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ABSTRACT: Modelling future temperature changes is a crucial step in the climate change impacts analysis stage for a
wide range of environmental and socioeconomic sectors. A scale mismaltch exists, however, between the coarse spatial
resolution at which general circulation models (GCMs) project future climate change scenarios, and the finer spatial
resolution at which impact modellers require such projections. Various downscaling techniques can be used to bridge
this gap. with statistical downscaling methods emerging as a popular, low cost and accessible means of developing site
specific future scenarios. Despite its widespread use. little attention has been paid (o some of the key issues in statistical
downscaling which are central to the development of the future scenartos, including GCM grid-box chorce and the eltects
of moditying the calibration period. In this study, such issues are examined with respect o the development of sile-
specihic future temperature scenaros for nine chmatological stattons across Northern Ireland. Results indicate that the more
remote grid box of the two analysed 1s most strongly correlated with maximum and minimum temperatures. tllustrating
the tmportance of examining potential spatal offsets in the predictor-predictand relationship. In additon. modihcations (o
the calibration pertod result 1n only munor differences o seasonal calibration and validation values as well as resultant
future projections. indicating that longer calibration periods do not always offer improvements over shorter periods. Future
downscaled scenarios reveal considerable warming across all sites and seasons, with large inter GCM differences apparent.
This underlines the importance of employing multiple GCMs and emissions scenarios to help address the uncertainties
inherent in global climate modelling. This study illustrates the potential of statistical downscaling methods in generating
high resolution future climate change scenarios appropriate to the requirements of impact modellers. provided a thorough
analysis of some of the key issues that shape the character of the future scenarios are fully explored. Copyright © 2011
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1. Introduction

Information concerning future changes in temperature
and its variability is necessary to model various surface
processes at global and local scales across a range of dis-
ciplines in both the natural and social sciences (Anandhi
et al., 2009). Temperature influences human health, par-
ticularly through extremes leading to hypothermia or heat
stress (Ballester er al.. 2003). Temperature also influ-
ences a range of other natural systems including botany,
through phenological events such as the timing of flow-
ering and breeding (Carroll ef al.. 2009); and agriculture,
from crop and livestock discase (Thornton et al., 2009)
to the growth and vield of crops (Wiik and Ewaldz,
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2009). In addition to the wide-ranging impacts on natural
systems, temperature influences socioeconomic systems
including transport, particularly through high extremes
leading to stresses on railway tracks (Chapman ef al..
2008) and low extremes exerting strain on road salt
supplies (Handa et al.. 2006). Other impacted socioe-
conomic systems include the built environment, where
thermal fatigue leads to the disintegration of building
stone (Gomez-Heras et al.. 2006); energy consumption.
where lower temperatures generally increase demand
(Lam et al., 2004); and tourism, where prolonged periods
of sunshine and associated high temperatures frequently
lead to increased levels of holidaying and recreation
(Gomez-Martin, 2003). Given the sensitivity of such a
vast range of impact sectors to temperature, the need
for climate impact assessments that examine future tem-
perature changes is of significant importance in order to
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develop adaptation strategies to cope with such changes.
In addition, as most ¢limate impact models operate on a
fine spatial scale, future ¢limate change projections must
be provided at the same spatial reselution to be suitable as
input to impact models (Wilby and Dawson, 2007). The
most credible tools for projecting future climate change
(general circulation models (GCMs)) can only calculate
atmospheric processes at a horizontal spatial resolution of
several hundred kilometres, however, which is too coarse
to be useful as input data for impact models (Schubert
and Henderson-Sellers, 1997).

1.1. Methods for generating finer spatial resolution

Downscaling techniques are utilized to bridge this gap
between what GCMs can provide and what impact
assessors require. Downscaling can broadly be grouped
into two main types: dynamical or statistical downscal-
ing (Wilby and Dawson. 2007). Dynamical downscaling
refers to the nesting of a high-resolution Regional Cli-
mate Model (RCM) within a coarser resolution GCM.
Several studies (e.g. Murphy, 1999: Bergstrom ef al.,
2001: Hulme et al., 2002; Arnell et al., 2003) have illus-
trated the success of dynamical downscaling approaches.
The main advantage of dynamical downscaling is that
RCMs, being physically based. can resolve small-scale
atmospheric features such as low-level jets, or orographic
precipitation, better than the host GCM (Wilby and Daw-
son, 20007). Statistical downscaling methods, meanwhile,
rely on identifying and developing mathematical trans-
fer functions or empirical relationships between observed
large-scale predictors and the surface environmental vari-
able of interest (local-scale predictands) (Wilby and
Dawson, 2007). One common statistical downscaling
approach is perfect-prognosis downscaling (e.g. Wilks,
2006: Maraun et al.. 2010). This approach is based on the
concept that regional climate is governed by the relation-
ship between the synoptic climate state and local physio-
graphic features, represented by a statistical model, with
GCM output then fed into the statistical model for estima-
tion of corresponding local and regional climate variables
(Wilby et al., 2004). The predictor—predictand relation-
ship should explain a large amount of the observed vari-
ability and the expected changes in the mean climate
should lie within the range of its natural variability (von
Storch et al., 1993). Statistical downscaling has become
a popular method of creating downscaled climate sce-
narios. Some statistic al downscaling techniques facilitate
the creation of ensemble forecasts, which provide uncer-
tainty analysis of future projections (Wilby and Dawson,
2007). Their ability to provide site-specific information
is fundamental to climate change impact studies and is
often the only practicable means of generating climate
scenarios for point-scale processes such as soil erosion
(e.g. Favis-Mortlock and Boardman, 1995). Wilby et al.
(2004) indicate that one of the primary advantages of
statistical downscaling techniques is that they are com-
putationally inexpensive and thus can be easily applied
to output from different GCM experiments.
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1.2. Downscaling temperature in Ireland

Contrasting downscaling techniques have been used to
develop future temperature projections at a finer spa-
tial resolution in Ireland. Statistical downscaling methods
were used in the development of future temperature sce-
narios for 14 sites across the Republic of Ireland (Fealy
and Sweeney, 2008). Results from this study revealed
mean temperature increases of 2.0-2.7 "C for the 2080s,
with autumn projected 0 warm most, inland locations
projected o warm at a higher magnitude than coastal
locations, and extremes projected to include increased
hot-day temperatures and a decreased incidence of frost
days. The highest resolution temperature scenarios pub-
lished for Northern Ireland, meanwhile, were developed
using an RCM nested within the UK Hadley Centre
GCM in a climate change scoping report by the Scotland
and Northern Ireland Forum For Environmental Research
(SNIFFER) (Arkell et al., 2007), providing future tem-
perature scenarios at a spatial resolution of 50 km. Find-
ings indicated a 1-3.5"C warming by the 2080s, with
autumn and summer projected to warm most, extremely
warm days projected to become more frequent and hotter,
and the number of cold days projected to decline.
Statistical downscaling methods are employed in this
study to examine, for the first time, future changes in tem-
perature across Northern Ireland at a site-specific spatial
resolution. A popular decision-support ool for assessing
local climate change impacts, the Statistical DownScal-
ing Model (SDSM) (Wilby and Dawson, 2007), is the
specific tool used to develop these scenarios. SDSM ver-
sion 4.2 (Wilby and Dawson, 2007) is a Windows' -based
decision support tool for assessing local climate change
impacts using a robust statistical downscaling technique.
SDSM facilitates the rapid development of multiple, low-
cost, single-site scenarios of daily surface weather vari-
ables under current and regional future climate forcing
(Wilby and Dawson, 2001: Wilby er a/., 2002). SDSM
is frequently described as a hybrid between a regression-
based approach and a weather generator, because large-
scale daily circulation patterns and atmospheric moisture
variables are used to condition local-scale weather gen-
erator parameters at individual sites (Wilby and Harris,
2006). The underlying philosophy of SDSM relies on the
establishment of multiple regressions between local-scale
predictands (such as daily rainfall and temperature) and
large-scale predictors (such as mean sea level pressure
and surface vorticity (Wilby and Dawson, 2007). The
established relationships are then applied to the circula-
tion simulated by a GCM in order to generate projections
of local climate, motivated by the assumption that GCMs
simulate large-scale atmospheric circulation better than
they simulate surface climate variables (Murphy, 2000).
In this study, output from three GCMs and two emis-
sions scenarios are used o downscale daily maximum
and minimum temperatures to the point-scale at nine
climatological stations across Northern Ireland. Use of
multiple GCMs and emissions scenarios helps address
uncertainties inherent in global climate modelling and
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makes possible the generation of arange of equally plau-
sible site-specific future scenarios. For three future time
slices, results are presented as temperature changes from
the 1961-1990 modelled baseline period. In addition,
results are provided on a seasonal and spatial basis in
order to examine differences in the magnitude of warm-
ing across different sites and at different times of the
year. Finally, future changes in temperature extremes are
presented, since extremes are frequently the variables of

most interest to impact modellers.

2. Key issues in the downscaling process

An additional aim of this study is to examine some of the
issues and choices associated with statistical downscaling
that shape the nature of the future downscaling results.

2.1

2. Non-stationarity

The issue of non-stationarity, in particular, may seriously
undermine the realism of future scenarios (Wilby, 1997),
Non-stationary predictor—predictand relationships  may
arise from: (1) An incomplete set of predictor variables
that excludes low-frequency climate behaviour: (2) An
inadequate sampling or calibration period for the cho-
sen predictor—predictand relationships: or (3) Situations
in which the climate system changes through time (Wilby,
1998). Case (1) is less significant for downscaling tem-
perature than precipitation, since a much higher propor-
tion of the explained variance in temperature can be
captured given its greater spatial uniformity. Most seri-
ous of the three symptoms of non-stationarity is case
(3). This is considered the major theoretical weakness of
perfect-prognosis statistical downscaling techniques, as
their basic assumption is not verifiable, i.e. that statisti-
cal relationships derived for the present day climate also
hold under future climate forcing (Wilby er al., 2004),
Predictor —predictand relationships are thus assumed to
be time-invariant, yet it is well recognized that trans-
fer functions may become invalid or weights attached
to different predictors may change under the future cli-
mate regime (Wilby er al.. 2004). Relationships. there-
fore. must be critically and carefully assessed as it
is impossible to check future climate conditions with
observational records (Arnell ef al.. 2003). Tests of sta-
tionarity of statistical transfer functions using compara-
ble relationships in RCMs, however. suggest the time-
invariance assumption may be robust provided that the
choice of predictors is judicious (Charles et al., 1999),
Empirical methods are not well positioned to resolve
case (3), whereas examination of case (2) is possible
based upon modifying the calibration period. Downscal-
ing models for temperature calibrated on colder-than-
average periods in the observed station data are likely to
seriously underestimate future temperatures, whilst mod-
els calibrated on warmer periods within the observed
record are likely to result in overestimations (e.g. Wilby,
1998). Examination of the length and specific time-
frame of the calibration period is therefore conducted
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in this study and discussed with respect to model cal-
ibration, validation, and the resultant impact on future
temperatures.

]
Laia

Predictor selection

Selection of appropriate predictor variables is another
key issue in the statistical downscaling process, repre-
senting the most critical stage in the shaping of future
scenarios. (Wilby et al., 2004). According to Wilby ef al.
(2002), predictor variables should be: (1) Physically and
conceptually sensible with respect to the predictand:
(2) Srongly and consistently correlated with the predic-
tand:; (3) Readily available from archives of observed
data and GCM output; and (4) Accurately modelled by
GCMs. In this respect, and since predictor selection is
central to statistical downscaling and the resultant char-
acter of the downscaled scenarios, this study affords par-
ticular attention to the search for appropriate predictor
variables to downscale maximum and minimum temper-
atures.

2.3, Grid-box choice

A final important consideration in the present study con-
cerns the issue of grid-box choice, given that predictors
from the grid box overlying the target station do not
always exhibit the strongest correlations with the predic-
tand, as possible spatial offsets in the correlation patterns
may exist (Wilby and Wigley, 2000). Brinkmann (2002)
echoed this, noting that choice of grid box is critical for
capturing the circulation features of significance to the
local climate. In previous climate change scoping studies
for Northern Ireland, the grid-box choice has emerged as
a key problem with respect to developing future scenarios
for the region. For example, the SNIFFER report (Arkell
et al., 2007) on implications of climate change for North-
ern Ireland identified that the region effectively existed
as ocean in the HadCM2 GCM used, thereby presenting
a problem of model output appropriateness within this
box for application to future climate change scenarios for
the region (Betts, 2002). Wilby and Dawson (2001) also
addressed the grid-box issue with respect to the UKS-
DSM data archive (Figure 1). noting that because three of
the nine grid cells in the archive are ocean, more realistic
estimates of forcing over land areas that are represented
by ocean grid boxes could be developed by averaging the
two nearest land cells. In the UKSDSM data archive, this
involved averaging the Ireland (IR) and Scottish Borders
(SB) grid boxes to form a notional NIR grid box. How-
ever, as the IR grid-box parameters are derived from the
entire island of Ireland, this grid box in isolation (ie. with-
out averaging with other grid boxes) clearly also offers a
climatologically sound possibility for downscaling over
Northern Ireland. In this respect, both the IR and NIR grid
boxes are examined for correlations between maximum
and minimum temperatures and a selection of predictors
from the UKSDSM data archive (Wilby and Dawson.
2007) for each site and season. The overall aim of the
study, therefore, is to develop site-specific future tem-
perature scenarios for Northern Ireland in a manner that
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Figure 1. Location and nomenclature of the nine grid boxes used in the
UKSDSM data archive (after Wilby and Dawson. 2007).

examines rigorously the core issues of statistical down-
scaling that shape the character of the future scenarios.

3.

o]
3

3.1
3.L.1;

Data and methods
Data sources
Predictands

Observed daily data for maximum and minimum temper-
atures were obtained for nine climatological stations in
Northern Ireland from the Met Office Land Surface Sta-
tions Observations data set via the British Atmospheric
Data Centre (BADC). The stations were selected on the
basis of two main criteria: (1) Completeness of the tem-
perature records to ensure a minimum baseline climatol-
ogy with thirty years of data from the vear 1961: and
(2) A wide geographical spread of stations to capture a

D. MULLAN et al.

mixture of coastal and interior locations (Figure 2). An
additional site-selection factor. unrelated (o this study.
was o ensure close proximity of the stations to sites
for soil crosion modelling. which forms the basis of
an ongoing research project. Temperature data for the
period of 1961-1990 exists for all 9 selected stations.
but only three of these contain data beyond this (from
1961 to 2000). Thus for model calibration. the period
of 19611990 was chosen for consistency between sites.
However. the three stations with data extending over an
extra decade offered an opportunity to extend the cali-
bration period and examine its impact on future down-
scaled scenarios (this approach is detailed in the Methods
section ).

3.1.2. Predictors

A total of 29 large-scale surface and atmospheric
predictor variables were obtained from the United
Kingdom Statistical DownScaling Model (UKSDSM)
data archive (Wilby and Dawson, 2007). Variables
included both National Centre for Environmental Predic-
tion (NCEP) Reanalysis data (representing 1961-2000
‘present-day” large-scale variables) and data from three
GCMs (Table I), forced by the A2 and B2 emis-
sions scenarios (Nakicenovic et al.. 20000 (represent-
ing 1961-2099 future large-scale variables), The NCEP
Reanalysis project involved the recovery of land sur-
face. ship. radiosonde. aircralt, satellite and other data to
assimilate a quality controlled observed record of large-
scale circulation variables and surface climate data span-
ning the period 1961-2000 (Kalnay et al.. 1996). In the
UKSDSM data archive. the NCEP data was regridded
toa2:5 375 coordinate system, corresponding to the
grid coordinates of one of the GCMs used in this study
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Figure 2. Location of the nine climatological stations emploved in the analysis,
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Table 1. Details of the GCMs wvsed in this study.

GCM Organisation Country  Atmospheric resolution Key reference
(Latutude  Longitude)
HadCM3 UK Met Office Hadley Centre UK 2:5 375 Gordon et al. (2000)
CGCM2 Canadian Centre tor Chimate Modelling and Canada 37 37 Flato et al. (2000)
Analysts
CSIROMEK2  Australian Commonwealth Scientific and Austraha 56 32 Gordon and O"Farrell (1997)

Research Organisation

(HadCM3). The coordinates of the other GCMs are pro-
vided in Table 1. Extracted predictor variables included
mean sea level pressure, geopotential heights, humidity
variables, mean temperature, and a range of secondary
airflow wvariables, all for three atmospheric pressure

levels.
3.2, Methodology
3.2.1. Predictor screening

All 29 predictor variables were examined on a seasonal
basis to test their correlation with each of the two predic-
tands {maximum and minimum temperatures) separately.
For cach individual season, site, and predictand, the orig-
inal 29 predictor variables were shortlisted to 12, on the
basis of the 12 predictors exhibiting the strongest corre-
lation with the predictand (12 was chosen because this is
the maximum number of variables SDSM permits in the
subsequent partial correlation analysis). The top 5 predic-
tors from this pool of 12 were then selected on the basis
of their unique explanatory power, as determined by the
partial correlations statistic. The justification for a cut-off
threshold at five predictors was that beyond this number,
inclusion of further variables increased model noise and
countered the statistical downscaling ethos of selecting
a parsimonious data set that included only the most sta-
tistically meaningful controls on temperature (e.g. Huth,
2005 Crawford et al., 2007). For each of the two predic-
tands, this produced an optimum predictor set for each
site and season. This procedure was conducted using pre-
dictor variables from both the IR and NIR grid box, in
order to examine differences in the optimum predictor
sets depending on which grid box was selected. In decid-
ing which grid box to use for downscaling temperature,
comparison of site-specific values of explained variance
relating to the optimum predictor sets for the IR and
NIR grid boxes were examined. These reveal seasonal
and spatial variation in strength of explanation utilising
each grid set, with the result that the optimum predictor
set from the grid box generally producing higher levels
of explained variance would be selected for subsequent
downscaling.

3.2.2. Model calibration

When the most appropriate grid box was determined,
selected surface and atmospheric predictors were then
used to calibrate the statistical transfer functions on a sea-
sonal basis, linking the large-scale variables to the two

Copyright @ 2011 Royal Meteorological Society

climate variables of interest, for each site and season. In
the same manner as Fealy and Sweeney (2008), predictors
that demonstrated a degree of consistency between sites
were preferentially selected. This ensured any compari-
son of results across Northern Ireland could be based on
the same set of future controls on temperature. Tables 11
and IIT display the most commonly occurring predic-
tors for each season, for maximum and minimum tem-
peratures, respectively. On the basis of the calibrated
monthly models (calibrated on the period of 1961-1975),
a weather generator within SDSM was then used to gen-
erate maximum and minimum temperatures data for each
site for the period of 1976-1990. The weather genera-
tor produces ensembles of synthetic daily weather series,
which helps address uncertainty associated with individ-
val ensemble members (Wilby et al., 2004). Compari-
son of this generated weather data with the observed
data during this time period enabled validation of the
model. In addition, the three stations with data spanning
1961-2000 were used to assess the effects of alterna-
tive and longer calibration periods. The three stations
were: (1) Calibrated on the period of 1961-1990 and
validated on the period of 1991 -2000; and (2) Calibrated
on the period of 1971 -2000 and validated on the period
of 1961-1970. These periods offered the examination
of longer calibration periods on downscaled scenarios,
but also crucially the impact of calibration based on
warmer periods in the observed record (particularly the
19712000 calibration period).

3.2.3.
In order to produce site-specific future temperature sce-
narios, data from the HadCM3, CSIROMKk 2, and CGCM?2
GCMs (both A2 and B2 emissions scenarios) were
employed as predictor variables in conjunction with the
calibrated transfer functions. This enabled the creation of
downscaled future temperature scenarios for the period
of 1961-2099 under multiple GCMs and emissions sce-
narios. Downscaled future maximum and minimum tem-
peratures scenarios for each site, season, GCM and emis-
sion scenario were then examined for three thirty-year
future time slices centred on the 2020s (2011-2040),
2050s  (2041-2070) and 2080s (2070-2099). Results
were mapped according to magnitude of warming from
the 1961-1990 modelled baseline period. In addition,
three of the Statistical and regional dynamical downscal-
ing of extremes for European regions (STARDEX) diag-
nostic tests (Goodess ef al.. 2003) for temperature were

Generating fuliere scenarios

Int J. Climatol 320 2007-2019 (2012)



2012

Table 1. The most consistently highly correlated optimum

predictors among all sites for each season for maximum and

minimum temperatures using predictors from the NIR grid box.

The number represents the number of sites (out of a maximum

ol niney at which the named predictor 1s 1n the top five for
explanatory power.

Winter Spring
Predictor  Max  Min  Predictor  Max temp  Min temp
temp temp
temp 9 7 temp 9 9
shum 9 7 sS850 7 8
sS850 9 6 $500 5 8
$500 7 7 p300 4 8
ps00 2 9 ps_f 0 7
Summer Autumn
Predictor Max  Min  Predictor  Max temp Min temp
temp temp
temp 7 5 temp 9 8
sS850 3 9 p3S00 8 6
P30 3 8 shum 5 9
shum 3 8 sS850 4 9
pS.z 9 0 8500 8 2

Table [II. The most consistently highly correlated optimum

predictors among all sites for each season for maximum and

minimum temperatures using predictors from the IR grid box.

The number represents the number of sites (out of a maximum

of nine) at which the named predictor 1s in the top five for
explanatory power.

Winter Spring
Predictor Max  Min  Predictor  Max temp  Min temp
temp  temp
Temp 9 9 temp 9 9
ps00 6 8 sS850 & 8
ps._t 8 5 p300 1 9
s500 4 9 pS.v 6 2
Shum 7 1 rhum 4 3
Summer Autumn
Predictor  Max  Min  Predictor  Max temp  Min temp
temp temp
Temp 9 9 temp 9 9
Rhum 3 8 S500 9 &
pszh 8 2 sS850 9 3
sS850 3 7 pSzh 8 2
p5_v 8 0 pS00 2 8

examined in order to investigate changes in future tem-
perature extremes. An overview of the downscaling pro-
cess and the key model choices is presented in Table TV,

Copyright @ 2011 Royal Meteorological Society
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Table IV. Overview of the downscaling procedure to generate
future temperature scenartos for the nine sites employed in this
study.

Maodel 1ssue Selection

Predictors for
maximum
temperature
Predictors tor
minimum
temperature
Downscaling
model structure
Maodel calibration
period

Maodel validation
period

Future downscaled
time periods

temp. pS00. p5_z

temp. p300, shum

Seasonal

1961-1975
19761990
2011-2040 (2020s):

204 1-2070 (2050s):
2070-2099 (2080s)

Key tor Tables [1-1V

Predictor code Predictor varnable

P3O0 500 hPa geopotential herght
pS_v 500 hPa mendional velocity
pS_z 500 hPa vorticity

pSzh 500 hPa divergence

PRS0 850 hPa geopotential height
p8_f 850 hPa airflow strength
p8_v 850 hPa mendional velocity
rhum Near surface relative humidity
$500 500 hPa specific humidity
sS850 850 hPa specific humidity
shum Near-surface spectfic humudity
temp Mean temperature at 2 m

4. Results and discussion

4.1.

Predictor selection

The most commonly occurring optimum predictors for
maximum and minimum temperatures from both grid
boxes are displayed in Tables IT and IT. Although spatial
variation exists with respect to the leading predictor vari-
ables, it is much less marked than the spatial variation
in the optimum predictor sets noted by Crawford et al.
(2007) when downscaling precipitation, where a discrete
southeast—northwest divide in optimum predictors was
apparent. As temperature is a more homogeneous vari-
able than precipitation, this increased spatial uniformity
over precipitation is perhaps unsurprising. More notable,
however, are the contrasts in optimum predictor sets
dependent on season and on which grid box is employed
in the analysis. When accounting for temporal changes
in optimum predictors, it is helpful to draw on one of
the aforementioned criteria of Wilby et al. (2002), which
state that predictors should be physically and conceptu-
ally sensible with respect to the predictand. Providing

Ini. J. Climatel 320 2007-2019 (2012)
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wider climatological context s crucial here in linking
predictors that demonstrate physically meaningful rela-
tionships with maximum and minimum temperatures with
those that also exhibit statistical correlations with these
predictands. Predictor output from each grid box gener-
ally illustrates climatologically meaningful relationships
with both temperature variables. Both grid boxes reveal
that mean temperature at 2 m is the key predictor variable
for both maximum and minimum temperatures across vir-
tually all sites and seasons. Since mean temperature is
derived from the average of maximum and minimum tem-
peratures, it is unsurprising that this correlates strongly
with both observed maximum and minimum tempera-
tures. In addition, and in the same mould as Widmann
et al. (2003) when precipitation was used as a predic-
tor for downscaling precipitation, large-scale NCEP mean
temperature may Integrate many relevant large-scale pre-
dictors that explain much of the variance in maximum and
minimum temperatures. Other dominant predictors from
both grid boxes include moisture variables such as spe-
cific humidity at all three atmospheric levels. The direct
positive correlation between specific humidity and tem-
perature is responsible for the explanatory power specific
humidity exerts on both maximum and minimum tem-
peratures (Barry and Chorley, 1998: Aguado and Burt,
2004). Many aspects of the seasonal variation in the other
optimum predictors from each grid box tend to reflect
the temporal sequencing of large-scale mid-latitude cir-
culation, with attainment of maximum zonal index and
resultant control of westerly airflows across the north
of Ireland in autumn and winter, and subsequent west-
ward retreat of these influences in the spring and summer
months. The presence of airflow strength predictors in
winter (IR grid box) and spring (NIR grid box) reflects
the prevalence of a zonal circulation regime and fre-
quency of storms at these periods (Betts, 1997), with
this discrepancy in timing perhaps reflecting the exten-
sion of depressions with a more northerly trajectory in
the spring months, and thus captured only in NIR grid-
box output. In addition, zonal flow is a strong predictor
for a selection of sites in winter, reflecting the preva-
lence of westerlies. whilst upper air divergence in autumn
facilitates the formation and deepening of depressions
at the surface (O'Hare and Sweeney. 1986). Inherent
shortening of the upper airflow pattern and subsequent
retreat of maritime westerly influences as the continen-
tal anticyclone extends towards Ireland in the spring and
summer months is reflected by the presence of meridional
velocity and geopotential heights as important predictors
during these seasons. However, the west—east penetra-
tion of depressions is still captured by predictors such as
upper air divergence in the summer months in IR grid-

box output, reflecting the maritime westerly location of

this grid box and its resultant susceptibility to zonal influ-
ences throughout the year. The absence of such predictors
in NIR grid-box output in summer perhaps reflects the
more easterly position of the SB component, decreasing
the susceptibility of the NIR grid box to westerly influ-
ences in summer. Vorticity is prevalent in both grid boxes
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during summer, with increased prominence from NIR
grid-box output, perhaps again reflecting the influence
of the SB component, where localized convection at this
time can enhance thunderstorm activity moving inland
from the Solway coast in Scotland (Harrison, 1997).

Overall, predictor output from the IR and NIR grid
boxes indicate generally similar variables with high
explanatory power with respect to maximum and min-
imum temperatures, with small differences accounted for
by geographical factors with respect to each grid box.
Predictors largely reflect the seasonal pattern of mid-
latitude circulation and thus capture physically meaning-
ful relationships with temperature.

42
As noted by Brinkmann (2002), predictors from the grid
box overlying the target station do not always exhibit
the strongest relationships with surface predictands from
that station. In this study. the IR grid box directly over-
lies the island of Ireland, whilst the notional NIR grid box
emphasizes the northeasterly location of Northern Treland
within the island of Ireland by averaging output from the
IR box with the more northeasterly located SB grid box .
Potential spatial offsets in predictor—predictand relation-
ships can thus be examined by analysing output from the
NIR grid box. Tables V and VT illustrate that higher lev-
els of explained variance in both maximum and minimum
temperatures are achieved when optimum predictors from
the NIR grid box are employed as opposed to those from
the IR grid box for all sites and seasons. In this respect.
the NIR grid box seems more statistically appropriate for
downscaling temperature in Northern Ireland. This con-
trasts with the study of Crawford er al. (2007). where
the IR grid box emerged as most appropriate for down-
scaling precipitation over Northern Ireland. However, in

Grid-box selection

the present study, it is important to note that predictors
from both grid boxes captured generally high levels of
explained variance across all sites and seasons.

These results reveal that the IR and NIR grid boxes are
both statistically well correlated with surface temperature,
with the NIR grid box emerging as marginally more

Table V. Percentage ol explained vanance 1n datly maximum

temperature when seasonal models are cabbrated using the

optimum predictor sets from the IR grid box and the NIR grid
box for each site and season.

Max temp stations Winter Spring  Summer  Autumn

IR NIR IR NIR IR NIR IR NIR
Greenmount 51 60 65 70 54 58 79 8]
Parkmore Forest 51 59 64 68 54 58 78 82
Loughgall 56 63 64 69 51 60 79 8l
Garvagh Forest 52 61 63 67 50 5 79 8l
Helen's Bay 54 63 ol 69 43 47 8O 82
Hillsborough 58 66 64 o9 50 54 81 83

Lisnaskea Creamery 54 62 63 68 49 60 R0 8]
Lough Navar Forest 57 64 65 68 50 352 79 8l
Carri gans 61 71 79 83 62 o4 77 82
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Table VI. Percentage of explained variance in daily minimum

temperature when seasonal models are calibrated using the

optmum predictor sets from the IR grid box and the NIR gnid
box for each site and season.

Min temp stations Winter Spring  Summer  Autumn
IR NIR IR NIR IR NIR IR NIR
Greenmount 57 76 46 39 69 T2 49 62
Parkmore Forest 59 T4 42 56 66 T3 41 67
Loughgall 54 73 49 57 65 72 55 62
Garvagh Forest 55 73 49 58 63 72 47 57
Helen's Bay 61 B2 53 63 73 B2 62 T4
Hillsborough 65 82 39 67 76 8l 60 73

Lisnaskea Creamery 57 73 46 58 67 o9 46 57
Lough Navar Forest 58 73 52 58 71 74 52 6l
Carrigans 63 79 56 67 71 78 56 69

strongly correlated throughout the year at every site.
The result that both grid boxes are strongly correlated
with temperature corroborates the fndings from the
optimum predictor tables which suggested that both
grid boxes highlighted physically meaningful controls
on temperature. In addition, the fact that the NIR grid
box, which can be considered the remote grid box in this
study, was marginally more strongly correlated illustrates
the importance of examining potential spatial offsets in
predictor—predictand relationships.

4.3, Impact of the calibration period

Results of the calibration and validation period for max-
imum and minimum temperatures for all nine stations
are displayed in Tables VII and VIII. Pearson’s r values
in the range of 0.66-0.91 during the calibration period
indicate that a significant portion of the variance is cap-
tured by the seasonal regression models, which infers
a satisfactory modelling of the temperature series in all
seasons, particularly during autumn and spring. Summer
calibration values tend to be lowest, but still generally
reach r values of ca. 0.70-0.75. High Pearson’s r val-
ues for the validation period illustrate that the modelled
temperature series, based upon the calibrated seasonal
models, closely mirrors observed data. This indicates that
the seasonal forcing component of the large-scale pre-
dictors has been adequately captured, offering increased
confidence in future projections. Since the original cali-
bration period (1961 -1975) represents a period when the
dominant mode of atmospheric variability in the North
Atlantic, the North Atlantic Oscillation (NAO) (Hurrell,
1995), was in a largely negative phase, and the valida-
tion period (1976—1990) was in a largely positive phase,
the ability of the transfer functions to reproduce a sig-

dation period suggests this particular mode of variability
has been adequately captured. In order to capture low-
frequency oscillations such as the Atlantic Multidecadal
Oscillation (AMO) (Kerr. 2000). however. a 15-year cal-
ibration period would be considered insufficient.

Copyright @ 2011 Royal Meteorological Society

D. MULLAN et al.

Table WVII. Pearson®s r values for the seasonal calibration
(1961-1975) and validation (1976—1990) periods for maxi
mum lemperature.

Max temp Winter Spring Summer Autumn
stations

Cal. Val. Cal. Vval. Cal. Wval. Cal. Val
Greenmount 075 074 0.84 0.85 074 075 090 088
Park more 0.75 077 0.82 0.85 074 077 090 0.88
Forest
Loughgall 077 074 083 0.85 072 0J8 090 0.89
Garvagh 0.76 075 0.82 0.83 070 074 090 0.89
Forest
Helen's Bay 077 075 0.82 0.84 067 072 090 0.89
Hillsborough  0.80 0.78 0.83 0.85 073 078 091 0.89
Lisnaskea 0.76 074 0.82 0.84 072 077 090 0.89
Creamery
Lough Navar  0.78 0.77 0.82 0.83 069 075 090 0.89
Forest
Carrigans 0.83 0.82 091 0.89 079 083 0.89 0.88

Table WVIII. Pearson’s r values for the seasonal calibration
(1961-1975) and validation (1976—1990) pertods for minimum

temperature.

Min temp Winter Spring Summer Autumn
stations

Cal. Val. Cal. Vval. Cal. Val. Cal. Val
Greenmount .69 068 081 076 066 068 081 O8]
Park more 0.69 066 081 076 072 069 0.83 080
Fore st
Loughgall 0.68 060 078 071 067 066 0.79 051
Garvagh 0.69 069 097 072 0065 066 0.80 0.82
Forest
Helen's Bay 070 072 0.83 081 074 076 0.86 0.84
Hillsborough 075 075 0.85 0.79 074 076 0.86 0.85
Lisnaskea 0.68 069 076 072 0066 0065 081 0.80
Creamery
Lough Navar  0.71 0.69 0.78 071 068 063 081 0.79
Forest
Carrigans 0.75 077 083 079 074 074 084 083

Results for the modified calibration and validation peri-
ods for the three stations with additional data are dis-
played in Tables IX and X. Pearson’s r values for all
three calibration periods do not differ considerably. but
some seasonal differences are apparent. A higher propor-
tion of explained variance in maximum temperature is
captured by seasonal models calibrated on the longer cal-
ibration periods, particularly for spring and summer. For
minimum temperature, however, the reverse is generally
true, with calibration period 1 achieving highest Pear-
son’s r values throughout the vear. Pearson’s r values
for validation, based upon the three different calibration
periods, again show only moderate differences for both
maximum and minimum temperatures. Future projections
based upon the modified calibration periods (Figure 3)
result in only modest differences in future temperature,
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Table IX. Pearson’s r values for the original and maodified

seasonal calibration periods for maximum temperature. The

highest r value lor each site and season lor model calibration

and validation 1s lighhghted in grey. Calibraton period 1:

1961-1975; Calibraton period 20 1961-1990: Calbraton
pertod 30 197 1-2000.

2015

Table X. Pearson’s r values for the original and modified

seasonal calibration periods for minimum  temperature. The

highest r value lor each site and season lor model calibration

and vahdaton 1s highlighted in grey. Calibraton period |1:

1961-1975. Calibraton perniod 20 1961-1990: Calibrauon
pertod 3: 197 1-2000,

Helen’s  Hillsborough  Lough Navar Helen’s  Hillsborough  Lough Navar
Bay Forest Bay Forest
Cal. Val. Cal. Vval. Cal. Val Cal. Wval. Cal.  Vval. Cal. Val
Calibration period Winter Calibration period Winter
| 0.75 [O8ON 0.78 0.77 I 0.70 (072 0.75 075 071 0.69
2 0.60 0.79 071 0.71 2 AT 063 075 069 0F1 064
3 074 [0F6 0.76 TOF9T 075 TOgRY 3 070 067 074 074 069 [07F1
Calibration period Spring Calibration period Spring
| 0.82 0.83 JORSE 052 JOEEN | 0583 051 [OIESH 079 NOWEN 0.71
2 0.83 0.82 2 0.82 0.79 0.83 080 075 0.73
3 0.82 0.82 3 0.81 [0 o081 POE5Y 0.73 NOTRY
Calibration period Summer Calibration period Summer
| 067 72 0.73 POERY o6v OSSN | 0.74 J@F6 074 076 NOBET 0.63
2 071 071 076 075 074 0.72 2 076 074 076 DOF7 067 o6l

3 [072] 0.55 [0I78Y 067 BOFSE 0.61
Calibration period
|

2
3

Autumn

507 0.89 O o.80 OGO 0.89

0.88 090 089 0.89 0.88

3 [OF7 0067 [OF8Y 068 067 0.63
Calibration period Autumn

I OR6 TORI086" oss MO8 079
5 0,86 0.81 086 084 080 0.73
3 0.84 [0I84] 0.85 NOREN 0.77 ORI

with both larger and smaller temperature increases pro-
jected at different times of the year.

The findings here indicate that modifying the cal-
thration period can result in small seasonal changes

(a) MAXIMUM TEMPERATURE

in: (1) The portion of variance captured by the regres-
sion models (as expressed by the calibration values):
(2) How closely modelled data matches observed data
(as expressed by the validation values): and (3) Future

(b) MINIMUM TEMPERATURE

35

0s T T T T T T T T T T

35

Temperature change ("C)

—— 1961-1975
v 1861-1990

i CSIRO A2 CSIRO A2 -+=« 1971-2000

J F M A M UJ J A S ONUDUJIFMAMUUJIASONTD

Menths

Figure 3. Future scenarios of maximum temperature (left charts) and minimum temperature (right charts) based upon the Had CM3 GCM (upper
charts) and the CSIRO MK2 GCM (lower charts) under the A2 emissions scenario for the 2080s when calibrated on period | (solid line). period
2 (short dashed line) and period 3 (long dashed line) for Helen's Bay.
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temperature changes (as expressed by future downscaled
scenarios). The changes in each case are rather minor,
and thus increase confidence that calibrating seasonal
models on the original period of 1961-1975 is satisfac-
tory for downscaling temperature over Northern Ireland.
These results concur with the findings of Anandhi er al.
(20009), where increasing the calibration period from 6 to
16 years offered no significant improvement when down-
scaling temperature over India. This indicates that, even
where a small time-frame for model calibration exists
(15 years in this study), efficient downscaling models can
still be constructed. These results also reveal, however,
the importance of examining changes in the calibration
period in order to deduce whether an extension or modi-
fication produces more satisfactory results.

44. Mean temperature changes

Table XI displays the change in temperature from the
19611990 modelled baseline period for 3 future time
slices, when downscaled scenarios are averaged across all
3 GCMs, two emissions scenarios, 4 seasons and 9 sites
employed in this study. Results illustrate a progressive
warming for all future time slices for both maximum
and minimum temperatures, from a 0.8 °C change for the
2020s, up to a 2.2°C change by the 2080s. Maximum
temperature is generally projected to increase marginally
more than minimum temperature when averaged on an
annual basis. Such results lie within the temperature
range indicated in the SNIFFER report and match closely
downscaled temperature scenarios for 14 stations across
the Republic of Ireland {Fealy and Sweeney, 2008).
45.

Seasonal temperature changes

Changes in temperature as displayed in Table XI mask
important variation among individual scenarios, sites and
seasons. Figure 4 illustrates the seasonal variation in
maximum and minimum temperatures for the aforemen-
tioned three future time periods. as well as displaying
the large inter-GCM/emissions scenario differences in
temperature changes. For each future time slice, win-
ter and spring minimum temperature is projected to
increase slightly more than maximum temperature, with
the reverse true of summer and autumn. Autumn is the
season projected to experience the most warming, for
both maximum and minimum temperatures, with spring
projected to increase the least. For example, the pro-
jected autumn average increase in maximum temperature

Table XI. Average annual temperature change (‘C) from the
modelled baseline period for three future time slices when
averaged across all GCMs. emissions scenarios, sites. and
seasons. Also displayed is the full range across all scenarios.

Max temp Range Min temp Range
20205 0.8 0.0-16 0.8 0.0-1.8
20508 1.4 0.5-23 1.4 0.5-2.6
2080s 2.2 09-38 2.1 0.8-4.2

Copyright @ 2011 Royal Meteorological Society

D. MULLAN et al.

a
45 (a)
2020s
3.5+
2.5+
15- =
0.54
-0.5 T T T
b
4.5 ®)
2050s
3.5+
S
% 2.5+ A
& “ " .
s
= A
1.54
§ A
o
E 7
8 2 ‘
0.5+ &
-05 T T T
c
4.5 ©
2080s
A A
3.5+
- 8
.J\.
A
0.5 T T I
Winter Spring Summer Autumn

Figure 4. Seasonal changes in maximum temperature (dark bars) and

minimum temperature (light bars) for three future time periods. Dark

and light triangles represent the full GCMfemissions scenario range for
maximum and minimum temperatures, respectively.

across all sites, GCMs and emissions scenarios for the
2080s is 2.6 and just 1.6°C for spring. These seasonal
trends accord closely with those developed by Fealy
and Sweeney (2008). In addition to seasonal variation
in warming, a larger source of variation exists with tem-
perature projections developed by individual GCMs and
emissions scenarios. The inter-GCM/emissions scenario
range is high for all seasons for both maximum and
minimum temperatures, being at its highest for mini-
mum temperature in winter, where individual scenarios
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Figure 5. Spatial changes in maximum temperature (left charts) and minimum temperature {right charts) for three future time slices when averaged
across all GCMs and emissions scenarios.

range between a 0.8 and a 4.2°C temperature increase
for the 2080s. Such variation illustrates the importance
of employing multiple GCMs and emissions scenarios to
address uncertainties in individual scenarios.

4.6.

Spatial temperature changes

Spatial changes in average annual maximum and min-
imum temperatures for the 2020s, 2050s. and 2080s is
displayed in Figure 5. The spatial pattern emerging from
these results is that the magnitude of warming at inland
locations is greater than coastal warming for both maxi-
mum and minimum temperatures. This pattern becomes
more apparent as the decades progress, with annual aver-
age differences increasing between mland and coastal
locations. For example, in the 2080s. the annual aver-
age change in minimum temperature for Helen's Bay
(coastal) is 1.7 "C, compared to a 2.4 °C rise for Lisnaskea
Creamery (inland). This ‘continental’ effect is also pro-
jected by Fealy and Sweeney (2008).

Copyright @ 2011 Royal Meteorological Society

4.7.

Changes in extremes

Given the potential of extreme changes in temperature
to have a greater impact on society than the mean cli-
mate, it is important to consider changes in some of these
extremes with respect to the future temperature scenar-
i0s developed in this study. The extremes analysed are
defined by thresholds rather than fixed values, with the
exception of frost days. The three indices are the hot-day
threshold (920th percentile of maximum temperature), the
cold-night threshold (10th percentile of minimum tem-
perature) and frost days (number of days below 0°C)
(STARDEX. 2006). As displayed in Table XII. when
averaged across all GCMs. emissions scenarios and sites.
the hot-day threshold for maximum temperature is pro-
jected o increase at a rate in excess of the change in the
mean for maximum temperature for the 2020s and 2050s,
with the opposite true of the increase in the cold-night
threshold for minimum temperature. However, the inter-
GCM/emissions scenario range reveals a much wider
variation between scenarios for minimum temperature,
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Table XII. Changes in three selected temperature extremes for three future time slices. The hot day threshold and cold night
threshold are changes in "C from the modelled baseline period, whilst no. of frost days is a change in the number of days =0°C
from the modelled baseline period. The range tor each extreme 1s the tull range across GCMs. emissions scenartos and siles.

Hot-day threshold Range Cold-night threshold Range No. of frost days Range
20205 0.8 0.0-1.7 0.8 0.1-2.7 97 437 o C9
20505 1.4 0.0-2.4 1.3 0.2-3.2 159 593-0
2080s 2.2 0.3-4.0 2.0 0.8-54 219 902-0

where the 2080s range lies between 0.8 and 5.4°C. For
maximum temperature, this range is slightly lower than
the range for the mean of maximum temperature. In addi-
tion, the number of frost days is projected to decline
considerably for all sites. with an average of 219 less
frost days over the 30-year period centred on the 2080s
from the modelled baseline period.

5. Conclusions

The highest-resolution temperature projections for North-
ern Ireland, developed from UKCIPO2 scenarios for the
SNIFFER climate change scoping report {Arkell ef al.,
2007). were projected across grid cells with a spatial
resolution of 50 km. Projections at a finer spatial resolu-
tion, however, are increasingly needed as input to impact
models. This study has addressed this research need. and
developed site-specific future temperature scenarios for
nine climatological stations across the north of Ireland.
In addition, few studies have explored some of the key
issues in the statistical downscaling process, despite their
importance in shaping the nature of the future projections.
Issues of grid-box choice, the selection of appropriate
predictor variables, and the effects of modifying the cal-
ibration period were all examined in this study, in an
effort to rigorously assess factors with the potential to
significantly impact future scenarios.

Results from the grid-box analysis reveal that predic-
tors from both grid boxes highlight physically meaning-
ful predictors and exhibit strong statistical correlations
with maximum and minimum temperatures. Ultimately,
however, since the more remote NIR grid box is more
strongly correlated with each predictand. it appears more
appropriate for downscaling temperature in Northern Ire-
land, thus underlining the importance of examining spa-
tial offsets in predictor—predictand relationships. Whilst
it is likely that for much of the year the strongest predic-
tor—predictand relationships exist for the two grid boxes
analysed in this study, it is also acknowledged that the
examination of additional neighbouring grid boxes could
also vield strong correlations at certain time of the vyear,
and thus future studies may benefit from such an investi-
gation. Modifications to the calibration period reveal only
marginal increases or decreases in the levels of explained
variance captured by the seasonal regression models as
well as the resultant effect on the future scenarios. Such
minor differences reveal that, where data availability for
model calibration is restricted, calibration may still be
carried out on the available time-frame with satisfactory
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results that help place confidence in future projections.
It should be noted. however, that longer time periods
for calibration may be required to capture low-frequency
modes of climate variability. In this respect, we recom-
mend examining the effects of modified and extended
calibration periods, if additional data exists for a select
number of the sites, in deducing whether the additional
data considerably impacts levels of explained variance,
and resultant future scenarios.

Future downscaled results exhibit a considerable
degree of future warming, with spatial trends indicating
greater inland warming, seasonal trends revealing great-
est warming in autumn, and extremes analysis indicating
hotter hot-day thresholds and cold-night thresholds, and
a decline in the number of frost days. These results
reveal the potential for considerable environmental and
socioeconomic change, with the variation in magnitude
of scenarios from individual GCMs and emissions sce-
narios illustrating the importance of employing multiple
scenarios to help address the various sources of uncer-
tainty associated with climate modelling.

The development of site-specific future scenarios rep-
resents a significant advance from previous studies where
temperature scenarios for Northern Ireland were devel-
oped at a coarser spatial resolution. In addition, where
previous downscaling studies have largely ignored many
of the key processes impacting future scenarios, this study
has examined closely some of these aspects with respect
to their effect on future projections. The overall findings
here highlight the potential of statistical downscaling in
developing future scenarios at a spatial resolution match-
ing the requirements of impact modellers, provided a
rigorous examination of some of the key processes that
impact the nature of the future projections is conducted.
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