of harmonics). Some non-linear methods
are presented in [7], where focus is placed on the
estimation of the time from the present instant
until some events of interest (e.g. the time until



the next wave peak), whose knowledge is required
to achieve the sub-optimal latching control.

This paper will focus on a slightly different
problem: The prediction of wave elevation at a
specific point of the sea surface based on past ob-
servations made at the same point. In this situa-
tion, simple linear models can be applied without
any significant simplifying hypothesis.

The problem can be seen as a pure forecasting
problem for its own sake, as well as relevant in
a wave energy context. Since, to the best of the
authors’ knowledge, no relevant scientific results
have been produced for this particular problem,
some simple linear techniques from time series the-
ory are analyzed and tested both on simulated and
real sea data.

In the remainder of the paper, section 2 focuses
on the simulated and real data on which the mod-
els presented have been tested, along with a pos-
sible preprocessing performed on them. Then, in
section 3, the forecasting models are discussed and
in section 4 the achieved results are shown. Fi-
nally, conclusions and possible further work are
outlined in section 5.

2 Data availability

The forecasting models presented in this paper
were tested both on linear simulated data and on
real data.

The real data was provided by the Irish Ma-
rine Institute and comes from a data buoy located
in Galway Bay, on the West Coast of Ireland (at
approximately 53◦ 13′ N, 9◦ 18′ W). The data con-
sists of 20 minute records sets for each hour, col-
lected at a sampling frequency of 2.56 Hz, for the
months of January, March and April 2008.

The simulated data were generated from one of
the most popular spectral models, the Pierson-
Moskovitz spectrum [8], parametrized as follows:

S(ω) =
Ag2

ω5
e
−B

(
(g/Hs)2

ω4

)
(4)

where A and B are constant parameters and Hs is
the significant wave height (defined as four times
the square-root of the area under the spectral den-
sity function, or the mean of the one third highest
waves).

Then, based on the assumption that irregular
sea waves can approximately be considered as a
superposition of many different regular (i.e. har-
monic) waves [1], the wave elevation η(t) may be
generated by choosing a finite number of frequency
components from the spectrum:

η(t) =
m∑

i=1

a(i)sin(ω(i)t+ φ(i)) (5)
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Figure 1: Power spectrum is quite constant for simulated
data (a), while it changes over time for real data (b)

where a(i) and φ(i) are, respectively, the ampli-
tude and the phase of the i-th (of the m) harmonic
component. The amplitudes are proportional to
the spectrum envelope, while the phases are cho-
sen randomly (the amplitude spectrum does not
give any information about them). The choice
of the frequencies, in particular their spacing, is
crucial in making the simulated data as realis-
tic as possible. In [9] it has been proposed a
set of regularly spaced frequencies ranging from
0 up to 3.5rad/s, with maximum interval dω =
0.00625rad/s.

Apart from full linearity, the further simplifi-
cation introduced with these simulated data is
stationarity. The amplitudes and phases of each
harmonic component are, in fact, constants over
all the simulation time. Real data, on the other
hand, show a non-stationary behavior due to
some changes over time in the physical prop-
erties (phases, amplitudes) or to unknown non-
linearities of the real process. One representative
way to show this non-stationarity is by computing
the power spectrum (distribution of the autocorre-
lation in the frequency domain) over different time
intervals (figure 1). It is seen to be quite constant
for simulated data, while it significantly changes
over time for real data.

2.1 Data preprocessing

If one is interested in short term wave forecasting
for specific wave energy optimization issues, it is
useful to perform data preprocessing, where the
high frequency components are removed. As dis-
cussed in [9], in fact, wave records containing high
energy, which are the most relevant for wave en-
ergy applications, show a single significant peak,
most likely a large dominant low frequency swell.
On the other hand, most of the wave records con-



taining two (or more) coexisting wave systems, ei-
ther low and high frequency ones, occur when the
total energy is low and are not very relevant for
wave energy conversion.

Moreover, high frequency components are
highly non-linear (Ochi [10], Falnes [1]) while this
is not the case for low frequency swells, so that
linear forecasting models are expected to behave
better on pre-filtered data.

The most appropriate low pass filter, in the au-
thors’ opinion, is the Butterworth filter, as it min-
imizes the distortion in the band-pass. It requires,
however, a high order (between 10 and 20) to per-
form a sufficiently sharp cut-off, but it is not a
big problem, because preprocessing is an off-line
procedure, so complexity is not a highly relevant
issue. Great care should be taken, at this stage, in
the choice of the cut-off frequency. It depends, of
course, on which components of the wave we are
interested in forecasting, which depends on any
specific application needs.

The forecast accuracy can, however, be differ-
ent depending on whether one is trying to pre-
dict all the frequency components or only the low-
frequency ones. In section 4, a comparison be-
tween forecasting performed on pre-filtered and
non pre-filtered data will be presented.

3 Forecasting models

As pointed out in section 1, irregular sea waves
can approximately be considered as superposi-
tions of many different harmonic components [1].
A general expression for a regular plane wave
ηi(x, y, t) with propagation direction given by β
(angle formed with the x axis) can be written as:

ηi(x, y, t) =
= Ai cos(ωit− kx cosβ − ky sinβ + φi) (6)

where Ai and φi are the amplitude and initial
phase of the wave, and ωi is its angular frequency.

A general sea state (superposition of irregu-
lar sea waves propagating in different directions)
η(x0, y0, t) at some point (x0, y0) of the sea surface
is then represented as:

η(x0, y0, t) = η(t) =

=
∫ +∞

0

A(ω) cos(ωt+ φ(ω))dω + ζ(t) (7)

where the multi-directionality disappeared be-
cause a specific point of the sea surface is con-
sidered (note that kx0 cosβ and ky0 sinβ are con-
stants and have been included in the initial phase).
The disturbance term, ζ(t), has been added to
take into account of any kind of error introduced
by this approximation. No assumption, however,

is made about the nature of the disturbance (it
can not be said to be Gaussian, or white noise),
as nothing is known about the neglected real sys-
tem’s components.

Based on these considerations, it is straightfor-
ward to define a forecasting model for the wave
evolution at a point of the sea surface as a dis-
cretisation of expression (7), where only a finite
number m of harmonic components is chosen:

η(t) =
m∑

i=0

Ai cos(ωit+ φi) + ζ(t) (8)

Note that no simplifying assumptions have
been made on the real physical process (mono-
directionality of the wave is not required, eventual
non-linearities can be incorporated in the distur-
bance term, etc...).

A more convenient expression for the model (8),
which is non-linear in the phases, can be obtained
by applying a trigonometric transformation:

η(t) =
m∑

i=0

ai cos(ωit) + bi sin(ωit) + ζ(t) (9)

where the parameters ai and bi take into account
both the amplitude and the phase of the i-th com-
ponent.

Basically, the number of degrees of freedom
available in building up such a model is two, be-
fore it is fitted to the data: The choice of the
frequencies and than the choice of a model for the
amplitudes (they can be considered as constants
or a dynamic for them can be allowed).

3.1 Choice of frequencies

The choice of the frequencies is the most crucial
problem in applying a forecasting model of the
form (9). It is a trade-off between complexity and
modeling capability.

A first methodology could be a set of regularly
spaced frequencies. The smaller the dw the more
the complexity of the model, but even the greater
are the numerical problems that can be encoun-
tered in the estimation procedure. A good value
for it has been found to be dω = 0.01rad/s.

One alternative is to use a non-linear spacing,
where more frequencies are concentrated in the
central part of the spectrum (where the peak is
supposed to occur). This kind of choice gives
slightly better performance when tying to forecast
real sea data, as it will be shown in section 4.

3.2 Models for the amplitudes

The simplest approach is to consider the ampli-
tudes ai and bi as constants. Then, regular least
squares can simply solve the estimation problem,
but obviously the model will not be able to track



possible non-stationary behavior of the system
(changes in amplitudes and phases over time),
which, as shown in section 2, is the case with real
sea waves.

One first possibility is to allow a drift in the
parameters. In this case, by introducing a state
vector x(k) = [a1(k) b1(k) ...am(k) bm(k)]T , the
system can be represented by the following state
space form:

x(k + 1) = x(k) + w(k) (10)
η(k) = C(k)x(k) + ζ(k) (11)

where C(k) = [cos(ω1kdt) sin(ω1kdt) ...
cos(ωmkdt) sin(ωmkdt)], with dt the sampling
time, and w(k) a Gaussian white noise which rep-
resents the drift. The state vector can then be
recursively estimated by means of recursive least
squares with a forgetting factor λ < 1, which rep-
resents a measure of the parameters variability
(and the covariance matrix of w(k)). The closer λ
is to 1, the less the allowed variability.

A second, and more complex, possibility ana-
lyzed in this paper is the Dynamic Harmonic Re-
gression (DHR) model, proposed by Young et al
in [11]. Each parameter is modeled as a two-
dimensional state vector:

xi(k) = [ai(k), si(k)]T (12)
xi+m(k) = [bi(k), si+m(k)]T (13)

for i = 1, ...,m. Here ai or bi represents the level
and si is the slope of each parameter. The two-
dimensional space vectors dynamically evolve as
an Integrated Random Walk (IRW):

xi(k + 1) = Aixi(k) +Giηi(k) (14)

Ai =
[
1 1
0 1

]
Gi =

[
0 0
0 1

]
(15)

where i = 1, ..., 2m. The disturbances ηi(k) are
considered as Gaussian white noise. The overall
state space model is then obtained by aggregating
the subsystem matrices defined in (15). Once the
hyperparameters (i.e. the disturbance variances)
have been estimated (an efficient non-linear esti-
mation procedure in the frequency domain is dis-
cussed in [11]), the Kalman Filter can recursively
be implemented to obtain the estimate x̂(k+ 1/k)
of the state vector at each step. The multi-step
ahead forecasting is then obtained as:

η̂(k + l/k) = C(k + l)Al−1x̂(k + 1/k) (16)

where x̂(k + l/k) is the estimate of x(k + l),
based on the observations η(1), ...η(k), as for
η̂(k+ l/k), and C(k) = [cos(ω1kdt) 0 sin(ω1kdt) 0
... cos(ωmkdt) 0 sin(ωmkdt) 0].

More complex models could be considered, or
a different dynamical matrix for the DHR model

could be chosen. This, however, leads to com-
putational problems in the preliminary hyperpa-
rameter estimation procedure (it is a non-linear
problem), which then prevents the convergence of
the Kalman Filter estimates.

4 Results

In this section models and methodologies pre-
sented throughout the paper, particularly in sec-
tion 3, are analyzed and tested on simulated data
and real data. The N-steps ahead forecasting
performance at instant k is quantified through
the mean error (ME) and the mean relative error
(MRE), expressed by the followings:

ME(k) =
1
N

k+N∑
i=k+1

|η(i)− η̂(i/k)| (17)

MRE(k) =
1
N

k+N∑
i=k+1

|η(i)− η̂(i/k)|
|maxi{η(i)}|

(18)

4.1 Simulated data

Since simulated data are stationary (the har-
monic components have constant amplitudes and
phases), the amplitudes of the forecasting model
(the ai and bi coefficients of (9)) can be considered
as constants and regular least squares can simply
fit the model to the data. The model can then be
used to forecast the simulated wave elevation at
any future time instant.

The data is simulated as explained in section 2,
with dω = 0.005rad/s and a sampling frequency of
2.56Hz, based on a Pierson-Moskovitz spectrum
with significant wave height Hs = 3m.

The only degree of freedom in the model is
represented by the modeling frequencies. Fig-
ure 2 shows the forecast ME resulting from mod-
els characterized by different frequency spacings
(in the range [0.5, 1.5] rad/s). It’s interesting to
note how the forecasting performance substan-
tially decreases when the forecasting model’s dω
changes from the same value as the simulating
model (0.005rad/s) up to two or three times its
value (0.01 and 0.015 rad/s). Further increases in
dω do not affect significantly the ME.

4.2 Real data

When dealing with real sea data, the most appro-
priate forecasting models are the ones, described
in section 3, that include some dynamic in the pa-
rameters: a simple drift, estimated through recur-
sive least squares (RLS) with forgetting factor and
a Dynamic Harmonic Regression (DHR) model.

After training, at each step, the model esti-
mate is updated with the current observation and
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Figure 2: ME resulting from forecasting models built on
different frequency spacing dω

model dω [rad/s] ME [m] MRE [%] m
drift 0.01 0.185 33.96 91

drift 0.05 0.206 38.17 19

drift non-linear 0.186 34.33 73

DHR 0.01 0.306 57.42 91

DHR 0.05 0.475 86.84 19

Table 1: Summary results obtained by setting up the two
general models with different frequencies choices. The

forgetting factor for the drift model is (λ = 0.998)

the forecast, with corresponding ME and MRE, is
computed for 100 steps ahead (nearly 39 seconds).

Table 1 shows some summary results obtained
by means of the two general models set up
with different choices of the modeling frequencies.
They have been chosen in the interval [0.3, 1.2]
rad/s (wider intervals did not improve the re-
sults). In each case the mean ME and MRE are
showed, along with the number m of frequencies
included into the model.

It is obvious how the DHR model behaves quite
worse than the simpler drift model. The main rea-
son for this poor performance of the DHR model
could lie in its complexity. For each frequency, in
fact, it requires 4 parameters (while only 2 are re-
quired in the drift model) and, moreover, in the
training procedure, a non-linear hyperparameters
estimation procedure is required.

Model complexity has been experienced to be
critical in this forecasting problem. When, for
the drift model, in fact, a dω = 0.005rad/s is
chosen (with consequently 181 frequency compo-
nents), the accuracy decreases (while an increase
should be expected) to a ME = 0.199m and a
MRE = 36.85%.

The best choices for the frequency spacing,
then, turned out to be a constant spacing with
dω = 0.01rad/s and a non-linear spacing (where
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Figure 3: wave forecast obtained with a drift model,
dω = 0.01rad/s, ω ∈ [0.3, 1.2] rad/s

.

more frequencies are concentrated in the center of
the interval), the latter allowing a decrease in the
number of modeling frequencies by lightly affect-
ing the results (as shown in table 1).

Figure 3 shows a forecasting sample obtained
with the best model (drift model and dω =
0.01rad/s). Note how the forecasts are more re-
liable in the early future instants, while they be-
come less accurate later in the future.

In choosing the modeling frequencies, the best
interval has been found to be [0.3, 1.2]rad/s. In
such a situation, the higher frequency components
do not give any useful information to the estima-
tion algorithm (RLS or Kalman Filter). This con-
sideration, as well as wave energy motivation out-
lined in section 2.1, make it interesting an analysis
of the forecasting models behavior when a pre-
filtering is applied to the data.

By applying a Butterworth filter with cut-off
frequency ωc = 1.2rad/s (mean wave energy ne-
glected nearly 29%), a drift model with dω =
0.01rad/s gives an ME = 0.144m (on the same
validation set as results in table 1), which repre-
sents a substantial improvement. Fig. 4 shows
a sample forecast computed at the same time in-
stant and on the same data set as in fig. 3.

5 Conclusions

Short term wave forecasting is a relevant issue
in the wave energy filed. This paper focused on
forecasting the wave elevation at a point on the
sea surface, by means of observations made at the
same point. This problem allows the avoidance of
simplifying hypothesis (e.g. mono-directionality,
linear dispersion relationship, etc.) and permits
to work with real data, even when dealing with
simple linear models.

This was supposed to be preliminary work and
a simple sines/cosines linear model was presented,
where the degrees of freedom are two: the fre-
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Figure 4: wave forecast obtained with filtered data

.

quencies and the amplitude models (to track non-
stationarity of real sea waves).

Simulated data were useful in assessing the im-
portance of choosing the modeling frequencies as
thick as possible in a significant interval (i.e. an in-
terval where most of the signal’s energy is stored).
When working with real data, however, it has been
shown how high complexity, both when choosing
the frequencies (small dω) and when building a
model for the amplitudes, can seriously affect the
performance. So a lower limit for the frequencies
spacing has been found (0.01rad.s) and the best
choice for the amplitudes model proved to be a
simple drift (a more complex DHR model presents
too many numerical problems when dealing with
nearly a hundred of harmonic components).

An improvement in the forecasting accuracy can
also be achieved by pre-filtering the data and re-
moving high frequencies components. This makes
sense either in a wave energy context (where high
energy low frequency components are much more
relevant) and in a pure forecasting issue (includ-
ing high frequencies in a linear model does not
improve the forecasts).

The general results were encouraging, since
sometimes the wave dynamics 20-30 seconds ahead
is tracked by the forecasting models, and so it
is authors’ opinion that further work can signif-
icantly improve the relevance and the effective-
ness of the techniques here presented. The mod-
els, however, were tested only on a poor variety of
data (few months at a single sea site). That’s why
future work will involve a much wider validation
(based on wave measurements made at different
sea locations and in several weather conditions).
Then other possible further developments will in-
volve the introduction of some non-linearities in an
attempt to model any non-linear component con-
tained in real sea and possibly improve the fore-
casts.
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