
An Electrochemical Investigation into
the Corrosion Protection Properties of
Coatings for the Active Metal Copper

Ursula Carragher

A thesis submitted in partial fulfilment

of the requirements for

Doctor of Philosophy

Department of Chemistry

National University of Ireland, Maynooth

Ireland

Head of the Department: Dr. John Stephens

Supervisor of the Research: Prof. Carmel Breslin



Declaration Of Authorship

I hereby certify that this thesis, which I now submit for assessment on the programme of study

leading to the award of PhD has not been submitted, in whole or part, to this or any other

University for any degree and is, except where otherwise stated the original work of the author.

Signed: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Date: February 12, 2013

i



Abstract

In the research presented in this thesis, corrosion protection films were synthesised and

characterised. The films were based on polypyrrole (PPy) coatings doped with combinations

of tartrate, oxalate and dodecylbenzene sulfonate (DBS) along with the incorporation of multi-

walled carbon nanotubes (MWCNT), and viologen films adsorbed at copper. The corrosion

protective properties of these films were studied and compared to the uncoated copper substrate.

They were assessed and studied using a combination of cyclic voltammetry, polarisation

curves, Tafel analysis, open-circuit potential measurements and electrochemical impedance

spectroscopy.

Polypyrrole films were successfully deposited at copper from a 0.10 mol dm-3 oxalate

solution at a pH of 8.0 and a 0.10 mol dm-3 tartrate solution at a pH of 7.0 to generate PPy-

Tartrate and PPy-Oxalate films on copper. SEM micrographs confirmed that the polymers

were homogeneous, defect and crack-free. In addition, bi-layers comprising PPy-Tartrate/PPy-

Oxalate and PPy-Oxalate/PPy-Tartrate were successfully formed at the copper interface. The

bi-layer provided the better corrosion protective coatings. Higher breakdown potentials were

observed with the bi-layer. In an attempt to further improve the corrosion protective properties

of the bi-layer coatings, MWCNT, were incorporated into the polymer films. The MWCNT

were successfully dispersed using DBS. The concentration ratio of the MWCNT to DBS was

important in forming a stable and well dispersed solution. This was achieved using 0.05 mol

dm-3 DBS and 0.02 mg MWCNT. The MWCNT-modified polypyrrole films were deposited

as bi-layers and multi-layers and showed excellent corrosion protection for copper. The PPy-

Tartrate/PPy-DBS bi-layer films also showed potential as a corrosion protective coating.

An alternative approach was then considered. The electrochemical deposition of three

viologens, methyl viologen (MV), benzyl viologen (BV) and ethyl viologen (EV) at copper in

the presence of a 0.10 mol dm-3 NaCl supporting electrolyte was studied. The formation of the

viologen films was achieved by cycling the copper electrode from -0.20 to 1.00 V vs. SCE at a

ii



Abstract

scan rate of 1 mV s-1. For comparison, the copper was cycled under the same conditions in the

0.10 mol dm-3 NaCl solution, but in the absence of the viologens. Significant dissolution of the

copper was observed in the absence of the viologens. However, considerably lower currents

were measured in the presence of the viologens, indicating a reduction in the rate of dissolution

and the formation of a protective film.
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CHAPTER 1

Introduction

The objective of this thesis is to develop and analyse anti-corrosive coatings based on

polypyrrole (PPy) and modified polypyrrole coatings for non-inert metals, namely copper

(Cu) [1, 2]. Copper is widely used in industry and is particularly well known for its use in

piping and in the electronics industry [3]. The use of copper has been growing continuously for

over a century. However, the activity of copper and copper alloys depends on the surrounding

environment [4, 5, 6, 7, 8]. This activity can change dramatically under certain conditions

resulting in corrosion of the metal. Corrosion is a naturally occurring phenomenon which

affects the performance of materials used in many technological fields, ranging from light-

weight aluminium alloys, used in the aerospace industry, materials used in the electronics

industry, materials used in transportation, petroleum, pipeline, waste water, coatings and

linings, food, pulp and paper, power, fuel cell and refining industries [9, 10]. Many of the

traditional corrosion protective strategies, for example those employing chromates, are no

longer viable due to environmental considerations. Consequently, there is an ever-increasing

interest in developing new and environmentally acceptable corrosion-control technologies.

This is a multidisciplinary and technologically important field of research affecting metals and

alloys and attracting the interest of Chemists, Physicists, Engineers and Material Scientists.

In this introductory chapter, information on corrosion and the electrochemical stability
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and corrosion of copper is first presented [11]. Then, the concept of conducting polymers is

introduced and the electrochemistry of PPy [12, 13] and its applications are described in detail,

followed by a section on the application of conducting polymers in corrosion protection [14].

This is followed with information on carbon nanotubes [15] and dodecylbenzene sulfonate [16].

Finally, the chapter ends with a section on the electrochemistry of viologen compounds [17].

These topics are all relevant to the work presented in this thesis.

The results and main findings are presented and discussed in Chapters 3 - 7. The

properties and characteristics of copper and the electrosynthesis of PPy at copper are outlined

and discussed in Chapter 3, where an extensive section is devoted to the synthesis of the

polymer, PPy [18, 19], at the corrosion-susceptible copper substrate. Strategies to enhance

the corrosion protection properties of the coating are presented in Chapter 4. In particular,

promising results were obtained by incorporating multi-walled carbon nanotubes (MWCNTs),

dispersed in dodecylbenzene sulfonate (DBS), [20, 21] within the polymer matrix. In view of

the successful results obtained in Chapter 4, the results presented in Chapter 5 are focussed on

a comprehensive study to determine if the DBS or the MWCNTs are responsible for the good

corrosion protection observed and which is the key factor in the corrosion-protection coatings.

In Chapters 6 and 7, viologens are introduced and their various properties are discussed and

highlighted. No prior work has been reported in the literature on corrosion protection of copper

by viologens. Accordingly the viologens were adsorbed onto the copper surface and their

corrosion protection properties are highlighted in Chapter 7.

The work presented in this thesis is significant in terms of its contribution to the scientific

field of conducting polymers and protective coatings. To date, conducting polymers have been

deposited at copper [1], iron [22], steels [23, 24] and various aluminium alloys [25, 26, 27]

and have been reported to give corrosion protection. Recently, conducting polymers and their

protective abilities have been featured in Science Daily, Science Centric and Nanowerk News

as ‘conductive plastic fights against corrosion’. This clearly illustrates the interest in using

these materials as environmentally acceptable corrosion protective coatings. Indeed, there

are now a number of industrial companies concentrating on marketing conductive polymers.

For example, Panipol Ltd. sell polyaniline emeraldine base, Panipol PA, as a pigment for

paint to shield steel structures against climatic corrosion, while Ormecon Chemie GmbH,

have dispersed polyaniline in paint for the production of industrially applicable and effective
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corrosion prevention primers.

At a more fundamental level, a number of different mechanisms have been proposed to

explain the corrosion protection afforded by these polymers and modified polymer coatings [28,

29]. These include the so-called ‘ennobling mechanism’, which is based on the fact that the

conducting polymer may act as an oxidiser, enhancing the formation of the oxide layer at the

polymer/metal interface. Another proposed mechanism is that conducting polymers shift the

reaction site of oxygen reduction, the key reaction during delamination of protective coatings.

More recent studies have explored the release of corrosion inhibitors from the conducting

polymer. For example, Barisci et al. [30] were the first to point out that as a result of the

galvanic coupling between the corroding metal and the conducting polymer, the polymer is

reduced and consequently dopants could be released. If dopants with corrosion inhibiting

properties were chosen, then these inhibitors could be released at the corroding site to slow

down the corrosion event. However, with the presence of oxygen in the environment, the

polymers are subsequently oxidised and will then, most likely, be doped with chlorides or

other corrosion promoting anions.

1.1 Corrosion

Corrosion can be defined as an irreversible reaction of a material with the environment, which

usually (but not always) results in the degradation of the material, or as the chemical and/or

electrochemical reaction between a material and its environment that produces a deterioration

of the material and its properties. There are several parameters that influence the rate and nature

of the corrosion reactions and these include the material, the properties of the material and the

environment, the chemical composition, the constituents, and the temperature.

1.1.1 Fundamental Corrosion Reaction

Corrosion involves the oxidation of the metal to form ionic species with a higher oxidation

state and the liberation of electrons [31, 32], as depicted in Equation 1.1 for a generic metal

[M].

M → Mz+ + ze- (1.1)
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This equation corresponds to the oxidation half-cell reaction and the electrons liberated

must be consumed by a reduction reaction occurring on the same surface. The sites for

the oxidation reaction are known as anodes, and the sites for the reduction reactions are

called cathodes. Anodes and cathodes can be spatially separated at fixed locations associated

with heterogeneities on the electrode surface. Alternatively, the locations of the anodic and

cathodic reactions can fluctuate randomly across the sample surface. The former case results

in a localised form of corrosion, such as pitting, crevice corrosion, intergranular corrosion,

or galvanic corrosion, and the latter case normally results in uniform corrosion. In all

cases, the anodic and cathodic sites must be electrically connected, to facilitate electron

transfer [33, 34, 35]. The environment in which the corrosion reaction takes place is also very

important and completes the electrochemical cell [36, 37, 38]. This is often a solution or an

electrolyte with solvated ions. For the corrosion reaction to proceed, the electrolytes must have

sufficient conductivity to allow the transport of ions and minimise the resistance. Accordingly,

the properties of the electrolyte solution, particularly conductivity and mobility of the ions, can

influence the rate of the corrosion reaction [36, 39].

1.1.2 Structure of the Electrode-Solution Interface

As corrosion occurs at the interface of the metal and an electrolyte, the structure of this interface

is important in controlling the initiation and propagation of the corrosion reactions. At the

electrode surface there is an excess of charge of one sign and in the solution there is an excess

of charge of the opposite sign. As a consequence there is a potential drop at the metal solution

interface. The separation of charge at an electrode-electrolyte interface may be viewed as a

capacitor, as first suggested by Helmholtz [39, 40, 41]. The solution side of the double layer

is thought to be made up of several layers. This theory was first put forward by Helmholtz

in the 1850s. In this model he proposed that the interactions between the ions in solution and

the electrode surface were electrostatic in nature and resulted from the fact that the electrode

holds a charge density (qm) which arises from either an excess or deficiency of electrons at the

electrode surface. In order for the interface to remain neutral the charge held on the electrode

is balanced by the redistribution of ions close to the electrode surface.

The attracted ions are assumed to approach the electrode surface and form a layer balancing

the electrode charge. The distance of approach is limited to the radius of the ion and a single
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sphere of solvation round each ion. The overall result is two layers of charge (the double layer)

and a potential drop which is confined to only this region (termed the outer Helmholtz Plane,

OHP) in solution [40]. The result is analogous to an electrical capacitor which has two plates

of charge separated by some distance (d) with the potential drop occurring in a linear manner

between the two plates. It is perhaps no surprise that when impedance analysis is performed on

electrochemical systems the response due to the electrolyte redistribution is modelled in terms

of a capacitance [41, 42, 43].

The model of Helmholtz, while providing a basis for rationalising the behaviour of this

region, does not account for many factors such as, diffusion/mixing in solution, the possibility

of adsorption on to the surface and the interaction between solvent dipole moments and the

electrode. A later model put forward by Stern begins to address some of these limitations [39,

43], Figure 1.1. Now the ions are assumed to be able to move in solution and so the electrostatic

interactions are in competition with Brownian motion. The result is still a region close to the

electrode surface (100 × 10-10 m) containing an excess of one type of ion but now the potential

drop occurs over the region called the diffuse layer. Many modifications and improvements

have been made to these early models with the latest approaches using numerical modelling to

follow the redistribution effects as the electrode potential is varied [39, 44, 45, 46].

(a) (b)

Figure 1.1: Schematic of the electrical double layer showing most of Stern’s adjustments to
the Helmholtz analysis: (a) detailed illustration of interfacial double layer and (b) schematic of
double layer in a liquid in contact with a negative charged solid.
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1.2 Forms of Corrosion

Corrosion occurs at this electrode-solution interface, Figure 1.1, and there are many types

of corrosion, ranging from uniform to localised corrosion. For convenience, these are usually

categorised into eight different forms, namely galvanic, crevice, pitting, intergranular, leaching,

erosion-corrosion stress corrosion cracking and hydrogen embrittlement [33, 34, 35, 47, 48].

Galvanic corrosion [23] can result when a metal is in contact with another dissimilar metal

to give distinct cathodes and anodes. Dissolution of the anode occurs, while the cathode is

protected and not dissolved, leading to the preferential dissolution of one of the metals. Some

examples include copper and zinc, iron and brass, or mild steel and cast iron. Crevice corrosion

occurs when a differential aeration, or oxygen concentration cell, is established. It results from

a difference in the composition of the electrolyte under the crevice, or restricted area, and

that outside of the crevice. Moreover, there is a higher oxygen concentration in the solution

that surrounds the crevice than contained within the crevice, and this gives rise to accelerated

corrosion inside the crevice [49, 50].

Many passive electrodes suffer from pitting corrosion, where the pit is considered to be a

self-catalysing cell. Pits are nucleated on the surface, usually at some surface defect, and this

gives rise to high dissolution of the metal at the site of the pit, while the reduction reactions

proceed on the passive surface [51, 52, 53]. Intergranular corrosion occurs at the boundaries

of the metallic grains that make up the metal, while selective leaching corrosion is due to

the selective leaching of an alloying element out of the alloy matrix [35, 54, 55]. The most

common form of this type of corrosion is dezincification, the selective leaching of zinc from a

brass matrix [45, 56]. In general, embrittlement is corrosion that causes a ductile material

to fail without localised yielding or shearing. More specifically, hydrogen embrittlement

assumes several different forms with a general similarity. This damage takes place at the

cathode. Hydrogen ions are adsorbed and reduced to hydrogen molecules at the cathode.

These molecules bubble off as hydrogen gas. However, some metals are very susceptible to

the permeation of hydrogen atoms into the grains and this gives rise to embrittlement [57, 58].

Copper is less affected by galvanic reactions, compared to most other metals. As a result,

the electrical industry generally considers copper to be corrosion resistant in virtually all

environments while regarding steel and aluminium as non-resistant. However, this is an over
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generalisation. In contact with more noble metals such as passive nickel, passive stainless steel

or titanium, copper is galvanically depleted just as readily as steel [59] or aluminium [27, 54].

Copper and copper alloys [35, 58, 60] are widely used in many environments and applications

because of their excellent corrosion resistance, which is coupled with combinations of other

desirable properties, such as superior electrical and thermal conductivity, ease of fabricating,

wide range of attainable mechanical properties, and resistance to biofouling. Copper corrodes

at negligible rates in unpolluted air, water, and deaerated non-oxidising acids [39]. Copper

alloy artifacts have been found in nearly pristine condition after having been buried in the earth

for thousands of years, and copper roofing in rural atmospheres has been found to corrode at

rates of less than 0.4 mm in 200 years. Copper alloys resist many saline solutions, alkaline

solutions, and organic chemicals. However, copper is susceptible to more rapid attack in

oxidising acids, oxidising heavy-metal salts, sulfur, ammonia (NH3), and some sulfur and NH3

compounds [39, 61, 62, 63]. Copper develops a strongly adhering oxide layer [64, 65, 66, 67],

which thickens to acquire the familiar green patina. In the presence of atmospheric sulfur

dioxide (SO2) the transition from oxide layer to patina is accelerated [68]. In applications such

as roofing where the green patina has aesthetic value, the increase in formation of patina is

desirable. This is definitely not the case in electrical system applications where the formation

of this thick non-conductive patina is undesirable. There are various methods of corrosion

prevention or control that are generally used in an attempt to avoid or minimise these corrosion

reactions. The approach depends on the form of corrosion, but in general includes the use

of corrosion inhibitors, cathodic protection, anodic protection and coatings, which range from

metallic to various types of non-metallic coatings [3, 69, 70, 71, 72].

1.3 Electrochemical Stability and Corrosion Protection of Copper

In this section the electrochemical stability of copper is discussed. This analysis is performed

with the aid of Pourbaix diagrams, which were first constructed by Marcel Pourbaix, and the

stable domains of copper are discussed as a function of pH and potential. Also reviewed in

this section are some of the documented procedures for the corrosion control of copper using

benzotriazole (BTA). BTA is a well known corrosion inhibitor used to protect copper from

corrosion [7].
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1.3.1 Electrochemical Stability of Copper

The Pourbaix diagram of copper [73] is shown in Figure 1.2, giving the stable domains of

copper oxide, copper metal and oxidised copper species, Cu2+ and Cu+.

Figure 1.2: Pourbaix diagram of copper.

Some of the equations used to construct the diagram are given in Equations 1.2 to 1.4,

while in the presence of chloride anions, Equations 1.5 and 1.6 can occur to generate corrosion

products, such as CuCl and Cu2(OH)3Cl.

Cu2O + 2H+ + 2e− 
 2Cu + H2O

E = E0 0.471 − 0.0591pH (1.2)

2CuO + 2H+ + 2e− 
 Cu2O + H2O

E = E0 0.669 − 0.0591pH (1.3)
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2Cu(OH)2 + 2H+ + 2e− 
 Cu2O + 3H2O

E = E0 0.747 − 0.0591pH (1.4)

CuCl + e− 
 Cu + Cl−

E = E0 0.1575 (1.5)

Cu2(OH)3Cl + Cl− + 3H+ + 2e− 
 2CuCl + 3H2O

E = E0 0.778 − 0.08865pH (1.6)

It is clear from this diagram that relatively high pH values are required for the formation of

copper oxides and that at values below pH 6.0, free copper, Cu2+, ions are the stable form. At

higher pH values, and depending on the electrode potential, the formation of two copper oxides

is possible. The Cu2O is formed at lower applied potentials, while the CuO is stable at higher

potentials.

These oxides have been studied extensively. For example, Feng et al. [32] have summarised

the corrosion products formed on the copper electrode during anodic polarisation. It is

generally thought that a Cu2O phase initially is deposited during anodic oxidation, followed

by electroformation of Cu(II) compounds, such as cupric hydroxide (Cu(OH)2) and cupric

oxide (CuO) at higher potentials. It is thought that passivation is primarily caused by the

electroformation of a Cu(OH)2 film filling the pores of the base film. Shoesmith et al. [74, 75]

have demonstrated that Cu(OH)2 forms in two layers, a base layer grown by a solid-state

mechanism and an upper layer of individual crystals nucleated and grown from solution. As

previously reported by Feng et al. [32] this Cu(OH)2 phase is in chemical equilibrium with the

CuO and is transformed to CuO upon ageing. This in turn agrees with results reported by Pyun

and Park [76] who have also shown, using an incidence reflectance spectrochemical technique,

that hydroxides of Cu(I) and Cu(II) are first formed by anodic oxidation at corresponding

potentials and then transform to oxides upon ageing. Burke et al. [65] have concluded that

both Cu2O and CuO can exist in both anhydrous and hydrated forms, however, Cu2O appears

to be poorly conducting and can act as a barrier and inhibit reduction of the Cu(II) species if
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present in a thick film. In addition to the advances made Capobianco et al. [77] also verified

the presence of Cu2O and CuOH in the oxide layers and they have shown that the ratio of

CuOH/Cu2O increases on decreasing the anodic potential and on increasing the oxidation time.

Sathiyanarayanan et al. [78] have recorded the photo potentials of the passive films formed on

copper in sodium hydroxide showing that the oxides behave as p-type semi-conductors and

that the composition of the film varies considerably with time. Also, Abrantes et al. [79] have

recorded the presence of the p-type Cu2O initially on oxidation of copper on the forward sweep

of the cyclic voltammogram. The thickness of the layer increases on the reverse sweep as an

over-layer of Cu(OH)2 or CuO is reduced to Cu2O.

Thomas and Tiller [80] have studied the effects of chloride on the passive film formed on

copper and have shown that the oxide layer retains some protective character. However, when

conditions favour interactions of chloride ions with the oxide, i.e., longer immersion times,

or greater chloride concentration, the oxide layer becomes less protective, and the breakdown

potential is displaced to more negative potentials and becomes less defined. This is expected

as under acidic to near-neutral conditions, formation of Cu complexes is possible. Cornwell et

al. [81] have also studied the effect of chloride ions on copper corrosion, however they have

confined their study to that of supply waters. They have suggested that a clean copper surface

immersed in aerated water containing chloride will form cuprous chloride by anodic dissolution

of the copper electrode. Cuprous chloride is not stable at near-neutral pH ranges and hydrolyses

to form cuprous oxide, which is precipitated on the metal surface. Using the hydroxyl ions

created by the cathodic reaction and bicarbonate ions present in water supplies, a mixed calcium

carbonate and basic copper carbonate scale precipitates to the surface. However, if the surface

is unclean, i.e., such as carbon on the surface, an increase in the copper dissolution rate is

seen. Consequently an increase in the formation of cuprous chloride is observed resulting in a

contaminated oxide layer which is less adherent than that formed on clean copper.

1.3.2 Corrosion Protection of Copper

It is evident that the corrosion of copper gives unwanted corrosion products, such as cuprous

chloride, and this leads to dissolution and attack of the copper structure. Over the last number

of decades scientists have overcome this problem by the use of organic and inorganic inhibitors.

Figure 1.3 depicts the chemical structure of BTA, this is one of the most common inhibitors
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used in the protection of copper metal. Some of the earlier work was performed by Cotton and

co-workers in the early 1960s [70, 82]. In these studies, Cotton and his co-workers showed that

the products produced on the BTA treated surface are polymeric in nature and are chemically

bonded to the metal oxide or metal surface. BTA also afforded good corrosion protection in

both aqueous and gaseous environments polluted with sulfur dioxide, hydrogen sulfide and salt

mist. These authors also discovered that benzotriazole could be applied as an aqueous solution

or be incorporated in lacquers and polishes. Since then, BTA has been extensively studied, in

an attempt to understand the mechanism of protection afforded to the underlying metal.

Figure 1.3: The chemical structure of BTA.

Modestov et al. [83] have studied the electrochemical formation of Cu(I)-BTA films

on copper electrodes and the mechanism of corrosion inhibition in aqueous chloride/BTA

solutions. Their results showed that in chloride solutions the Cu(I)-BTA film formation occurs

according to the following reactions, Equations 1.7 and 1.8.

Cu + 2Cl− 
 CuCl−2 + e− (1.7)

CuCl−2 + H − BT A
 Cu − BT A + 2Cl− + H+ (1.8)

The formation of Cu(I)-BTA is accompanied by the deposition of Cu2O as the under-layer.

This layer is unstable. It regains stability through the formation of the Cu(I)-BTA over-layer,

which maintains a high resistance by preventing the layer from being doped with Cl- ions and

preventing the formation of CuCl. The presence of Cu2O has been confirmed by Modestov et

al. [83] by SEM analysis and it is assumed that Cu2O formed in the air at the copper surface is

a source of Cu(I) oxide for the Cu(I)-BTA film. Barbic et al. [84] have verified the presence of

a Cu2O layer underneath the Cu-inhibitor over-layer.
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However, there have been reports of the formation of BTA films on oxide free surfaces [85,

86]. In these works, Tromans and colleagues have shown that BTA can interact with oxide free

surfaces to promote the corrosion inhibition of copper metal. The inhibition mechanism can be

described by Equations 1.9, 1.10 and 1.11.

Cu + BT AH → (Cu − BT AH)ads (1.9)

nCuCl−2 + nBT AH → (Cu − BT A)n + nH+ + 2nCl− (1.10)

(Cu − BAT H)ads + (Cu − BT A)n → [(Cu − BT AH) − (Cu − BT A)n]ads (1.11)

The critical step is the adsorption of the BTAH onto the oxide-free surface, which is both

time and potential dependent. Studies by Hope et al. [87] show that H-BTA is initially adsorbed

on to clean copper by coordination through the nitrogen lone pair. Ashour et al. [88] have

shown that the interaction of BTA with a Cu2O covered CuZn alloy is faster than on a reduced

alloy, although the protection efficiency on the latter is slightly better than on the former.

Sayed et al. [89] have shown the effects of BTA on stress corrosion cracking of α-brass

and reported that BTA inhibits the dezincification process and hence reduces the corrosion

cracking of the alloy. Mansfeld and Smith [90] have carried out studies on BTA as a corrosion

inhibitor for copper and the mechanism of corrosion inhibition in acid chloride solutions and

have reported an increase in breakdown potentials, an increase in the polarisation resistance and

also the inhibition of the formation of CuCl containing corrosion products in the presence of

BTA. Zhou et al. [91] studied the photo-response of copper electrodes in a borate buffer solution

containing BTA and have observed the presence of both n-type and p-type conductivities in the

Cu2O film. They also recorded that the higher the inhibition efficiency the greater the anodic

photocurrent allowing the photo-response to be used as a method of evaluating the corrosion

efficiency of the inhibitor. Bellakhal and Dachraoui [92] studied BTA as an inhibitor for copper

in humid air plasma. In this study it was shown that BTA limits the oxidation process induced

by gaseous species. The organic layer remains active for at least 40 min. For longer exposures,

the BTA molecules, which form a film at the surface of copper, begin to degrade to carbon

dioxide or other volatile organic compounds. The results obtained from this study showed that

the non-thermal gliding arc discharge can be used as a tool to study the efficiency of the organic
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inhibitors present at metallic surfaces [92].

Allam et al. [38] carried out research on the effect of BTA on copper and its alloys in both

clean and polluted environments. The chemistry of BTA was reviewed and was shown to be

the crucial element in determining the inhibition ability of BTA. BTA was found to be a good

corrosion inhibitor for copper and its alloys in clean environments. However, the presence of

pollutants, such as sulfide ions, gave a damaging effect on the remarkable inhibition efficiency

of BTA against the corrosion of copper and its alloys. The use of BTA derivatives were shown

to increase the inhibition efficiency. On the other hand, the use of BTA blends was reported to

be a good alternative in the case of an aggressive environment [38].

Many other types of organic inhibitors, apart from BTA, have been researched for the

corrosion protection of copper and its alloys. Cicileo et al. [93] have reported that the organic

inhibitors from the oxime group exhibit strong corrosion protection. Gomma [94] has observed

the inhibition efficiencies of other azoles derivatives, including tolyltriazole and imidazole and

has found that the inhibition efficiency follows the sequence: BTA > tolyltriazole > imidazole.

Subramanian and Lakshminarayanan [95] have carried out research on the adsorption ability of

azoles on copper oxides and have found them to be in the order: mercaptobenzothiazole > ben-

zimidazole ≈ mercaptobenzothiazole> benzotriazole ≈ imidazole.

Figure 1.4 illustrates a typical self-assembled monolayer (SAM). Metikos-Hukovic et

al. [96] investigated the corrosion protection of a SAM of alkanethiol and observed that

the SAMs of dodecanethiol (DT) formed in the absence of oxygen were characterised by a

high hydrophobicity, low capacitance, and high resistance, thus providing an excellent barrier

against corrosive species from attacking the underlying copper substrate. Guenbour et al. [97]

have carried out investigations on the corrosion protection properties of polyaminophenol films

and have shown that the polymer film reduces the corrosion of copper, however, polymerisation

in the presence of azole compounds further increases the protective character of the coating.

Zhang et al. [98] investigated highly reliable copper-based conductive adhesives using an

amine curing agent for corrosion prevention. The coordination of the amine curing agent to

the exposed copper of Ag-coated copper flakes prevents the oxidation of the exposed copper

during the isotropically conductive adhesives (ICA) curing at 150 °C. Following the curing

process, the secondary and tertiary amine groups could further protect the exposed copper

surface from oxidation/corrosion in harsh environments [98]. Taneichi et al. [99] have carried
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out studies on alkyl isocyanates modified 11-mercapto-1-undecanol (MUO) self-assembled

monolayers as alternatives of chlorosilane modifiers for protective films and have reported

protection efficiencies as high as 95.4%. Singh and Singh [100] have carried out research on

the corrosion of copper in aqueous solutions of formic acid and have added organometallic

inhibitors to reduce the rate of corrosion. Their results show that Ph3SnCl has inhibition

properties in both acids. Patel et al. [101] investigated the effect of 2-mercaptothiazoline as

corrosion inhibitor for copper in acidic media. They observed that the inhibitive power of the

2-mercaptothiazoline among the acids tested is in the order: trichloracteic acid < dichloroacetic

acid < monochloroacetic acid < acetic acid.

Functional Group

Substrate

R RR R

Tail

Head Group

{

Figure 1.4: A schematic of a self-assembled monolayer (SAM).

However in recent years, conducting polymers have emerged as a potential corrosion-

control and corrosion inhibition technology. This subsequent section is focused on an

introduction to conducting polymers and details on the electropolymerisation of pyrrole and

the formation of polypyrrole at inert electrodes. Finally, an overview of the application of

conducting polymers in corrosion protection, with a particular focus on copper, is given in

Section 1.5.

1.4 Introduction to Conducting Polymers

A polymer is made up of smaller repeating units, called monomers. Polymers are produced

through the polymerisation of a monomer. This polymerisation step can be achieved by

chemical or electrochemical methods. Originally polymers with basic carbon chains were
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considered only as insulators. The first real interest in conducting polymers can be attributed

to Walatka et al. [102] in 1973 with the report of highly conducting polysulfur nitride

(SN)x. Meanwhile, towards the late 1970s, MacDiarmid, Shirakawa and Heeger enhanced

the discovery of the semi-conducting and metallic properties of the chemically synthesised

organic polyacetylene [103]. As is well known, the Nobel Prize in Chemistry was awarded

to Alan J. Heeger, Alan G. MacDiarmid and Hideki Shirakawa in 2000 for the discovery

and development of conducting polymers (CPs). In the following years, a wide range of

polymeric organic species have been prepared as stable inherent films on inert electrodes via

both chemical oxidation and electropolymerisation from aqueous and organic solutions.

Conducting polymers consist of carbon, hydrogen and heteroatoms, such as nitrogen or

sulfur, and contain conjugation across the polymer backbone. Typical conjugated conducting

polymers include polyaniline (PANi), polypyrrole (PPy) and polythiophene, Figure 1.5. These

and a number of other conducting polymers have been used in a variety of applications ranging

from corrosion protection of materials, sensors to many biomedical applications, such as tissue

engineering, nerve cell regeneration and drug delivery [104, 105, 106, 107].

 

(a)

 

(b)

 

(c)

 

(d)

Figure 1.5: Structures of (a) polyaniline, (b) polypyrrole, (c) polythiophene and (d)
polyacetylene all in their dedoped states.

Conducting polymers have very good conductivity, as shown in the logarithmic conduc-

tivity ladder presented in Figure 1.6, which compares the conductivity of PPy and other con-

ducting polymers with copper. In general, materials are classed depending on their electrical
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conductivity, where the electrical conductivity of insulators < semi-conductors < conductors.

Bredas and Street [108] explained this phenomenon in terms of the band gap structure.

Figure 1.7 illustrates the difference in each material using the band gap theory. The highest

occupied molecular orbital is equivalent to the valence band (VB), while the lowest unoccupied

molecular orbital may be equated to the conduction band (CB). The difference between each

band is known as the band gap energy (Eg) and it is this energy gap that establishes the

electrical properties of a material. If Eg < 10 eV , it is difficult to excite electrons into the

conduction band and an insulator is formed. If Eg ∼ 1.0 eV , then thermal energy is sufficient

to promote the electrons into the conduction band and a semi-conductor is formed. If the gap

vanishes, with overlap of the valence and conduction band, as shown in Figure 1.7, metallic

conduction is observed. For most doped CPs the band gap energy is generally close to 1.0 eV ,

and consequently, CPs can be classified as semi-conductors.

Figure 1.6: Logarithmic conductivity ladder.
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Figure 1.7: A schematic illustrating the band gap energy model, for insulators, semi-
conductors and conductors.

As pointed out by Bredas and Street [108], the conductivity observed upon doping of the

CPs was originally thought to be from the formation of unfilled electronic bands, however this

idea was quickly dissipated upon experimental analysis of PPy and polyacetylene and now it

is recognised that the conductivity is due to the formation of polarons and bipolarons, which

are more energetically favoured [108, 109]. The π-bonded system of CPs, which comprises of

alternating single and double bonds, enabling the delocalisation of electrons along the polymer

backbone, is related to the conductivity of the system. The conductivity of these materials

arises from a state of relative oxidation or reduction. Generally, it is said that this process

occurs in 1 in every 4 monomer units [110]. In this state the polymer is charged and requires

the introduction of counter ions (dopants) to compensate and reform the charge neutrality.

The oxidation of the polymer in which an electron is removed from a π-bond, gives rise to a

new energy state, which leaves the remaining electron in a non-bonding orbital. This energy

level is higher than the valence band and behaves like a heavily doped semi-conductor [110].

This doping process enhances the conducting properties of the polymer. The extent of doping

can be controlled during the polymerisation. The maximum doping level varies for different

conducting polymers and with different dopants. For example, the doping level for PPy ranges

from 20% to 50% depending on the dopant used [111]. The anionic doping can be described

in Equation 1.12.

P + nXF → Pn+nF− + nX+ (1.12)
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Here, P indicates the polymer in the neutral state, Pn+ is the polymer in its oxidised state,

X+ is any cation, F− is any anion and n is the moles of the salt. Both the anionic and cationic

doping processes enhance the conductive properties of the conducting polymer. This is because

the conductivity increases as the doping level increases due to the creation of more mobile

charges [112].

1.4.1 Synthesis of Conducting Polymers

Conducting polymers are synthesised through a method known as oxidative polymerisation.

This can be generated either by chemical or electrochemical means. In both cases, the initial

step of polymerisation involves the oxidation of the monomer to its radical cation [112]. Once

formed, the radical cations react with each other in the case of electrochemical polymerisation,

or with other monomers, in the case of chemical polymerisation, to form a radical dimer. This

in turn, is transformed to a trimer and longer chain lengths.

Chemical polymerisation is achieved with the use of a chemical oxidant, such as am-

monium peroxydisulfate (APS), ferric ions, permanganate, dichromate anions or hydrogen

peroxide [113]. The oxidants not only oxidise the monomer but provide dopant anions to

neutralise the positive charges formed on the polymer backbone. This is typically carried out in

solution, although it can also be carried out directly onto a surface, using a technique known as

vapour phase polymerisation [114]. This involves coating the desired surface with the oxidising

agent and then subsequently treating the surface with the vapour of the monomer, which results

in the deposition of the polymer film exclusively at the surface of preference. The chemical

synthesis of a polymer in solution requires the polymer to be precipitated from a monomer

solution upon the addition of an oxidising agent. This typically results in bulk polymerisation.

The rate of polymerisation can be controlled by varying the reaction conditions, for example,

varying the concentration of oxidant, monomer and the reaction temperature [115].

Electrochemical polymerisation is achieved by applying a suitable potential to an electrode

in a monomer-containing electrolyte. This results in the electrochemical oxidation of

the monomer. Electrochemical polymerisation, particularly potentiostatic and galvanostatic

modes, has several advantages over chemical polymerisation because the precipitated polymer

is deposited onto a conducting surface. Hence, an adherent polymer can be grafted directly

onto an electrode surface in one simple step [116]. The film thickness can be controlled
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by monitoring the charge passed during deposition, resulting in more reproducible films,

and the films formed have fewer impurities as harsh oxidising agents are not used. It is

also possible to perform in situ characterisation of the polymer while it is growing [117].

However, electrochemical polymerisation is limited to monomers which can be oxidised on

the application of a potential to form the radical ion intermediates for polymerisation, whereas

all polymers can be prepared using chemical synthesis.

1.4.1.1 Polypyrrole

Polypyrrole (PPy) is one of most intensively used and studied polymers due to its ease of

preparation, inherent electrical conductivity, high stability, redox properties, and large surface

area owing to its cauliflower-like structure [12, 14]. Accordingly, it is an ideal candidate

for a number of advanced technologies such as corrosion protection, ion-selective electrodes,

electrochromic displays, solar cells, drug delivery systems and actuators [1, 104, 118].

The first synthesis of PPy dates back to 1916, where records show that pyrrole was oxidised

with hydrogen peroxide to give an amorphous black powder [119]. Following this revelation,

Dall’Olio [120] and colleagues in 1968 were the first to synthesise polypyrrole on to a Pt

substrate by the electrochemical polymerisation of pyrrole from a solution of sulfuric acid. In

1980 Diaz and Castillo [121], with the help of colleagues, modified Dall’Olio’s approach and

demonstrated the electropolymerisation of pyrrole onto platinum in acetonitrile, which led to

a black, adherent film. Elemental analysis showed that the monomer unit was retained in the

polymer [121].

PPy is an organic material comprised of C, H and a N heteroatom, but it is highly

conducting, with an ideal planar (α − α′)-bonded chain in which the orientation of the pyrrole

molecules alternate, as shown in Figure 1.8. PPy can be synthesised both chemically and

electrochemically from the pyrrole monomer, as highlighted in Section 1.4.1.2.

Figure 1.8: Structure of PPy in its neutral state.
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1.4.1.2 Synthesis of Polypyrrole

As with all conducting polymers, PPy can be synthesised by either chemical or electrochemical

methods. One of the easiest and most common ways of chemically synthesising PPy in large

quantities is in solution. This involves exposing the pyrrole monomer to a strong oxidising

agent, which yields a black precipitate. In chemical polymerisation, the propagation step is

controlled by the fact that the monomer is in large excess of the radical cation that is formed

upon oxidation, which then attacks another monomer generating a dimer radical cation which

becomes further oxidised. Because of this, and coupled with the loss of hydrogen, the polymer

chain grows until termination, as illustrated in the schematic presented in Figure 1.9. The most

commonly used oxidising agents are salts, which include Fe3+, Cu2+, Cr6+, Ce4+, Ru3+ and

Mn7+. Several other oxidising agents including organic acids, have been used, however, films

generated from these oxidants tend to exhibit lower conductivity [122] and as such, the salts

of transition metal ions are generally used instead. An underlying disadvantage of this method

is that PPy forms in bulk in the solution phase and only some of the polymer will cover the

surface of any material that may be introduced into the solution.

An alternative way of chemically synthesising PPy is by directly depositing the polymer

film onto a surface using vapour phase polymerisation. This involves applying the oxidant

to the surface using a solvent coating process, and then exposing the coated surface to the

vapour of the monomer. This vapour phase polymerisation process was initially reported by

Mohammadi et al. [123] where the authors used FeCl3 or H2O2 as oxidants in order to form PPy

films. Since then the method has been altered slightly, with Fe(III) p-toluenesulfonic acid and

a range of other Fe(III) sulfonates now generally being used as the oxidising agents [114, 124].

The electrochemical polymerisation of pyrrole occurs on the application of an anodic

potential or current to a conducting substrate that has been immersed in a suitable electrolyte

containing the monomer and the desired doping salt. This can be achieved using various

electrochemical methods, e.g., potentiostatic, potentiodynamic or galvanostatic methods.

There is still some debate on the exact mechanism of electropolymerisation, but the mechanism

proposed initially by Diaz and Castillo [121] and later explained by Baker and Reynolds [125]

is generally taken to be the accepted mechanism, and is the most commonly encountered

mechanism in the literature. This mechanism is summarised in Figure 1.9. This process
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involves the one-electron oxidation of the pyrrole monomer (1a), by which a radical cation is

generated. This takes place at the electrode or substrate surface. The oxidation of pyrrole at the

electrode surface is considered to be faster than the diffusion of the monomer from the bulk of

the solution to the interface. In this way the monomer at the interface is predominantly present

as a radical cation formed at potential E1. This high concentration of radical cations gives rise

to radical-radical coupling. This occurs at the α-position of each radical, forming a radical

dication (1b), which subsequently loses two protons to generate a neutral dimer (1c). This

dimer becomes further oxidised to generate another radical species (2a), which then couples

with another radical monomer to form a trimer (2b and 2c). The propagation (ia, ib and ic) is

continued via this sequence until the final polymer product is obtained. The chain growth is

terminated either by reaction (t1) of the macromolecular radical cation with water or hydroxide

anions, or by lack of reactivity of the radical cation (t2) due to delocalisation over a greater

length as the polymer chain grows.

It is important to note that the final electrosynthesised polymer is oxidised. Intrinsic

conductivity results from the formation of charge carriers upon oxidising the conjugated

backbone, as discussed previously. Indeed, the final PPy chain is in an oxidised/doped state

due to the incorporation of dopants that are present in order to maintain charge balance within

the polymer [126]. The number of electrons taken from each monomer is equal to 2+p, two

electrons for the polymerisation and p electrons for the oxidation of the polymer chain. For

PPy the value of p is usually 0.25 to 0.33 corresponding to one positive charge delocalised over

every 3 to 4 monomeric units and accordingly one anionic dopant for every 3 to 4 monomeric

units. The overall stoichiometry for the electropolymerisation of the pyrrole monomer is

depicted in Figure 1.10.
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(a)

(b)

(c)

(d)

Figure 1.9: Electropolymerisation mechanism of pyrrole as proposed by Diaz and
Castillo [121].

Figure 1.10: Stoichiometry of the electropolymerisation of pyrrole, where A− and B+ are the
anion and cation from a simple AB salt dissolved in a suitable solvent with the monomer,
pyrrole.
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1.4.1.3 Factors Influencing the Electropolymerisation of Pyrrole

The electrochemical polymerisation of pyrrole is affected by a number of parameters used in

the synthesis. These parameters can include, but are not limited to, the nature of the electrode,

the concentration and nature of the electrolyte, the solvent, the applied potential or current

density, the reaction temperature, thickness and pH and the mode of electropolymerisation.

These will all have a strong effect on the rate of electropolymerisation and on the properties of

the resulting polymer.

The electrode surface at which electrodeposition of PPy occurs must not be oxidisable

as this would compete with the oxidation of the pyrrole monomer. If this were to happen

the oxidation and polymerisation of pyrrole would be severely hindered. Consequently most

studies have focused on using inert anodes such as platinum, gold or glassy carbon [127, 128,

129]. Apart from these metals, pyrrole has also been electropolymerised on silicon [130] and

transparent indium tin oxide glass (ITO) [131], which is useful for spectroscopic applications.

The conductivity of the PPy films is usually related to the degree of doping by the counter-

anions, which also contribute to the rate of formation. Provided the dopant is sufficiently

conducting, it also serves as the supporting electrolyte. During oxidation of pyrrole, nucleation

of the oligomers in solution occurs, followed by a rapid increase in charge density due to

gradual PPy growth. According to Almario and Caceres [132], the doping agents play a

key role in the polymerisation process, producing different induction times, mechanisms of

nucleation and polymer growth. Therefore, the polymerisation rate varies with each dopant.

Another key factor is the size of the dopant anion and this will influence various characteristics

of the polymer film, including the redox properties and the porosity of the film. Also, the

concentration of the electrolyte is important as the doping degree increases with increasing

electrolyte concentration. Li et al. [133] reported that the higher the concentration of the

electrolyte, the greater the conductivity and tensile strength of the polymer film. A PPy film

that has initially high conductivity is less prone to attack by oxygen thus, the polymer matrix

is increasingly stable with increasing doping levels and increasing conjugation.

Stankovic et al. [134] investigated the effect of preparation conditions on the properties of

electrochemically synthesised thick films of PPy. Thick PPy layers (10-130 µm) were prepared

electrochemically on Pt anodes under galvanostatic conditions. The effects of formation
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parameters (e.g., electrolyte recycling, current density, temperature, solvent, the amount of

water in the reaction mixture and film thickness) on the conductivity and morphology of the

prepared PPy films were studied. In addition the effects of the nature of the counterion and of

the nature and size of the cation associated with the counterion on the conductivity, morphology

and electroactivity of the PPy films were examined. Vork and Janssen [135] also demonstrated

that the polymer thickness could be controlled in a galvanostatic experiment by measuring the

polymerisation time.

Another parameter that has a key influence on the electrochemical polymerisation of

pyrrole is the nature of the chosen solvent. The main requirement of the solvent is that

it has good ionic conductivity and a good electrochemical resistance against decomposition

at the potentials necessary to oxidise the monomer. PPy films have been prepared using

aqueous, organic and ionic liquid solutions [18, 127, 136]. A requirement for aqueous

solutions is they generally need a reasonably high concentration of supporting electrolyte to

achieve the desired conductivity, whereas organic solutions usually require a suitable organic

salt. Vidanapathirana et al. [137] carried out investigations using aqueous and non-aqueous

electrolytes to study the effect of solvent on the ion movement during redox processes.

When PPy films are cycled in aqueous electrolytes transport of both the anions and cations

occur during oxidation and reduction. However, when cycled in the non-aqueous electrolyte,

propylene carbonate (PC), only anion movement takes place. The conductivity of PPy was also

investigated. Samuelson and Druy [138] carried out a kinetic study of the degradation of the

electrical conductivity of PPy. PPy was synthesised with a variety of anions including the p-

toluenesulfonate, perchlorate, and tetrafluoroborate anions. Two different kinetic processes

were found depending on the choice of anion. The degradation of the conductivity of

PPy/toluenesulfonate was found to obey first-order reaction kinetics, while the other dopants

investigated followed multi-order kinetics. Conductivity of PPy is well documented in the

literature [121, 139, 140], Kassim et al. [140] carried out conductivity measurements on PPy,

in order to investigate the effect of temperature on the conductivity. The polymer was grown

from aqueous solutions employing a range of temperatures (l - 60 °C). It was found that with

an increase in temperature the conductivity decreased and the optimum temperature was found

to be between 10 and 30 °C.

The applied potential employed during electropolymerisation is also very significant in
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the preparation and formation of the polymer films. Asavapiriyanont et al. [18] reported

that the oxidation of pyrrole usually occurs between 0.65 and 0.90 V vs. SCE. At higher

applied potentials the PPy formed is less conductive as the potential irreversibly over-oxidises

the polymer. Over-oxidation is a gradual process occurring with increasing potential. The

mechanism is still unclear. The most accepted mechanism is the nucleophilic attack of PPy

by aqueous nucleophiles such as OH- and H2O. The nucleophilic attack leads to the formation

of carbonyl groups on the α-carbons of the pyrrole ring which interrupt the conjugation of the

polymeric chain [141]. Diaz et al. [142] observed that the potential for the oxidation reaction

of PPy shifts towards more negative values as PPy growth proceeds. This is related to the

reactivity of the PPy segments with air, which increases as the oxidation potential becomes

more positive and the corresponding conjugation length becomes shorter. Ansari [143]

suggested that conducting polymers have more limited stability (environmental, thermal,

chemical) than conventional inert polymers due to the presence of dopants and their dynamic

and electroactive nature. The effect of the counterion on the intrinsic and extrinsic stability is

more indirect; the effect of the anion might be to alter the crystallinity of the polymer/dopant

system, the number of chemical defects, or extent of backbone oxidation. All of these

may affect the reactivity of the dopant/polymer system to the environment and its thermal

stability. However, PPy shows good stability and undergoes only slow degradation in ambient

atmosphere. Bof Bufon et al. [144] investigated the influence of polymerisation potential on the

transport properties of PPy films. They prepared PPy films by potentiostatic electrochemical

polymerisation at low temperatures. The cyclic voltammograms and the electronic transport

properties of the films were investigated as a function of the polymerisation potential. A drop

in the film conductivity was observed with higher polymerisation potentials.

Electropolymerisation can be carried out using cyclic voltammetry, potentiostatic or

galvanostatic methods. It is well known that the electrochemical method controls the

structural form of the electrodeposited PPy films. Herandez-Perez et al. [145] illustrated that

potentiostatic methods give rise to smooth surfaces. The authors used atomic force microscopy

(AFM) to investigate the surface morphology of PPy films prepared at platinum electrodes

by potentiostatic and voltammetric methods. They concluded that the potentiostatic mode of

growth was better for obtaining thin films with a smooth surface morphology. Furthermore, the

PPy film growth was easier to control using this method, whereas galvanostatically prepared
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polymer films are more rough and porous. Li et al. [133] investigated the effect of using various

electrochemical techniques for the formation of PPy on the redox properties of PPy, and found

that the galvanostatic deposition of PPy produced polymer films of higher electrochemical

reactivity in comparison to those prepared using either potentiostatic or cyclic voltammetry

methods. In addition, the electropolymerisation temperature has a considerable influence

on the kinetics of the polymerisation, as well as on the conductivity, redox properties and

mechanical characteristics of the polymer films. In general, as the temperature increases the

rate of polymerisation will also increase, but there is a decrease in the conductivity and redox

properties of the polymer. For instance, films prepared in propylene carbonate solution are

much more conductive at -20 °C than those prepared at 20 °C. However, films produced at low

temperatures have a rugged appearance and poor adhesion to the electrode substrate [140].

The pH of the monomer solution also has a significant influence on the conductivity and

electropolymerisation of pyrrole. Asavapiriyanont et al. [18] investigated the electrodeposition

of PPy onto platinum electrodes from acidic, neutral and basic aqueous solutions and found

that polymerisation favours a neutral or weakly acidic pH. This is in close agreement with the

work of Zhou and Heinze [146], who also found this to be the case when they investigated

the effect of pH on the electropolymerisation of pyrrole from an acetonitrile solution. At high

pH values, i.e., pH values greater than 7.0, the electropolymerisation of pyrrole is hindered

due to the cation radicals being deprotonated to form neutral radicals. This interferes with

radical-radical coupling and hence, the conductivity of the polymer film drops significantly.

On the other hand, the electropolymerisation of pyrrole prepared in a highly acidic/low pH

solution produces polymers with weak conductivity due to the acid catalysed formation of non

conjugated trimers which react further to form only a partly conjugated PPy film.

1.4.1.4 Electroactivity and Redox Properties of Polypyrrole

PPy has been and is currently being studied due to its redox behaviour; it has high conductivity,

stability in the oxidised form and the ability to be electrochemically switched between the

conducting and insulating states. PPy can be easily switched between the neutral and oxidised

states, as described in Figure 1.11. In the neutral state PPy exists as an insulator as the

conduction band is empty as all the electrons remain in the valance band. Following oxidation,

an electron is removed from a π-bond valence band and a polaron is formed. The separation

26



CHAPTER 1. INTRODUCTION

of the positive charge and the unpaired electron decreases during continual oxidation as the

number of polarons increases.

Figure 1.11: The formation of a polaron where (a) is the neutral PPy and (b) is the partially
oxidised PPy (polaron).

During PPy oxidation, anions are incorporated into the polymer to neutralise the positive

charges formed, Figure 1.12a. Furthermore, when PPy is reduced to its neutral state, dopant

anions are expelled from the polymer matrix, Figure 1.12b. However, this scenario only

works with small mobile dopants, such as chlorides. When larger anions are used to dope

the polymer, they become permanently anchored into the polymer matrix. These anions may

include large sulfonate groups, such as polyvinylsulfonate, dodecylbenzene sulfonate [147] and

polystyrenesulfonate [148], and the reduction of the polymer doped with these does not result

in the release of these dopants. Instead, the electroneutrality of the polymer is maintained

by the influx of mobile cations from the electrolyte solution into the polymer. This cation

exchange must take place in order to counterbalance the now overall negatively charged PPy

matrix, Figure 1.13b. In the case of medium sized anions, they can exhibit both anionic

and cationic exchange [147], as recorded by Ge and Wallace [149]. It is important to note

that the ion-exchange properties of PPy are dependent on both the dopant present in the

polymer and the ionic nature of the electrolyte in solution. PPy can also exchange OH- ions

when electrochemically switched in basic solutions. However, the hydroxyl anions have a

deactivating effect on the conductivity of the polymer. This is due to the N-H . . . OH hydrogen

bonding which inhibits the generation of polar ionic positive charges on the nitrogen sites.

This is the origin of the observed dramatic decrease in the conductivity of PPy after treatment
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in base [150]. Generally, the rate-determining step in the doping/de-doping process in PPy is

the ion migration. The rate of the electron transfer is usually much faster during the redox

switching [151].
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Figure 1.12: (a) The incorporation of anions into the PPy film and (b) the release of anions
from the PPy film.
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Figure 1.13: (a) The PPy film doped with a large anion and (b) the cation incorporation into
the PPy film on reduction of the film, where + is the charge on the PPy, - is the anions and + is
the cations.

1.5 Conducting Polymers and Corrosion Protection

Organic coatings are an efficient way to protect metal-based products from corrosion. However,

over time even in the absence of defects a sufficient amount of ions may penetrate through the

coating so that corrosion at the interfaces occurs. Such defects may be caused by external

attack, such as through scratches, or by production steps. Since the discovery of conducting
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polymers (CPs) in the late 1970s by Heeger, MacDiarmid and Shirakawa, [152, 153, 154],

the unique combination of physical and chemical properties of CPs has drawn the attention

of scientists and engineers from many different fields of research. One area where CPs are

finding applications is in corrosion protection [155]. Rohwerder and Michalik [156] carried

out a study on conducting polymers for corrosion protection, in order to determine if there was

a difference between failure and success. They reported that continuous coatings of conducting

redox polymer fails to provide corrosion protection in the presence of large defects. Tan and

Blackwood [157] investigated corrosion protection by multi-layered conducting polymers, they

found that the degree of protection was a function of the deposition order of the copolymer, with

films consisting of a PANi layer over the top of a PPy layer yielding the best results. Scanning

electron microscopy observations and adhesion measurements, along with the electrochemical

data suggested that the ability of a conducting polymer film to act as electronic and chemical

barriers were more important in providing corrosion protection than its ability to act as a

physical barrier.

The electrodeposition of PPy and other conducting polymers has been achieved at

corrosion-susceptible substrates [158], such as copper, copper alloys [19], iron [159, 160], mild

steel [23, 161, 162, 163] and aluminium [164]. However, relative to an inert metal substrate,

such as platinum or gold, the electrosynthesis is considerably more complex. This is due

to the concurrent oxidation of the metal during the electropolymerisation reactions, as the

monomers can only be electropolymerised at potentials higher than about 0.60 V vs. SCE.

This normally gives rise to extensive dissolution of the underlying metal, as the stable phase

is no longer the metal or alloy, Figure 1.1. This problem has generally been circumvented

by the deposition of a passivating layer, over the electrode surface, which reduces the rate of

substrate dissolution [165]. However, this layer must be sufficiently conducting to facilitate the

electropolymerisation of the monomer and the generation of the conducing polymer film [157].

The electrodeposition of conducting polymers on active metals has been pioneered by Beck

and co-workers. Much of Beck’s early work was concerned with the electrodeposition of PPy

on iron and aluminium [136, 166, 167, 168]. Smooth, adherent, PPy films were grown at a

current density of 2.0 mA cm-2 on iron from an oxalic acid solution. Active dissolution of

iron was observed, giving rise to the formation of Fe(II) oxalate. El-Shazly and Wazzan [161]

have also reported PPy formation on steel, in order to improve the corrosion resistance of
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steel buried in corrosive media. In another study, Aitout et al. [22] reported the successful

electropolymerisation of pyrrole at iron in oxalic aqueous solution, while Petitjean et al. [116]

have described the electropolymerisation of pyrrole onto zinc and other oxidisable metals in an

aqueous medium containing the salicylate salt.

PPy has also been successfully deposited at copper and various copper alloys [1]. Fenelon

and Breslin [1] have reported the in situ electropolymerisation of pyrrole on copper and

copper alloys. The electrodeposition of PPy on copper was performed in a monomer solution

containing sodium oxalate solutions by either cyclic voltammetry or potentiostatic techniques.

The resultant layers were adherent, and offered good corrosion protection properties to the

copper electrode. Potentiostatic techniques were used to deposit PPy from aqueous sodium

oxalate and again the polymer layers showed promising results. Fenelon and Breslin [19] have

also shown that reproducible PPy layers, giving good corrosion protection properties, can be

deposited at CuNi alloys. In more recent studies, Duran and Bereket [169] have synthesised

poly(N-methyl pyrrole) films onto copper from aqueous solutions containing the monomer and

oxalic acid, using cyclic voltammetry. It was shown that the protection efficiency depends on

the electrodeposition parameters, such as the applied potentials, scan rate and cycle number.

The corrosion protection properties were assessed in 0.10 mol dm-3 H2SO4 and it was shown

that the coatings were protective for 12 days in an acid rain corrosion medium. An oxalate

medium was also employed by Redondo et al. [170] in the formation of poly(N-methyl pyrrole)

films on copper.

In addition to oxalic acid and oxalate salts, a number of other salts have been employed

successfully in the deposition of conducing polymers at copper and various copper alloys [1,

19]. For example, polyaniline coatings, showing good corrosion protection, have been

galvanostatically deposited at copper from an aqueous solution of 0.30 mol dm-3 sodium

benzoate [171], while poly(o-toluidine) coatings have been electrodeposited onto copper

from a sodium oxalate solution [172]. Furthermore, Sharifirad et al. [14] have compared

acetate, benzoate and citric acid as electrolytes for the deposition of PPy at copper. The

electropolymerisation of pyrrole was observed in all three solutions, with the formation of

a passive layer that was sufficiently protective to minimise further dissolution of copper, but

enabling the efficient deposition of PPy at copper. Cascalheira et al. [173] have studied the

formation of PPy at copper from aqueous salicylate solutions using in-situ AFM measurements.

30



CHAPTER 1. INTRODUCTION

Initially, a non-uniform copper-salicylate layer was deposited, which inhibits the copper

dissolution reactions. Then, a thin layer of PPy was deposited, which follows the irregularities

in the initial copper-salicylate layer. However, the influence of this initial layer was no

longer evident as thick PPy films were deposited. Poly(o-anisidine) coatings have also been

electrodeposited from salicylate solutions [174, 175]. Again, it was shown that passivation of

the copper surface occurs with the formation of Cu2O and / or a copper salicylate complex.

It was found that the electropolymerisation of the poly(o-anisidine) only occurred after the

passivation of the copper substrate.

Dodecylbenzene sulfonate (DBS), has also been used in electropolymerisation. For

example, Wang et al. [16] have successfully formed a PPy-DBS film onto a copper surface by a

galvanostatic method onto an under layer of PPy doped with oxalate as they could not achieve

successful electropolymerisation directly onto the copper metal. Wang et al. [16] assessed the

corrosion performance of this polymer coating in 3.5% NaCl and compared the results to that

achieved with the PPy-Oxalate coating. The copper remained protected for a period exceeding

500 h. In addition, the corrosion current for the PPy-DBS film dropped by two orders of

magnitude compared with the simpler PPy-oxalate film. It has been suggested that the DBS- ion

is difficult to eject from the polymer coating due to its large size. It obstructs the corrosion-

inducing Cl- ions from penetrating the PPy films and hinders the oxalate from escaping so that

the healing ability of the PPy could be maintained for a longer term. DBS is considerably

different to the relatively simple oxalate, benzoate or salicylate salts that have normally been

used, as it has surfactant properties and the ability to form micelles [176, 177, 178]. These

surfactant and micelle properties are highlighted in Section 1.7

The exact mechanism of how conducting polymers confer corrosion protection to the

underlying substrate is still not fully understood [160, 179]. Conducting polymers are

electroactive, with equilibrium potentials that are more electropositive than the substrate

electrodes. Consequently, the polymer may preferentially undergo reduction keeping the metal

in the oxidised state. Another variation on this mechanism is that the conducting polymer reacts

with the surface of the metal to form a passivating layer, which inhibits further corrosion by

setting up a barrier, or by changing the surface potential.

One of the most extensive studied models is the so called “ennobling mechanism”. It

is based on the assumption that the conducting polymer acts as an oxidiser and maintains
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the metal in the passivity domain. This may induce the oxidation of the free metal surface

at small defects in the passive layer. Some publications report that this mechanism works,

while others suggest it is only possible in chloride free media [25, 180, 181, 182]. An

alternative mechanism is that, the electrons produced during the metal oxidation at the defect

area can go in to the polymer and dislocate the oxygen reduction from the metal/polymer

interface. This would hinder coating disbondment caused by interfacial oxygen radicals and

/ or hydroxide ions [183]. The typical polymeric coatings used as corrosion protection for

non noble metals act as a barrier for ions and corrosion products. The coatings block their

movement and do not allow the formation of a galvanic coupling between local anodes and

cathodes. However, in the case of conducting coatings the good ionic conductivity could

be an advantage. The “self-healing”mechanism proposed by Kendig et al. [29] and which

is discussed in the literature [184], is based on the assumption that doping anions with

corrosion inhibiting properties inside the polymer matrix are released during the reduction

of the polymer and then migrate to the corroding defect. Once released these inhibitor anions

could significantly decrease the corrosion rate. The influence of this inhibition is strongly

dependent on the concentration of the inhibitor. The transport of the inhibitor must be fast

enough to ensure a proper concentration [185].

These mechanisms are based on the unique properties of conducting polymers. In order

to estimate the usability of conducting polymers as corrosion protective coatings all aspects

of their electrochemical behaviour have to be taken in to account. A similar fate applies in

relation to the viologens, which are discussed in Section 1.8, and the formation of corrosion

protection films for highly reactive metals, namely copper. There is not much documented in

the literature, however there has been some suggestions that the viologens bind to the metal

interface through adsorption, [186].

1.6 Introduction to Carbon Nanotubes

1.6.1 History of Carbon Nanotubes

The history of carbon nanotubes appears to begin in 1952 when two Russian scientists

published pictures of carbon tubes. They measured 50 nm in diameter. The findings of the

Russian scientists were not given much publicity and it was not until 1976 that carbon fibers
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with nanometer dimensions, and later images of a nanotube with a solitary graphene layer,

were shown [187, 188].

In 1981, Russian scientists published more findings [187]. The carbon multi-layer tubular

crystals were made by rolling graphene layers into cylindrical shapes. This was followed in

1991 by Sumio Lijima’s unearthing of multi-walled carbon nanotubes in arc burned graphite

rods [189]. In fact some accounts of the history of carbon nanotubes mistakenly point to

Lijima as the discoverer of carbon nanotubes. The findings of Lijima led to more research and

discovery. In 1995, Swiss scientists showed the electron emission property of the nanotubes.

Two years later the carbon nanotube electronic transistors were demonstrated at Berkeley [187].

1.6.2 Carbon Nanotubes

The discovery of carbon nanotubes actually originates from fullerenes, a hollow spherical

structure of an allotrope of carbon C-60 [190], which was discovered in 1985. The spherical

structure is also called buckminsterfullerene. Some of the scientists who discovered this,

including Harold Kroto, Robert Curl and Richard Smalley were awarded the 1996 Nobel Prize

in Chemistry. Carbon nanotubes consist of pure carbon, and are long and thin and shaped like

tubes, about 1-3 nm in diameter, and hundreds to thousands of nanometers in length. Carbon

nanotubes are 100 times stronger than steel and one-sixth its weight. Some carbon nanotubes

can be extremely efficient conductors of electricity and heat; depending on their configuration,

some act as semi-conductors or have metal-like conductivity [187, 188, 191].

Figure 1.14: Diagram of a (a) single-walled nanotube (SWCNT) and (b) multi-walled
nanotube (MWCNT) [192].
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Carbon nanotubes, are an extended structure of a fullerene in length, and are composed of

ultra thin carbon fiber with nanometer-size diameter and micrometer-size length, as illustrated

in Figure 1.14. Basically, they are sheets of graphene rolled up into a tube. The manner

in which the graphene sheet is folded leads to CNTs with different electrical and thermal

conductivities, with armchair, chiral and zig-zag structures displaying different properties.

Therefore, such characteristics have been employed in the semi-conductor industries. The

difference in orientation can be determined using vectors. In particular, the chiral vector is

used to distinguish between the armchair, zig-zag and chiral CNTs [193, 194].

1.6.3 Synthesis, Purification and Applications

CNTs can be prepared as multi-walled CNTs (MWCNT) and single-walled CNTs (SWCNT).

MWCNT are comprised of 2 to 30 concentric graphitic layers, and the diameter ranges from

10.0 to 50.0 nm. SWCNT, on the other hand, has diameters from 1.0 to 1.4 nm.

The synthesis of CNTs has been studied extensively [191, 194, 195] and now they

can be prepared by several methods, including arc-discharging, laser ablation and catalytic

decomposition of hydrocarbons. Other methods such as electrolysis have been proposed.

Regardless of the synthetic method, metal catalysts are used and these include Fe, Co, Ni

and alloys, such as Fe/Co, Fe/Ni, Ni/Co, Ni/Cu. The length and diameter of the CNTs can

be controlled, to some degree, by the synthetic method. For example, laser ablation results

in shorter CNT lengths compared to arc-discharge, while high quality MWCNT can be mass

produced using catalytic decomposition of hydrocarbons. Once synthesised the CNTs must

be isolated from the metal catalysts, and carbon-containing structures that are produced as by-

products in the synthesis. Centrifugation, micro-filtration and chromatography are employed

to separate the CNTs of different lengths [196, 197, 198].

The unique, but flexible structure of carbon nanotubes, allow them to be applied to different

scientific fields [187, 199], among them are nanotechnology and optics. For example, carbon

nanotubes have been proposed in the development of waterproof clothing and they have been

employed to augment the strength of concrete. They can also be used as chemical nanowires or

conductive films (for use on LCD and computer monitors) and have potential as air pollution

filters, water filters and electric circuits [193, 200].
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1.7 Surfactants

Surfactants, also called surface active agents, are molecules composed of a polar hydrophilic

group, the “head”, attached to a non-polar hydrophobic group, the “tail”. Surfactant molecules

are amphiphilic in character, i.e., they possess hydrophilic and hydrophobic regions having

a long hydrocarbon tail and a relatively small ionic or polar head group. Amphiphiles can be

ionic (cationic, anionic), zwitterionic, or nonionic depending on the nature of their head groups.

The surfactants have a tendency to accumulate at the interface of immiscible fluids resulting in

a decrease in free energy which is reflected in a corresponding lowering of interfacial tension.

This facilitates emulsification of the immiscible fluids, and hence such compounds are also

known as emulsifiers [201, 202, 203]. A schematic diagram of a typical surfactant is shown in

Figure 1.15.

Figure 1.15: Illustration of a surfactant.

Depending on the charge of the head groups, the surfactants are classified as anionic,

nonionic, cationic or zwitterionic. Sodium dodecyl sulfate (SDS) is one of the most important

surfactants within the anionic category. In this case, the anion is the surface-active species.

The counterions most frequently used are sodium, potassium, ammonium, calcium and various

protonated alkyl amines. Sodium and potassium impart water solubility, whereas calcium and

magnesium promote oil solubility [202]. Nonionic surfactants do not have any surface charge

and have either a polyether or a polyhydroxyl unit as the non-polar group. This category

continues to be dominated by ethylene oxide adducts of alkylphenols and fatty alcohols. In

cationic surfactants, the cation is the surface-active species. The quaternary ammonium salts

are the main compounds in this class. The majority of cationic surfactants are based on the

nitrogen atom carrying the cationic charge. Both amine and quaternary ammonium-based
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products are common. The amines only function as a surfactant in the protonated state;

therefore, they cannot be used at high pH. Zwitterionic surfactants have two charged groups

of different size. Zwitterionics are often referred to as ‘amphoterics’and these surfactants can

change from a net cationic to net anionic charge on going from a low to high pH. However, the

compounds are only zwitterionic over a certain pH range [202].

1.7.1 Micelles, Micellar Structure and Properties

In polar solvents such as water, amphiphilic surfactant monomers assemble to form a micelle

in such a way that their hydrocarbon tails are located in the core of the micelle [176, 204,

205]. The polar head groups project outwards into the polar bulk solution, as shown in

Figure 1.16 [176, 206]. In this structure, the hydrophobic tails are shielded from water, giving a

more stable arrangement. Micelles are in dynamic equilibrium with surfactant monomers in the

bulk, which are frequently being exchanged with the surfactant molecule in the micelles [205].

The equilibrium between monomer and aggregate is established within a few milliseconds.

Figure 1.16: Schematic of the reversible monomer-micelle thermodynamic equilibrium.

The equilibrium depicted in Figure 1.16 can be expressed in Equation 1.13, where n

represents the number of monomer units in solution, S represents the surfactant and S n is a

micelle formed from the surfactant monomers. The equilibrium is then given by Equation 1.14,

where Km is the micellar equilibrium constant, [S ] represents the surfactant concentration, [S n]

indicates the micellar concentration of the surfactant and n is the number of monomers in the

micelles, or the aggregation number.

nS 
 S n (1.13)
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Km =
S n

[S ]n (1.14)

The surface layer of a micelle resembles a concentrated electrolyte solution with a dielectric

constant lower than that of the bulk water. The micellar phase is less polar than water and the

ionic micelles have polarity near to that of pure ethanol even at the stern layer [176]. The

size and geometry of the micelle is determined by the number of monomers in a micelle,

i.e., the aggregation number [202, 204]. In aqueous solutions, the aggregation numbers for

surfactants generally range between 10 and 100. Surface polarity decreases with an increase in

the aggregation number and this influences the solubility in water. In Figure 1.17, the charge

distribution is shown, where the charge is neutralised by counterions to form an electrical

double layer. The first layer immediately adjacent to the core corresponds to the stern layer. In

this layer, the counterions are adsorbed [207]. According to the most widely accepted model,

the head groups of the surfactant molecules are also located in this layer. The rest of the double

layer corresponds to the diffuse (Gouy-Chapman) layer and diffusion of the ions into the bulk

solution can occur due to thermal motion. The core radius is about the length of the fully

extended alkyl chain of the amphiphile. The core is assumed to consist of two regions, namely

the inner and outer core. The outer core contains approximately the first four methylene groups.

There is also another defined region within micelles which is termed the palisade layer (mantle)

which includes the head groups. Based on the Hartely model, the overall volume of a micelle

is approximately twice that of the stern layer [202, 208].

1.7.2 Critical Micelle Concentration, CMC

The formation of the micelle, as shown in Figure 1.18, is controlled by a number of factors but

depends particularly on the concentration of the surfactant [177, 202, 209]. The amphiphile

molecules exist in dilute solutions as individual species with ideal physical and chemical

properties. As the amphiphile concentration increases, these properties deviate gradually

from ideality and at some critical concentration, where aggregation of monomers into micelles

occurs, an abrupt change is observed (Figure 1.18) [202, 209]. On formation of the micelle,

the head group repulsions are balanced by the hydrophobic attractions and for ionic micelles,

also by attractions between head groups and counter ions. In some cases, hydrogen bonds

can also be formed between adjacent head groups. This concentration is called the critical
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micelle concentration (CMC). CMC is a key parameter for the optimisation of surfactants in

chemical formulations [202, 204]. Various factors, such as temperature [210], the length of the

hydrocarbon tail, the nature of the counter ions and the existence of salts and organic additives,

influence the value of the CMC [211]. Hence, amphiphiles have characteristic CMC values

only under given conditions [212].

Figure 1.17: Model of a typical ionic micelle showing the location of head group, surfactant
chain and counter ions (+).

Figure 1.18: Representation of changes observed at the critical micelle concentration.

1.7.3 Dodecylbenzene Sulfonate (DBS)

The structure of DBS is shown in Figure 1.19, where the anionic SO3
- groups comprise the

head and the organic chain in the monomer forms the tail in a micelle structure. As detailed

38



CHAPTER 1. INTRODUCTION

earlier, DBS falls within the anionic category of surfactants.

Surfactants, such as DBS, are commonly used to disperse CNTs by sonicating in aqueous

media. During this sonication period mechanical energy is provided to overcome the weak

van der Waals interactions in the CNT aggregates and at the same time surfactant molecules

adsorb on to the surface of the CNT walls [213, 214]. The organisation of surfactant molecules

on the CNT surface has been extensively investigated [203, 215, 216, 217]. Three main

arrangements have been considered [215]; structureless random adsorption on the CNT walls

without any preferential arrangement of the head and tail, hemi-micellar adsorption on the

CNT surface, and encapsulation of the CNTs in a cylindrical surfactant micelle [218, 216].

The majority of the experimental (AFM and adsorption measurements) and theoretical studies

dealing with the organisation of surfactant molecules on the CNT walls supports the hemi-

micelle configuration [216, 219, 220].

It is believed, that surfactants such as DBS, disperse CNTs in aqueous solutions mainly

through hydrophobic/hydrophilic interactions. The hydrophobic tail of the DBS adsorbs on to

the surface of the CNT aggregates while the hydrophilic head associates with water [217, 221].

CNTs can be encapsulated within cylindrical micelles or covered with either hemispherical

micelles or randomly adsorbed molecules [21]. A further hypothesis is that the DBS disperses

the CNTs due to the presence of the benzene ring, the smaller head group and the slightly

longer alkyl chain. In addition, the higher charge in the head group strengthens the electrostatic

repulsion among surface covered CNTs which prohibits the aggregation of the CNTs resulting

in a more stable suspension [217, 222, 223]. In addition, DBS can be employed as a dopant in

conducting polymers, as detailed in Section 1.5.

Figure 1.19: Structure of dodecylbenzene sulfonate (DBS).

39



CHAPTER 1. INTRODUCTION

1.7.4 The CMC and Aggregation Number of DBS

It has been reported that DBS forms micelles in water in a concentration range of 3.0 × 10-4 to

9.5 × 10-3 mol dm-3, while the aggregation number is in the vicinity of 55 to 65. The entropy of

mixing of the water and DBS surfactant favours a low number of monomers in each aggregate.

As a result the micelles are quite small, with low aggregation numbers [224, 225].

A variety of methods, such as light scattering, sedimentation, small-angle neutron

diffraction, fluorescence quenching [178] and conductivity measurements have been used to

obtain the CMC and aggregation number [225]. For example, the fluorescence quenching

method has been developed by Turro and Yekta [226] as a simple and reliable method to

determine the aggregation number. The fluorescence intensity of a micelle-bound probe is

monitored as a function of quencher concentration. The mean aggregation number of micelles

may be derived from luminescence quenching measurements [227], if static or active sphere

quenching of a micellar donor by a micelle associated quencher is dominant [228].

The probe molecule used in this investigation is the ruthenium-bipyridine anion [229],

which absorbs blue and emits red light. The lifetime of the luminescence state is much

shorter than the lifetime of the average whole micelle. The chloride salt of the ruthenium-

bipyridine is soluble in water. This is significant because at concentrations below the CMC

the ruthenium-bipyridine anion forms an insoluble compound with the surfactant. However,

at higher concentrations (where the micelle formation occurs), the anion is solubilised by the

micelle, which quenches the luminescence of the ruthenium-bipyridine if they share the same

micelle [202, 224, 225].

1.8 Viologens

Viologens, also known as 1,1’-disubstituted 4,4’- bipyridinium ions, were first reported in

1933 by Michaelis and Hill [230]. They exist in three main oxidation states: dicationic (V2+),

cationic radical species (Vo+) and neutral species (Vo), as depicted in Figure 1.20. Of the three

common viologen redox states, the dication is the most stable [231]. The colourless dication

can undergo a one-electron reduction generating a radical cation which may be soluble or can

form a deposit on the electrode if large substituents are bound to the pyridilium nitrogen [232].

The radicals exhibit a colour which depends on the substituents. Simple alkyl groups, for
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example, promote a blue-violet colour, whereas aryl groups generally impart a green hue to

the radical cation [231]. When the molecule undergoes a second stage of reduction the radical

gains an electron to form a yellow to brown neutral species which is frequently insoluble in

aqueous media [232].

Figure 1.20: Schematic representations of the three oxidation states of the viologen
compounds (V2+, V0+ and V0).

Viologens can be reduced electrochemically by applying a suitable potential. The 1,1’

substituents affect the potential of both reduction steps [17]. In this work three different

viologens were investigated: methyl (MV), ethyl (EV) and benzyl (BV) viologen and the

respective 1,1’-substituents are summarised in Table 1.1. The methyl viologen is the simplest

molecule of this class of compound and it is commonly known as paraquat. It is well known to

possess herbicidal activity.

Table 1.1: Summary of the substituents and counter-ions for methyl, ethyl and benzyl
viologens.

R = CH3 X = Cl− Methyl viologen dichloride (Paraquat)

R = CH2CH3 X = ClO−4 Ethyl viologen diperchlorate

R = CH2Ph X = Cl− Benzyl viologen dichloride

Michaelis and Hill [230] originally investigated the viologens as redox indicators in

biological studies. Viologens are now widely studied as electron transfer mediators in

enzymatic reactions. For example, Hale et al. [233] published results on the efficiency of

several water soluble viologens in mediating electron transfer from reduced glucose oxidase

to a carbon paste electrode. The advantage of using viologens is that these molecules have

sufficiently anodic redox potentials (more positive than that of flavin adenine dinucleotide) to
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re-oxidise reduced glucose oxidase. These redox potentials are, however, sufficiently cathodic

that glucose sensors based on glucose oxidase and its mediators can operate in a potential

range where the oxidation of common interfering species, such as ascorbic acid and uric acid,

do not occur. Gomez Moreno and Bes [234] found that the covalent binding of the viologen, N-

methyl-N’(aminopropyl)-4,4’-bipyridinium, to the flavoprotein ferredoxin-NADP+ reductase,

facilitates the transfer of electrons between the FAD group in the enzyme and oxygen molecules

present in the solution. This oxidase activity, which is completely absent in the native protein,

indicates that there is an efficient electron transfer between the FAD group in the enzyme and

the viologen molecule. Modification of an electrode surface in order to establish an electrical

connection with an enzyme is considered a topic of great interest. The redox centre of enzymes,

in fact, is usually deeply located within the protein and the protein shell avoids direct electron

transfer between the enzymatic active sites and the electrode surface [235]. Cosnier et al. [235]

constructed a biosensor composed of PPy functionalised with viologens with the ability to

shuttle electrons between the electrode and the reactive centre of a nitrate reductase enzyme.

Other successful applications of viologens are as electrochromic materials and nanoma-

terials [236]. As previously mentioned, viologens can change their optical properties and so

can be switched between different colours when exposed to chemical perturbations, giving

electrochromism. Electrochromism results from the generation of different visible region

electronic absorption bands on switching between redox states [236]. Such a phenomenon

occurs in viologens because the radical cations have a delocalised positive charge and hence

their colouration arises from an intramolecular electronic transition. In contrast, the dications

are transparent since they do not possess any delocalised charge. Suitable choice of nitrogen

substituents to attain the appropriate molecular orbital energy levels can, in principle, allow

colour choice of the radical cation.

Paraquat is the trade name for N,N’-dimethyl-4,4’-bipyridinium dichloride, one of the most

widely used herbicides in the world. It is quick-acting and non-selective, killing green plant

tissue on contact [237]. It is also highly toxic. Paraquat was registered for use in 1965 and

since that time has been one of the most widely used herbicides for broadleaf weed control.

Because of its widespread use, the possibility exists of substantial paraquat contamination of

food. Drinking water contamination by paraquat has also been observed. The European Union

has banned the use of paraquat since July 2007 but it is still widely used.

42



CHAPTER 1. INTRODUCTION

As highlighted earlier, the corrosion protection properties of MV, EV and BV were studied

at the copper electrode. There are no reports in the literature on the corrosion protection

afforded by viologens, however there are some reports which describe the adsorption of

viologens at metal surfaces, and these may be relevant to this study. For example, Lee et

al. [238] have studied the charge transfer properties of self-assembled derivatives of viologens

using electrochemical quartz microbalance (EQCM) measurements. The electrochemically in-

duced adsorption of the self-assembled monolayers was achieved and monitored using EQCM.

The adsorption of viologens on a highly orientated pyrolytic graphite (HOPG) electrode was

monitored using cyclic voltammetry and infrared reflection absorption spectroscopy [238, 239].

It was found that the bipyridine ring planes were adsorbed perpendicular to the HOPG

surface, while the alkyl groups were adsorbed parallel to the surface. In another study,

Arihara et al. [239] monitored the adsorption of heptyl viologen on Au(111) using infrared

reflection absorption spectroscopy and concluded that the dication molecule adsorbs in a side-

on orientation, but on reduction forms a face-on dimer composed of two monocations.

There have also been some reports on the adsorption of viologens at copper and copper-

modified surfaces. Jiang et al. [240] have reported the potential-dependent adsorption of

heptyl viologen on a Cu(100) surface in a chloride containing electrolyte. In the absence of

the viologens, a highly ordered chloride adlayer was observed on the Cu(100) using scanning

tunneling microscopy (STM). On injection of the viologen, a highly ordered two dimensional

array structure was observed as the dications assembled and adsorbed at the surface. The one

electron reduction of the dications caused a phase transition to a stripe-like pattern, while the

further reduction produced a more compact stripe phase. Finally, at lower applied potentials,

an amorphous phase was observed. However, in the reverse anodic sweep, the reproduction of

the ordered stacking phases was achieved on top of the chloride lattice at the Cu(100) surface.

Breuer et al. [241] also studied the adsorption of dibenzyl and diphenyl viologens at chloride-

modified copper. The dibenzyl viologens were adsorbed and stabilised at the chloride-modified

copper in the dicationic state. Electrostatic interactions between the anionic chloride layer and

the dications were proposed as the main driving force for the formation of the stabilised layer.

Again, a stripe-like structure of chains was observed on reduction of the layer. However, the

diphenyl viologens could not be stabilised at the chloride-modified surface in a dicationic state.

Tsay et al. [242] studied the molecular structures obtained on adsorption of dicarboxylated
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viologens on Cu(100) in the presence of chloride anions. Again, depending on the oxidation

state of the viologen, array-like patterns, stripe patterns, compact stripe patterns, and metastable

phases were observed with STM. Hydrogen bonding was considered to be the main factor in

achieving the close stacking stripe pattern. Finally, in a paper published by Yuan et al. [243]

the authors have modified an oxidised copper alloy, Cu-Ni alloy, with viologens to inhibit

microbiologically induced corrosion. A 4-(chloromethyl) phenyl trichlorosilane layer was first

immobilised onto the oxidised surface. Then, the viologen was coupled to this layer and the

terminal pyridine groups were converted to pyridinium groups using benzyl chloride. Good

bacterial inhibition efficiency was obtained. In comparison, under the same conditions, the

unmodified CuNi alloy was readily susceptible to microbial induced corrosion.

1.9 Introduction to work in this Thesis

Several approaches have been carried out in order to establish corrosion protection coatings

for non inert metals, however, much of these publications did not focus on copper.Therefore,

the work presented in this thesis illustrates the corrosion protection films synthesised for

the easily oxidisible metal copper. The films were based on polypyrrole coatings doped

with combinations of tartrate, oxalate and sodium dodecylbenzene sulfonate along with the

incorporation of multi-walled carbon nanotubes and viologen films absorbed at the copper

surface. The corrosion protection properties of these films were studied using a combination

of techniques including cyclic volatmmetry, polarisation curves, Tafel analysis, Open-circuit

potential measurements and electrochemical impedance.

As detailed in chapter 3 polypyrrole was successfully deposited at copper from 0.10 mol

dm-3 oxalate pH 8.0 and tartrate pH 7.0, to generate PPy-Oxalate and PPy-Tartrate films on

copper. In chapter 4, further optimisation of the polymer film is achieved with the incorporation

of MWCNTs.These were dispersed using the surfactant DBS, and exhibited good corrosion

protection properties. In chapter 5 the PPy-DBS polymer coating was investigated to determine

if the DBS was the contributing factor for the good corrosion protection displayed by the

coatings from the previous chapter. In chapters 6 and 7 a new concept of viologens is

introduced.This was an alternative approach in an effort to obtain corrosion protection of

the copper surface with out using polymers.There have been no reports published on the
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use of viologens for the corrosion protection of copper metal,so it was an obvious approach

considering the research group had some knowledge of their chemistry.The electrochemical

deposition of benzyl, methyl and ethyl viologen at copper in the presence of 0.10 mol dm-3

NaCl supporting electrolyte was studied. The viologens were absorbed at the copper surface

and good corrosion protection was achieved.
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Experimental

In this chapter the techniques and the different apparatus, used to produce and investigate

the properties of an anti-corrosive coating for the non-inert metal copper, are presented and

described. Firstly, a description of the instrumentation and cell set-up is provided, along

with information on sample preparation, electrolyte compositions and a detailed description

of the experimental test procedures used during this research. This is followed by details on

the kinetic analysis of electrochemical data and information on corrosion and the analyses of

corrosion data.

2.1 Instrumentation and Equipment

The main test procedures used in this study were cyclic voltammetry, potentiostatic measure-

ments, potentiodynamic polarisation, open-circuit potential measurements, electrochemical

impedance spectroscopy, ultra-violet visible spectroscopy (UV-Vis) and scanning electron

microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX). The electrochemical

measurements were carried out using one of three potentiostats; a Solartron (Model SI

1285 or Model SI 1287) both with frequency response analysers (Model SI 1250), or a CH

instruments potentiostat (Model CHi 760C). Solution properties such as pH and conductivity

were evaluated using an Orion model 720A pH meter and a Jenway 4510 conductivity meter,
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respectively. The pH meter was calibrated using buffer solutions, pH 4.0 and pH 7.0 obtained

from Lennox Ltd., and a 0.01 mol dm-3 KCl from Sigma was employed in the calibration of

the conductivity meter. An overview of the main and ancillary equipment used throughout this

study is given in Table 2.1. Further details are provided in the relevant sections.

Table 2.1: Analytical equipment and techniques used with model information.

Equipment/technique Model

Electrochemical Measurements
CH Instruments Potentiostat (Model CHi 760C)
Solartron (Model SI 1285 or Model SI 1287)
Frequency Response Analyser (Model SI 1250)

Spectroscopy Measurements
Varian Cary 50 UV-Vis Spectrometer
Cary Eclipse Fluorescence Spectrophotometer

Differential Scanning Calorimetry
Perkin Elmer 2400 Series Analyser/ PYRIS
Diamond™ DSC/Pyris 6 DSC

Microwave Discover CEM 48-72-96

SEM Hitachi FE-Scanning Electron Microscope /

Oxford Instruments Inca X-Act 4.12 Software
Package

EDX Tescan Mira XMU VPFE/51-ADD0009 / Soft-
ware Package Micro Analysis Suite

Gold Sputter Coater Emitech K550x / Agar Scientific

Sonicator Branson 1510

Electronic Balance Sartorius Models TE612 and TE124S

pH Meter Orion Model 720A

Conductivity Meter Jenway 4510

Centrifuge Merlin Spectra

2.1.1 Electrochemical Cell Set-up

All electrochemical techniques were carried out using a standard three-cell electrode system,

as shown in Figure 2.1. This system consists of a working electrode (WE), which was usually

a copper metal disc supported inside a Teflon holder. The manufacture of these electrodes

is discussed in Section 2.2. A high surface area platinum wire was employed as the counter

or auxiliary electrode (CE/AE) to facilitate the movement of electrons to and from the WE.

Finally, the reference electrode (REF) was a saturated calomel electrode (SCE). The reference
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electrode was serviced regularly by changing the internal filling solution with a saturated

solution of super-purum KCl (99.999+%) and by checking the open-circuit potential against

an unused SCE. The three electrodes were immersed in the electrolyte solution and were

connected to a potentiostat.

(a) (b)

Figure 2.1: A schematic of the three-electrode cell used for electrochemical measurements.

2.1.2 Electrochemical Measurements

All the electrochemical measurements were carried out using a CH instruments potentiostat

(Model CHi 760C), with the exception of the electrochemical impedance spectroscopy

measurements, Table 2.1. This latter technique was carried out using a Solartron potentiostat

(Model SI 1287 or 1285) in conjunction with a Solartron Frequency Response Analyser

Model 1255B. Software was used to interface the potentiostat and the cell to the computer,

as illustrated in Figure 2.2. The software package for the CH instrument potentiostat was CHi

760C, version 2, and for the Solartron potentiostat, the Zplot for windows 98/NT/2000/XP/vista

version 2 was used. From each of these software packages data were transferred and

further analysis was carried out. Zview was used to analyse the data from Zplot and Excel

for Microsoft Windows was used to analyse the data recorded using the CH instruments

potentiostat.
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Figure 2.2: A schematic of the experimental setup used to record all electrochemical
measurements.

2.2 Preparation of the Working Electrodes

The copper substrates (99.99%) were supplied by Goodfellow or CH instruments. The metals

from Goodfellow were supplied in rod form and were cut into lengths of 3 cm. Electrical

contact between the electrode and the external circuit was achieved by attaching a copper wire

to one end of the rod, holding it in place with a conducting epoxy resin. This wire was then fed

through the Teflon holder leaving the substrate exposed at one end. The end of the electrode

with the copper wire was sealed with silicone and the end with the exposed substrate was sealed

with non-conducting epoxy resin. A diagrammatic representation of the electrode assembly is

shown in Figure 2.3.

Figure 2.3: Schematic diagram for electrode assembly.

Prior to carrying out each experiment the exposed electrode surface was hand polished

using diamond paste to give a smooth even surface and to remove any polymer or excess analyte

that may have deposited onto the surface. The paste was a Buehler diamond suspension with

particles ranging from 1 to 30 µm. The higher sized diamond particles (15 - 30 µm) were used

to remove deposited polymer on the surface followed by the finer, 1 µm sized particles, to give

49



CHAPTER 2. EXPERIMENTAL

a polished and smooth electrode surface. The electrodes were rinsed with distilled water and

sonicated for about 30 s to remove any diamond particles in between each polish grade. In

some cases the polymer was removed from the surface using a Buehler METASERV grinder

polisher with Buehler SiC grinding paper (Grit p1200 to p2500) before polishing with the

diamond pastes. The electrodes described in Figure 2.3 were used for all experiments except

for spectroelectrochemistry experiments, where an indium tin oxide (ITO) was employed,

these were purchased from Plasma Quest Ltd. To ensure electrical contact a copper wire was

connected to the ITO electrode with a conducting epoxy resin, as shown in Figure 2.4.

Figure 2.4: Schematic diagram for ITO electrode assembly.

2.3 Chemicals and Solutions

The majority of chemicals for this project were purchased from Sigma Aldrich and were

used as received, with the exception of pyrrole, which was distilled and stored in darkness

below -20 °C, prior to use. If a given circumstance arose that required a pH change it was

adjusted accordingly using an acidic or basic solution. HCl was used to maintain an acidic pH,

while NaOH was used to give a basic pH. All electrolytes used for the electropolymerisation

process were made up using distilled water. All chemicals, including the most frequently

used sodium chloride, sodium oxalate, and sodium potassium tartrate, were analytical grade

reagents. Pyrrole monomer was supplied by Aldrich at 98%, the benzyl (BV), ethyl (EV) and

methyl (MV) viologens were also supplied by Aldrich and were stored at room temperature.

All other solutions used for electrochemical measurements were made from analytical grade

reagents and distilled water. Again, where necessary, pH alterations were performed using
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either HCl or NaOH to give the required pH. The compositions of all the solutions used are

presented in the figure captions or corresponding text of all figures presented. In some cases

where difficulties with solubility occurred, the solutions were sonicated until solubility was

achieved.

2.4 Polymer Electrosynthesis

All polymers were synthesised by potentiostatic or cyclic voltammetry (CV) techniques, by

applying a constant potential to the electrode and then recording the current as a function

of time (potentiostatic) or as a function of the sweeping potential (CV). Pyrrole, 0.20 or

0.30 mol dm-3, was dissolved in the desired electrolyte. The supporting electrolyte has the

fundamental functions to ensure the conductivity of the solution and to provide doping of

the polymer. The electrolytes examined in the present study were dodecylbenzene sulfonate

(DBS), sodium potassium tartrate, and sodium oxalate [1, 244]. To dope the polymer with

tartrate for instance, pyrrole was dissolved in a 0.10 mol dm-3 sodium tartrate solution. The

multi-walled carbon nanotubes (MWCNTs) were introduced to establish if they contributed

any further enhancement to the polymer coatings and initially the DBS was used to disperse the

MWCNTs. A 0.02 mg solution of the MWCNTs was used in conjunction with a 0.05 mol dm-3

solution of DBS. This was then combined with pyrrole and used as the electropolymerisation

solution [202]. This negatively charged surfactant is sufficiently conductive at 0.05 mol dm-3

to allow electropolymerisation. However, in all cases the pH was adjusted to 7.0 with a small

quantity of NaOH, in order to promote electropolymerisation. Otherwise the polymer growth

was too slow and occurred in patches on the electrode, or no polymerisation occurred at all. To

achieve the electropolymerisation of pyrrole, the applied potentials were varied from 0.60 to

0.90 V vs. SCE. It is evident from the Pourbaix diagram of copper (Chapter 1, Section 1.3.1)

that a compromise must be achieved between the applied potential and the pH of the solution in

order to avoid dissolution of the copper. Potentials higher than 0.9 V vs. SCE were not used as

this gives rise to significant dissolution of copper and over-oxidation of the deposited PPy. The

thickness of the polymer films was controlled by monitoring the polymerisation time. Further

details on the potentials and pH values employed are given in the experimental sections of the

relevant chapters.
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2.5 Test Procedures and Techniques

The experimental procedures employed in this study are now presented in more detail. In all

cases a brief description of the parameters used in the experiment, together with the necessary

background information, is provided.

2.5.1 Potentiodynamic Polarisation Measurements

This technique involves varying the potential and monitoring the resultant current flow. This

technique is mainly used for polarisation corrosion tests in which the initial potential is the

open-circuit potential of the electrode in the desired test environment or some potential below

the open-circuit potential [8]. The initial potential was chosen in order to ensure that the

polymer coating present on the electrode was not damaged due to the excessively high rates of

reduction reactions. For comparison purposes this initial potential was used for all polymer-

free electrodes also. Polarisation was then performed in the anodic direction at scan rates of

0.1667 or 1 mV s-1 until visible breakdown of the electrode occurred or until a current density

of 1 mA cm-2 was reached.

2.5.2 Potentiostatic Measurements

Potentiostatic measurements were utilised for a variety of different processes in this study [45].

These tests were carried out by applying a constant potential to the electrode and recording the

current density as a function of time, for periods of time from 1000 to 1200 s. The number of

data points collected per second determines the resolution. A total of 2000 data points s-1 were

collected in all experiments. A potentiostatic mode was employed in order to electrodeposit

the PPy films doped with the various anions. A constant potential, typically 0.75 V vs SCE,

was applied to the working electrode in the polymer-forming electrolyte, initially for a fixed

period of time, and then until a desired charge/thickness of the polymer film was reached. This

constant potential technique was used to over-oxidise the polymer films by holding the working

electrode at a substantially higher potential for a fixed amount of time. Finally, this technique

was employed as a pre-treatment step where a low potential was used to “clean” the electrode

surface by reducing any unwanted oxides. Again, where necessary, the potentials used are

presented in the figure captions, or corresponding text, of all presented data.
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Both cyclic voltammetry and potentiostatic techniques are routinely used in growing

polymer films. However, in this study it was found that potentiostatic measurements were

better for growing the polymers over the cyclic voltammetry method [245]. By employing the

potentiostatic mode the polymers formed were smooth and the films were considerably more

adherent to the copper electrode, in comparison to the films grown using the cyclic voltammetry

methods. The electrodeposition of PPy using a potential step technique gives a well-defined

chronoamperometric response, with a rising current-time transient during the initial stage,

followed by decay in the current, to a near constant value. These transients have been explained

in terms of the nucleation of the polymer at the surface followed by three-dimensional growth.

It has also been shown that the initial PPy nodules deposited at the electrode are isolated and

randomly dispersed. With continued time, the nodules grow in a three-dimensional manner to

give an increasing number of grains on the surface. Depending on the potential applied a large

number of nucleation sites can be generated to give a highly adherent polymer film [246].

In contrast, with cyclic voltammetry, the potential is swept across a large window, and the

monomer becomes oxidised over a range of potentials to form the polymer. Hernanez-Perrez et

al. [145] followed, using AFM measurements, the formation of nano-sized PPy nodules and

their transformation into larger surface aggregates during cyclic voltammetry measurements.

This forms a rough surface and the polymer is less adherent to the electrode as it is being

repeatedly oxidised and reduced. Indeed, Hernanez-Perrez et al. [145] concluded that the

potentiostatic method allows better control over the polymer growth giving a well-defined

smooth surface.

2.5.3 Impedance Measurements

Electrochemical impedance spectroscopy (EIS) is a very useful method used to examine

multiple factors at the surface of the working electrode [247]. These factors can include

the stability, kinetics and double layer capacitance of the working electrode, to name but a

few [248, 249, 250]. Impedance measurements involve the application of a small perturbing

sinusoidal voltage of 1 to 10 mV, which is superimposed on the fixed baseline potential or

versus the open-circuit potential. Any shift that may occur in the phase and amplitude of this

sinusoidal voltage will result in an AC current, which is as a result of variations occurring

within the electrochemical cell [251].
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The various components of the electrochemical cell are the determining factors in the

overall impedance of a system. These components can include diffusion, passivating layers,

electron-transfer kinetics and the solution resistance. The relative contributions of these

components tend to exhibit a variation with frequency, for example, diffusion may dominate at

lower frequencies whereas electron-transfer kinetics can dominate at higher frequencies [249,

252]. EIS is extremely useful as it allows measurements to be recorded over a wide frequency

range, thus allowing multiple processes with varying time scales to be detected within the same

experiment.

EIS results are expressed in two parts, real and imaginary, resulting from the shift in phase

that arises as a result of the phase shift that occurs between the applied AC potential and the

AC current response on the application of an AC potential to the electrochemical cell. These

components are plotted on a vector diagram known as a Complex Plane or Nyquist plot, with

the real component (Z') on the x-axis and the imaginary component (Z'') on the y-axis, as

depicted in Figure 2.5a.

The experimental data may also be presented in the form of a Bode plot, as illustrated

in Figure 2.5b and 2.5c. This displays the total impedance of the system, |Z|, on a logarithmic

scale and the phase angle, θ, as a function of the logarithmic of frequency. The total impedance,

|Z|, is related to the real and imaginary components through Equation 2.1.

|Z| =

√
(Zreal)2 +

(
Zimag

)2
(2.1)

For the purpose of this work, EIS measurements were carried out in order to obtain infor-

mation on the stability, charge-transfer resistance and capacitance of the polymer films [253].

The exact experimental conditions are described in detail in Chapters 5 and 7. However, in

general, the polymer was conditioned for 30 min either at the open-circuit potential (OCP)

or at a fixed applied potential, to ensure that a steady state was reached before measurements

were performed. This was tested further by recording the impedance data from high to low

frequencies, then reversing the sweep and recording the data from low to high frequencies. If

no hysteresis was observed it was then concluded that steady-state conditions had been attained.

A potential perturbation of 5 mV was used to ensure a pseudo-linear response of the system,

while the frequency was varied from 65 kHz to 10 mHz.
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(a)

(b)

(c)

Figure 2.5: (a) Complex Plane (or Nyquist) plot, (b) Bode plot with impedance plotted as a
function of frequency and (c) Bode plot with phase angle plotted as a function of frequency.
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The impedance response was modelled using Zview, a data modelling software package

that is capable of modelling the data to appropriate equivalent electrical circuits using a non

linear least squares fitting routine that considers both the real and the imaginary components

of the data. The purpose of fitting the data to these equivalent circuit models is to mimic the

actual impedance measurements with an equivalent electrical circuit which consists of resistors,

capacitors and constant phase elements. The Zview software is designed to accurately model

impedance data, whereby each circuit element in the model is selected to correspond to a real

physical component in the electrochemical cell. In this work, estimated initial values were

generated and these were used to build an electrical circuit, then the Zview software was used

to refine these estimates using an iterative process to select alternative values that best fitted the

experimental data.

The main electrical circuit elements used to model data were constant phase elements

(CPE) and resistors (R). A resistor has no imaginary component; hence its value is equal

to the impedance for the real component. The total resistance value is a combination of the

value for the resistance elements in the electrolyte solution (solution resistance, RS) and the

value for the charge transfer resistance (RCT). Constant phase elements (CPE) were used to

determine the capacitance and/or the diffusional processes at the interface. In particular, the

CPE was used instead of a pure capacitor as this allows for the inhomogeneity of the surface

of the electrode to be taken into account [245, 254, 255]. Equation 2.2 defines the impedance

of a constant phase element, where ω is the angular frequency (2πf). CPEs are defined using

two parameters; a magnitude term (T ), where T represents the magnitude of the impedance,

and an exponent value (n). The exponent gives information on the physical processes that are

occurring within the electrochemical cell; if the exponent value is equal to 1.0, it is correct to

assume that the CPE is behaving as an ideal capacitor, however, values of 0.8 and higher are

also acceptable capacitance components, which are indicative of a porous surface [1, 256, 257].

On the other hand, an exponent value of 0.5 is consistent with a diffusion process; this coincides

with a phase angle of 45° [245, 258].

Z =
1

T
(√
−1ω

)n (2.2)

By using various components in series or in parallel it is possible to create an appropriate
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equivalent electrical circuit model based on the physical system. Figure 2.6 shows the models

that were designed in order to evaluate the data presented in this thesis. When this approach

is used, it is very important that each element in the equivalent circuit element corresponds

to an actual component of the electrochemical cell; otherwise the equivalent circuit has little

or no meaning. For this analysis, the simulated impedance was calculated based on the initial

circuit parameters and values. This fit was then compared to the experimental data and the

values of the circuit parameters modified. The fit between the experimental and simulated data

was re-evaluated. This iterative process was continued until there was a minimum difference

between the simulated and experimental data. The percentage errors shown in Table 2.2 give

the percentage by which the circuit element can be modified without any loss in fit between the

simulated and the experimental data, which, in turn, gives the actual errors in the values of each

circuit component. For simple circuits the error was maintained at 2% or lower. If higher errors

were achieved, then an alternative circuit was considered. A higher percentage error of 5% was

accepted for more complex models that contained a greater number of circuit elements.

(a) (b)

Figure 2.6: Equivalent circuits used to fit impedance data.

Table 2.2: Typical equivalent circuit parameters and the data fitting routine, values and errors
used to fit impedance data.

Element Value Error % Error
R1 171.80 1.59 0.93
CPE1 − T 5.07 × 10-6 1.45 × 10-7 2.87
CPE1 − P 0.86 0.01 0.52
R2 17376 905.92 5.21
CPE2 − T 3.78 × 10-5 9.72 × 10-7 2.57
CPE2 − P 0.57 0.02 3.81

2.5.4 Cyclic Voltammetry

This technique involves a forward sweep by polarisation from a predetermined initial potential

to some vertex potential. The potential is then reversed and the back sweep performed by
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polarisation from the vertex point to the final potential, which equals the initial potential. This

procedure creates a cyclic effect, Figure 2.7. This technique is especially useful in studying

the reversibility of a redox couple. For a simple redox couple, the voltammogram exhibits an

oxidation wave, with a peak current, and a corresponding reduction wave, centred at a peak

potential, as shown in Figure 2.7.

Figure 2.7: Typical current-potential profile for a cyclic voltammogram of a reversible redox
species.

This technique was used mainly in the study for the growth of polymer layers and for the

study of the electrochemical behaviour of polymer layers in monomer-free solutions [4]. It

was also used to generate the BV layers on the copper surface. Different scan rates were used

depending on the experimental conditions; however, the most frequent scan rates were 10, 20

or 50 mV s-1. The scan rate used is presented in the figure captions in the results section.

Where necessary the charge associated with the resultant peaks was calculated by integrating

under the curve. This was regularly performed to give information on the thickness of polymer

layers, as the amount of charge passed is proportional to the thickness of the polymer layer due

to the conducting properties of the polymer film. Figure 2.8 illustrates an example of a typical

cyclic voltammogram. Here arrows indicate the direction of the scan rate while the location of

observed oxidation and reduction peaks are indicated by peak 1 and 2, respectively. These are

discussed further in subsequent chapters.
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Figure 2.8: Typical cyclic voltammogram indicating the direction of the scan rate and the
locations of the oxidation and the reduction peaks, as indicated by peak 1 and 2, respectively.

2.5.5 Open-Circuit Potential Measurements

The open-circuit potential (OCP) is the potential of the working electrode relative to the

reference electrode when no potential or current is applied to the cell. It is a relatively simple

technique in which the only parameter required apart from the reference potential is time.

This technique was mainly used to measure the open-circuit potentials of polymer-coated and

viologen-coated copper electrodes and to investigate the corrosion protection properties by

monitoring this potential as a function of time [259]. A total of 2000 data points s-1 were

collected in all experiments.

2.5.6 UV-Vis Spectroscopy and Spectroelectrochemical Measurements

UV-Vis spectroscopy measures the amount of ultraviolet and visible light transmitted or

absorbed by a sample placed in the spectrometer. Generally species which absorb in the visible

range appear coloured and species which absorb in the UV-Vis region appear colourless. The

wavelength at which maximum absorption occurs is known as λmax. At this wavelength which

is fixed, the absorbance changes in accordance with the concentration. This relationship is

commonly referred to as the Beer-Lambert law, which states that absorbance is proportional to

concentration at a fixed wavelength, as shown in Equation 2.3, where A is the absorbance, e is
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the molar extinction coefficient, c is the concentration and l is the path length.

A = ecl (2.3)

A Varian Cary series spectrophotometer was used in all experiments. It consists of a Xenon

lamp and has a maximum scan rate of 24000 nm min-1. However, lower scan rates of 300 nm

min-1 were employed. This method was used to deposit PPy onto ITO electrodes and in the

analysis of the copper ion concentration which had leached out into solution. A calibration

curve was obtained from standard solutions and this was used to analyse the samples. In all

cases a quartz crystal cuvette with a diameter of 1 cm was used and the wavelength was scanned

from 300 to 800 nm.

Spectroelectrochemistry measurements [2] were carried out using the Varian Cary UV-

Vis spectrometer and a potentiostat twinned together, as illustrated in Figure 2.9. The three

electrodes were incorporated into the quartz cuvette. A transparent indium tin oxide (ITO)

coated glass served as the working electrode, while the counter electrode was a platinum wire of

1.0 mm in diameter. The references electrode was a silver wire. The lid of the cell was designed

to hold the electrodes in place and prevent the path of the UV light from being obstructed. This

technique was used to test the protective nature of the polymer coatings. Further details are

given in the relevant Chapters.

Figure 2.9: Schematic representation of the spectroelectrochemical experimental set-up.

2.5.7 Fluorescence Spectroscopy

The fundamentals of fluorescence spectroscopy focus on the emission of absorbed energy.

In contrast to UV-Vis spectroscopy, the detector records light emission as opposed to light
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absorbed. The schematic shown in Figure 2.10 illustrates that the light is emitted at right

angles to the absorbed light from the sample. The emitted light is then detected, recorded and

appears as a spectrum of intensity versus wavelength. The theory of fluorescence is based on

the absorption of photons of light, at a particular wavelength. This is known as the excitation

wavelength. The absorption of light causes an electronic transition from the lowest vibrational

level in the ground state to the lowest vibrational level in the excited state. The lifetime

of this excited state is usually very short and then relaxation occurs, which is the process

of emission. Emission occurs at a longer wavelength than excitation. The intensity of the

emission bands changes linearly with concentration. Also, the intensity of the fluorescence is

generally high for compounds containing aromatic functional groups with low-energy π → π ∗

transition levels, along with aliphatic and alicyclic carbonyl structures or highly conjugated

double-bond structures. All fluorescent experiments were carried out using a Cary Eclipse

fluorescence spectrophotometer and data were recorded using complimentary software, Scan

Software Version 1.1. Data were further analysed using Microsoft Excel for Windows. Similar

to UV-Vis spectroscopy, the solution sample was placed in a quartz cuvette of path length 1

cm. The instrument was then programmed with a single excitation wavelength and an emission

range. These fluorimetric measurements were used to indirectly find the concentration of the

critical micelle content of the DBS [224, 228].

Figure 2.10: Schematic illustration of fluorometer and the method of detection and recording.
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2.5.8 Differential Scanning Calorimetry (DSC)

Differential scanning calorimetry (DSC) was used to study the thermal properties and

transitions of the polymers. These transitions include the melting interval, decomposition,

crystallisation and even the purity of the polymers, as illustrated in Figure 2.11. The apparatus

for DSC analysis is shown in Figure 2.12, whereby an aluminium pan containing the polymer

is placed in the heating chamber close to an empty pan which acts as a reference. The furnace is

set to increase or decrease the temperature at a fixed rate and the arrangement of the aluminium

pans ensures that they are both at an identical temperature at all times. The DSC measures the

energy that is required to keep both aluminium pans at an identical temperature. Hence the

amount of heat absorbed or released by the polymer sample is recorded as the temperature is

varied; i.e., during heating or cooling.

Figure 2.11: Typical features of a DSC curve.

The measured data were recorded as the heat change expressed as heat flow (mW) as a

function of the temperature (°C). Approximately 2.0 mg of polymer sample was heated from

25 up to 450 °C, at a constant rate of 10 °C min-1, under an inert atmosphere. The samples

were then cooled from 450 back to 25 °C, again at a constant rate of 10 °C min-1, using liquid

nitrogen as the cooling agent, and a cyclic pattern was obtained. The instrument used was a

Perkin Elmer Pyris 6.0 apparatus and the results were recorded and analysed using Pyris Data

Analysis software, this depicts exothermic peaks as well shaped curves and endothermic peaks
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as bell shaped curves. This technique was utilised in order to investigate the thermal behaviour

of the polymer doped with different dopants.

Figure 2.12: Schematic of the differential scanning calorimetry apparatus.

2.5.9 Scanning Electron Microscopy and Energy Dispersive X-ray Analysis

Scanning electron microscopy (SEM) is a method for high-resolution imaging of surfaces and

objects [260]. The SEM uses electrons for imaging, much as a light microscope uses visible

light. The advantages of SEM over light microscopy include much higher magnification

(>100,000X) and greater depth of field up to 100 times that of light microscopy. Electrons

are ejected from an electron gun under vacuum. These electrons interact with atoms of the

sample and X-rays, backscattered electrons and secondary electrons emitted from the sample

are collected by the detector. The SEM is commonly equipped with an energy dispersive

X-ray analysis (EDX) system. Qualitative chemical analysis is obtained using this system

in conjunction with the SEM. It measures the X-rays generated from the sample when it is

bombarded with the electron beam. This X-ray energy is characteristic of the element from

which it was emitted, thus EDX analysis is useful in identifying the chemical components of a

sample [260].

In this study SEM and EDX analyses were used to obtain information regarding the

morphology and chemical components of the polymer films and the BV adsorbed films. All

samples were prepared on flat Cu disc electrodes and the samples were dried and sputter coated

with a thin gold layer using an Emitech K550x system, before analysis.
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2.5.10 Kinetic Analysis

The cyclic voltammetry technique is a very useful tool as mentioned earlier in Section 2.5.4;

however, it can also provide information on the kinetics of a system. The voltammogram

response at varied scan rates can reveal kinetic information concerning the electrocatalytic

process, including diffusion and adsorption effects, and it can also be used to determine the

reversible behaviour of a system. For a reversible system, the factors that can influence the

behaviour and magnitude of the peak current density can be described by the Randles-Sevcik

equation [43], Equation 2.4. Here, ip is the peak current density (A cm-2), n is the electron

stoichiometry, D is the diffusion coefficient (cm2 s-1), v is the scan rate (V s-1) and Co is the

concentration (mol cm-3). A reversible couple will only be observed when both the oxidation

and reduction species are stable and if the electron-transfer occurs at a fast rate.

ip =
(
2.69 × 105

)
n3/2D1/2v1/2Co (2.4)

It can be seen from the Randles-Sevcik equation that the peak current density, ip, is directly

proportional to the concentration of the electroactive species in the system and also to the

square root of the scan rate and diffusion coefficient. Therefore, a linear relationship between

the current and the square root of the scan rate is indicative that the redox reaction conforms

to the Randles-Sevcik equation and hence is governed to some extent by a diffusion-controlled

process. As a result, the redox reaction process is considered to be adsorption free. If a plot

of the peak current against the square root of the scan rate yields a straight line, the diffusion

coefficient can then be determined from the slope of this line when the electron stoichiometry,

concentration and area of the electrode are known [39].

When experimental data fit the Randles-Sevcik equation, which correlates with a reversible

system, it can then be assumed that the reversible system will follow other patterns also. For

example, the forward and reverse peak currents for a reversible system should be equal to unity,

i.e., 1.0, Equation 2.5, and be independent of scan rate. The peak separations should comply

with Equation 2.6 and the difference in the peak potentials and the half-wave peak potentials

should satisfy Equation 2.7. If any of these equations are not satisfied, this means that the

electron transfer is not reversible under the conditions of the experiment and that the process is

more complex.
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iA
p

iCp
= 1 (2.5)

∆Ep = EA
p − EC

p =
59
n

mV (2.6)

Ep − Ep/2 =
59
n

mV (2.7)

In these equations, iA
p is the oxidation peak current, iCp is the reduction peak current, EA

p

is the peak potential of the oxidation peak, EC
p is the peak potential of the reduction peak,

Ep/2 is the half-wave potential and n is the number of electrons transferred. If the electron

transfer does not take place within the timescale of the experiment, i.e., the rate of electron

transfer is too slow, the system can be said to be irreversible. The main characteristic of an

irreversible system is the absence of a reverse peak in the cyclic voltammogram. The peak

current of an irreversible system can be described by Equation 2.8, where nα is the number of

electrons transferred up to and including the rate-determining step and αc is the charge-transfer

coefficient of the reverse reaction.

ip = (2.99 × 105)n(αcnα)1/2CoD1/2v1/2 (2.8)

In addition to this, for an irreversible system, although the peak currents may be

proportional to the square root of the scan rate, the peak potentials shift by 30/αcnα mV for

each decade change in v. Also, the difference in the peak potentials and the half wave peak

potential comply with Equation 2.9.

Ep − Ep/2 =
48
αcnα

mV (2.9)

When the system is neither totally reversible nor irreversible, a quasi-reversible system

exists, Equation 2.10. The kinetics of a quasi-reversible system are not very fast or very

slow, but both the forward and reverse reaction make a contribution to the peak current, which

increases with the square root of the scan rate, as shown in Equation 2.4. However, at high scan

rates where the standard rate constant, kθ, is slow, the peak current is no longer proportional to
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the square root of the scan rate.

0.3v1/2 ≤ kθ ≤ 2 × 10−5v1/2 (2.10)

Just as with a totally reversible system, the ratio of the peak oxidation and reduction

currents of a quasi-reversible system should equate to unity, provided that αc and αA are both

equal to 0.5. The anodic and cathodic peaks are separated by more than 59/n mV and this

separation increases with increasing scan rate, as the peak potential shifts. These characteristics

are summarised in Figure 2.13, where the characteristics of reversible and quasi-reversible

systems are shown.

Figure 2.13: Cyclic voltammograms for reversible and quasi-reversible systems.

2.6 Tafel Equation and Kinetics of Corrosion

The rate of corrosion is expressed in terms of a corrosion current, Icorr, and the potential

adopted during the corrosion process is called the corrosion potential, Ecorr [261].

The corrosion current, Icorr, cannot be measured directly. In many cases, it can be estimated

by plotting the applied potential as a function of the logarithm of the measured current. A

typical plot of the oxidation reaction is shown in Figure 2.14, where the potential is varied from
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values below the corrosion potential, Ecorr, to values higher than the corrosion potential and

the corresponding current is measured. The reduction half reaction adopts a similar trend. The

linear regions of the anodic and cathodic branches are then extended and intersected to give the

computed corrosion current. In this analysis, the rate of the cathodic process is controlled by

the kinetics of the electron transfer reaction at the metal surface, the same applies to the anodic

processes. This is generally the case for many corrosion reactions, provided the system is not

perturbed too far from Ecorr. This analysis is based on the Tafel equation. An electrochemical

reaction under kinetic control obeys the Tafel equation, Equation 2.11.

I = I0 exp

2.303
(
E − E0

)
β

 (2.11)

In this equation, I is the current resulting from the reaction, I0 is the exchange current, E is

the electrode potential, Eo is the equilibrium potential, and β is the Tafel constant. In this form

Equation 2.11 describes the behaviour of one isolated reaction. However, the Tafel equations

for both the anodic and cathodic reactions in a corrosion system can be combined to generate

the Butler-Volmer equation, Equation 2.12.

I = Icorr

(
exp

(
2.303(E − Ecorr)

βa

)
− exp

(
−2.303(E − Ecorr)

βc

))
(2.12)

Here, I is the measured cell current, Icorr is the corrosion current, E is the electrode

potential, Ecorr is the corrosion potential, βa is the anodic Tafel constant in V/decade and βc is

the cathodic Tafel constant in V/decade.

At Ecorr, each exponential term equals unity and the cell current is therefore zero. Near

Ecorr, both exponential terms contribute to the overall current. Finally, as the potential is driven

further from Ecorr one exponential term predominates and the other term can be ignored. When

this occurs, a plot of the logarithm of the current versus potential becomes linear to give a Tafel

plot [262]. In Figure 2.14 the Tafel plot is shown, illustrating the extrapolation, in order to

calculate the corrosion current (Icorr).

When the corrosion reactions are controlled by kinetics as is frequently observed, the “Tafel

lines” are characterised by the slope of the linear part of the polarisation curve and by their

intersection when extrapolated to the equilibrium potential. The values of the characteristic

constants in the Tafel equation depend on the metal and the environment under consideration.
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It is possible to extrapolate the anodic and cathodic linear portions of the polarisation curves to

the corrosion potential, Ecorr. The value of the current at their intersection corresponds to the

rate of corrosion Icorr, expressed in current density. The values of the exchange current densities

for the cathodic and anodic reactions have a profound effect on the corrosion rate [263].

Figure 2.14: A Tafel plot indicating the extrapolation of the corrosion current [39].

In practice, many corrosion systems are kinetically controlled and thus obey Equation 2.12

to give a log current versus potential curve that is linear on both sides of Ecorr. However, there

can be complications, such as; (i) concentration polarisation, where the rate of a reaction is

controlled by the rate at which reactants arrive at the metal surface. Often cathodic reactions

show concentration polarisation at higher currents, when diffusion of oxygen or hydrogen ions

is not fast enough to sustain the kinetically controlled rate; (ii) oxide formation, which may or

may not lead to passivation, can alter the surface of the sample. The original surface and the

altered surface may have different values for the constants in the Tafel analysis; (iii) preferential

dissolution of one alloying component, altering the surface; (iv) a mixed control process where

more than one cathodic, or anodic, reaction occurs simultaneously. A common example of

mixed control is the simultaneous reduction of oxygen and hydrogen ions.

These complications cause non-linearity in the Tafel plot. The results derived from a Tafel

plot that does not have a well-defined linear region should be used with caution. Classic Tafel

analysis is performed by extrapolating the linear portions of a log current versus potential

plot back to their intersection. The value of either the anodic or the cathodic current at

the intersection is Icorr. Unfortunately, many real world corrosion systems do not provide a
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sufficient linear region to permit accurate extrapolation. Most modern corrosion test software

performs a more sophisticated numerical fit to the Butler-Volmer equation [39]. The measured

data is fit to Equation 2.12 by adjusting the values of Ecorr, Icorr, βa, and βc. The curve fitting

method has the advantage that it does not require a fully developed linear portion of the curve.
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CHAPTER 3

Synthesis of the Polymer Films on a Copper Substrate

Polypyrrole (PPy), a well-known conducting polymer, has been extensively investigated for

several applications, as discussed previously in Chapter 1 [264]. However, one of its more

attractive applications is in the development of corrosion protective coatings. The corrosion

protective properties of PPy films deposited at stainless steel [24, 265], iron [159, 266] and

aluminium [28, 267] are well documented. There are fewer reports on the formation of PPy at

copper electrodes, and it is for this reason that copper was selected and chosen in this study [1,

19]. It is well known that copper is easily oxidised and the nature and concentration of the

anions used to deposit the polymer will influence the stability of the copper substrate. This,

in turn, will influence the rate of electropolymerisation of the monomer, and the nature of the

deposited PPy film. Indeed, Annibaldi et al. [245] have shown that adherent and homogeneous

PPy films were deposited on copper from a salicylate solution. Solutions containing citric

acid, sodium acetate and sodium benzoate were used by Sharifirad et al. [14] to deposit PPy

at copper, while Raso et al. [268] have electropolymerised the functionalised monomer, N-

methylpyrrole, at copper from an oxalic acid solution, at pH 1.5. However, very high applied

potentials, ranging from 1.5 to 2.5 V vs. SCE, were used to deposit these films at copper.

In this chapter results are presented and discussed on the electrodeposition of PPy at

copper. Since copper is easily oxidised, different anions, including bromides, chlorides,
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sulfates, acetates [5, 269], oxalates [1] and tartrates [244], were considered. The PPy film

was successfully deposited at the copper surface at an applied potential of 0.75 V vs. SCE in

the presence of oxalates and tartrates to give PPy-Oxalate and PPy-Tartrate films. The chemical

structures of these salts are shown in Figure 3.1. It is clear that the anions are sufficiently small

and ionised in solution to dope the polymer film. It was found that sodium oxalate solutions [1]

adjusted to a pH of 8.0 and sodium potassium tartrate [244] solutions adjusted to a pH of

7.0, provide the optimum conditions for the efficient deposition of adherent PPy films at the

copper electrode. In addition, bi-layers, comprising the PPy-Tartrate and the PPy-Oxalate,

were successfully formed. It has been reported that the characteristics and properties of the

deposited PPy films vary depending on the nature and concentration of the dopant anions, the

pH of the solution, the applied potential and electropolymerisation period [269]. Accordingly,

the influence of these parameters, including the applied potential, the pH of the solution, and

the nature of the dopant anions, on the formation and corrosion protective properties of the PPy

films and bi-layers was studied and these results are presented and discussed in this chapter.

(a) (b)

Figure 3.1: Chemical structure of anions: (a) sodium potassium tartrate and (b) sodium
oxalate.

In this chapter the procedures and experimental conditions used for the electrochemical

synthesis of the polymer films are described. Then, the techniques employed to characterise

the polymers are reported and the results obtained are analysed and discussed. Furthermore, all

experiments carried out on the polymer films are compared to an uncoated copper electrode and

in some instances the polymers were formed at a platinum electrode under similar conditions.

Finally, in order to establish the protective nature of these deposited polymer films, corrosion

assessment experiments were carried out.
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3.1 Experimental

Details on the experimental approach used in the formation and analysis of the PPy films at the

copper electrodes are provided in Sections 3.1.1, 3.1.2 and 3.1.3. This includes information

on the chemicals, the techniques employed and the equipment used together with the general

procedures employed to deposit the polymer films at the copper electrode.

3.1.1 Reagents

The pyrrole monomer (98%) was obtained from Aldrich and was purified by distillation prior to

use. It was then stored in the dark at -20 °C between experiments. A 0.20 mol dm-3 pyrrole was

dissolved in the electrolyte solution for all the electrochemical deposition experiments, unless

otherwise stated. The analytical reagents, sodium sulfate (Na2SO4), sodium bromide (NaBr),

sodium chloride (NaCl), sodium oxalate (Na2C2O4), sodium potassium tartrate (KNaC4H4O6),

D-tartaric and L-tartaric acids (C4H6O6), were purchased from Aldrich and used as received.

Distilled water was used in all solution preparations. The pH meter was calibrated on a daily

basis using buffers (pH 4.0 and pH 7.0) which were purchased from Lennox Ltd.

3.1.2 Electrodes and Instruments

A Cu rod (99.99%, 4 mm in diameter) electrode was used for the deposition of the PPy-

Tartrate, PPy-Oxalate and the bi-layer polymer films. The rod was encased in a Teflon holder,

as previously described in Chapter 2, Figure 2.3. A flat Cu disc electrode was used for SEM

and EDX measurements. The disc and rod electrodes were polished using a 1 µm diamond

polish and Buehler micro-cloth and rinsed well with distilled water to ensure a smooth surface

finish, as outlined in Chapter 2. A saturated calomel electrode (SCE) was used as the reference

electrode and a high surface area platinum wire was employed as the counter electrode.

A CHi 760C potentiostat was used to deposit the PPy films. SEM measurements were

performed on a Hitachi FE-scanning electron microscope, with an oxford instruments Inca

X-act 4.12 software package. The EDX analyses were carried out using an EDX Model

51-ADD0009 with the software package micro analysis suite. A Carry UV-Vis spectrometer

together with the Carry Win software package was used to analyse the polymer films deposited

at ITO electrodes. A schematic can be seen in Figure 2.4. These ITO electrodes consist
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of indium(III) oxide (In2O3) and tin(IV) oxide (SnO2), with typically 90% In2O3 and 10%

SnO2 by weight. Indium tin oxide is one of the most widely used transparent conducting

oxides because of its optical properties [270, 271]. The ITO electrodes were connected to

the potentiostat using a copper crocodile clip. Differential scanning calorimetry measurements

(DSC) were recorded with a Perkin Elmer Pyris 6.0 instrument and FTIR data were recorded

with KBr discs, where the sample was compressed in a pressure chamber.

3.1.3 Procedures

The PPy films were formed at potentials from 0.60 to 0.90 V vs. SCE using an electrosynthesis

method, which deposited the polymer films at the working electrode [12, 258]. A Cu electrode

was used as the working electrode in the majority of cases and in some experiments, for

comparison purposes, a platinum electrode (99.99%, 4 mm in diameter) was employed as the

substrate. The platinum electrodes were prepared using the procedures described for the Cu

electrodes, Section 3.1.2. The polymers were prepared in various electrolyte solutions, at a

concentration of 0.10 mol dm-3, containing 0.20 mol dm-3 pyrrole. A summary of the various

electrolytes, used in an attempt to deposit the PPy films, is given in Table 3.1.

Table 3.1: Various anions, salts or acids used in the formation of PPy films on a copper
substrate.

Salt/Anion/Acid Concentration /mol dm-3

Sodium Oxalate 0.10

Sodium Potassium Tartrate 0.10

Sodium Acetate Trihydrate 0.10

Sodium Dihydrogen Phosphate 0.10

Sodium Phosphate Dibasic Heptahydrate 0.10

L-Tartaric Acid 0.10

D-Tartaric Acid 0.10

After electrochemical deposition, the PPy films were characterised using cyclic voltam-

metry [14]. A three-electrode cell was used for all voltammetry experiments. The protective

properties of the PPy films were monitored by cycling in a potential window from -0.50 to 0.90

V vs. SCE, in neutral 0.10 mol dm-3 NaCl at scan rates varying from 1 to 100 mV s-1. The

pH was adjusted to 7.0 using NaOH. For the SEM and EDX measurements, the polymers were
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deposited onto flat Cu disc electrodes at 0.75 V vs. SCE and sputter coated with gold prior to

analysis to prevent charging of the polymer film.

3.2 Results and Discussion

3.2.1 Influence of the Nature of the Anions

In order to successfully form a PPy coating at the copper interface a suitable dopant anion

is necessary [272, 273]. Due to the low corrosion potential of copper in aqueous media it is

readily oxidised and dissolved, as shown in Equation 3.1. The rate of this dissolution reaction

increases with increasing applied potential. This is clearly evident from the Pourbaix diagram,

presented in Section 1.3.1. Consequently as the potential necessary to oxidise the monomer,

which is typically higher than 0.65 V vs. SCE, is reached, significant dissolution of the copper

substrate occurs. For this reason the nature of the electrolyte solution and the pH of the solution

are important. These were studied in an attempt to minimise the dissolution of the copper

substrate [5] and to facilitate the oxidation of the pyrrole monomer and the deposition of an

adherent PPy film at the copper substrate.

Cu→ Cu2+ + 2e− (3.1)

As expected, significant dissolution of the copper was observed in the presence of

bromides, sulfates and chloride anions and there was no evidence of electropolymerisation in

the presence of these salts. Instead, corrosion products, such as CuCl, and the soluble CuCl2-

species, or CuBr and CuBrn
n-1 species, were formed and deposited at the copper surface [274].

Other salts, such as sodium acetate trihydrate, sodium phosphate dibasic heptahydrate, D-

tartaric acid, L-tartaric acid, and sodium dihydrogen phosphate, were considered. The

concentration of the salts was fixed at 0.10 mol dm-3 and 0.20 mol dm-3 pyrrole was added

to give the electropolymerisation solutions. A potential of 0.75 V vs. SCE was applied to

the copper electrode for a 600 s period. At this applied potential, there was no evidence of

polymer growth in the presence of the acetate trihydrate, the phosphate dibasic heptahydrate

or the dihydrogen phosphate anions. Instead, the copper electrode was corroded. Evidence of

electropolymerisation in the presence of the D- and L-tartaric acid was observed. However, in
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some experiments, corrosion of the copper substrate was seen and the reproducibility was poor.

However, more promising results were obtained with the tartrate [244] and oxalate salts [1].

A representative current-time transient recorded at 0.75 V vs. SCE in the presence of 0.10

mol dm-3 oxalate and 0.20 mol dm-3 pyrrole, adjusted to pH 8.0, is shown in Figure 3.2, while

similar data recorded in the presence of a neutral 0.10 mol dm-3 tartrate solution, containing the

pyrrole monomer, are shown in Figure 3.3. This chronoamperometry method, which involves

the application of a constant potential, was selected for the formation of the PPy films, as

the amount of charge consumed in the electropolymerisation step can be controlled and the

experiment terminated once the desired charge is obtained [1, 14, 19, 143]. With this procedure,

the thickness of the polymer films can be controlled by the amount of charge passed, hence it is

possible to produce uniform polymer films in each experiment. Although cyclic voltammetry is

normally used to generate compact conducting polymer films [112], potentiostatic deposition,

is well known to yield polymers with consistent and reproducible morphology [12, 112]. The

electropolymerisation solution was not stirred as this inhibits electropolymerisation of the

monomer at the electrode interface, although oxidation of pyrrole proceeds. Nucleation of

the polymer at the electrode interface occurs only when a sufficient concentration of the radical

species are formed. Clearly, the concentration of radical cations at the electrode surface is

reduced on agitation or stirring of the solution.

Figure 3.2: Current-time transient recorded for Cu at 0.75 V vs. SCE in a 0.10 mol dm-3

oxalate and 0.20 mol dm-3 pyrrole at a pH of 8.0.
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It is evident from Figures 3.2 and 3.3 that electropolymerisation of the pyrrole monomer

occurs in both the near neutral oxalate and tartrate solutions to give PPy films. However, the

current-time profiles are somewhat different for the oxalate and tartrate systems. In the case

of the oxalate system, there is a sharp increase in the current on application of the potential

and this can be attributed to capacitive charging of the electrode. Then, the current decays

and the faradaic currents can be attributed to oxidation of the pyrrole monomer and subsequent

deposition of the PPy. Dissolution of the copper substrate also contributes to the faradaic

current during this period. However, as the PPy is deposited the currents decay and this is

clearly evident during the first 100 s of electropolymerisation. There is a further decrease in

the current from 100 to 300 s, however, at about 800 s, there is a gradual increase in the current,

which is not displayed in Figure 3.2. This may be related to dissolution of the copper substrate

or connected to the further deposition of PPy giving a higher surface area and higher currents.

A similar initial increase in the current is observed for the tartrate system. However, once

the current decays, there is no further gradual increase in the current over the 600 s time period.

Moreover, the currents are higher for the oxalate system, adopting values around 5.0 × 10-4 A

at 300 s. On the other hand the current-time transients recorded for copper with the other

anions, listed in Table 3.1 were very different and characteristic of copper dissolution, with no

evidence of any decay in the current and the deposition of PPy at the copper surface.

Figure 3.3: Current-time transient recorded for Cu at 0.75 V vs. SCE in 0.10 mol dm-3 tartrate
and 0.20 mol dm-3 pyrrole at a pH of 7.0.
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The growth of these polymer films is facilitated by the initial oxidation of the copper in both

the oxalate and the tartrate solutions to generate a Cu-oxalate or Cu-tartrate pseudo-passive

layer [1]. This layer is sufficiently protective to inhibit further dissolution of the copper and

sufficiently conducting to enable electropolymerisation of pyrrole at the copper interface, and

the generation of an adherent PPy film, as shown in Figure 3.4 where the surface morphology

of the PPy-Tartrate polymer film is presented. Clearly, the polymer film is homogeneous

and crack-free despite being relatively thick and dehydrated over an extended period which

indicates that the copper-polymer interface is stable [1]. However, the characteristic cauliflower

morphology of PPy is not evident and deposition of the PPy appears to take place along

polishing lines on the copper surface, as evident from the ridge-like diagonal features [12, 14].

Figure 3.4: SEM micrograph of PPy-Tartrate formed at 0.75 V vs. SCE in a neutral 0.10 mol
dm-3 tartrate and 0.20 mol dm-3 pyrrole solution, the scale bar corresponding to 30 µm.

3.2.2 Parameters Influencing the Formation of PPy-Oxalate and PPy-Tartrate

Once suitable anions were identified, further studies were carried out to optimise the formation

of the PPy-Tartrate and PPy-Oxalate polymer films. In this study, the applied potential was

varied from 0.60 to 0.90 V vs. SCE [139] and the pH of the solution was varied between pH

4.0 and 10.0 [275]. It was found that the optimum applied potential was between 0.70 and

0.80 V vs. SCE, giving uniform nucleation of the polymer films at the copper interface, and

highly adherent polypyrrole films in solutions with 0.10 mol dm-3 tartrate or oxalate and 0.20

mol dm-3 pyrrole. At potentials below 0.70 V vs. SCE, the rate of electropolymerisation was

slow and uniform nucleation of the polymer at the copper surface was not always observed.
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Accordingly, the applied potential was fixed at 0.75 V vs. SCE and this potential was used to

form the PPy-Tartrate and PPy-Oxalate films, unless otherwise stated.

Next, the pH of the electropolymerisation solution was varied between 4.0 and 10.0 [275].

Again, the concentration of the tartrate and oxalate salts was maintained at 0.10 mol dm-3 and

the pyrrole concentration was fixed at 0.20 mol dm-3. The PPy-Tartrate and PPy-Oxalate films

did not form at pH 4.0 as the dissolution rate of copper was too high. Indeed, this can be

easily explained using the Pourbaix diagram of copper [73], Section 1.3.1, where it is clear

that at the potential used to deposit the PPy films, 0.75 V vs. SCE, the stable phase at a pH of

4.0 is the oxidised copper cation. Even in the presence of the oxalate and tartrate anions the

dissolution rate of copper is too high. Electropolymerisation was observed at pH 10.0, however,

the polymer films were not sufficiently adherent and the rate of electropolymerisation was low.

Again, this can be explained using the Pourbaix diagram of copper, Section 1.3.1, where it is

evident that CuO and Cu2O are the stable phases at this pH. These oxides are formed at pH

10.0 and the generation of this oxide phase gives poorly adherent polymer films. The rate of

electropolymerisation is very low as the oxide films are readily formed at the copper surface.

However, high rates of electropolymerisation were observed at pH values of 6.0, 7.0 and 8.0.

A smooth black polymer film covering the entire surface of the copper substrate was obtained.

The film was homogeneous and adherent and the results were highly reproducible.

Once the experimental conditions were optimised to generate the PPy-Tartrate and PPy-

Oxalate films, the polymers were cycled in a neutral 0.10 mol dm-3 NaCl solution at 10 mV s-1

and the current recorded at 0.40 V vs. SCE was measured. This current is plotted as a function

of the cycle number in Figure 3.5 for the uncoated copper, the PPy-Tartrate and the PPy-

Oxalate films deposited at copper and, for comparison purposes, the PPy-Tartrate deposited

at platinum. The PPy-Tartrate film was deposited at the platinum electrode under conditions

similar to that optimised for the copper system. However, regardless of the applied potential

or the concentrations of the tartrate or monomer, the PPy-Tartrate could not be formed at the

platinum electrode at a pH of 7.0. Instead, the film was formed successfully at 0.75 V vs. SCE

in the presence of 0.10 mol dm-3 tartrate and 0.20 mol dm-3 pyrrole at pH 4.0. It is clear from

the data presented in Figure 3.5, that the currents measured for the PPy-Tartrate film deposited

at copper and platinum and the PPy-Oxalate film deposited at copper are similar. The currents

are low typically varying from 2.0 × 10-4 to 4.0 × 10-4 A and furthermore, the currents remain
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constant with increasing cycle number. After 40 cycles, there is little variation in the current. It

is also interesting to note that the currents recorded for the PPy-Tartrate deposited at the inert

platinum electrode, although somewhat lower, are similar to the data recorded for the polymers

deposited at copper. This clearly shows that the PPy-Tartrate and PPy-Oxalate films are stable

at pH 7.0 and there is no evidence of dissolution of the underlying copper substrate. On the

other hand, the currents recorded for the uncoated copper electrode are considerably higher,

of the order of 1.2 mA, and these currents fluctuate with cycle number. This is consistent

with the dissolution of copper. It is well known that pure copper is easily oxidised and these

relatively high currents are a clear indication of this dissolution reaction [66, 79, 276, 277]. This

dissolution gives rise to the formation and deposition of CuCl at the surface of the electrode

and the formation of the soluble CuCl2- species [67, 278, 279].

Figure 3.5: Current plotted as a function of cycle number, uncoated Cu (red), PPy-Tartrate
(Cu-blue), PPy-Tartrate (Pt-purple) and PPy-Oxalate (Cu-green) cycled at 10 mV s-1, in a 0.10
mol dm-3 NaCl solution pH 7.0.

The stability of the PPy-Tartrate film deposited at copper at different pH values ranging

from 6.0 to 10.0 is shown in Figure 3.6. At pH 7.0, the current remains low and stable at

approximately 2.5 × 10-4 A, indicating very good stability. Somewhat higher currents were

observed at pH 6.0, 8.0 and 10.0. As evident, there is a slight increase in the current over the

first 5 cycles and then the current remains essentially constant.
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Figure 3.6: Current plotted as a function of cycle number for PPy-Tartrate film cycled at 10
mV s-1 in 0.10 mol dm-3 NaCl solution adjusted to pH values of pH 6.0 (blue), pH 7.0 (red),
pH 8.0 (green) and pH 10.0 (purple).

3.2.3 Influence of the Electropolymerisation Period

In order to determine the effect of the electropolymerisation period on the protective properties

of the PPy-Tartrate and PPy-Oxalate films, the electropolymerisation period was varied from

200 to 3600 s to vary the thickness of the deposited PPy films. It is well known that an increase

in the electropolymerisation period gives rise to an increase in the film thickness [134]. The

PPy-Tartrate and PPy-Oxalate films were deposited at 0.75 V vs. SCE from the near neutral

oxalate and tartrate solutions with a fixed concentration of 0.20 mol dm-3 pyrrole. The charge

consumed during the formation of the PPy-Tartrate and PPy-Oxalate films is plotted as a

function of the electropolymerisation period and shown in Figure 3.7. There is a clear increase

in the charge with increasing electropolymerisation times for the oxalate system. However, the

charge remains essentially constant for the PPy-Tartrate system. This is consistent with the

current-time transient shown in Figure 3.3, where the current decays slowly and then remains

low at a near constant value for the remaining electropolymerisation period.

The influence of the electropolymerisation period on the properities of the PPy-Tartrate and

PPy-Oxalate films is shown in Figure 3.8, where the cyclic voltammograms are compared for

the PPy-Tartrate polymer film formed at 0.75 V vs. SCE for periods of 100 and 300 s and the

PPy-Oxalate polymer film formed at 0.75 V vs. SCE for periods of 1200 and 3600 s. The

voltammograms were recorded at 10 mV s-1 in 0.10 mol dm-3 NaCl solution at pH 7.0 from

-0.50 to 1.0 V vs. SCE.
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Figure 3.7: Charge plotted as a function of electropolymerisation period: PPy-Tartrate (blue)
and PPy-Oxalate (green) polymer films deposited at 0.75 V vs. SCE from 0.10 mol dm-3

oxalate or 0.10 mol dm-3 tartrate and 0.20 mol dm-3 pyrrole.

In the case of the thin PPy-Tartrate polymer films displayed in Figure 3.8a there is little

variation in the voltammograms recorded for electropolymerisation periods of 100 and 300 s.

The oxidation currents are large and the reduction currents, in the vicinity of -0.20 to -0.50 V

vs. SCE, are also significant, indicating that these films are not protective [280, 281]. Instead,

dissolution of copper is clearly evident. However, these dissolution reactions are connected

with the thickness of the polymer films and as the electropolymerisation period was increased

to 1200 s, more protective PPy-Tartrate polymer films were obtained. This can be clearly

observed in Figure 3.8b where data are presented for the PPy-Oxalate polymer film formed

at the potential of 0.75 V vs. SCE for electropolymerisation periods of 1200 and 3600 s.

It is evident that more stable and protective PPy-Oxalate polymer films are formed with the

longer electropolymerisation periods. At an electropolymerisation period of 1200 s, dissolution

of copper is observed and the reduction region centered at -0.40 V vs. SCE indicates the

presence of chloride-containing corrosion products, the reduction of Cu and CuCl containing

species that have previously been produced following the oxidation of the Cu metal, similar

results are observed for the oxalate based polymer film for both the oxiadation and reduction

of the Cu metal. However, more stable and protective polymer films are observed with an

electropolymerisation period of 3600 s. There is no evidence of any corrosion products and

the currents remain low until potentials higher than 0.45 V vs. SCE are reached.Oxidation

81



CHAPTER 3. SYNTHESIS OF THE POLYMER FILMS ON A COPPER SUBSTRATE

peak was observed for the oxidation of the Cu and the CuCl species at the Cu surface and

corresponding reduction peak is due to the Cu and CuCl species being reduced with increased

potential. Again, significant dissolution of the copper substrate was observed with the thin

PPy-Oxalate polymer films and data similar to that presented in Figure 3.8a were obtained. It is

clearly evident that the thickness of both the PPy-Oxalate and PPy-Tartrate polymer films has a

significant influence on the protective properties of the coatings formed. Electropolymerisation

periods higher than 1200 s are required to generate protective polymer coatings. The results of

the influence of electropolymerisation periods forming both thin and thick polymer films can

be clearly observed in Figure 3.8. The oxidation peak is no longer evident however, there is

still a small reduction peak which indicates that some of the Cu and CuCl species are still being

reduced.
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Figure 3.8: Cyclic voltammograms recorded at 10 mV s-1 in 0.10 mol dm-3 NaCl, at a pH of
7.0 for (a) PPy-Tartrate films formed at 0.75 V vs. SCE for 100 s (green), and 300 s (blue), and
(b) PPy-Oxalate films formed at 0.75 V vs. SCE for 1200 s (blue) and 3600 s (green).

3.2.4 Formation of the Bi-Layer Films

Considering the promising results obtained for the PPy-Oxalate and PPy-Tartrate polymer

films, this study was extended to the formation of bi-layers comprising the PPy-Oxalate

and PPy-Tartrate systems. Again, the polymers were deposited at 0.75 V vs. SCE from

near neutral 0.10 mol dm-3 tartrate or oxalate solutions with 0.20 mol dm-3 pyrrole. It was

possible to generate the PPy-Oxalate film at the PPy-Tartrate modified copper electrode and
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equally possible to deposit the PPy-Tartrate layer at the PPy-Oxalate modified copper. Similar

results were obtained regardless of which layer was initially deposited, and the significant

parameter was the electropolymerisation period, as detailed in Section 3.2.3. Again, very good

reproducibility was observed on formation of the bi-layers. The total electropolymerisation

period was varied from 100 to 7200 s. The high stability and protective properties of the bi-

layer is evident from the data presented in Figure 3.9, where the voltammograms recorded in

0.10 mol dm-3 NaCl, at pH 7.0, for the bi-layer deposited at copper and platinum are compared.

In this case, the bi-layer was deposited at 0.75 V vs. SCE for 3600 s. The bi-layer was formed

in the near neutral 0.10 mol dm-3 oxalate or tartrate solutions at the copper electrode, however

the solution was acidified to pH 4.0 to facilitate the deposition of the PPy-Tartrate and PPy-

Oxalate layers at the platinum surface. Very low currents are observed for the bi-layer deposited

at platinum, and although these currents are higher for the bi-layer modified copper electrode,

it is clearly evident that the bi-layer deposited at the copper electrode is stable and highly

protective.
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Figure 3.9: Cyclic voltammograms recorded at 10 mV s-1 in 0.10 mol dm-3 NaCl at a pH of
7.0 for the PPy-Oxalate/PPy-Tartrate bi-layer film formed at the Cu substrate (green) and the
Pt substrate (blue), the bi-layer film was formed at 0.75 V vs. SCE for a total period of 3600 s.

However, at the higher electropolymerisation periods, the bi-layers polymer films were less

adherent, and as outlined in Section 3.2.3, thin bi-layers polymer films were not sufficiently
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protective and dissolution of the underlying pure copper substrate was observed. The optimum

electropolymerisation period was found between 1200 and 3600 s. In the case of the polymer

film formed for a total electropolymerisation period of 1200 s, the initial PPy-Oxalate layer

was deposited at 0.75 V vs. SCE for 600 s, and then the outer PPy-Tartrate layer was formed

at 0.75 V vs. SCE for an additional 600 s period to generate the bi-layer film. Once formed,

the bi-layers were cycled in 0.10 mol dm-3 NaCl, adjusted to pH 7.0 at 10 mV s-1, as shown in

Figure 3.10a. Again, it is clear that the thickness of the polymer bi-layer has a significant effect

on the protective properties of the film [134]. Breakdown of the bi-layer film is observed at

about 0.20 V vs. SCE for an electropolymersiation period of 400 s and the breakdown potential

increases only slightly with higher electropolymerisation periods of 600 and 900 s. Moreover,

a clear reduction wave, corresponding to the chloride-containing corrosion products, CuCl, is

evident at the shorter electropolymerisation periods of 400 and 600 s. However, as shown

in Figure 3.10b, highly protective properties are seen on increasing the electropolymerisation

period to 1200 s. In this case, there is no evidence of the reduction wave and the oxidation

currents are considerably lower than the currents measured for the uncoated copper electrode.

The oxidation of Cu metal to Cu (II) is observed clearly in 3.10b, this is then followed by the

reduction of Cu(II) to Cu (I) and Cu metal.
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Figure 3.10: Cyclic voltammograms recorded at 10 mV s-1 in 0.10 mol dm-3 NaCl, at a pH of
7.0 for (a) PPy-Oxalate/PPy-Tartrate bi-layer film formed at 0.75 V vs. SCE for a total period
of 400 s (red), 600 s (green) and 900 s (blue), and (b) uncoated Cu (blue) and PPy-Oxalate/PPy-
Tartrate bi-layer film (green) formed at 0.75 V vs. SCE for a total period of 1200s.

84



CHAPTER 3. SYNTHESIS OF THE POLYMER FILMS ON A COPPER SUBSTRATE

It is clear from a comparison of the data presented in Figure 3.10 for the bi-layer and in

Figure 3.8 for the PPy-Tartrate and PPy-Oxalate polymer films that the bi-layer is more stable

and exhibits very good corrosion protection properties.

3.3 Assessment of the Corrosion Performance of the Polymer

Films

The corrosion protection properties of the PPy-Oxalate, PPy-Tartrate and the PPy-Oxalate/PPy-

Tartrate bi-layer films were assessed and studied using cyclic voltammetry [169] and open-

circuit potential measurements [245].

3.3.1 Cyclic Voltammetry and Breakdown Potentials

In order to determine the protective nature of the polymer films, cyclic voltammograms were

recorded in 0.10 mol dm-3 NaCl [4, 282], adjusted to pH 7.0 with NaOH. The voltammograms

were recorded at 10 mV s-1 cycling between -0.50 and 1.00 V vs. SCE. Typical voltammograms

are shown in Figure 3.11 for the PPy-Tartrate and PPy-Oxalate films. In both cases, the films

were formed for a 1200 s period at 0.75 V vs. SCE in the near neutral oxalate or tartrate

solutions. The data recorded for copper is also presented for comparison purposes. Dissolution

of copper is observed at 0.05 V vs. SCE and the current then increases to give a broad peak at

about 0.10 to 0.20 V vs. SCE. This broad peak has been explained in terms of the dissolution

of copper and the formation of chloride-containing corrosion species [64, 283], such as CuCl,

hydroxy-containing chloride species [280, 282, 284] and the soluble CuCl2- species [39].

Although not shown, the current reaches a maximum value between 0.60 to 0.80 V vs. SCE.

This indicates significant dissolution of the copper and the generation of Cu(II) species at

these higher potentials. Indeed there is some variation in the voltammograms recorded for

the uncoated copper, which is evident from a comparison of Figure 3.11a and 3.11b. This is

consistent with the formation of corrosion products and oxides, such as CuOH, CuCl and CuO,

with the current increasing as the copper is dissolved and decaying as the surface is protected

with the corrosion products [32, 284]. On the reverse cycle there is a slight drop in the current,

as the corrosion products are deposited at the surface but dissolution continues as this corrosion

product layer is well known to be porous [285]. A clear reduction wave is observed at about
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-0.60 V vs. SCE. This reduction wave can be attributed to the chloride-containing corrosion

products, such as CuCl and other hydroxy-containing chloride products, which are generated

at the copper surface, during the oxidation and dissolution reactions [278].
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Figure 3.11: Cyclic voltammograms recorded at 10 mV s-1 in 0.10 mol dm-3 NaCl, at a pH
of 7.0 for (a) uncoated Cu (blue) and PPy-Oxalate (green) formed at 0.75 V vs. SCE for 1200
s and (b) uncoated Cu (blue) and PPy-Tartrate (green) formed at 0.75 V vs. SCE for a total
period of 1200 s.
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It is evident that both polymer films inhibit the dissolution of copper, to some extent, when

compared to the uncoated copper. The oxidation currents are slightly lower and there is a

significant variation in the reduction peak centered at -0.60 V vs. SCE, both PPy-Oxalate and

PPy-Tartrate films give rise to similar low peak currents. However, there is still evidence for the

dissolution of the copper substrate. The PPy-Tartrate and PPy-Oxalate films were immersed in

the 0.10 mol dm-3 NaCl solution for a 12 h period and then the voltammograms were recorded.

Again, data similar to that presented in Figure 3.11 were obtained, but with a slight increase in

the measured currents.

The corrosion protection properties of the PPy-Tartrate and PPy-Oxalate films were

improved by increasing the electropolymerisation period. This is clearly shown in Figure 3.12a,

where the breakdown potentials, EB, are plotted as a function of the electropolymerisation

period for the PPy-Oxalate and the PPy-Tartrate films, while the integrated charges associated

with the reduction peak, centred at about -0.60 V vs. SCE, are shown for the PPy-Oxalate and

PPy-Tartrate films in Figure 3.12b. In all cases, the polymer films were deposited from the near

neutral oxalate or tartrate solutions at 0.75 V vs. SCE and the electropolymerisation period was

varied from 600 to 3600 s. The voltammograms were recorded at 10 mV s-1 in 0.10 mol dm-3

NaCl solution at pH 7.0. The breakdown potentials, EB, were measured at 0.50 mA. There is a

clear increase in the breakdown potentials for the PPy-Oxalate film as the electropolymerisation

period is increased. This is consistent with the data presented in Figure 3.7, which show that an

increase in the electropolymerisation period gives rise to polymer films with a higher thickness.

Indeed, the breakdown potentials are close to -0.03 V vs. SCE for an electropolymerisation

period of 600 s, but then increase to 0.30 V vs. SCE as the polymers are formed for 3600 s.

The breakdown potentials of the PPy-Tartrate vary little with the increasing electropoly-

merisation periods. Again, this is consistent with the data presented in Figure 3.7, where the

charge appears to be independent of the electropolymerisation period. These data show that the

PPy-Tartrate films are somewhat more protective than the PPy-Oxalate polymer films. This is

also evident from the data presented in Figure 3.12b, where it is clear that the charges associated

with the reduction waves, corresponding to the corrosion products, mainly CuCl, are lower with

the PPy-Tartrate films. Even with increasing electropolymerisation periods and the deposition

of thicker PPy-Oxalate films, the charges computed for the PPy-Tartrate are lower indicating a

more protective polymer coating.
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Figure 3.12: (a) Breakdown potential, EB, plotted as a function of the electropolymerisation
period for the PPy-Oxalate (blue) and the PPy-Tartrate (green) films formed at 0.75 V vs. SCE
and (b) charge corresponding to the reduction wave at -0.60 V vs. SCE for the PPy-Oxalate
(green) and the PPy-Tartrate (blue) polymer films.

Although the corrosion protection properties of the PPy-Oxalate, and to a lesser extent the

PPy-Tartrate films, can be increased with a corresponding increase in the electropolymerisation

periods, the best corrosion protection properties were observed with the bi-layer. This is shown

clearly in Figure 3.13, where voltammograms are shown for the bi-layer deposited at copper

and platinum, and compared with the voltammograms recorded for the uncoated copper. Again,

the voltammograms were recorded in 0.10 mol dm-3 NaCl at 10 mV s-1. The bi-layer was

deposited for a total time of 1200 s, and accordingly, these data can be compared directly

with the voltammograms presented in Figure 3.11. Again, dissolution of the uncoated copper

is clearly evident. However, excellent corrosion protection properties are observed with the

bi-layer. The currents remain low throughout the entire electrochemical window and there is

no evidence for the CuCl reduction wave, which is seen with the uncoated copper and to a

lesser extent, with the PPy-Tartrate and PPy-Oxalate modified copper electrodes, Figure 3.11.

Indeed, the voltammograms recorded for the bi-layer deposited at copper and platinum are

similar, but with slightly higher currents recorded for the bi-layer deposited at copper. When

these data are compared with the voltammograms presented in Figure 3.11, it is clear that the

bi-layer, deposited for 1200 s has significantly better corrosion protection properties than either

the PPy-Oxalate or the PPy-Tartrate films.
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Figure 3.13: Cyclic voltammograms recorded at 10 mV s-1 in 0.10 mol dm-3 NaCl, at pH
7.0 for (a) uncoated Cu (blue) and PPy-Oxalate/PPy-Tartrate bi-layer (green) film formed at
0.75 V vs. SCE for 1200 s and (b) uncoated Cu (blue) and PPy-Oxalate/PPy-Tartrate bi-layer
(red) film formed at 0.75 V vs. SCE for 1200 s at Cu substrate and PPy-Oxalate/PPy-Tartrate
bi-layer film formed at 0.75 V vs. SCE for 1200 s at Pt substrate (green).
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3.3.2 Open-Circuit Potential Measurements

In order to investigate the corrosion protection properties further and to compare the protective

properties of the bi-layer and the PPy-Oxalate and PPy-Tartrate polymer films, immersion

experiments were performed and the potential adopted was recorded as a function of time in the

aggressive chloride-containing solutions [245, 259]. The open-circuit potential, or corrosion

potential, is a mixed potential and it depends on the rate of the anodic and the cathodic half

reactions. By recording the open-circuit potential as a function of the immersion time, the

protective properties of the films can be assessed by the extent to which the potential adopted

by the polymer coated electrodes differ from the potential adopted by the uncoated copper

electrode. Moreover, the corrosion protective period can be determined by the time required for

the open-circuit potential of the polymer-modified electrode to decay to the values adopted by

the uncoated electrode. The evolution of the corrosion, or open-circuit potential, was monitored

as a function of time in 0.10 mol dm-3 NaCl solutions adjusted to pH 7.0.

The PPy-Tartrate, PPy-Oxalate and PPy-Oxalate/PPy-Tartrate bi-layer films were deposited

from near neutral solutions of 0.10 mol dm-3 tartrate or oxalate and 0.20 mol dm-3 pyrrole at

0.75 V vs. SCE for 1200 s. The polymer modified electrodes and uncoated copper were

immersed in the chloride solution and the open-circuit potential was measured initially for a

period of 3600 s. The electrodes were then removed and stored in a sealed container with a

fresh chloride solution and left overnight and this procedure was repeated over a 30 day period.

Representative results are presented in Figures 3.14, 3.15, 3.16 and 3.17. In Figure 3.14,

the open-circuit potentials adopted by the PPy-Tartrate, PPy-Oxalate, PPy-Oxalate/PPy-

Tartrate bi-layer and uncoated copper are compared after a 12 day immersion period. The

potential adopted by the uncoated copper is approximately -0.15 V vs. SCE and there is little

variation in this potential over the 3600 s period. The open-circuit potentials adopted by the

three polymer systems are approximately 0.02 V vs. SCE for the PPy-Oxalate, 0.05 V vs. SCE

for the PPy-Tartrate and 0.07 V vs. SCE for the bi-layer. These potentials are constant over

the 3600 s measurement period and there is no evidence of any decay in the potential to the

values adopted by the uncoated copper electrode [245]. This indicates very good stability after

a 12-day immersion period. Indeed, the evolution of the open-circuit potential is shown clearly

in Figures 3.15, 3.16 and 3.17, where the open-circuit potentials are shown following 1 day and
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12 day immersion periods for the PPy-Oxalate and PPy-Tartrate systems and 1 day and 20 day

immersion periods for the bi-layer. There is very little variation in the open-circuit potentials

recorded for the PPy-Tartrate modified copper on comparing the data recorded after day 1 and

day 12. A similar result is obtained with the bi-layer. However, there is some decay in the open-

circuit potential adopted by the PPy-Oxalate modified copper. Indeed, on further immersion

the open-circuit potential of the PPy-Oxalate modified copper decayed to the value adopted by

the uncoated copper. This was observed following an immersion period of approximately 15

days and this indicates that the corrosion protection properties of the PPy-Oxalate film are lost

following a 15 day immersion period in 0.10 mol dm-3 NaCl. A similar effect was observed

with the PPy-Tartrate and the corrosion-protection properties were lost after approximately 16

days. However, the bi-layer was stable for periods exceeding 30 days, indicating very good

corrosion protection properties over an extended period in an aggressive chloride-containing

solution [1, 286].

Figure 3.14: OCP recorded in 0.10 mol dm-3 NaCl solution at a pH of 7.0 for uncoated Cu
(red), the bi-layer polymer film (purple), PPy-Tartrate (Blue) and PPy-Oxalate (green) recorded
on day 12.

91



CHAPTER 3. SYNTHESIS OF THE POLYMER FILMS ON A COPPER SUBSTRATE

Figure 3.15: OCP recorded in 0.10 mol dm-3 NaCl solution at a pH of 7.0 for uncoated Cu
(red) and PPy-Oxalate day 1 (light green) and day 12 (dark green).

Figure 3.16: OCP recorded in 0.10 mol dm-3 NaCl solution at a pH of 7.0 for uncoated Cu
(red) and PPy-Tartrate day 1 (blue) and day 12 (green).
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Figure 3.17: OCP recorded in 0.10 mol dm-3 NaCl solution at a pH of 7.0 for uncoated Cu
(red) and bi-layer day 1 (purple) and day 20 (green).

3.3.3 Analysis of the Polymer Films using Spectroscopy

The PPy-Tartrate, PPy-Oxalate and PPy-Oxalate/PPy-Tartrate bi-layers were studied using

DSC, FTIR and UV-Vis spectroscopy in an attempt to observe some differences between the

bi-layer and the individual polymer layers that may explain the variations in the protective

properties of the coatings. FTIR spectra were recorded for the three polymer systems and the

oxalate and tartrate salts [287]. The OH, CH and C=O stretching vibrations of the tartrate

salt were seen between 1400 and 3600 cm-1 [287]. For the oxalate salt, the C=O stretching

vibrations were also observed [287], however the FTIR spectra recorded for the three polymer

systems were similar. The spectra gave distinct and prominent peaks at 1585 cm-1, which may

be assigned to the C=C ring stretching, at 1494 cm-1 corresponding to the C-N stretching mode,

and at 1159 cm-1 for the C-H plane deformation [288]. However, no significant difference was

seen for the spectra recorded with the bi-layer. Likewise, the DSC data were similar for all

three polymer systems. Again, there was no clear difference between the DSC thermograms

recorded for the bi-layer and the individual PPy-Oxalate and PPy-Tartrate polymer films, there

was no evidence of the polymers breaking down.

In order to record the UV-Vis spectra of the polymers, they were deposited onto ITO

electrodes [131, 289]. A three-electrode cell was used and the polymers were deposited at

0.75 V vs. SCE, however the ITO was employed as the working electrode. The adherence
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of the polymers to the ITO electrodes was poor when longer electropolymerisation periods

were employed and accordingly the electropolymerisation periods were only varied from 100

to 1200 s. The UV-Vis spectra were recorded from 300 to 750 nm.

Some small differences were observed in the UV-Vis spectra of the three polymer

systems. A peak with a λmax at 333 nm was observed with the PPy-Oxalate film and as the

electropolymerisation period was increased at the ITO electrode this peak was observed at

approximately 347 nm. The maximum absorption, λmax, was recorded at 349 nm for the PPy-

Tartrate film, while the PPy-Oxalate/PPy-Tartrate bi-layer showed a λmax at approximately

344 nm. These data are presented in Figure 3.18, where the λmax is shown as a function of

the electropolymerisation period. There is little variation in the λmax for the bi-layer and the

PPy-Tartrate polymer systems. Absorption bands near 350 nm have previously been reported

for PPy and these bands are generally associated with the neutral form of the polymer, while

absorption bands between 600 to 800 nm are attributed to the oxidised PPy films [290, 291].

Absorption was also observed between 600 to 750 nm for the three polymer films, indicating

that these films are oxidised, or at least partially oxidised. However, it is evident from

Figure 3.18 that there is little variation between the three polymer systems.

Figure 3.18: Maximum wavelength, λmax, recorded as a function of the electropolymerisation
period for the bi-layer film (red), PPy-Oxalate polymer film (blue) and PPy-Tartrate polymer
film (green) deposited at ITO electrodes at 0.75 V vs. SCE for 1200 s and then recorded in
0.10 mol dm-3 NaCl at a pH of 7.0.
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In Figure 3.19 the absorbance recorded at 345 nm is plotted as a function of the

electropolymerisation period for the bi-layer film. The absorbance increases with an increase in

the electropolymerisation period and this is consistent with the formation of increasing amounts

of the polymer at the ITO electrode. Although not shown here, the rate of electropolymerisation

was somewhat higher for the PPy-Oxalate and PPy-Tartrate films, this is perhaps due to the fact

that the oxalate grows at a faster rate under specific conditions at the copper interface. However,

these small differences do not account for the enhanced corrosion protection properties

observed with the PPy-Oxalate/PPy-Tartrate bi-layers.

Figure 3.19: Absorbance recorded at 345 nm for the PPy-Oxalate/PPy-Tartrate bi-layer plotted
as a function of the electropolymerisation time.

3.4 Summary of Results

The results presented in this chapter show that PPy films can be deposited at copper from a

0.10 mol dm-3 oxalate solution at a pH of 8.0 and a 0.10 mol dm-3 tartrate solution at pH 7.0 to

generate PPy-Tartrate and PPy-Oxalate films on copper. Highly adherent polymer films were

formed using these optimised conditions. SEM micrographs confirmed that the polymers were

homogeneous, defect and crack-free. It was also possible to deposit the PPy-Tartrate film at

pH values of 6.0 and 8.0. In addition, bi-layers comprising PPy-Tartrate/PPy-Oxalate and PPy-

Oxalate/PPy-Tartrate were successfully formed at the copper surface. The PPy-Tartrate and

PPy-Oxalate films were also deposited at platinum, however a more acidic pH was required to
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deposit these films and adherent and homogeneous polymer films were only formed at pH 4.0

in the presence of either the oxalate or tartrate anions.

The electropolymerisation period was varied from 200 to 3600 s to give polymer films

with different thickness. The breakdown potential of the PPy-Tartrate film was approximately

0.45 V vs. SCE and this remained essentially independent of the electropolymerisation period.

However, more protective PPy-Oxalate films were formed with electropolymerisation periods

between 2400 and 3600 s. The bi-layer coating was also more protective with increasing

electropolymerisation periods. On comparing the corrosion protection properties of the

PPy-Tartrate, PPy-Oxalate and the bi-layer, it is clear that the bi-layer provides the more

corrosion protective coatings. Higher breakdown potentials were observed with the bi-layer.

Furthermore, the open-circuit potential recorded for the bi-layer remained constant at about

0.10 V vs. SCE for a 30 day period in a neutral 0.10 mol dm-3 NaCl solution. Slightly lower

open-circuit potentials were recorded for the PPy-Tartrate, at 0.05 V vs. SCE, and the PPy-

Oxalate film, at -0.02 V vs. SCE, but again the open-circuit potential remained essentially

constant over a 12 day period. However, at longer immersion times, the open-circuit potentials

decayed to the values adopted by the uncoated copper electrode, indicating a loss in the

protective properties of the films. However, this loss in corrosion protection was not observed

with the PPy-Oxalate/PPy-Tartrate bi-layer.
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Incorporation of MWCNT into the Polymer Matrix

PPy has been extensively studied [132, 292], as discussed previously in Chapter 1 and

Chapter 3. As shown in Chapter 3, PPy films doped with oxalate and tartrate can be

formed from near neutral solutions to give PPy-Tartrate [244, 287] and PPy-Oxalate polymer

films [1, 287]. Furthermore, a bi-layer polymer film [163], comprising PPy-Oxalate/PPy-

Tartrate, with very good corrosion protection properties was successfully formed. In an attempt

to increase further the corrosion protection properties of these polymer films, multi-walled

carbon nanotubes (MWCNT) were incorporated into the polymer films [15].

In recent years there has been considerable interest in nano-structured carbon materials, in

particular carbon nanotubes [200]. Single-walled carbon nanotubes (SWCNT) consist of single

layers of graphite rolled into perfect cylinders with a diameter usually in the range of 0.70

to 2.00 nm, whereas multi-walled carbon nanotubes consist of sets of concentric cylindrical

shells, each of which resembles a SWCNT. Carbon nanotubes exhibit unique mechanical

properties, with a tensile strength greater than that of steel but with only one sixth the weight of

steel. They also have unique electronic, thermal and magnetic properties. The properties and

applications of carbon nanotubes have been well reviewed in the literature and several reviews

with an electrochemical emphasis have been published [195, 293]. However, the modification

of carbon nanotubes has recently been the focus of much research, primarily to improve the
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dispersion of the carbon nanotubes in various solvent systems [217, 223, 294].

In this chapter results are presented and discussed on the incorporation of multi-walled

carbon nanotubes into PPy films. The carbon nanotubes were evenly dispersed in solution with

dodecylbenzene sulfonate (DBS) [21, 218]. The experimental conditions were optimised to

give stable and well dispersed solutions of the carbon nanotubes in DBS [294]. The PPy films

were then deposited from the dispersed carbon nanotubes in DBS on the addition of pyrrole,

to give PPy-DBSCNT films at copper, or the PPy-DBSCNT film was formed at PPy-Tartrate

or PPy-Oxalate to give PPy-Tartrate/PPy-DBSCNT and PPy-Oxalate/PPy-DBSCNT bi-layers

and multi-layers. Once formed and characterised the corrosion protection properties of PPy-

Tartrate/PPy-DBSCNT and PPy-Oxalate/PPy-DBSCNT were assessed using a combination of

polarisation plots, open-circuit potential measurements and Tafel analysis [40]. In all cases the

protective properties of the coatings were compared to the uncoated copper electrode. To the

best of our knowledge there have been no reports on the formation of these PPy-based films.

4.1 Experimental Approach

Details on the experimental approach used in the formation and analysis of the PPy films at the

copper electrodes are provided in Sections 4.1.1, 4.1.2 and 4.1.3. This includes information

on the chemicals, the techniques and equipment used and the general procedures employed to

deposit the polymer films. In Section 4.1.4 details on the procedures employed in the dispersion

of the multi-walled carbon nanotubes (MWCNT) are provided.

4.1.1 Reagents

The pyrrole monomer (98%) was obtained from Aldrich and was purified by distillation prior

to use. It was then stored in the dark at -20 °C between experiments. Unless otherwise stated,

0.30 mol dm-3 pyrrole was dissolved in the electrolyte solution for all the electropolymerisation

experiments. The analytical reagents, copper sulfate (CuSO4), sodium hydroxide (NaOH),

sodium chloride (NaCl) sodium oxalate (Na2C2O4) sodium potassium tartrate (KNaC4H4O6),

bathocuproine (C26H20N) (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline), dodecylbenzene

sulfonate (DBS) (C12H25C6H4SO3Na), nitric acid (HNO3), hydrogen peroxide (20% solution)

and sulfuric acid (H2SO4), were purchased from Aldrich and used as received. Multi-walled
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carbon nanotubes, MWCNT, were also obtained from Aldrich. Distilled water was used in all

solution preparations. The pH meter was calibrated on a daily basis using buffers (pH 4.0 and

pH 7.0) which were purchased from Lennox Ltd.

4.1.2 Electrodes and Instruments

A Cu rod (99.99%, 4 mm in diameter) electrode was used for the deposition of polymer films.

The rod was encased in a Teflon holder, as previously described in Chapter 2, Figure 2.3. A flat

Cu disc electrode was used for SEM and EDX measurements. The disc and rod electrodes were

polished using a 1 µm diamond polish and Buehler micro-cloth and rinsed well with distilled

water to ensure a smooth surface finish, as outlined in Chapter 2. A saturated calomel electrode

(SCE) was used as the reference electrode and a high surface area platinum wire was employed

as the counter electrode.

A CHi 760C potentiostat was used to deposit the PPy films, while potentiodynamic

polarisation measurements were carried out with a Solartron potentiostat (Model SI 1285

or 1287), using the software package Corrware for Windows. A Carry Win UV-Vis

spectrometer was used with the Carry Win software package for UV-Vis measurements, while

the fluorescence study was carried out with a Cary Eclipse fluorescence spectrophotometer.

The conductivity measurements were carried out using a Jenway 4510 conductivity meter,

while an Orion 720A pH meter, calibrated daily with buffers at pH 4.0 and 7.0, was used for all

pH measurements. Once polished the electrodes were sonicated in a Branson 1510 sonicator

to ensure the removal of any residues from the polishing. SEM measurements were performed

on a Hitachi FE-scanning electron microscope, with an Oxford instruments Inca X-act 4.12

software package. The EDX analyses were carried out using an EDX Model 51-ADD0009

with the software package Micro Analysis Suite. A Discover CEM 48-72-96 microwave was

used to purify the carbon nanotubes and a Merlin Spectra centrifuge was used to separate

the purified carbon nanotubes from the chemical solution employed in the microwave-assisted

purification step [295].

4.1.3 Procedures

The synthesis of the PPy films was carried out using an electrosynthesis method, in which

the polymer films were deposited at the working electrode [18, 286]. Polymers were prepared
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in various electrolyte solutions at 0.75 V vs. SCE containing 0.30 mol dm-3 pyrrole, unless

otherwise stated. This concentration of pyrrole is higher than that used in Chapter 3, where

a 0.20 mol dm-3 pyrrole-containing solution was employed in the formation of the PPy-

Tartrate and PPy-Oxalate polymer films. However, these higher concentrations were required

to form the PPy films in the MWCNT-containing solutions. In general, the polymer films were

deposited from neutral 0.10 mol dm-3 tartrate or 0.10 mol dm-3 oxalate solutions, with 0.30 mol

dm-3 pyrrole, to give PPy-Tartrate and PPy-Oxalate films. Then, further electropolymerisation

was carried out in 0.30 mol dm-3 pyrrole, 0.05 mol dm-3 DBS and 0.02 mg of MWCNT, with

the MWCNT suspended and dispersed in the 0.05 mol dm-3 solution of DBS, to give PPy-

Tartrate/PPy-DBSCNT or PPy-Oxalate/PPy-DBSCNT bi-layers. Multi-layers [157, 296] of

alternating PPy-Tartrate and PPy-DBSCNT and multi-layers of alternating PPy-Oxalate and

PPy-DBSCNT were also formed at the copper electrodes. In addition, PPy-Tartrate/DBSCNT

and PPy-Oxalate/DBSCNT multi-layers were formed by adsorbing the MWCNT dispersed in

0.05 mol dm-3 DBS onto the polymer films.

After electrochemical deposition, the PPy films were characterised using cyclic voltamme-

try, by cycling in a potential window from -0.50 to 1.00 V vs. SCE, at different scan rates from

100 mV s-1 to 1 mV s-1 in a 0.10 mol dm-3 NaCl solution at a pH of 7.0. Polarisation curves

were recorded in a neutral 0.10 mol dm-3 NaCl solution at 1 mV s-1 and 0.1667 mV s-1 from 200

mV below to 200 mV above the corrosion potential or until significant dissolution of the copper

was observed. A scratch in the coating was made and the polarisation data were compared to

a freshly deposited polymer coating. Again, these measurements were performed in 0.10 mol

dm-3 NaCl at 0.1667 mV s-1. Tafel analysis was used to estimate the corrosion potential, Ecorr

and the corrosion current, Icorr. For SEM and EDX characterisation, the polymer films were

synthesised onto a Cu disc electrode. The samples were sputter coated with gold prior to SEM

analysis. A spectrophotometric analysis using the bathocuproine reagent was employed to

monitor the concentration of dissolved copper. A quartz crystal cuvette with a diameter of 1

cm was used and the absorbance was recorded at the λmax of 480 nm.

4.1.4 Dispersion of the MWCNT in Solution

The ability to control the dispersion of carbon nanotubes is critical in most applications.

Carbon nanotubes tend to agglomerate in solution, and it is difficult to separate the individual
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nanotubes [216, 297]. The need for cost-effective methods to readily disperse single-walled and

multi-walled carbon nanotubes (SWCNT and MWCNT) has motivated numerous researchers

to investigate the dispersion of nanotubes in a variety of different solvent systems.

Initially, 0.02 mg of MWCNT was added to a 0.10 mol dm-3 tartrate solution containing

0.30 mol dm-3 pyrrole. Then, the electrochemical cell was set up and a potential of 0.75 V

vs. SCE was applied in an attempt to form the polymer at copper. Electropolymerisation was

observed, however when the surface morphology was inspected using SEM, it was clear that

very poor dispersion of the nanotubes was achieved. Typical SEM micrographs are shown in

Figure 4.1. There is clear evidence of large agglomerations of the nanotubes on the surface,

indicating very poor dispersion. The polymer films were then formed with continuous stirring

of the MWCNT-containing electropolymerisation solution, but again agglomerations of the

nanotubes were evident on the surface.

(a) (b)

(c)

Figure 4.1: SEM micrographs recorded of PPy films formed in 0.10 mol dm-3 tartrate, 0.30
mol dm-3 pyrrole and 0.02 mg MWCNT (a) the scale bar corresponds to 300 µm, (b) the scale
bar corresponds to 600 µm and (c) the scale bar corresponds to 60 µm.
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In an attempt to combat these agglomerations a microwave purification method [295] was

employed. The microwave-assisted purification of MWCNT was carried out in a closed vessel

at 180 °C in the presence of 20% hydrogen peroxide for a 30-min period. A comparison

of the purification efficiencies of hydrogen peroxide and nitric acid was carried out and it

was concluded, using a gravimetric method, that the hydrogen peroxide is sufficient for the

purification of the nanotubes at a temperature of 180 °C for 30 min. Following this, the vessel

was removed and the nanotubes were separated from the remaining solution in a centrifuge

for 10 min. The nanotubes were then washed with distilled H2O and centrifuged for a further

10 min. This process was repeated for a total period of 60 min. The now purified nanotubes

were added to the electropolymerisation solution, 0.10 mol dm-3 tartrate and 0.30 mol dm-3

pyrrole, and the solution was also stirred during electropolymerisation. The polypyrrole film

was deposited at 0.75 V vs. SCE and the surface was analysed using SEM. Although there was

a more notable and even dispersion of the nanotubes on the surface, nanotube agglomerations

were also clearly evident, giving unsatisfactory results.

The dispersion of the nanotubes was then investigated using surfactants [216, 223].

Indeed, several reports show efficient dispersion of the nanotubes in solutions containing

surfactants [199, 222]. Moreover, it has been demonstrated that surfactants have the ability

to break up the nanotube bundles and stabilise the individual nanotubes. Islam and co-

workers [298] showed that sodium dodecylbenzene sulfonate (DBS) is an effective surfactant

for the dispersion of carbon nanotubes. However, parameters such as pH, surfactant and

nanotube concentrations, and sonication time have a significant influence on the stability of

the dispersions. During the sonication period mechanical energy is provided to overcome the

weak van der Waals interactions in nanotube bundles [216], while the surfactant adsorbs at

the surface of the nanotube walls [217]. According to Grossiord et al. [299] the colloidal

stability of the dispersion of the nanotubes with adsorbed surfactants is guaranteed by

electrostatic and steric repulsion. The organisation of these surfactants has been extensively

investigated [216, 217, 218] with three main arrangements [202, 207, 208, 215]: structure less

random adsorption on the nanotube walls without any preferential arrangements of the head

or tail [300], hemi-micellar adsorption on the nanotube surface [298], and encapsulation of

the nanotubes in a cylindrical surfactant micelle [301]. The majority of the experimental and

theoretical evidence supports the hemi-micelle configuration [202, 216, 218].
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The MWCNT sample (0.02 mg) was dispersed in 25 ml of 0.05 mol dm-3 DBS in the

presence of 0.30 mol dm-3 pyrrole and the solution was then sonicated for 60 min, to give a

black homogeneous mixture. At this point there was no evidence of any nanotube agglomerates

in the solution. Indeed, the solution was stable for considerable periods of time, exceeding

several hours. This solution was then used as the electropolymerisation electrolyte and the PPy

film was formed at 0.75 V vs. SCE at copper with continuous stirring of the solution during the

electropolymerisation period. The morphology of the resulting polymer is shown in Figure 4.2,

and in this case there is no evidence of any significant agglomerations of the carbon nanotubes.

(a) (b)

Figure 4.2: SEM micrographs recorded of PPy films formed in 0.10 mol dm-3 pyrrole and
0.20 mg MWCNT dispersed in 0.05 mol dm-3 DBS and sonicated for 60 min (a) the scale bar
corresponds to 100 µm, (b) the scale bar corresponds to 20 µm.

4.2 Results and Discussion

4.2.1 CMC of DBS

Given that DBS was successfully used to disperse the carbon nanotubes, studies were carried

out to determine the critical micelle concentration, CMC, of DBS [209]. As detailed earlier

in Chapter 1, surfactants are amphiphilic containing both polar, usually an ionic head group,

and a long-chain hydrocarbon tail. In polar solvents, such as water, this dual character of

the amphiphile leads to self-association and the surfactant molecules arrange into organised

molecular assemblies, known as micelles [177]. Accordingly, the critical micelle concentration

(CMC) corresponds to the concentration above which any added surfactant will have a high
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probability to form micellar aggregates [204, 212]. Above the CMC it can be noted that

micelles and monomers are in equilibrium. Not all monomers are organised into micellar

aggregates. The monomer-micelle equilibrium can be written using Equation 4.1, where

n represents the number of monomer units in solution that give rise to the formation of

the micelle, S represents the surfactant and S n is a micelle formed from the surfactant

monomers [209].

nS ↔ S n (4.1)

The equilibrium is then given by Equation 4.2, where Km is the micellar equilibrium

constant, [S ] represents the surfactant concentration, [S n] indicates the micellar concentration

of the surfactant and n is the number of monomers in the micelles, also known as the

aggregation number [302]. Generally, N is used to represent the aggregation number.

Km =
S n

S n (4.2)

This equation clearly shows that on further addition of surfactant molecules, this leads to

a higher concentration of micelles. However, there is no increase in the size of the existing

micelles [225, 227]. The aggregation number, N, is based on the assumption that a micelle is

constructed of a definite number of surfactants. The value of N depends on temperature, nature

of surfactant and concentration of electrolytes in the aqueous solution [204, 227]. It is also

important to note that temperature has a significant influence on the value of the CMC [210,

211].

The CMC of the surfactant was estimated using conductivity measurements and fluores-

cence spectroscopy [227, 303]. In the case of the conductivity measurements, the conductivity

meter was first calibrated using a 0.01 mol dm-3 KCl solution at 25 °C. Two different

experiments were carried out. In the first experiment, the conductivity of DBS was measured

in distilled water and in the second experiment the conductivity of DBS was measured with an

added salt. For each experiment a 15 ml volume of solution was taken and the conductivity

was measured with each addition of DBS. Upon each addition the conductivity meter was

allowed to equilibrate for approximately 1 min. As temperature has a significant influence

on the value of the CMC, the temperature was maintained constant at 25 °C. In Figure 4.3 a

typical conductivity measurement is shown, where the conductivity is plotted as a function of
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the DBS concentration. Two linear regions are clearly observed. The linear region at low DBS

concentrations, less than 7 × 10-3 mol dm-3, is associated with an increase in conductivity of the

solution with the addition of the DBS. At these low concentrations no micelles are formed and

the conductivity is due to the counter ions (Na+) and the DBS anions, (DBS-), Equation 4.3.

As further additions of DBS are made, there is a notable linear increase in the conductivity as

the Na+ and the DBS- remain independent of each other [304]. The slope of this linear plot is

26900 µS mol-1 dm-3.

kTotal = kNa+ + kDBS − (4.3)

However, above the CMC further additions of DBS result in the formation of micelles and

as more DBS is added this gives rise to an increase in the micelle concentration. The ionic

mobility of the micelle is very different to the mobility of the DBS. Even though there is an

increase in the conductivity in a linear manner, the rate of increase is considerably slower giving

rise to a lower slope of 6350 µS mol-1 dm3. The intersection of these two linear segments gives

an estimation of the CMC. Using this approach the critical micelle concentration was calculated

to be 6.8 × 10-3 mol dm-3. This value is in good agreement with literature values for the CMC

of DBS in water. These literature values range from 3.0 × 10-3 to 9.0 × 10-3 mol dm-3 [305].

When a fixed concentration of 0.05 mol dm-3 NaCl was added to the distilled water the CMC

was measured at a much lower concentration of 3.7 × 10-3 mol dm-3 DBS, compared with the

CMC value of 6.8 × 10-3 mol dm-3 in distilled water. This clearly shows that the addition of

chloride anions reduces the CMC [304].

A more recognised method of measuring the CMC is using fluorescence spectroscopy. For

the purpose of these experiments it is assumed that a micelle is comprised of a definite number

of surfactant molecules, which is termed the aggregation or mean aggregation number (N). It

is important to understand that the value of N is dependent on temperature, the nature of the

surfactant and on the concentration of the electrolytes in aqueous solution [225].
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Figure 4.3: Conductivity plotted as a function of the DBS concentration in water at 25 °C.

For the experiments carried out with a fixed surfactant concentration, an aqueous solution

was considered where the bulk concentration of DBS was maintained constant, at a concen-

tration higher than the CMC. Taking into consideration that the DBS is present as either a

monomeric unit or is part of a micelle that contains N monomers, the concentration of the

micelles (M) can be expressed using Equation 4.4.

[M] =
[DBS ] −CMC

N
(4.4)

In reality, however, this is not a static system as micelles and monomers are in equilibrium.

Hence, in Equation 4.4, N is representative of the mean aggregation number and M represents

the average micelle concentration. Since the CMC can be obtained experimentally, the value

of N can be obtained if the average micelle concentration of the solution is known.

This information can easily be found indirectly through fluorescence measurements.

However, this investigation is based on various assumptions. The first one is that not

all micelles have a probe molecule, and so the luminescence intensity of the solution is

proportional to the fraction of micelles that contain a probe. The second is that the micelles are

either empty or associated with a single probe molecule. The solution contains more micelles

that probe molecules. With respect to the fixed quencher concentration it is important to note

that a quencher prevents the luminescence of the probe after it absorbs light. It is assumed that

the quencher is not solvated in the aqueous solution; it is associated with micelles only.
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For a bulk quencher concentration the ratio of luminescence intensity, I, to the solution

with no quencher (constant probe concentration), I0, is equal to the fraction of micelles that

contain probes and no quencher molecule, Equation 4.5.

I
I0

= exp
(
−

[Q]
[M]

)
(4.5)

Equation 4.5 relates the measured parameters to the fraction of quencher occupied micelles.

When this equation is rearranged and by substituting the expression obtained for [M],

Equation 4.4, into Equation 4.5, then Equation 4.6 is obtained.

ln
(

I
I0

)
=

[Q]N
[DBS ] −CMC

(4.6)

When the surfactant concentration ([DBS ]) was maintained constant (fixed surfactant

concentration) and [Q] was varied, a linear least squares plot was obtained and this was used

to compute N. A typical plot is shown in Figure 4.4. By varying the DBS concentration

and ensuring [Q] was fixed, (fixed quencher concentration) both N and the CMC values were

obtained from a fit of the data to Equation 4.6. Using this approach the CMC was computed as

8.1 × 10-3 mol dm-3 and the mean aggregation number, N, was estimated as 52.7. These CMC

values are in good agreement with the conductivity measurements and in good agreement with

literature reports [305]. Given that the CMC values are approximately 6.0 × 10-3 mol dm-3 at

25 °C, it is clear that the DBS solutions used to disperse the MWCNT at a concentration of

0.05 mol dm-3 will contain micelles, with a dynamic equilibrium between the monomer and

micelle, Equation 4.1. However, this concentration appeared to give the best dispersion of the

MWCNT.
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Figure 4.4: Plot of the logarithm of I0/I as a function of the quencher concentration with a
fixed concentration of 0.05 mol dm-3 DBS in water.

4.2.2 Formation of the PPy-DBSCNT Polymer Films

Once the uniform dispersion of the carbon nanotubes was achieved in the DBS solution and

this dispersion was found to be stable, initial attempts were made to directly electropolymerise

the monomer in the dispersion at the copper electrode. Although this proved successful, and

the PPy-DBSCNT polymer film was formed, the adherence of the polymer film was poor.

The electropolymerisation period was varied from 100 to 3600 s and the applied potential was

varied from 0.60 V to 0.90 V vs. SCE. However, there was no improvement in the adherence

of the polymer film to the copper substrate.

In an attempt to increase the adherence of the polymer film, a PPy-Tartrate film was initially

formed at the copper electrode and then the PPy-DBSCNT polymer film was deposited as an

outer layer. The initial PPy-Tartrate polymer film was deposited from 0.30 mol dm-3 pyrrole

in 0.10 mol dm-3 tartrate anion at pH 7.0. A potential of 0.75 V vs. SCE was applied for times

ranging from 100 to 3600 s, as detailed in Chapter 3. Once this initial layer was in place it was

then possible to deposit the PPy-DBSCNT film.

The ratio of MWCNT to DBS was varied according to the ratios used in the literature [223]

and the optimum concentrations were identified as 0.02 mg of MWCNT to 0.05 mol dm-3 DBS.

The MWCNT-containing pyrrole solution, with a pyrrole concentration of 0.30 mol dm-3, was

sonicated for 1800 to 3600 s and the solution was agitated during the formation of the PPy-

DBSCNT to ensure uniform dispersion of the MWCNT [220, 221, 222]. Again, the PPy-
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DBSCNT was formed at a fixed potential of 0.75 V vs. SCE. The major advantage of this fixed

potential method is that the potential and the time can be varied to alter the polymer thickness,

with the longer electropolymerisation periods giving thicker polymer films and higher applied

potentials giving higher rates of electropolymerisation and accordingly thicker polymer films.

Although the tartrate solution was not stirred as this inhibits electropolymerisation at the

electrode interface, the MWCNT-containing electropolymerisation solution was stirred to

ensure uniform dispersion of the nanotubes [216].

Typical current-time plots recorded for the deposition of the PPy-Tartrate and the PPy-

DBSCNT to generate the PPy-Tartrate/PPy-DBSCNT polymer film are shown in Figure 4.5.

The oxidation current, which represents the rate of polymer growth, is plotted as a function

of the time. The data recorded for the PPy-Tartrate film are typical of the data recorded

during electropolymerisation. On application of the potential to the electrode there is an initial

charging current, which arises from the charging of the double layer [42]. This charging current

decays rapidly, being governed by the RsC time constant, which, in turn, is related to the size

of the electrode and the conductivity of the solution, where C is the double layer capacitance

and Rs is the solution resistance. Other factors that might contribute to the current during

this initial period are the oxidation of pyrrole to form oligomeric species and possibly the

dissolution of copper. However, as the polymer is deposited at the copper substrate, the current

decays indicating that the polymer inhibits any dissolution of the underlying copper substrate.

As the concentration of pyrrole used in all these experiments, which is 0.30 mol dm-3, is high

this promotes a very fast initiation step for the electropolymerisation reaction. Accordingly,

the PPy-Tartrate film is formed rapidly and this inhibits any further dissolution of the copper.

A very different current-time plot is recorded for the growth of the PPy-DBSCNT films.

This polymer was formed at the PPy-Tartrate modified copper, with the polymer deposited

for 600 s, as shown in Figure 4.5. Again, a potential of 0.75 V vs. SCE was applied to the

PPy-Tartrate modified copper. Initially the current is low, but then the current increases over

a 200 s period to give nearly constant currents reaching about 0.25 mA. This indicates a high

and constant rate of electropolymerisation. These data show that the initial PPy-Tartrate film

is sufficiently conducting to facilitate the electropolymerisation of pyrrole in the MWCNT and

DBS solution. Indeed, it was possible to generate multi-layers by depositing an initial PPy-

Tartrate film at 0.75 V vs. SCE for 300 s, followed by the PPy-DBSCNT film for an additional
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300 s, then a third layer of PPy-Tartrate was deposited at 0.75 V vs. SCE for a 300 s period and

a final layer of PPy-DBSCNT was formed to give four layers of polymer, alternating between

PPy-Tartrate and PPy-DBSCNT. This clearly shows that the films are sufficiently conducting

to facilitate the deposition of further layers of polymer.
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Figure 4.5: Current-time transient recorded at 0.75 V vs. SCE for Cu in a 0.10 mol dm-3

tartrate and 0.30 mol dm-3 pyrrole to generate PPy-Tartrate (blue) and for PPy-Tartrate in 0.05
mol dm-3 DBS with 0.02 mg CNT and 0.30 mol dm-3 pyrrole to generate PPy-DBSCNT at the
PPy-Tartrate film (green) .

These bi-layers and multi-layers were thoroughly washed to remove any monomer

or MWCNT from the surface and the surface morphology was investigated using SEM.

Representative SEM micrographs are shown in Figure 4.6 for the PPy-Tartrate/PPy-DBSCNT

bi-layer and the PPy-Tartrate. The surface morphologies of both films are different. The EDX

spectra showed a lower intensity Cu signal for the PPy-Tartrate/PPy-DBSCNT, indicating a

thicker polymer film. This is consistent with the relatively high currents recorded during

electropolymerisation, Figure 4.5. There is no evidence of any cauliflower structures, which

are typically observed with PPy [1] with simple dopants, such as chloride anions. Indeed, this

morphology is very different to that obtained on depositing the PPy film in a DBS solution, but

in the absence of MWCNT, where the characteristic cauliflower morphology is seen. However,

it is clear that the films are homogeneous and crack-free and it appears that the growth of the

polymer is influenced by the structure of the copper substrate, with the appearance of ridge-like
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diagonal features. Similar surface morphologies were obtained with the multi-layers, but the

influence of the underlying copper appeared to exert less influence with increasing layers.

(a) (b)

Figure 4.6: SEM micrographs recorded for (a) PPy-Tartrate/PPy-DBSCNT film formed at 0.75
V vs. SCE, where the scale bar corresponds to 20 µm and (b) the PPy-Tartrate film formed at
0.75 V vs. SCE at Cu, where the scale bar corresponds to 60 µm, both films were formed as
detailed in Figure 4.5.

A similar study was carried out with the oxalate system. In this case, the initial PPy-

Oxalate films were formed at the copper electrode at 0.75 V vs. SCE from a near neutral

0.10 mol dm-3 oxalate solution [19], with 0.30 mol dm-3 pyrrole as detailed in Chapter 3. The

PPy-DBSCNT film was then formed at the PPy-Oxalate layer and again bi-layers and multi-

layers were formed by alternating the PPy-Oxalate and PPy-DBSCNT layers, a schematic is

illustrated in Figure 4.7 showing the typical formation of the various bi/multi layers of polymer.

The combination of polymer layers formed is summarised in Table 4.1. In this case, the PPy-

Oxalate/DBSCNT and PPy-Tartrate/DBSCNT correspond to the adsorption of the multi-walled

carbon nanotubes dispersed in DBS at the initial PPy-Oxalate or PPy-Tartrate polymer layers.

Figure 4.7: Schematic showing the composition of bi-layers (600 s for each layer) and multi-
layers formed (300 s for each layer).
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Table 4.1: Combinations of Polymer Systems Investigated.

Combinations of Polymer Systems Layers
PPy-Tartrate/PPy-DBSCNT Multi-layer

PPy-Tartrate/DBSCNT Multi-layer

PPy-Tartrate/PPy-DBSCNT Bi-layer

PPy-Oxalate/DBSCNT Multi-layer

PPy-Oxalate/PPy-DBSCNT Multi-layer

PPu-Oxalate/PPy-DBSCNT Bi-layer

PPy-DBSCNT Direct Polymerisation

Both the pH of the solution and applied potential appeared to influence the formation of

the polymer films, listed in Table 4.1. The optimum conditions required to deposit the PPy-

Oxalate and PPy-Tartrate, are detailed in Chapter 3, and involve an applied potential of 0.75

V vs. SCE and near neutral solutions. The influence of the applied potential on the formation

of the PPy-DBSCNT film at the PPy-Tartrate and PPy-Oxalate and pure copper was studied

and the potential was varied from 0.60 to 0.90 V vs. SCE. There was no evidence of formation

of the PPy-DBSCNT film at 0.60 V vs. SCE. However, at this applied potential the rate of

electropolymerisation is very low [139]. Indeed, the currents recorded were low, indicating

very inefficient deposition of the polymer film. Again, the optimum applied potential was

observed at 0.75 V vs. SCE, in good agreement with the results obtained with the PPy-Oxalate

and PPy-Tartrate polymer films, Chapter 3. The adherence properties of the PPy-DBSCNT

polymer film were dependent on the pH of the electropolymerisation solution. The formation

of adherent PPy-DBSCNT films was not observed at pH values of 5.0 or 6.0 or at higher pH

values of 8.0, 9.0 and 10.0. Using a simple sellotape test, the PPy-DBSCNT layers were easily

removed. However, highly adherent PPy-DBSCNT layers were deposited at a pH of 7.0 in

the presence of 0.05 mol dm-3 DBS, 0.02 mg of MWCNT and 0.30 mol dm-3 pyrrole. This

optimum pH is similar to that observed for the formation of the PPy-Tartrate and PPy-Oxalate

films, as shown in Chapter 3. Furthermore, as shown in Section 3.2.2, Chapter 3, the PPy-

Tartrate film is considerably more stable at a pH of 7.0 than at pH values of 6.0, 8.0 and 10.0.

It appears that the stability of the initial polymer layer influences the adhesion of the outer

PPy-DBSCNT film.

The electropolymerisation period was also varied and the optimum polymer systems were

identified as a multi-layer and a bi-layer. This multi-layer system involved the deposition of
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an initial PPy-Tartrate polymer film at the copper electrode at 0.75 V vs. SCE for 300 s,

followed by the PPy-DBSCNT deposited at 0.75 V vs. SCE for an additional 300 s period.

During this step the solution was continuously stirred. Then a further layer of PPy-Tartrate

was formed at 0.75 V vs. SCE for another 300 s period and finally the PPy-DBSCNT film

was formed again for a 300 s, or instead the final step was achieved by adsorbing the carbon

nanotubes on the polymer layers from a DBS solution containing MWCNT. The stability of the

PPy-Tartrate/PPy-DBSCNT bi-layer was also excellent and this bi-layer was deposited with an

initial PPy-Tartrate film formed at 0.75 V vs. SCE for 600 s and then the PPy-DBSCNT layer

formed at 0.75 V vs. SCE for an additional 600 s. The optimum electropolymerisation periods

were identified as 600 s for each layer in the bi-layer polymer systems, and 300 s for each layer

in the case of the multi-layer polymer system.

However, in the oxalate system it was found that a longer electropolymerisation time was

necessary, 900 s for each layer in the multi-layer polymer film was necessary to produce a

polymer film with properties similar and comparable to the tartrate multi-layer coatings. This

suggests that the oxalate polymer layer is less stable than the tartrate polymer system. This is

in good agreement with the results presented in Chapter 3.

4.3 Analysis of Corrosion Performance of the Polymer Coatings

The corrosion protection properties of the polymer-modified copper electrodes were studied

using a combination of electrochemical techniques, including cyclic voltammetry, open-circuit

potential measurements, potentiodynamic polarisation plots and Tafel analysis. In addition, a

spectrophotometric analysis was used to monitor the copper ion concentration. As the tartrate

system appeared to give the more stable multi-layers and bi-layer the corrosion assessment

studies were mainly focussed on this more promising system.

4.3.1 Spectrophotometric Determination of the Copper Ion Concentrations

In order to determine the concentration of copper dissolved from the polymer modified copper

electrodes, a spectrophotometric method [306] involving the bathocuproine chelating agent,

Figure 4.8, was used [306, 307]. This chelating agent forms an orange-coloured complex in the

presence of copper ions, as shown in Figure 4.9. It has been used in experiments where redox
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regulation of cell function is studied in human smooth muscle cells, where the bathocuproine

is employed as a chelator of Cu2+ ions [308]. In this study, the bathocuproine method was

used to determine the concentration of dissolved copper from the polymer-modified copper

electrodes. A calibration curve was generated by recording the absorbance of the solutions at

480 nm [306]. The solutions were prepared and the absorbance was recorded following 1 min.

The absorbance was measured again after 15 min and 24 h periods. Identical absorbance values

were recorded indicating very good stability.

Figure 4.8: Chemical structure of the chleating bathocuproine (C26H20N2) agent.

(a) (b)

Figure 4.9: (a) CuSO4 solution and (b) CuSO4 solution on addition of the chelating
bathocuproine agent.

In Figure 4.10, a typical calibration curve is shown for the solutions prepared in distilled

water. Excellent linearity is observed with a correlation coefficient, R2, of 0.9985 and a

slope of 171.19 mol-1 dm3. It has been reported that chloride anions can participate in the

bathocuproine reaction [306], as detailed in Equation 4.7. Therefore, calibration curves were

recorded in the presence of chloride anions, at a relatively high concentration of 0.20 mol dm-3,

and a representative calibration curve is presented in Figure 4.11. Again, excellent linearity
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is observed with R2 equal to 0.9993, however the slope of the calibration curve is different

with a slope of 256.14 mol-1 dm3. This clearly indicates that the formation of the complex

and the corresponding absorbance values are influenced by the presence of chloride anions.

Therefore, care was taken to record the calibration curves in the presence of chloride anions,

and furthermore, at the concentration of chloride used in the corrosion assessment experiments.

CuCl(n−1)
n + (bathocuproine)→ Cu(bathocuproine)Cl + (n − 1)Cl− (4.7)

Figure 4.10: Calibration curve recorded in distilled water with the absorbance plotted as a
function of the concentration of CuSO4.

Figure 4.11: Calibration curve recorded in 0.20 mol dm-3 NaCl with the absorbance plotted as
a function of the concentration of CuSO4.
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The uncoated copper, the PPy-Tartrate and the PPy-Tartrate/PPy-DBSCNT and PPy-

Tartrate/DBSCNT multi-layers were immersed in 0.10 mol dm-3 NaCl for a 2-day period and

then the solutions were analysed by adding the bathocuproine reagent from a stock solution

and the absorbance was recorded at 480 nm. The concentration was calculated using the

slope of the calibration curve recorded in 0.10 mol dm-3 NaCl. These data are summarised in

Table 4.2. Here it is evident that the PPy-Tartrate/PPy-DBSCNT multi-layer provides the best

corrosion protection properties, with the lowest concentration of dissolved copper. However,

these concentrations are influenced by the deposition of copper-containing corrosion products

at the uncoated copper electrode. In the presence of chloride anions, CuCl, is deposited at the

surface, and while this may have very poor corrosion protection properties, the porous nature

of the film may limit the true concentration of copper released into the solution, giving solution

concentrations that are lower than the true rate of dissolution. These corrosion products are

not observed with the polymer-coated copper electrodes and the concentrations of dissolved

copper are a more realistic measure of the corrosion rate and the protective properties of the

coatings.

Table 4.2: Concentration of dissolved Cu ions (n = 6) from Cu and the polymer-modified Cu
following a 2-day immersion period in 0.10 mol dm-3 NaCl at a pH of 7.0.

System Concentration /mmol dm-3

Uncoated Cu 4.65 ± 0.15

PPy-Tartrate 1.93 ± 0.17

PPy-Tartrate/PPy-DBSCNT (Multi-layer) 1.60 ± 0.10

PPy-Tartrate/DBSCNT (Multi-layer) 2.13 ± 0.14

4.3.2 Cyclic Voltammetry

The protective properties of the PPy-Tartrate/PPy-DBSCNT and the PPy-Oxalate/PPy-DBSCNT

multi-layers were studied using cyclic voltammetry. The voltammograms were recorded in 0.10

mol dm-3 NaCl [6], adjusted to a pH of 7.0 with a few drops of NaOH. Data were recorded

at scan rates from 1 to 100 mV s-1 and the potential was cycled from -0.50 V to 1.0 V vs.

SCE. The multi-layers were deposited for a total period of 1200 s, with the initial PPy-Tartrate

or PPy-Oxalate films deposited at 0.75 V vs. SCE for 300 s. This was followed by the PPy-

DBSCNT layers for 300 s and then additional layers of PPy-Tartrate or PPy-Oxalate for 300 s
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and finally PPy-DBSCNT for 300 s, as detailed in Section 4.2.2.

In Figure 4.12 representative voltammograms recorded at 1 mV s-1 are shown for the

PPy-Tartrate/PPy-DBSCNT multi-layer and the uncoated copper, while similar data recorded

with the PPy-Oxalate/PPy-DBSCNT multi-layer system are shown in Figure 4.13. There

is a significant difference between the voltammograms recorded for the PPy-Tartrate/PPy-

DBSCNT modified copper and the uncoated copper electrodes, as shown in Figure 4.12. The

protective properties of the polymer-coated copper are clearly evident with very low currents

and no indications of the dissolution of the copper substrate. The current begins to increase

at about 0.80 V vs. SCE and this indicates breakdown of the polymer film and the dissolution

of copper. However, the currents recorded at 1.0 V vs. SCE are considerably lower that the

values recorded for the uncoated copper electrode, which suggests that the coating limits the

dissolution of copper even after the breakdown event. Indeed, there was no evidence of any

changes in the surface morphology, indicating excellent stability in the aggressive chloride-

containing solution.
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Figure 4.12: Cyclic voltammograms recorded at 1 mV s-1 in 0.10 mol dm -3 NaCl at a pH of
7.0 for the PPy-Tartrate/PPy-DBSCNT multi-layer film (green) deposited at Cu compared to
the uncoated Cu (blue).

On the other hand, significant dissolution of the uncoated copper electrode is seen, in good

agreement with the data shown in Chapter 3, Section 3.3.1. The initial dissolution of the

copper electrode [8] is observed at about -0.10 V vs. SCE and then the current increases to
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give a broad peak at about 0.20 V vs. SCE with a peak current of approximately 1.00 mA. This

indicates considerable dissolution and the formation of chloride-containing corrosion products,

such as CuCl and the soluble CuCl2- species. As these corrosion products are precipitated at

the copper surface, there is a rapid decrease in the current. However, these corrosion products,

mainly CuCl and hydroxy-containing copper-chloride species, are porous and with higher

applied potentials dissolution, and a corresponding increase in the current, is observed.

The voltammograms recorded for the PPy-Oxalate/PPy-DBSCNT and the PPy-Tartrate/PPy-

DBSCNT multi-layers are compared in Figure 4.13. Again, these data were recorded at a

scan rate of 1 mV s-1. The voltammograms recorded for the two multi-layer systems are very

different. Very good protective properties are observed with the PPy-Tartrate/PPy-DBSCNT

multi-layer, however breakdown of the PPy-Oxalate/PPy-DBSCNT is seen at about 0.30 V vs.

SCE indicating the onset of the dissolution of the copper substrate. There is a further increase

in the current with an increase of the potential to give a current of approximately 5.00 mA

at 1.0 V vs. SCE. Indeed, at this potential the currents recorded for the PPy-Oxalate/PPy-

DBSCNT modified copper and the uncoated copper are similar. These data clearly show that

the PPy-Oxalate/PPy-DBSCNT multi-layer has relatively poor corrosion protection properties.

However, as detailed earlier in Section 4.2.2, the corrosion protection properties of the PPy-

Oxalate/PPy-DBSCNT multi-layer can be improved by increasing the electropolymerisation

period to 900 s for each polymer layer.

These data are in good agreement with the results obtained in Chapter 3, where it was

shown that the corrosion protection properties afforded by the PPy-Oxalate polymer film were

poor, particularly at short electropolymerisation periods. Indeed, the breakdown potential was

close to 0.01 V vs. SCE for electropolymerisation periods of 600 s to 1200 s. The breakdown

potential recorded for the PPy-Oxalate/PPy-DBSCNT multi-layer deposited for a total period

of 1200 s is significantly higher at about 0.30 V vs. SCE, indicating that the PPy-DBSCNT

polymer film plays a significant role in the corrosion protection of the underlying copper. This

is also evident with the tartrate system. The breakdown potentials recorded for the PPy-Tartrate

polymer film are approximately 0.45 to 0.50 V vs. SCE, for electropolymerisation periods from

600 to 3600 s, Section 3.3.1, Chapter 3. A significant increase in the breakdown potential, to

values higher than 0.80 V vs. SCE, is observed with the deposition of the PPy-DBSCNT layer.

Again, this highlights the significant role of the PPy-DBSCNT layer.
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Figure 4.13: Cyclic voltammograms recorded at 1 mV s-1 in 0.10 mol dm-3 NaCl at a pH of
7.0 for the PPy-Tartrate/PPy-DBSCNT multi-layer (green) and the PPy-Oxalate/PPy-DBSCNT
multi-layer films deposited at Cu (blue).

The influence of the scan rate is shown in Figure 4.14, where the cyclic voltammograms

recorded for the PPy-Tartrate/PPy-DBSCNT multi-layer in neutral 0.10 mol dm-3 NaCl at scan

rates of 100 mV s-1 and 10 mV s-1 are compared. It is evident that the scan rate has a significant

influence on the measured currents, with higher currents recorded at the higher scan rate. It is

unlikely that these higher currents are connected with the dissolution of the underlying copper

substrate, as excellent corrosion protection properties were observed at 1 mV s-1, Figure 4.12.

This increase in the current can be rationalised in terms of the size of the diffusion layer, where

an increase in the size of the diffusion layer is observed at lower scan rates. As the current is

proportional to the flux across the diffusion layer, the magnitude of the current will vary with

the scan rate and increase at higher scan rates [43]. This hypothesis was tested by depositing the

PPy-Tartrate/PPy-DBSCNT multi-layers at two inert substrates, platinum and glassy carbon,

and then the voltammograms were recorded at different scan rates. As detailed in Chapter 3, the

tartrate solution was acidified to a pH of 4.0 to facilitate the formation of the PPy-Tartrate film

at platinum. Otherwise, the electropolymerisation conditions were similar, with an initial layer

of PPy-Tartrate deposited for 300 s at 0.75 V vs. SCE, followed by a layer of PPy-DBSCNT

for 300 s at 0.75 V vs. SCE. Then, additional layers of PPy-Tartrate and PPy-DBSCNT were

formed to give a total electropolymerisation period of 1200 s. These data are presented in
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Figure 4.15 where the influence of the copper, platinum and glassy carbon substrates is shown.

The voltammograms were recorded at 100 mV s-1 as higher currents were observed at this scan

rate for the copper system, Figure 4.14.

Although not shown in the figure, an increase in the currents was observed with an increase

in the scan rate, in agreement with several literature reports [309]. However, it is clear

from Figure 4.15 that the nature of the substrate has an added influence on the measured

currents. Very low currents are observed with the platinum substrate, as shown in Figure 4.15b.

Somewhat higher currents are observed with the glassy carbon substrate, Figure 4.15a,

particularly at potentials higher than 0.80 V vs. SCE, indicating that the currents observed with

the copper system may be connected with the multi-layer polymer film. Nevertheless, higher

currents are observed with the copper system. Again, it is unlikely that these higher currents

are connected with dissolution of the copper substrate and the variations in the currents may be

connected to the thickness of the multi-layer polymer films at the different substrates.

−0.50  0.00  0.50  1.00
−0.80

−0.60

−0.40

−0.20

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

C
u
rr

e
n
t,

I/
m

A

Potential, E/V

Figure 4.14: Cyclic voltammograms recorded in 0.10 mol dm-3 NaCl at a pH of 7.0 for the
PPy-Tartrate/PPy-DBSCNT multi-layer films deposited at Cu cycled at 100 mV s-1 (green) and
10 mV s-1 (blue).
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Figure 4.15: Cyclic voltammograms recorded at 100 mV s-1 in 0.10 mol dm-3 NaCl at a pH of
7.0 for the PPy-Tartrate/PPy-DBSCNT multi-layer films deposited on (a) Cu (green) and GC
(blue) and (b) Cu (green) and Pt (blue).
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4.3.3 Open-Circuit Potential Measurements

As previously shown in Chapter 3, the open-circuit potential (OCP), which is also frequently

termed the corrosion potential, Ecorr, is a mixed potential adopted in the absence of any

polarisation and corresponds to the potential at which there is no current flow. At this point the

rate of the oxidation half and reduction half reactions are equal. A negative shift in the open-

circuit potential is observed when anodic dissolution occurs. Consequently, the measurement

of the open-circuit potential is often the first step in assessing the corrosion susceptibility of a

material or the protective properties of a coating [259].

The open-circuit potentials were recorded for the PPy-Tartrate/PPy-DBSCNT and PPy-

Oxalate/PPy-DBSCNT multi-layers in a neutral 0.10 mol dm-3 NaCl solution [259], as detailed

in Section 3.3.2, Chapter 3. The polymer films were formed for a total period of 1200 s,

with the initial PPy-Tartrate or PPy-Oxalate films deposited at 0.75 V vs. SCE for 300 s,

followed by the PPy-DBSCNT layers for 300 s. Then, additional layers of PPy-Tartrate or

PPy-Oxalate for 300 s and finally the outer PPy-DBSCNT layers were deposited for 300 s, as

detailed in Section 4.2.2. The open-circuit potentials were monitored over a 30-day period,

with measurements on a daily basis. Once the open-circuit potential measurements were made,

the polymer-modified copper electrodes were placed in a fresh 0.10 mol dm-3 NaCl solution

and the container was sealed and left until the measurements were made on the following day.

This was repeated over a 30-day period. Typical data are shown in Figure 4.16 for the PPy-

Tartrate/PPy-DBSCNT and PPy-Oxalate/PPy-DBSCNT multi-layers following immersion for

a 1 and 15 day period. The open-circuit potential is recorded over a 3600 s period. For

comparison purposes, the open-circuit potential recorded for the uncoated copper is presented.

There is a clear variation between the open-circuit potentials adopted by the polymer-modified

copper electrodes and the uncoated copper. The open-circuit potential adopted by the uncoated

copper is about -0.15 V vs. SCE, while higher open-circuit potentials, at approximately -0.01

to 0.05 V vs. SCE, are observed with the polymer modified copper electrodes. The open-circuit

potentials are clearly constant and there is no evidence of any significant decay in the potential

over this 3600 s period. This indicates very good stability.

However, it is evident that the open-circuit potential of the oxalate based polymer film

decays with increasing immersion periods, as shown from a comparison of the data recorded
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on day 1 and day 15, Figure 4.16b. Following an immersion period of approximately 20

days, the open-circuit potential decays to values adopted by the uncoated copper electrode,

indicating a loss in the corrosion protective properties [259]. In comparison, the tartrate-

based polymer continues to adopt a much higher and constant open-circuit potential over

the 30 day test period. Although the potential drops slightly, with continued immersion, it

remains considerably higher than the value adopted by the uncoated copper, indicating very

good long-term corrosion protection of the underlying copper. These data are consistent with

the voltammetry measurements presented in Section 4.3.2 and clearly show that the PPy-

Tartrate/PPy-DBSCNT provides the best corrosion protection properties.

The open-circuit potentials of the PPy-Oxalate/DBSCNT and the PPy-Tartrate/DBSCNT

multi-layer polymer films are displayed in Figure 4.17a and 4.17b, respectively. These films

were deposited at a potential of 0.75 V vs. SCE for 300 s for each consecutive layer, with

a combined time of 1200 s. A constant potential of 0.75 V vs. SCE for 300 s was used

to adsorb the DBSCNT layer onto the base PPy-Tartrate layer, instead of the conventional

electropolymerisation using a fixed potential in the presence of pyrrole. Again, it can be

clearly seen that the open-circuit potential adopted by the oxalate system is lower than that

measured for the corresponding tartrate system. Moreover, the open-circuit potential decays

over the first 1300 s, to reach values of approximately -0.05 V vs. SCE after 2000 s. This

potential is still higher than the open-circuit potential of the uncoated copper, -0.15 V vs. SCE,

however, the decay in the open-circuit potential indicates some loss in the protective properties

of the PPy-Oxalate/DBSCNT multi-layers. The open-circuit potential adopted by the PPy-

Tartrate/DBSCNT multi-layer remains more constant and the potential only varies from 0.03

to 0.02 V vs. SCE during the initial 300 s period. The open-circuit potential remains constant

at about 0.02 V vs. SCE for the remaining 4000 s period, Figure 4.17a. This indicates good

stability. Indeed, the open-circuit potential varied little with increasing immersion periods and

there was no evidence of decay in the open-circuit potential following the 30 day immersion

period.
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(a)

(b)

Figure 4.16: OCP recorded in 0.10 mol dm-3 NaCl solution at a pH of 7.0 for (a) uncoated
Cu (red) and the PPy-Tartrate/PPy-DBSCNT multi-layer modified Cu following immersion
periods of 1 day (light blue) and 15 day (dark blue) and (b) uncoated Cu and the PPy-
Oxalate/PPy-DBSCNT multi-layer modified Cu following immersion periods of 1 day (light
green) and 15 day (dark green).
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(a)

(b)

Figure 4.17: OCP recorded in 0.10 mol dm-3 NaCl solution at a pH of 7.0 for (a) uncoated
Cu (red) and the PPy-Oxalate/DBSCNT multi-layer modified Cu (green) and (b) PPy-
Tartrate/DBSCNT multi-layer modified Cu (blue).
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4.3.4 Polarisation Curves and Tafel Analysis

It is well established in the literature that potentiodynamic polarisation curves are valuable in

monitoring the corrosion protection properties of a coating or film [310, 311, 312]. In order

to further demonstrate the protective nature of the tartrate-based polymer system, polarisation

plots were recorded in a neutral 0.10 mol dm-3 NaCl solution at 0.1667 mV s-1 from 200

mV below to about 200 mV above the corrosion potential, or until significant dissolution of

the copper was observed. The PPy-Tartrate/PPy-DBSCNT and the PPy-Tartrate/DBSCNT

multi-layers were deposited at 0.75 V vs. SCE for a total period of 1200 s, with 300 s for

each consecutive layer, as detailed in Section 4.2.2. Typical polarisation curves are shown in

Figure 4.18, where the data recorded for the uncoated copper are compared to the data recorded

for the PPy-Tartrate/PPy-DBSCNT multi-layer in Figure 4.18a. Similar plots are shown for

uncoated copper and the PPy-Tartrate/DBSCNT multi-layer in Figure 4.18b. These data were

recorded at a scan rate of 0.1667 mV s-1.

Dissolution of copper is clearly evident for the uncoated copper. The corrosion potential is

observed at about -0.120 V vs. SCE and there is a significant increase in the current at slightly

higher applied potentials. There is no evidence of any passive region. This is consistent with the

dissolution of copper and the formation of copper and chloride-containing corrosion products

[285, 313]. These corrosion products include the insoluble CuCl and the soluble CuCl2- species

that are well known to limit the mass transport, as these species are removed from the electrode

surface to the bulk solution [39]. A clear passive region is evident with the polymer-coated

copper electrodes [165], indicating that the dissolution of copper and the generation of the

corrosion products are inhibited. The corrosion potential of the PPy-Tartrate/PPy-DBSCNT

is approximately -0.065 V vs. SCE, some 100 mV more positive than that recorded for the

uncoated copper. The corrosion potential of the PPy-Tartrate/DBSCNT is about -0.035 V

vs. SCE, giving a difference of 110 mV compared with the uncoated copper. It appears

that the corrosion protection properties of the multi-layers arise from two effects. Firstly, the

tartrate-based passivation layer deposited during the formation of the PPy-Tartrate protects and

passivates the copper electrode. Secondly, the outer polymer layer acts as a barrier and prevents

the depassivating ions, such as chlorides and dissolved oxygen, from penetrating through the

multi-layers [286].
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It is evident from the data presented in Figure 4.18 that the corrosion potentials are

somewhat different to the open-circuit potentials presented in Figures 4.16 and 4.17. However,

this is connected with the fact that the electrodes were polarised some 200 mV below the

corrosion potential at a relatively slow scan rate of 0.1667 mV s-1. Indeed, when the copper

and polymer-modified copper electrodes were immersed in the chloride-containing solutions

and scanned from the corrosion potential, at 0.1667 mV s-1, the corrosion potentials were

identical to that recorded in Section 4.3.3. It is also evident from the polarisation curves that the

reduction currents are considerably higher for the polymer-modified copper electrodes. This

effect was not observed with the cyclic voltammetry experiments, as shown in Section 4.3.2. It

appears to be related to the slow scan rate. The oxygen reduction reaction is the predominant

reduction half-reaction at a near neutral pH, with Equation 4.8 describing the reduction of

dissolved oxygen in neutral or alkaline media. Equation 4.9 gives the reduction reaction for

more acidic media. Other potential reduction reactions are the reduction of H+, Equation 4.10.

O2 + 2H2O + 4e− → 4OH− (4.8)

O2 + 4H+ + 4e− → 2H2O (4.9)

2H+ + 2e− → H2 (4.10)

It appears that one or more of these reduction reactions occur at the polymer-modified

copper electrodes at this slow scan rate, to account for the higher reduction reactions, which

are clearly evident in Figure 4.18.

A scratch test was carried out by using a sharp object to damage the PPy-Tartrate/PPy-

DBSCNT and the PPy-Tartrate/DBSCNT multi-layers and expose the copper substrate. The

polarisation behaviour of the scratched multi-layer coatings was then compared to the freshly

deposited multi-layer polymer films and representative polarisation curves are shown in

Figure 4.19. It is clearly evident that the data recorded for the scratched multi-layer polymer

coatings are somewhat different, with a higher current density. This indicates dissolution of

the copper substrate and a clear anodic peak is observed at about 0.02 V vs. SCE, indicating

significant dissolution of the copper substrate [282].
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Figure 4.18: Polarisation curves recorded at 0.1667 mV s-1 in 0.10 mol dm-3 NaCl at a pH
of 7.0 for (a) uncoated Cu (blue) and PPy-Tartrate/PPy-DBSCNT multi-layer deposited at Cu
(green) and (b) uncoated Cu (blue) and PPy-Tartrate/DBSCNT multi-layer deposited at Cu
(green).
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Figure 4.19: Polarisation curves recorded at 0.1667 mV s-1 in 0.10 mol dm-3 NaCl at a pH
of 7.0 for (a) PPy-Tartrate/DBSCNT multi-layer (green) and scratched PPy-Tartrate/DBSCNT
multi-layer (blue) and (b) PPy-Tartrate/PPy-DBSCNT multi-layer (green) and scratched PPy-
Tartrate/PPy-DBSCNT multi-layer (blue).
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It is also evident from Figure 4.19 that there is a considerable shift in the corrosion potential.

This is consistent with the significant increase in the anodic current, where the current is

increased from approximately 1.0 × 10-6 A cm-2 to 1.0 × 10-4 A cm-2. These data are similar to

the results obtained by Al-Hinai and co-workers [7], who observed a significant increase in the

current on forming a scratch in the surface. A current increase of several orders of magnitude

was obtained, similar to that observed in Figure 4.19. Indeed, the corrosion potential was

shifted to more negative potentials, as observed for the PPy-Tartrate/DBSCNT and the PPy-

Tartrate/PPy-DBSCNT multi-layers. These data clearly show that the multi-layer is no longer

highly protective when copper is exposed through a scratch [314] in the multi-layer coating.

A Tafel analysis was carried out in an attempt to estimate the corrosion current, Icorr,

for the PPy-Tartrate/PPy-DBSCNT and PPy-Tartrate/DBSCNT multi-layers. For comparison

purposes, a similar analysis was performed with the uncoated copper and PPy-Tartrate films.

As detailed in Section 4.3.3, the corrosion potential, Ecorr, is a mixed potential and under

these conditions the rate of the anodic half-reaction is equal to the rate of the cathodic half-

reaction. As the displacement from the corrosion potential, Ecorr, is increased beyond 10

mV, a logarithmic relationship between the potential and the current is observed, to give the

Tafel equation, Equation 4.11. This equation can be expressed in the simpler form, given in

Equation 4.12.

E − Er =
2.303RT
αF

log I0 −
2.303RT
αF

log I (4.11)

E − Er = a + b log I (4.12)

The term I0 is the exchange current density, the term E − Er is the overpotential and the

constant, b, which is equal to the slope, ∂E
∂ log I of the polarisation curve, is termed the Tafel

slope. In Tafel plots the potential, E, is plotted as a function of the logarithm of the current

density, log I, and provided the corrosion reactions are controlled by activation polarisation, as

is frequently observed, linear plots are obtained [315]. It is possible to extrapolate the anodic

and cathodic linear portions of the polarisation curves to the corrosion potential Ecorr, and

the magnitude of the current at this intersection gives the corrosion current, Icorr, which is a

direct measure of the rate of corrosion. In general, reliable data are only obtained if a linear
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relationship is maintained for at least one decade (where the current increases by a factor of 10).

In addition, this analysis is strictly only applicable to activation controlled corrosion processes.

It is well known that the dissolution of copper in chloride-containing solutions is under mixed

activation and diffusion control [8, 165, 280] and this may complicate the analysis leading to

less reliable Tafel slopes.

Polarisation curves were recorded at a scan rate of 0.1667 mV s-1 in an attempt to reduce

the current contribution from the PPy [1, 258] and these data were used in the Tafel analysis.

The computed corrosion potential, Ecorr, corrosion current, Icorr, and Tafel slopes, ba and

bc, are summarised in Table 4.3. The Tafel slopes obtained for copper are in relatively

good agreement with the data obtained by Mansfeld et al. [310] for copper in chloride

solutions. The corrosion current, Icorr, is lower than the value of 2.0 µA cm-2 reported by

Mansfeld and co-workers [310], however, this is probably connected to variations in the pH

of the chloride-containing solutions. It is clear that higher Icorr values are computed for the

uncoated and PPy-Tartrate modified copper, while relatively low Icorr values are seen with the

Tartrate/PPy-DBSCNT and PPy-Tartrate/DBSCNT multi-layers. This is in good agreement

with the spectrophotometric data presented in Section 4.3.1, the voltammetry data presented in

Section 4.3.2 and the open-circuit potential data shown in Section 4.3.3.

Table 4.3: Tafel analysis for uncoated Cu and the polymer-modified Cu electrodes in 0.1 mol
dm-3 NaCl, at a pH of 7.0.

System
ba bc Ecorr Icorr

mV decade-1 mV decade-1 V vs. SCE µA cm-2

Uncoated Cu 68 95 -0.120 0.29
PPy-Tartrate/PPy-DBSCNT 41 74 -0.065 0.05
PPy-Tartrate/DBSCNT 57 76 -0.035 0.05
PPy-Tartrate 90 50 -0.077 2.00
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4.4 Summary of Results

The coatings formed in this chapter are novel, exhibiting good corrosion protection properities.

These coatings involved the successful incorporation of multi-walled carbon nanotubes into

PPy films to generate a number of bi-layers and multi-layers, comprising PPy-Tartrate and PPy-

DBSCNT or PPy-Oxalate and PPy-DBSCNT. There has been no previous literature reports

on this combination of polymer coating. A stable and well dispersed solution of the carbon

nanotubes was obtained using DBS. It was found that the ratio of the concentration of DBS

to the mass of MWCNT was critical in forming this stable and highly dispersed solution,

in good agreement with literature reports [298]. Stable and homogeneous dispersions were

obtained using a 3:1 ratio of 0.05 mol dm-3 DBS and 0.02 mg of MWCNT. The critical

micelle concentration (CMC) was measured as 6.8 × 10-3 mol dm-3 using conductivity and

fluorescence measurements, indicating that the MWCNT and DBS solution contains both the

DBS monomer and micelles.

The bi-layers were successfully formed with the formation of an initial PPy-Tartrate or

PPy-Oxalate film at copper from near neutral 0.10 mol dm-3 oxalate or 0.10 mol dm-3 tartrate

solutions with 0.30 mol dm-3 pyrrole at 0.75 V vs. SCE for 300 s. Then, the PPy-DBSCNT

film was deposited at 0.75 V vs. SCE from the MWCNT and DBS solution with 0.30 mol

dm-3 pyrrole for an additional 300 s period. Multi-layers were formed with alternating

layers of PPy-Tartrate or PPy-Oxalate and PPy-DBSCNT formed for 300 s to give a total

electropolymerisation period of 1200 s. Four consecutive layers were deposited to give

the multi-layers. The PPy-Tartrate/DBSCNT and PPy-Oxalate/DBSCNT films were formed

slightly different. The PPy-Tartrate or PPy-Oxalate modified electrodes were placed in the

MWCNT-containing DBS solution and a fixed potential was applied and the MWCNT layer

was adsorbed at the surface.

The corrosion protection properties of the polymer coatings PPy-Tartrate/PPy-DBSCNT,

PPy-Tartrate/DBSCNT, PPy-Oxalate/PPy-DBSCNT and PPy-Oxalate/DBSCNT multi-layers

were assessed using a spectrophotometric determination of the dissolved copper concentration,

open-circuit potential measurements, anodic polarisation plots and cyclic voltammetry. Excel-

lent corrosion protection properties were observed with the tartrate-based system, with the PPy-

Tartrate/PPy-DBSCNT and PPy-Tartrate/DBSCNT multi-layers providing similar corrosion

132



CHAPTER 4. INCORPORATION OF MWCNT INTO THE POLYMER MATRIX

protection. Breakdown of the polymer films was only observed at approximately 0.80 V vs.

SCE, while the open-circuit potential measurements illustrate long-term corrosion protection

properties exceeding 30 days. The spectrophotometric analysis was consistent with these

measurements, showing low concentrations of dissolved copper and very good corrosion

protection properties. However, lower breakdown potentials were recorded with the oxalate-

based system and the corrosion protection properties were lost following a 15-day immersion

period in 0.10 mol dm-3 NaCl. To demonstrate the overall corrosion capabilities of the

tartrate-based polymers a scratch in the polymer film was made to expose the copper substrate.

Dissolution of copper was observed giving higher currents, indicating a loss in the corrosion

protection properties of the films. However, it is clear that the tartrate-based polymer system

exhibits very good corrosion protection for the copper substrate, giving stable and highly

adherent PPy films. This coinsides with the protection of the copper metal obtained from

these coatings. The polypyrole forms adherent polymer coatings at the copper surface which

is detailed in the previous chapter 3. The incorporation of the MWCNTs dispersed in DBS

enhances the protection properities of the coating to a greater extent than observed in Chapter

3.
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CHAPTER 5

Synthesis and Analysis of the DBS Polymer Film

In the following chapter, the results of an investigation into the formation and protective nature

of a PPy bi-layer are presented and discussed. This bi-layer consists of an initial layer of PPy

with tartrate as the dopant and an outer layer of PPy formed in the presence of dodecylbenzene

sulfonate (DBS), to give PPy-Tartrate/PPy-DBS. The structure of the DBS is considerably

larger and is shown in Figure 5.1a. Nevertheless, it contains sulfur which is easily detected

in the polymer film using energy dispersive X-Ray analysis (EDX). It is clear that the tartrate

is sufficiently small with a negative charge to give an ideal dopant, Figure 5.1b.

(a) (b)

Figure 5.1: Chemical structures of anions (a) sodium dodecylbenzene sulfonate (DBS) and (b)
sodium potassium tartrate.

This bi-layer structure with PPy-DBS as the outer layer was selected for further study as the

MWCNT coating developed and discussed in Chapter 4, PPy-Tartrate/PPy-DBSCNT, has very

good corrosion protection properties. However, as DBS was used to disperse the MWCNTs, it
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was difficult to determine if the DBS or MWCNT was responsible for the corrosion protection

observed. Indeed, when the MWCNTs were removed from the electropolymerisation solution

and the protective properties of PPy-Tartrate/PPy-DBS and PPy-Tartrate/PPy-DBSCNT were

compared very similar results were obtained, as shown in Figure 5.2. These data were recorded

in a neutral 0.10 mol dm-3 NaCl solution at 1 mV s-1, and it is clear that the two polymer films

have similar breakdown potentials and very good corrosion protection properties, making it

difficult to differentiate between the two polymer films and the role of the MWCNTs.
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Figure 5.2: Cyclic voltammograms recorded at 1 mV s-1 in 0.10 mol dm-3 NaCl at a pH of 7.0
for the PPy-Tartrate/PPy-DBS (green) and PPy-Tartrate/PPy-DBSCNT (blue).

Accordingly, in this chapter, a more in-depth study on the development and analysis of the

PPy-Tartrate/PPy-DBS polymer coating is carried out. The concentration of DBS, the applied

potential, and the electropolymerisation period were varied to obtain the optimum experimental

conditions to deposit the PPy-Tartrate/PPy-DBS films at copper. Then, the corrosion protection

properties of the coating were assessed using open-circuit potential (OCP) measurements,

polarisation plots, Tafel analysis and electrochemical impedance spectroscopy (EIS).

5.1 Experimental

Details on the experimental approach used in the formation and analysis of the PPy-

Tartrate/PPy-DBS films at the copper electrodes are provided in Sections 5.1.1, 5.1.2 and 5.1.3.
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This includes information on the chemicals, the techniques and equipment used and the general

procedures employed to deposit the polymer films.

5.1.1 Reagents

Pyrrole monomer (98%) was obtained from Aldrich and was purified by distillation prior to

use. It was then stored in the dark at -20 °C between experiments, for a maximum period of

five days. The analytical reagents, sodium chloride (NaCl), dodecylbenzene sulfonate (DBS)

(C12H25C6H4SO3Na), sodium potassium tartrate (KNaC4H4O6), hydrochloric acid (HCl) and

sodium hydroxide (NaOH) were purchased from Aldrich and used as received. The pH meter

was calibrated on a daily basis, with buffers specifically for the calibration of the pH meter (pH

4.0 and pH 7.0) which were purchased from Lennox Ltd.

5.1.2 Electrodes and Instruments

A Cu rod (99.99%, 4 mm in diameter) electrode was used for the deposition of PPy-

Tartrate/PPy-DBS. The rod was encased in a Teflon holder, as previously described in

Chapter 2, Figure 2.3. A flat Cu disc electrode was used for SEM and EDX measurements. The

disc and rod electrodes were polished using a 1 µm diamond polish and Buehler micro-cloth

and rinsed well with distilled water to ensure a smooth surface finish, as outlined in Chapter 2.

A saturated calomel electrode (SCE) was used as the reference electrode and a high surface

area platinum wire was employed as the counter electrode. A CHi 760C potentiostat was used

to deposit the PPy films, while potentiodynamic polarisation measurements were carried out

with a Solartron potentiostat (Model SI 1285 or 1287), using the software package Corrware for

Windows. Electrochemical impedance spectroscopy (EIS) measurements were recorded using

a Solartron Model SI 1285 or Model SI 1287 potentiostat coupled with a frequency response

analyser, Model SI 1250. A potential perturbation of 10 mV was used to ensure a pseudo-

linear response of the system, while the frequency was varied from 65 kHz to 10 mHz. SEM

measurements were performed on a Hitachi FE-scanning electron microscope, with an Oxford

instruments Inca X-act 4.12 software package. The EDX analyses were carried out using an

EDX Model 51-ADD0009 with the software package Micro Analysis Suite.
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5.1.3 Procedures

The PPy-Tartrate/PPy-DBS coating was formed by depositing an initial layer of PPy doped

with tartrate. Then, the PPy film doped with DBS was formed to give a bi-layer structure. The

PPy-Tartrate film was deposited at 0.75 V vs. SCE from an aqueous solution of 0.10 mol dm-3

sodium potassium tartrate and 0.30 mol dm-3 pyrrole adjusted to a pH of 7.0, using a few drops

of concentrated NaOH. The electropolymerisation period was fixed at 600 s. The PPy-DBS

films were deposited at 0.75 V vs. SCE from a neutral aqueous solution containing 0.050 mol

dm-3 DBS and 0.30 mol dm-3 pyrrole, unless otherwise stated. Distilled water was used in the

preparation of all solutions and all measurements were made at room temperature. In some

experiments the concentration of DBS was varied from 0.001 to 0.090 mol dm-3, while the

applied potential was varied from 0.65 to 0.90 V vs. SCE and the electropolymerisation period

was varied between 100 and 1200 s. In an attempt to deposit PPy-DBS directly at the copper

electrode, the pH was varied between 5.0 and 9.0 and applied potentials from 0.60 to 0.90 V

vs. SCE were used.

After electrochemical deposition, the PPy films were characterised using cyclic voltam-

metry, by cycling in a potential window from -0.50 to 1.00 V vs. SCE, at 1 mV s-1 in 0.10

mol dm-3 NaCl at pH 7.0. A scratch in the PPy-Tartrate/PPy-DBS coating was made using

a sharp surface and the corrosion protection properties were compared to a freshly deposited

polymer coating. For SEM and EDX characterisation, the polymer films were synthesised onto

a Cu disc electrode. Unless otherwise stated, the samples were sputter coated with gold prior

to SEM analysis. Electrochemical impedance spectroscopy measurements were carried out in

0.10 mol dm-3 NaCl, at pH 7.0 using a sinusoidal excitation voltage of 10 mV. The impedance

of the bi-layer film and uncoated copper was recorded at various applied potentials.

5.2 Results and Discussion

5.2.1 Formation of the Bi-layer Polymer Films

The polymers were deposited at a constant applied potential of 0.75 V vs. SCE. The main

advantage of this potentiostatic technique is that the applied potential can be varied to control

the rate of electropolymerisation, while variations in the electropolymerisation period give
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rise to polymer films of different thickness. Although cyclic voltammetry is normally used to

generate compact conducting polymer films [112], potentiostatic deposition, is well known to

yield polymers with consistent and reproducible morphologies [112, 245]. The tartrate doped

PPy, PPy-Tartrate, was deposited from 0.30 mol dm-3 pyrrole and 0.10 mol dm-3 tartrate, at

pH 7.0. The solution was not stirred as this inhibits electropolymerisation at the electrode

interface, although oxidation of pyrrole proceeds. Nucleation of the polymer at the electrode

occurs only when the length of the oligomer chain surpasses the solubility limit and deposits

on the electrode surface [316]. Thus solution stirring would disperse the radical species into

the bulk solution, inhibiting the electropolymerisation reactions.

The current-time plots recorded on application of 0.75 V vs. SCE to the copper electrode

in the pyrrole and tartrate-containing solution are shown in Figure 5.3. The growth profile

is typical for the electropolymerisation of pyrrole in a simple dopant solution and reasonably

good reproducibility is observed, as shown from a comparison of the plots. Although not

clearly evident in the current-time plots presented in Figure 5.3, on application of the potential

to the electrode there is an initial charging current, which arises from the charging of the

double layer. This charging current decays rapidly, being governed by the RsC time constant,

which, in turn, is related to the size of the electrode and the conductivity of the solution, where

C is the double layer capacitance and Rs is the solution resistance [41]. Other factors that

might contribute to the current during the initial milliseconds are the oxidation of pyrrole to

form oligomeric species, which are still soluble and/or adsorption of pyrrole at the electrode

interface [317, 318]. It is also likely that dissolution of copper occurs during this early period

to contribute to the current [6]. However, once the polymer begins to nucleate at the surface,

the dissolution of the copper substrate is inhibited and the current decays to lower values in

the region of 1.0 × 10-4 A. No further increase in the current is observed, indicating that

the deposited polymer prevents the dissolution of the copper substrate. The concentration of

pyrrole used in all these experiments, which is 0.30 mol dm-3, is sufficiently high to promote

a fast initiation step for the polymerisation reaction. Accordingly the dissolution of copper is

limited.
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Figure 5.3: Current-time transient recorded for Cu polarised at 0.75 V vs. SCE in 0.30 mol
dm-3 pyrrole and 0.10 mol dm-3 tartrate at a pH of 7.0 (blue and green).

The protective properties of the deposited polymer can be seen by comparing the current-

time plots in Figure 5.3 with the data recorded in the absence of the pyrrole monomer,

Figure 5.4. The current-time plot depicted in Figure 5.4 was recorded on polarising copper

in 0.10 mol dm-3 tartrate at pH 7.0 at 0.75 V vs. SCE. There is a noticeable difference in the

current-time transients recorded in the absence and presence of pyrrole and it is clear that the

PPy-Tartrate polymer coating is stable and reasonably protective. At pH 7.0, oxides, such as

Cu2O, CuOH and CuO, are formed [32, 278, 285]. It is well known that the composition and

stability of the passive film is pH dependent [32], and in solutions of pH 6.0 to 9.0, the oxide

films (Cu2O and CuO) become more protective. Indeed, Strehblow et al. [278] documented

that Cu forms passivating layers in alkaline solutions. Therefore, at pH 7.0, and in the presence

of tartrates, the rate of copper dissolution is significantly lower than that observed in more

acidic solutions and in the presence of chloride anions [8, 51, 86, 282]. The tartrate ion

has been used as a complexing agent in the electrodeposition of copper, giving high quality

electrodeposits [244]. At pH 7.0, the ion exists as C4H4O6
2- as the pKa value is 3.77 for the

equilibrium shown in Equation 5.1.

C4H5O1−
6 → C4H4O2−

6 + H+ (5.1)
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Ballesteros et al. [244] have carried out a thermodynamic analysis of the copper(II)-tartrate

chloride system and have shown that as the pH increases, there is a higher tendency for the

formation of hydroxyl tartrate containing complex species, Equation 5.2.

Cu2+ + 2OH− + 2C4H4O2−
6 → Cu(C4H4O6)2(OH)4−

2 (5.2)

Indeed at pH 7.0, this complex is the predominate species and as the copper is dissolved

and the Cu2+ ion concentration increases, the hydroxyl-tartrate complex is formed and this will

limit the dissolution of copper. This is consistent with the data presented in Figures 5.3 and 5.4.
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Figure 5.4: Current-time transient recorded for Cu polarised at 0.75 V vs. SCE in 0.10 mol
dm-3 NaCl at a pH of 7.0.

The deposition of the PPy-DBS polymer film at the PPy-Tartrate modified copper to

generate the bi-layer was carried out in a 0.050 mol dm-3 solution of DBS with 0.30 mol dm-3

pyrrole at 0.75 V vs. SCE. A representative current-time plot, is shown in Figure 5.5. From this

plot is it obvious that the growth of the PPy-DBS film adopts a different shape in comparison

to that of the tartrate-doped PPy film, Figure 5.3. However, this is probably connected to the

electropolymerisation of pyrrole at the PPy-Tartrate interface. Indeed, the growth of the PPy-

DBS polymer adopted a slightly different profile from experiment to experiment. However,

similar characteristics and currents were recorded in all experiments. As the polymer is
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deposited on top of the PPy-Tartrate base, the current is initially low, but then increases from

about 200 s, indicating that the resistance of the PPy-Tartrate is sufficiently low to facilitate

the electropolymerisation of the monomer and the formation of further layers of PPy. The

current continues to increase. This is probably connected to the further deposition of PPy

giving a higher surface area and higher currents. These rising currents may also be due to

dissolution of the copper substrate, however significant dissolution was not observed. Indeed,

given the corrosion protection properties of this bi-layer, as shown in Figure 5.2, it is unlikely

that significant dissolution of the copper substrate occurs on deposition of the PPy-DBS film.

It is clear from the data presented in Figure 5.5 that the currents measured during the

formation of PPy-DBS are lower compared to the values recorded with the tartrate system,

Figure 5.3. It appears that the rate of electropolymerisation is slower in the presence of DBS.

This may be related to binding of the DBS to the polymer layer already present (PPy-Tartrate),

as DBS has surfactant-like properties. Alternatively it may be connected to the slower rate of

diffusion of the large DBS species to the electrode surface.
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Figure 5.5: Current-time transient recorded at 0.75 V vs. SCE in 0.050 mol dm-3 DBS and
0.30 mol dm-3 pyrrole at PPy-Tartrate-modified Cu.

Once the PPy-Tartrate/PPy-DBS films were formed, the polymers were cycled in 0.10 mol

dm-3 NaCl at pH 7.0 at 1 mV s-1, as detailed in Figure 5.2. A typical voltammogram for the

uncoated copper is shown in Figure 5.6. Dissolution of copper is observed at about -0.05 V
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vs. SCE. The current continues to increase to reach a maximum value of 0.30 mA at about

0.04 V vs. SCE and then decays to give a relatively broad peak. This peak has been explained

in terms of the dissolution of copper and the formation of chloride-containing species, such as

CuCl and the soluble CuCl2- species [282, 319, 320, 321]. As the CuCl complex species are

formed and deposited at the surface [280, 322], the current decays [165], but then increases

to reach high values in the vicinity of 1.1 mA cm-2. This indicates significant dissolution of

the copper and the generation of Cu(II) species at the higher potentials. Indeed, there is a

noticeable fluctuation in the current from 0.20 to 0.60 V vs. SCE and this is consistent with

the formation of corrosion products and oxides, CuOH, CuCl and CuO [32, 278, 285], with the

current increasing as the copper is dissolved and decaying as the surface is protected with the

corrosion products. Ingelgem et al. [285] showed, from the analysis of the composition of the

corrosion product layers, that the corrosion product layer is porous and consists of both copper

oxides and chlorides, with higher concentrations of chloride in the outermost layer. Different

compositions, with higher concentrations of chlorides and lower levels of Cu2O, were found at

sites of localised corrosion, indicating different rates of dissolution.
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Figure 5.6: Cyclic voltammogram recorded at 1 mV s-1 in 0.10 mol dm-3 NaCl, at a pH of 7.0,
for Cu.
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The protective properties of the PPy-Tartrate/PPy-DBS bi-layer film and the PPy-Tartrate

film are shown and compared in Figure 5.7. The PPy-Tartrate was deposited from 0.30 mol

dm-3 pyrrole at 0.75 V vs. SCE for 600 s, while the PPy-Tartrate/PPy-DBS bi-layer was formed

on depositing PPy-DBS onto the PPy-Tartrate layer in 0.30 mol dm-3 pyrrole and 0.050 mol

dm-3 DBS at 0.70 V vs. SCE for an additional 600 s. Very good corrosion protection properties

are observed with the PPy-Tartrate/PPy-DBS film, in agreement with the data presented in

Figure 5.2. Breakdown of the film occurs at approximately 0.80 V vs. SCE. However, the

protective properties of the PPy-Tartrate film are somewhat different. Clearly, the PPy-Tartrate

polymer film is not as stable as the PPy-Tartrate/PPy-DBS bi-layers. The dissolution of the

copper substrate is visible at potentials of about 0.10 V vs. SCE. The current continues to

increase at higher potentials, but it is clear from a comparison of Figures 5.6 and 5.7 that the

currents are significantly lower than those recorded for the uncoated copper. This indicates that

while the PPy-Tartrate film has a relatively low breakdown potential, significant dissolution of

the copper is not observed.
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Figure 5.7: Cyclic voltammograms recorded at 1 mV s-1 in 0.10 mol dm-3 NaCl, at a pH of 7.0,
for PPy-Tartrate (blue) and PPy-Tartrate/PPy-DBS (green), where the PPy-DBS was formed at
0.70 V vs. SCE for 600 s.

The PPy-Tartrate film was formed for an additional 600 s to increase the film thickness

and although the data are not shown, more protective PPy-Tartrate films were obtained. In this

case, the PPy-Tartrate films remained stable until potentials in the vicinity of 0.50 V vs. SCE
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were applied. However, it is clear that the formation of the additional PPy-DBS layer, to give

the bi-layers, gives rise to a significant increase in the corrosion protection properties of the

polymer. It is clear from a comparison of Figure 5.6 with the data presented in Figures 5.2

and 5.7 that the PPy-Tartrate/PPy-DBS bi-layer is highly protective and limits the dissolution

reactions of copper and the build-up of corrosion products at the copper surface.

These cyclic voltammetry tests were also used to ensure that the electrochemical technique

and solution compositions employed in the formation of the bi-layer gave consistent and

reproducibility films. While the level of reproducibility was generally high, some variations

were obtained. Representative data are shown in Figure 5.8 and it is clearly evident that a

different voltammogram indicating very poor reproducibility is obtained in Figure 5.8a. In

this case, the bi-layer was formed under identical conditions, with the initial PPy-Tartrate film

deposited at 0.75 V vs. SCE for 600 s, followed by the PPy-DBS film at 0.90 V vs. SCE for

300 s. However, a highly protective film is obtained in one experiment, while dissolution of

copper is evident at potentials higher than 0.05 V vs. SCE in the second experiment, giving

very poor corrosion protection properties.

In an attempt to increase the reproducibility of the bi-layer, variations in the solution

temperature, from 15 to 25 °C, the pyrrole concentration, from 0.10 to 0.40 mol dm-3, the

electropolymerisation period, from 300 to 1200 s, the applied potential, from 0.65 to 0.90 V vs.

SCE, and the pH of the solution, from pH values of 6.0 to 8.0, were made during the formation

of the bi-layer. However, data similar to that shown in Figure 5.8a were recorded. Furthermore,

the purity of the water was considered and the solutions were prepared in distilled and de-

ionised water. However, no significant improvement in the reproducibility was obtained.

Finally, excellent reproducibility was achieved on preparing new solutions for each experiment.

Typical plots, which were recorded when new solutions were prepared for each polymer film,

are shown in Figure 5.8b. In this case, highly reproducible voltammograms are obtained and in

all cases the bi-layer shows very good corrosion protection properties, with breakdown of the

film and dissolution of the copper substrate observed at about 0.80 V vs. SCE. Consequently,

new solutions were prepared for all subsequent experiments and the data presented correspond

to freshly prepared solutions.
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Figure 5.8: Cyclic voltammograms recorded at 1 mV s-1 in 0.10 mol dm-3 NaCl, at a pH of 7.0,
for PPy-Tartrate/PPy-DBS formed at 0.75 V vs. SCE for a total period of 600 s and PPy-DBS
deposited at 0.90 V vs. SCE for 300 s (a) aged solutions (green) compared to a fresh solution
(blue) and (b) freshly prepared solutions (green) and (blue).

145



CHAPTER 5. SYNTHESIS AND ANALYSIS OF THE DBS POLYMER FILM

5.2.2 Influence of the Applied Potential and Electropolymerisation Time

The influence of the applied potential and the electropolymerisation period on the corrosion

protection properties of the PPy bi-layer was studied. It is well known that the applied

potential has a significant influence on the rate of electropolymerisation [139, 144] and that

longer electropolymerisation periods give rise to polymer films with increasing thickness [132].

Electropolymerisation proceeds faster at higher applied potentials although the resistance of

the films may increase due to over-oxidation of the polymer backbone [139, 323]. Lewis and

co-workers [324] showed that over-oxidation of PPy begins at 0.65 vs. SCE, at pH 6.0, but

becomes more significant at potentials higher than 0.80 V vs. SCE.

The PPy-Tartrate film was deposited at 0.75 V vs. SCE for 600 s, while the PPy-DBS film

was formed at potentials varying from 0.60 to 0.90 V vs. SCE and for time periods ranging

from 100 to 1200 s. EDX spectra recorded for the bi-layer polymer film deposited at 0.70 and

0.90 V vs. SCE are compared in Figure 5.9. These data were recorded after several washings

of the bi-layer to remove any adsorbed DBS from the surface. It is clearly evident, from the

intense sulfur signal that DBS has indeed been incorporated within the PPy bi-layer. The

influence of the applied potential is also clearly evident. The ratio of the sulfur to copper signal

is considerably higher for the bi-layer formed at 0.90 V vs. SCE. This is consistent with the

formation of a thicker polymer film at 0.90 V vs. SCE. The PPy-Tartrate/PPy-DBS bi-layer

formed at 0.70 V vs. SCE is sufficiently thin to observe X-Rays from the copper substrate,

however the higher rate of electropolymerisation at 0.90 V vs. SCE gives a sufficiently thick

PPy-DBS layer and the X-Rays from the copper substrate are no longer detected. It is also clear

from these EDX spectra, in particular the spectrum presented in Figure 5.9b, that there is little

evidence for dissolved copper ions within the polymer matrix. Although, the PPy-Tartrate film

was polarised at 0.90 V vs. SCE to deposit the PPy-DBS layer, there is no evidence to support

the dissolution of copper and the generation of copper ions which are dispersed throughout the

polymer matrix.
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(a) (b)

Figure 5.9: (a) EDX spectrum of PPy-Tartrate/PPy-DBS with the PPy-DBS layer formed at
0.70 V vs. SCE and (b) EDX spectrum of PPy-Tartrate/PPy-DBS with the PPy-DBS layer
formed at 0.90 V vs. SCE.

The influence of the electropolymerisation period is summarised in Figures 5.10 and 5.11.

In these experiments the PPy-Tartrate layer was deposited at 0.75 V vs. SCE and the PPy-DBS

film was formed at 0.70 or 0.90 V vs. SCE for different time periods, ranging from 100 to

1200 s. The data presented in Figure 5.10 show that there is little difference in the protective

properties of the bi-layer, when the PPy-DBS layer is deposited at 0.75 V vs. SCE for 700 or

800 s. Although not shown, similar voltammograms were recorded for electropolymerisation

periods from 300 to 1000 s, which indicated that this was the optimum electropolymerisation

period. Indeed, when the PPy-DBS film was deposited for 100 or 200 s, dissolution of the

copper substrate was observed, while somewhat less protective bi-layer films were formed

with times greater than 1000 s, as shown in Figure 5.10. A similar trend was observed at

0.90 V vs. SCE, Figure 5.11. In this case, highly protective bi-layer films were obtained

at 300 and 400 s, with breakdown potentials higher than 0.80 V vs. SCE. However, when

the electropolymerisation period was increased to 500 s, breakdown of the bi-layer film was

observed at about 0.40 V vs. SCE. This shows that the optimum electropolymerisation period

at 0.90 V vs. SCE is between 300 and 400 s.
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Figure 5.10: Cyclic voltammograms recorded at 1 mV s-1 in 0.10 mol dm-3 NaCl, at a pH of
7.0, for PPy-Tartrate/PPy-DBS, the PPy-Tartrate was formed at 0.75 V vs. SCE for 600 s and
the PPy-DBS was deposited at 0.70 V vs. SCE for 700 s (red), 800 s (blue) and 1200 s (green).
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Figure 5.11: Cyclic voltammograms recorded at 1 mV s-1 in 0.10 mol dm-3 NaCl, at a pH of
7.0, for PPy-Tartrate/PPy-DBS, the PPy-Tartrate was formed at 0.75 V vs. SCE for 600 s and
the PPy-DBS was deposited at 0.90 V vs. SCE for 300 s (green) and 400 s (blue).
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5.2.3 Influence of the Concentration of DBS

The influence of the concentration of the DBS on the formation and protective properties of

the PPy-Tartrate/PPy-DBS bi-layer was studied by varying the concentration of the DBS in the

electropolymerisation solution [325]. The PPy-Tartrate film was deposited in 0.10 mol dm-3

tartrate at 0.75 V vs. SCE for 600 s, and then the PPy-DBS film was formed at 0.70 V vs.

SCE for 600 s in solutions containing DBS at concentrations ranging from 0.001 to 0.090 mol

dm-3. The bi-layered PPy films were then cycled in 0.10 mol dm-3 NaCl and the results are

shown in Figure 5.12. The concentration of DBS appears to have a clear influence on the

protective properties of the bi-layer, with the DBS concentration at 0.050 mol dm-3 giving the

more protective film, as shown in Figure 5.12a and Figure 5.12b. In all cases, the bi-layer

inhibits the dissolution of the copper substrate, but the breakdown potentials depend on the

concentration of DBS, with breakdown of the film observed at about 0.35 V vs. SCE, with

0.009 mol dm-3 DBS, indicating poor corrosion protection properties. There is a significant

increase in the breakdown potential as the concentration of the DBS is increased, to give more

protective films. However, at relatively high concentrations, of 0.090 mol dm-3, slightly lower

breakdown potentials are measured compared to that recorded with 0.050 mol dm-3 DBS. It

is clear that formation of the PPy-DBS film in 0.050 mol dm-3 DBS gives the best corrosion

protection properties.

It is also evident from the cyclic voltammograms presented in Figure 5.12 that the

magnitude of the reduction currents, measured about -0.05 to -0.50 V vs. SCE, depends on

the concentration of DBS in the electropolymerisation solution. Lower reduction currents

are measured at the higher DBS concentrations, indicating that the DBS inhibits the cathodic

reduction reactions. This is in good agreement with previous literature reports. For example,

Kellou-Kerkouche et al. [326] have shown that DBS blocks the cathodic sites, and this gives

rise to the suppression of the hydrogen evolution reaction. It is well known that the inhibition

efficiency increases with increasing surfactant concentration until it reaches a maximum at the

critical micelle concentration, CMC [201, 207, 327]. However, Kellou-Kerkouche et al. [326]

reported that high inhibitor efficiency was obtained at concentrations above the CMC. This is

in good agreement with previous reports in the literature [328].
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Figure 5.12: Cyclic voltammograms recorded at 10 mV s-1 in 0.10 mol dm-3 NaCl, at a pH of
7.0 for PPy-Tartrate/PPy-DBS, the PPy-Tartrate was formed at 0.75 V vs. SCE for 600 s and
the PPy-DBS was deposited at 0.75 V vs. SCE in the presence of (a) 0.010 (red), 0.050 (blue)
and 0.090 (green) mol dm-3 DBS, (b) 0.005 (blue), 0.009 (green), 0.001 (red) and 0.050 (black)
mol dm-3 DBS.
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5.2.4 Morphology of the PPy-Tartrate/PPy-DBS Bi-layer

The morphology of the PPy-Tartrate/PPy-DBS films formed with different concentrations of

DBS was studied using scanning electron microscopy (SEM). The films were prepared and

washed carefully to remove any adsorbed DBS or monomer from the surface, then dried under a

stream of air. A thin gold layer was sputter deposited onto the films to minimise charging, while

the EDX spectra were recorded in the absence of the sputtered gold film. The PPy-Tartrate layer

was deposited at 0.75 V vs. SCE from 0.10 mol dm-3 tartrate for 600 s, and then the PPy-DBS

layer was formed at 0.75 V vs. SCE for 600 s in the presence of DBS at concentrations varying

from 0.001 to 0.090 mol dm-3. The SEM micrographs are presented in Figures 5.13 for the

PPy-DBS film prepared in 0.005 mol dm-3 DBS, while micrographs recorded under similar

conditions but with different DBS concentrations are presented in Figure 5.14, Figure 5.15,

Figure 5.18, Figure 5.19 and Figure 5.20.

(a) (b)

(c) (d)

Figure 5.13: SEM micrographs recorded for the PPy-Tartrate/PPy-DBS film, where the PPy-
DBS layer was formed at 0.75 V vs. SCE for 600 s in 0.005 mol dm-3 DBS, (a) scale bar
corresponds to 10 µm, (b) scale bar corresponds to 6 µm, (c) the scale bar corresponds to 20
µm and (d) the scale bar corresponds to 60 µm.
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The micrographs presented in Figure 5.13, show that a homogeneous and adherent polymer

film is deposited with 0.005 mol dm-3 DBS. The morphology is similar to that of PPy doped

with simple anionic dopants, such as Cl-, giving the typical cauliflower morphology [145, 245].

The size of the cauliflower structures varies somewhat with the larger structures reaching

diameters of about 3.1 µm, while the smaller structures are approximately 1.5 to 2.0 µm

in diameter. EDX spectra were recorded and spectra similar to that depicted in Figure 5.9

were obtained, confirming the presence of DBS within the polymer bi-layer. The % weight

distributions of copper, sulfur and oxygen were found to be approximately 12.0, 5.1 and 5.8%,

respectively, clearly showing that the DBS is incorporated within the PPy-DBS layer.

The surface morphology of the bi-layer film when the PPy-DBS film was formed in 0.009

mol dm-3 DBS is depicted in Figure 5.14, while similar data recorded with a 0.090 mol dm-3

DBS solution are presented in Figure 5.15. Again, the cauliflower morphology is evident.

However, the size and diameter of the cauliflower structures are significantly larger at the higher

DBS concentration. At a DBS concentration of 0.090 mol dm-3, the diameters vary from 9 to

12 µm, but again a uniform film is formed across the entire electrode, as shown from the

micrograph at lower magnification, Figure 5.15b. The cauliflower structures with a diameter

of about 2 µm, which is similar to that seen in Figure 5.13 were obtained with 0.009 mol dm-3

DBS.

(a) (b)

Figure 5.14: SEM micrographs recorded for the PPy-Tartrate/PPy-DBS film, where the PPy-
DBS layer was formed at 0.75 V vs. SCE for 600 s in 0.009 mol dm-3 DBS, (a) scale bar
corresponds to 6 µm, (b) scale bar corresponds 10 µm.
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(a) (b)

Figure 5.15: SEM micrographs recorded for the PPy-Tartrate/PPy-DBS film, where the PPy-
DBS layer was formed at 0.75 V vs. SCE for 600 s in 0.090 mol dm-3 DBS, (a) scale bar
corresponds to 10 µm, (b) scale bar corresponds to 100 µm.

Again, EDX spectra were recorded for the PPy-DBS film, formed in the presence of 0.009

mol dm-3 DBS, and again, sulfur was clearly evident in the spectra. The % weight distributions

of copper, sulfur and oxygen were found to be approximately 6.1, 4.9 and 6.8%, respectively,

clearly showing that the DBS is incorporated within the PPy-DBS layer. These ratios are

similar to those found with the lower DBS concentration of 0.005 mol dm-3, indicating little

variation in the composition of the film from 0.005 to 0.009 mol dm-3 DBS.

In Figure 5.16, data are presented for the PPy-DBS film deposited from 0.009 mol dm-3

DBS, where the distribution of copper, sulfur and oxygen are shown across the area highlighted

in Figure 5.16a. In this figure the darker areas represent lower levels of the element, while

higher concentrations of the element are indicated by the lightly coloured segments. The

mapping profile for copper shows that more copper is detected at the base of the cauliflower

structures, while the darker middle region, where the cauliflower structures are seen, give a

lower count for copper. This indicates slight variations in the thickness of the bi-layer film. The

oxygen signal shows a similar trend, with lower levels of oxygen at the base of the cauliflower

structure. Interestingly, the sulfur appears to be uniformly dispersed across the mapping area,

indicating that the DBS is incorporated with the PPy-DBS film in a uniform manner. Similar

data were recorded for the 0.005 and 0.090 mol dm-3 DBS concentrations, giving high levels

and uniform distributions of sulfur across the surface.
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(a) (b)

(c) (d)

Figure 5.16: Analysis of the PPy-Tartrate/PPy-DBS film, where the PPy-DBS layer was
formed at 0.75 V vs. SCE for 600 s in 0.009 mol dm-3 DBS (a) area selected for mapping,
(b) distribution of Cu, (c) distribution of sulfur and (d) distribution of oxygen, where the white
coloured segments indicate the presence of the element.

The EDX spectrum presented in Figure 5.17 corresponds to the surface morphology of the

bi-layer formed in the presence of 0.010 mol dm-3 DBS shown in Figure 5.18. The morphology

of the film is shown in Figure 5.18a and Figure 5.18b and again the cauliflower morphology

is evident [26, 245]. The surface appears homogeneous, crack and defect free [1] and the

entire surface is covered with structures that resemble cauliflower which vary in size [26].

The diameter of the cauliflower structures is approximately 1 to 3 µm, which is similar to

that recorded at the lower DBS concentrations, observed in Figure 5.13, and considerably

smaller than the diameters obtained at 0.090 mol dm-3 DBS, Figure 5.15. In Figure 5.18c

and Figure 5.18d cross sections are shown and these were used to give an approximate film

thickness. Using this approach the thickness of the bi-layer was found to range from 1.8 to 3.0

µm.
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Figure 5.17: EDX spectrum recorded of PPy-Tartrate/PPy-DBS bi-layer, where the PPy-DBS
layer was formed at 0.75 V vs. SCE for 600 s in 0.010 mol dm-3 DBS.

(a) (b)

(c) (d)

Figure 5.18: SEM micrographs recorded for the PPy-Tartrate/PPy-DBS film, where the PPy-
DBS layer was formed at 0.75 V vs. SCE for 600 s in 0.010 mol dm-3 DBS, (a) scale bar
corresponds to 10 µm, (b) the scale bar corresponds to 6 µm, (c) and (d) cross-sectional areas
for determination of polymer thickness.
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The EDX spectrum recorded for PPy-Tartrate/PPy-DBS formed in a solution containing

0.010 mol dm-3 DBS is shown in Figure 5.17. This is similar to the spectra recorded in

Figure 5.9, where the PPy-DBS film was deposited from a 0.050 mol dm-3 DBS-containing

solution. The intensity of the copper is low indicating that the bi-layer is sufficiently thick to

block the X-rays from the copper substrate. The presence of the sulfur clearly shows that the

DBS is incorporated within the PPy-DBS layer, while the oxygen signal can be attributed to

the tartrate and DBS. The carbon peak is possibly due to the PPy and the long carbon chain of

the DBS.

The surface morphology of the PPy-Tartrate/PPy-DBS with the PPy-DBS film formed in

the presence of 0.001 mol dm-3 DBS is shown in Figure 5.19. It can be clearly seen that

the surface morphology of the PPy-DBS film is very different. The morphology no longer

resembles that of the typical cauliflower morphology of PPy, but instead adopts oval type

structures which appear to have voids. Although there are still a few cauliflower structures at

this low concentration of DBS, the oval structures are in abundance. As shown in Figure 5.19,

the diameter of an oval structure is measured and found to be 2.7 µm in length, indicating

relatively large structures.

Although the surface morphology is very different at this low concentration of DBS, the

polymer surface is homogeneous, crack and defect free. EDX spectra were recorded, and

although not shown here, the sulfur signal was much lower in intensity than that observed in

Figure 5.17, while a higher copper count was measured. This indicates that the PPy-DBS films

are thin and have a lower amount of DBS incorporated within the PPy-DBS film at this low

DBS concentration. Indeed, the % weight distributions of copper, sulfur and oxygen were

found to be approximately 30.0, 1.2 and 3.1%, respectively, clearly showing the PPy-DBS film

formed with 0.001 mol dm-3 is very different to the films formed at the higher concentrations.

The SEM micrographs recorded for the PPy-Tartrate/PPy-DBS bi-layer formed in the

presence of 0.050 mol dm-3 DBS are presented in Figure 5.20. Again, the characteristic

cauliflower morphology is seen at this higher DBS concentration. The diameter of the

cauliflower structures is approximately 8 to 12 µm, which is very similar to the diameters

calculated for the PPy-DBS film formed in the presence of 0.090 mol dm-3 DBS, Figure 5.15.

Indeed, it is evident from the micrographs presented in Figures 5.13, 5.14, 5.15, 5.18, 5.19

and 5.20 for the different DBS concentrations that the size and diameter of the cauliflower
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structures increase with increasing concentrations of DBS, with the highest diameters observed

at 0.090 mol dm-3 DBS. Uniform and homogeneous films are formed with DBS concentrations

ranging from 0.005 to 0.090 mol dm-3 DBS, however the PPy-DBS films formed in the

presence of 0.050 mol dm-3 DBS, which are shown in Figure 5.20, provide the best corrosion

protection, as highlighted in Figure 5.12. This may be related to the size of the cauliflower

structures and the compact film structure which is evident in Figure 5.20.

(a) (b)

(c) (d)

Figure 5.19: SEM micrographs recorded for the PPy-Tartrate/PPy-DBS film, where the PPy-
DBS layer was formed at 0.75 V vs. SCE for 600 s in 0.001 mol dm-3 DBS, (a) scale bar
corresponds to 6 µm, (b) the scale bar corresponds to 10 µm, (c) the scale bar corresponds to
20 µm and (d) the scale bar corresponds to 1 µm.

It is clear from the EDX analyses presented in Figure 5.9 and Figure 5.17 that the DBS is

incorporated into the polymer films to balance the charge on the polymer chain. It appears that

the large amphiphilic DBS anion is trapped inside the polymer matrix. As the DBS is large and

bulky it is not lost during the reduction of the polymer. Instead, reduction of the polymer is

accompanied by the ingress of Na+ cations from the NaCl electrolyte.
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(a) (b)

(c) (d)

Figure 5.20: SEM micrographs recorded for the PPy-Tartrate/PPy-DBS film, where the PPy-
DBS layer was formed at 0.75 V vs. SCE for 600 s in 0.050 mol dm-3 DBS, (a) scale bar
corresponds to 200 µm, (b) the scale bar corresponds to 60 µm, (c) the scale bar corresponds to
30 µm and (d) the scale bar corresponds to 10 µm.

5.2.5 Preliminary Investigation into the Direct Formation of PPy-DBS at the

Copper Interface

It is evident from the results presented that the PPy-DBS films can be deposited onto an

initial layer of PPy-Tartrate and that the applied potential, electropolymerisation period and the

concentration of DBS in the electropolymerisation solution influence the corrosion protective

properties of this bi-layer. To the best of our knowledge, there are no publications on the direct

electropolymerisation of pyrrole in the presence of DBS to generate a PPy-DBS polymer at

copper. Wang et al. [16] have described attempts, but concluded that the formation of PPy-

DBS at copper was unsuccessful using electrochemical methods. Instead, the PPy films doped

with DBS were prepared on an under layer of PPy doped with oxalate.

Initially, the electropolymerisation of pyrrole at 0.75 V vs. SCE in the presence of 0.050
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mol dm-3 DBS, at a pH of 7.0 was attempted. Although these experimental conditions were

successful in forming the PPy-DBS film at the initial layer of PPy-Tartrate, only the dissolution

of copper was observed and there was no evidence of any polymer formation at the copper

electrode. The applied potential was lowered in an attempt to reduce the rate of dissolution

of the copper substrate, but again there was no evidence of any polymer formation. In order

to establish if the pH of the solution had any significant influence, a pH study was carried

out [65, 275, 329, 330]. The pH of the DBS solution was varied from 5.0 to 9.0, and the

DBS concentration was maintained at 0.050 mol dm-3, while the monomer concentration was

fixed at 0.30 mol dm-3 pyrrole. Highly adherent PPy-DBS films were observed at a pH of 6.0.

Dissolution of the copper was observed at pH values lower than 6.0, and although the copper

appeared passive at higher pH values, close to 9.0, poor reproducibility was obtained and in

some cases the entire copper surface was not covered with the polymer film.

Typical current-time plots recorded for copper polarised at potentials ranging from 0.60

to 0.90 V vs. SCE in 0.05 mol dm-3 DBS and 0.30 mol dm-3 pyrrole at a pH of 6.0 are

shown in Figure 5.21. These current-time transients are very different to that recorded on the

electropolymerisation of pyrrole in the presence of the tartrate anion at a pH of 7.0, Figure 5.3.

The current remains high for a significant time period, which appears to depend on the applied

potential. For example, the current only decays after about 200 s at an applied potential of 0.60

V vs. SCE. This may be connected to the slow rate of electropolymerisation at this applied

potential. This active period is reduced at higher applied potentials, and at 0.80 V vs. SCE,

the current decays after approximately 100 s. It is also evident from Figure 5.21 that the

near constant currents recorded following this active period increase with increasing potential.

This trend may be due to increasing rates of electropolymerisation and the deposition of larger

amounts of the conducting PPy-DBS film to give a higher surface area, however it may also be

related to increasing rates of copper dissolution at the higher applied potentials. Indeed, at an

applied potential of 0.90 V vs. SCE an unusual growth profile is evident. There is a gradual

increase in the current after about 400 s and this may be related to the dissolution of copper

and the breakdown of the polymer film.
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Figure 5.21: Current-time transients recorded for Cu in 0.050 mol dm-3 DBS, 0.30 mol dm-3

pyrrole, at a pH of 6.0 at 0.60 (blue), 0.65 (green), 0.70 (red), 0.75 (black), 0.80 (light blue)
and 0.90 (orange) V vs. SCE.

Nevertheless, very good reproducibility was obtained and nearly identical current-time

transients were recorded at 0.90 V vs. SCE, which suggests that the current-time profile may

not be connected with breakdown of the film and the dissolution of copper. Indeed, when pure

copper was polarised in the absence of the pyrrole monomer, the current remained high during

the entire 1200 s period, which shows that the deposited PPy-DBS film inhibits, at least to some

extent, the dissolution of the copper. EDX spectra were recorded for the PPy-DBS film formed

at 0.90 V vs. SCE and data similar to that shown in Figure 5.17, were obtained, with an intense

sulfur peak and little evidence for the presence of copper. This indicates that the PPy-DBS film

is sufficiently thick to block the underlying copper from the electron beam. Moreover, there

was no evidence of copper-containing corrosion products within the PPy-DBS. Similar data

were recorded for the PPy-DBS films formed at the lower applied potentials. The intensity

of the sulfur and copper peaks varied with the applied potential, with the intensity of the

copper peak decreasing with increasing applied potentials and the intensity of the sulfur peak

increasing gradually with increasing applied potential. This is consistent with the higher rates

of electropolymerisation and the deposition of thicker PPy-DBS films at the higher applied

potentials. In all cases, highly adherent and homogeneous polymer films were obtained.

Further evidence to support this analysis was obtained on cycling the PPy-DBS films
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formed at 0.90 V vs. SCE for 1200 s from -0.50 to 1.0 V vs. SCE in 0.10 mol dm-3 NaCl

at a pH of 7.0. A representative voltammogram is shown in Figure 5.22. This voltammogram

is similar to that shown in Figure 5.2, the currents remain low and there is no evidence of any

copper dissolution until the PPy-DBS coated copper is polarised to potentials higher than about

0.70 V vs. SCE. These data are consistent with the formation of an adherent and protective

PPy-DBS film and there is no evidence to support the dissolution of copper and the formation

of copper-containing corrosion products during the formation of the PPy-DBS films at copper.
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Figure 5.22: Cyclic voltammogram recorded at 1 mV s-1 in 0.10 mol dm-3 NaCl, at a pH of
7.0, for PPy-DBS formed on Cu at 0.90 V vs. SCE for 1200 s in 0.05 mol dm-3 DBS and 0.30
mol dm-3 pyrrole.

The corrosion protection properties of the PPy-DBS film deposited at copper and the PPy-

Tartrate/PPy-DBS bi-layer formed at copper are compared in Figure 5.23. Adherent and stable

films were formed in both cases. The voltammograms were recorded in 0.10 mol dm-3 NaCl

at 1 mV s-1. Good corrosion protection is observed with both polymer films, however the PPy-

Tartrate/PPy-DBS bi-layer gives the best corrosion protection properties with a breakdown

potential higher than 0.85 V vs. SCE. In the case of the PPy-DBS film, the currents remain

low which suggests that the film protects the copper substrate up to relatively high potentials

of about 0.70 to 0.80 V vs. SCE. At this point breakdown of the PPy-DBS film is observed and

the polymer is no longer protective and significant dissolution of the copper substrate occurs.

It can be clearly observed that although the direct formation of the PPy-DBS polymer can be
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achieved at copper, the bi-layer film of PPy-Tartrate/PPy-DBS exhibits the more significant

corrosion protection properties.

The data presented in Figure 5.21, Figure 5.22 and Figure 5.23 clearly show that the PPy-

DBS film can indeed be formed at copper. However, the successful formation of the film is

connected with the pH of the solution, the monomer and DBS concentrations and to a lesser

extent, the applied potential. The EDX analyses showed the presence of the DBS within the

polymer matrix. This is consistent with the trapping of the DBS within the polymer matrix.

DBS is an amphiphilic anion with a polar end that will balance the positively charged oxidised

polymer backbone and a hydrophobic chain that is compatible with the neutral polymer

matrix. Although not shown, the morphology of the PPy-DBS was similar to that presented in

Figure 5.18 and Figure 5.20, with the characteristic cauliflower morphology [26, 245].
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Figure 5.23: Cyclic voltammogram recorded at 1 mV s-1 in 0.10 mol dm-3 NaCl, at a pH of
7.0, for PPy-Tartrate/PPy-DBS (bi-layer green) formed directly on Cu at 0.90 V vs. SCE for
1200 s in 0.05 mol dm-3 DBS and 0.30 mol dm-3 pyrrole (PPy-DBS blue).

Wang et al. [16] concluded that it was difficult to deposit PPy-DBS at copper. Elec-

tropolymerisation was attempted from a 0.10 mol dm-3 pyrrole and 0.10 mol dm-3 DBS

solution. However, dissolution of copper was observed. Indeed, currents as high as 80

mA cm-2 were observed in the DBS-containing solution, indicating that passive films could

not be formed in the DBS solution. However, Wang et al. [16] make no reference to the

pH of the solutions or considered variations in the pyrrole and DBS concentrations, or the
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ratio of these concentrations. Indeed, it has been reported that the pyrrole monomers are

preferentially dissolved into the DBS micellar assembly as a consequence of their hydrophobic

nature [325]. Accordingly, the monomers are transported, included in the core of the

micelles, to the electrode surface and this will have a significant influence on the rate of

electropolymerisation. However, given the concentrations of the monomer used in this study,

0.30 mol dm-3 pyrrole, the concentration of free monomers is sufficiently high to give efficient

rates of electropolymerisation. This is somewhat different to the concentrations used by

Wang et al. [16] in their attempts to deposit PPy-DBS at copper.

Han and Shi [296] have reported the formation of a tri-layer conducting polymer composite

film, PPy/polythiophene/PPy, comprising PPy doped with perchlorate and PPy layers doped by

DBS, PPy-DBS. The PPy-DBS polymer film was deposited first at a stainless steel anode from

an aqueous solution of 0.10 mol dm-3 pyrrole and 0.10 mol dm-3 DBS, with the pH adjusted to

between 3.0 and 4.0. Paisal et al. [325] generated PPy-DBS films at platinum by scanning the

potential between -0.90 and 0.80 V vs. SCE at 20 mV s-1 in an aqueous solution containing

0.10 mol dm-3 pyrrole and various concentrations of DBS ranging from 0.30 to 0.25 mol dm-3.

Careem et al. [331] deposited PPy-DBS polymer films at platinum wire in a solution containing

0.050 mol dm-3 pyrrole and 0.05 mol dm-3 DBS. These reports show that PPy-DBS polymer

films can indeed be formed with careful selection of the experimental conditions. However, the

deposition of the PPy-DBS film at copper, which is prone to oxidation and dissolution, is more

challenging.

As the corrosion protection properties of the PPy-DBS film deposited directly at the copper

surface were somewhat less than the bi-layered, PPy-Tartrate/PPy-DBS film, only the more

promising bi-layer polymer film was selected for further study. The corrosion protection

properties of this bi-layer, formed using the optimum conditions, are presented and discussed

in Section 5.3.

5.3 Assessment of the Corrosion Performance of the Polymer

Coatings

The corrosion protection properties of the PPy-Tartrate/PPy-DBS bi-layer were assessed and

studied using a combination of potentiodynamic polarisation plots, scratch tests, open-circuit
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potential measurements, Tafel analysis and electrochemical impedance spectroscopy.

5.3.1 Potentiodynamic Polarisation Measurements

Potentiodynamic polarisation curves are valuable in rapidly identifying the corrosion protection

properties of any coating or film [312, 332, 333, 334]. In order to investigate the corrosion pro-

tection properties of the PPy-Tartrate/PPy-DBS bi-layer formed at copper, anodic polarisation

data were recorded at a pH of 7.0 in a 0.10 mol dm-3 NaCl solution [8, 39, 280, 335, 336, 337].

These data were recorded by polarising the electrode from -0.50 V vs. SCE in the anodic

direction at a scan rate of 0.1667 mV s-1. Shown in Figure 5.24 are the polarisation data

recorded for the PPy-Tartrate/PPy-DBS polymer-modified copper electrodes and the uncoated

copper electrode. Evident in the trace for the uncoated copper is the dissolution of copper,

this is characteristic of copper in chloride environments due to the formation of corrosion

products, such as CuCl, on the surface. These corrosion products offer some protection

but this is limited, as the potential is increased further dissolution is observed. These plots

depicted for pure copper are consistent with dissolution of copper, with corrosion potentials

close to -100 mV vs. SCE and high anodic currents, exceeding 1 mA cm-2, are observed at

potentials higher than -50 mV vs. SCE. These data are in good agreement with the analysis

carried out by Kear et al. [338] who investigated the literature dealing with the electrochemical

corrosion characteristics of unalloyed copper in aqueous chloride media. It was shown that at

potentials close to the corrosion potential the anodic reaction is under mixed charge transfer

and mass transport controlling kinetics, where the mass transport limiting step is the rate of

movement of a cuprous chloride complex, CuCl−2 , away from the electrode surface and into

the bulk electrolyte. The cathodic reaction is dominated by the comparatively irreversible

reduction of oxygen via either a two- or four-electron exchange reaction which remains under

complete charge transfer control at potentials close to the corrosion potential. At the corrosion

(mixed) potential the anodic reaction is under mixed control, while oxygen reduction is under

pure charge transfer control and, as such, the corrosion rate is dependent on mass transport

conditions. It was also shown that the corrosion of copper in aqueous chloride media is made

complicated by the formation of surface films and these generally act to reduce the rate of both

the anodic and cathodic charge transfer processes.
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Figure 5.24: Potentiodynamic polarisation plots recorded at 0.1667 mV s-1 in pH 7.0, 0.10
mol dm-3 NaCl for the uncoated Cu (blue), (a) PPy-Tartrate/PPy-DBS bi-layer with the PPy-
Tartrate/PPy-DBS formed at 0.90 V vs. SCE for 300 s (red) and formed at 0.70 V vs. SCE for
700 s (green) and (b) PPy-Tartrate/PPy-DBS bi-layer with the PPy-DBS film formed at 0.70 V
vs. SCE for 800 s (green) and formed at 0.90 V vs. SCE for 400 s (red).

The behaviour of the polymer coated copper electrodes is significantly different. It is

obvious that the polymer film inhibits the dissolution of copper. Although the reduction

half reaction is apparent the oxidation of the metal does not occur until high potential values

are reached. The corrosion potential is higher than that observed with the uncoated copper,

and occurs at approximately -0.05 V vs. SCE. Although it is not evident in these plots, the

breakdown of the polymer film is only observed at potentials in the vicinity of 0.80 V vs. SCE.

There is very little difference in the protective properties of the PPy-Tartrate/PPy-DBS films

depicted in Figure 5.24. Formation of the PPy-DBS layer at 0.70 V, 0.75 V and 0.90 V vs.

SCE, for times ranging from 300 to 700 s has little influence on the protective properties of the

bi-layer. In Figure 5.25 the polarisation plots recorded for PPy-Tartrate/PPy-DBS, pure copper

and PPy-Tartrate are compared. Higher currents are measured for the PPy-Tartrate film. This

is consistent with the data presented in Figure 5.7, which show that the PPy-Tartrate film is less

protective that the bi-layer.
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Figure 5.25: Potentiodynamic polarisation plots recorded at 0.1667 mV s-1 in pH 7.0, 0.10
mol dm-3 NaCl for the uncoated Cu (blue), the PPy-Tartrate/PPy-DBS film where the PPy-
DBS layer was formed at 0.70 V vs. SCE for 700 s (red) and the PPy-Tartrate polymer film
deposited at 0.75 V vs. SCE for 1200 s (green).

5.3.1.1 Scratch Test Analysis

In order to establish further the stability of the bi-layer polymer film a scratch test was carried

out [7, 339]. A small scratch was made in the surface of the bi-layer polymer coating at

copper using a sharp object. The polarisation behaviour of the scratched bi-layer coating

was then compared to a freshly deposited bi-layer polymer and the results of this study are

presented in Figure 5.26 and Figure 5.27. It is clear that the bi-layer polymer film without the

scratch is stable and protects the underlying copper from dissolution. This is clearly evident in

Figure 5.27, where the potential is increased to values of 1.00 V vs. SCE. However, the data

recorded for the scratched bi-layer polymer coating is somewhat different. The polymer film

with the scratch has a higher current density and a clear anodic peak is observed at about 0.0

V vs. SCE indicating dissolution of the copper substrate. There is also a shift in the corrosion

potential to lower values, which are more typical of the uncoated copper electrode, Figures 5.24

and 5.25. In addition, the breakdown potential for the scratched coating is considerably lower,

as shown in Figure 5.27. Indeed, the breakdown potential is about 0.10 V vs. SCE, and at
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higher applied potentials dissolution of the copper substrate is observed. These data clearly

show that the bi-layer is no longer highly protective when copper is exposed through a scratch

in the coating.

Al-Hinai and Osseo-Asare [7] observed similar results on performing scratch tests in

the presence of benzotriazole, BTA. Potentiodynamic polarisation curves were recorded for

both the scratched and unscratched electrodes and a clear increase in the current, by several

orders of magnitude, was observed with the scratched electrode. In addition, the open-circuit

potential (OCP) was shifted to more negative potentials, which is consistent with the large

increase in anodic current. The negative shift in OCP observed on the scratched electrodes was

accompanied by an increase in the corrosion current. This was contrary to the trends observed

for the unscratched metal, where the OCP shifts to more positive values and the corrosion

current decreases with increasing BTA concentration.
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Figure 5.26: Potentiodynamic polarisation plots recorded at 0.1667 mV s-1 in pH 7.0, 0.10
mol dm-3 NaCl, for the PPy-Tartrate/PPy-DBS film where the PPy-DBS layer was formed at
0.90 V vs. SCE for 300 s, the unscratched bi-layer (red) and the scratched bi-layer (blue).
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Figure 5.27: Cyclic voltammograms recorded at 0.1667 mV s-1 in pH 7.0, 0.10 mol dm-3 NaCl
for the PPy-Tartrate/PPy-DBS film where the PPy-DBS layer was formed at 0.90 V vs. SCE
for 300 s, the unscratched bi-layer (green) and the scratched bi-layer (blue).

5.3.2 Tafel Analysis

A corroding metal in solution adopts a mixed potential, the corrosion potential, Ecorr, such that

the rate of the anodic reaction of the metal dissolution is equal to the rate of the cathodic

reaction of hydrogen and/or oxygen reduction. If the potential of the corroding metal is

displaced slightly from the corrosion potential, then the potential E is initially a linear function

of the current density, I. This linear relationship holds for a potential displacement of about

10 mV. The slope of the linear polarisation curve, dE/dI, is termed the polarisation resistance,

Rp [261, 262, 310]. The polarisation resistance is inversely proportional to the rate of corrosion

expressed as the equivalent corrosion current density, Icorr, Equation 5.3.

Icorr = B/Rp (5.3)

Measurements of the polarisation resistance provide a valuable means of rapidly determin-

ing the instantaneous rate of corrosion and the value of the constant B can be determined from

weight loss measurements or electrochemical data [309, 310].

As the displacement from the corrosion potential is increased beyond 10 mV, the

polarisation curve increasingly deviates from the linear relationship between the potential
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and current until a region is reached when the potential exhibits a linear dependence on

the logarithm of current density. This behaviour is characteristic of the occurrence of a

single electrochemical reaction on the metal surface, either the oxidation half reaction, or the

reduction half reaction and the current is related to the overpotential, Equation 5.4. Then, the

relationship between the observed potential, E, and current density, I, is given by the Tafel

equation, Equation 5.4. This equation can be expressed in the simpler form, as shown in

Equation 5.5.

E − Er =
2.303RT
αF

log I0 −
2.303RT
αF

log I (5.4)

E − Er = a + b log I (5.5)

The term I0 is the exchange current density, the term E − Er is the overpotential and the

constant, b, which is equal to the slope, dE/d log I of the polarisation curve, is termed the Tafel

slope. In Tafel plots the potential, E, is plotted as a function of the logarithm of the current

density, log I, and provided the corrosion reactions are controlled by activation polarisation, as

is frequently observed, linear plots are obtained. The Tafel lines are characterised by the slope

of the linear region of the polarisation curve. These slopes depend on the nature of the metal

and the environment under consideration. It is possible to extrapolate the anodic and cathodic

linear portions of the polarisation curves to the corrosion potential, Ecorr, and the magnitude of

the current at this intersection is termed the corrosion current, Icorr, which is a direct measure

of the rate of corrosion. However, it should be pointed out that this analysis is strictly only

applicable to activation controlled corrosion processes. It is well known that the dissolution of

copper in chloride-containing solutions is under mixed activation and diffusion control and this

may limit the usefulness of this approach [280, 282].

From the data presented in Figures 5.24 and 5.25 it can be clearly seen that the Tafel

analysis can be applied to the reduction half reactions for the polymer-modified copper and

the uncoated copper electrodes. However, there is no obvious oxidation half reaction for the

PPy-Tartrate/PPy-DBS modified copper system, making it difficult to accurately determine the

Tafel slope, ba. In contrast, the uncoated copper and the PPy-Tartrate modified copper adopt a

typical Tafel plot. The computed corrosion potential, Ecorr, corrosion current, Icorr, and Tafel

slopes, ba and bc, are summarised in Table 5.1. The Tafel slopes obtained for copper are in

relatively good agreement with the data obtained by Mansfeld and Kus [340] for copper in
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chloride solutions, where ba was calculated as 58 mV and bc as 107 mV. The corrosion current,

Icorr, is somewhat lower than the value of 2.0 µA cm-2 reported by Mansfeld and Kus, however,

this is probably connected with the neutral chloride-containing solution. On comparing the

different systems in Table 5.1, it is clear that higher Icorr values are computed for the uncoated

and PPy-Tartrate modified copper, while relatively low Icorr values are seen with the bi-layer

modified copper. This is consistent with the good corrosion protection properties afforded by

this bi-layer polymer film.

Table 5.1: Tafel analysis for uncoated Cu and the polymer-modified Cu electrodes in 0.10 mol
dm-3 NaCl, at a pH of 7.0.

System
ba bc Ecorr Icorr

mV decade-1 mV decade-1 V vs. SCE µA cm-2

Uncoated Cu 68 95 -0.10 0.29
PPy-Tartrate/PPy-DBS (0.75 V
vs. SCE for 600 s)

- 91 -0.05 0.13

PPy-Tartrate/PPy-DBS (0.90 V
vs. SCE for 300 s)

- 57 -0.05 0.19

PPy-Tartrate/PPy-DBS (0.80 V
vs. SCE for 800 s)

- 49 -0.05 0.14

PPy-Tartrate (0.75 V vs. SCE
for 1200 s)

91 48 -0.08 2.00

5.3.3 Open-Circuit Potential (OCP) Measurements

In order to investigate the corrosion protection properties further and the stability of the

polymer-modified copper, immersion experiments were performed and the potential adopted

was recorded as a function of time in the aggressive chloride-containing solution. As detailed

in Section 5.3.2, the corrosion potential is a mixed potential and it depends on the rate of the

anodic and the cathodic half reactions. The evolution of the corrosion, or open-circuit potential,

was monitored as a function of time in 0.10 mol dm-3 NaCl solutions adjusted to a pH of 7.0.

The PPy-Tartrate/PPy-DBS films were deposited with the initial PPy-Tartrate layer formed at

0.75 V vs. SCE for 600 s and then the PPy-DBS films were deposited at either 0.70 V vs. SCE

for 700 or 800 s or at 0.90 V vs. SCE for 300 or 400 s. This corresponds to the optimum

conditions at each potential, Section 5.2.2. The polymer-modified electrodes and uncoated

copper were immersed in the chloride solution and the open-circuit potential was measured
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initially for a period of 3600 s. The electrodes were then removed and stored in a sealed

container with a fresh chloride solution and left overnight. The open-circuit potentials were

then recorded on the following day. Representative results are presented in Figures 5.28, 5.29

and 5.30.

In Figure 5.28 the open-circuit potential is shown as a function of time for the PPy-

Tartrate/PPy-DBS film, where the PPy-DBS layer was formed at 0.75 V vs. SCE for 600 s.

Similar data are presented in Figure 5.29 for the PPy-DBS film deposited at 0.90 V vs. SCE

for 300 s, while the data presented in Figure 5.30 were recorded for the PPy-DBS formed at

0.70 V vs. SCE for 700 s. In all cases, the polymer-modified copper adopts a higher open-

circuit potential compared to the uncoated copper in the chloride-containing solutions. The

open-circuit potential of the polymer-modified electrodes reach a near steady-state potential,

that is always more noble that the potential recorded for the uncoated copper. There is little

variation in this potential from day 1 to day 2, indicating good stability of the bi-layer modified

copper. Similar open-circuit potentials are adopted by the different bi-layer films, Figure 5.28,

Figure 5.29 and Figure 5.30, indicating that the protective properties are similar when the PPy-

DBS layer is formed at 0.90 V vs. SCE for a short period of time, 300 s, or at the lower

potentials of 0.70 and 0.75 V vs. SCE for a longer period, typically 600 to 700 s.

Figure 5.28: OCP recorded in 0.10 mol dm-3 NaCl solution at a pH of 7.0 for uncoated Cu
(red) and PPy-Tartrate/PPy-DBS (blue) where the PPy-DBS layer was formed at 0.75 V vs.
SCE for 600 s.
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Figure 5.29: OCP recorded in 0.10 mol dm-3 NaCl solution at a pH of 7.0 for uncoated Cu
(red) and PPy-Tartrate/PPy-DBS where the PPy-DBS layer was formed at 0.90 V vs. SCE for
300 s, day 1 (blue) and day 2 (green).
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Figure 5.30: OCP recorded in 0.10 mol dm-3 NaCl solution at a pH of 7.0 for uncoated Cu
(red) and PPy-Tartrate/PPy-DBS where the PPy-DBS layer was formed at 0.70 V vs. SCE for
700 s, day 1 (blue) and day 2 (green).
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The open-circuit potentials of the polymer-modified electrodes were monitored over a

period of 15 h and there was no evidence of any decay in the potential to the values adopted

by the uncoated copper electrode. This indicates very good stability over extended periods

of time. If indeed the open-circuit potentials of the polymer-modified copper electrodes did

eventually reach the open-circuit potential of the pure copper then this would indicate a loss in

the protective properties of the polymer films. It is clear from the data presented that there is

no evidence of any substantial loss in the corrosion protection properties of the PPy coatings.

The polymer coatings provide ample protection over a long period of time with no sufficient

evidence of breakdown of the polymer films. Indeed, this is in good agreement with the Tafel

analysis, Table 5.1 and the polarisation data, Figures 5.24 and Figure 5.25.

5.3.4 Electrochemical Impedance Spectroscopy (EIS)

Electrochemical impedance spectroscopy was employed to monitor the corrosion protection

properties of the PPy-Tartrate/PPy-DBS polymer coating, as this technique provides detailed

information on the protective properties of coatings [16, 341, 342, 343]. The impedance

response was recorded as a function of the immersion period, to study the stability and any

loss in the protective properties of the bi-layer coatings [249]. Similar data were recorded for

the uncoated copper and these data were used as a comparison in this investigation. The data

were recorded following different immersion times and at different applied potentials and then

the data were fitted to equivalent circuits, as detailed in Chapter 2.

The electrochemical impedance data were recorded for the uncoated copper and the PPy-

Tartrate/PPy-DBS bi-layers in an aggressive chloride solution, 0.10 mol dm-3 adjusted to a

pH of 7.0. Representative plots are shown in Figure 5.31 for the uncoated copper which was

polarised at -0.20 V vs. SCE. The modulus of the impedance, Z, and the phase angle presented

as a function of the frequency give the Bode plot, while the imaginary and real components

of the impedance are plotted to give the complex plane. The impedance response of uncoated

Cu and the impedance response for the PPy-Tartrate/PPy-DBS bi-layer deposited at the copper

electrode are shown in Figures 5.31 and 5.32. Again, these data were recorded at a fixed

potential of -0.20 V vs. SCE.
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(a) (b)

Figure 5.31: (a) Complex plane and (b) Bode plot recorded in 0.10 mol dm-3 NaCl at pH 7.0
for uncoated Cu polarised at -0.20 V vs. SCE, experimental data recorded at 135 min (blue),
165 min (red) and 200 min (black).

(a) (b)

Figure 5.32: (a) Complex plane and (b) Bode plot recorded in 0.10 mol dm-3 NaCl for PPy-
Tartrate/PPy-DBS (PPy-DBS layer formed at 0.70 V vs. SCE for 800 s) polarised at -0.20 V
vs. SCE, experimental (red) and simulated fitted traces (green).
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These impedance data were fitted to the equivalent circuit depicted in Figure 5.33 using

a non-linear least squares fitting minimisation method, as detailed in Chapter 2. In this

circuit, Rs represents the solution resistance, R1 represents the charge-transfer resistance, while

CPE1 and CPE2 are constant phase elements. Excellent agreement between the experimental

and the simulated data was obtained as shown in Figure 5.32, where the experimental data

are compared to the simulated traces. Constant phase elements were used, rather than pure

capacitors, to determine the capacitance of the interface and also to model the diffusional

processes [256]. Excellent agreement between the experimental data and the theoretical fitted

data was obtained when these frequency-dependent constant phase elements (CPE) were used,

as opposed to ideal capacitors or Warburg elements. Constant phase elements (CPE) take into

account the inhomogeneity of the surface of the electrode [252]. The impedance of a constant

phase element, ZCPE is defined in Equation 5.6. Here, j is the imaginary number, ω is the

angular frequency and the fractional exponent, n, represents a phase shift that is a measure of

surface inhomogeneity, with, n, having values between 0.0 and 1.0 [256, 344].

ZCPE =
1

Q( jω)n (5.6)

When the exponent is zero, n = 0.0, the CPE describes an ideal resistor and when the

exponent is unity, n = 1.0, the CPE is equivalent to an ideal capacitor, while an exponent of

0.5, n = 0.5, corresponds to homogeneous semi-infinite diffusion and in this case the CPE

represents a Warburg diffusion term. The higher exponent values, n >0.95, point to a relatively

high degree of surface homogeneity, while lower values, 0.85<n <0.95, indicate poor surface

homogeneity, consistent with a porous surface [245, 341].

Figure 5.33: Equivalent circuit used in the fitting of the experimental data.

The three traces shown in Figure 5.31 correspond to different polarisation periods of 135,

165 and 200 min, and this highlights the stability of the copper as a function of the polarisation

period at -0.20 V vs. SCE. Although there is some variation in the impedance response, the
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fitted parameters were similar, indicating that the uncoated copper is stable at -0.20 V vs. SCE.

Indeed, this is evident from the cyclic voltammograms presented in Figure 5.11. The n value

for the constant-phase element, CPE1, was close to 1.0, indicating that this component is a near

ideal capacitor and represents the capacitance associated with the double layer. An electrical

double layer exists at the interface between an electrode and its surrounding electrolyte. This

double layer is formed as ions from the solution are attracted to the electrode surface. Charges

at the electrode are separated from the charges of these ions over a very small distance. The

capacitance was calculated as 5 µF cm-2, which is typical of double layer capacitance values

recorded in chloride-containing electrolytes [256, 345]. The CPE1 values remain relatively

constant as a function of the polarisation period. The CPE2 has an n value close to 0.5, which

represents a diffusional term. This is consistent with the fact that the chloride-containing layers

are somewhat porous allowing diffusion to the underlying substrate. The uncoated copper

metal is clearly stable at this potential. Moreover, the impedance is relatively high of the order

of 105 Ω cm2 at 0.01 Hz, Figure 5.31. However, once the applied potential was increased to

more positive potentials, dissolution of the copper was observed.

The impedance response of the PPy-Tartrate/PPy-DBS polymer coating is displayed in

Figure 5.32. This bi-layer was deposited with an initial PPy-Tartrate layer at 0.75 V vs. SCE for

600 s, followed by the PPy-DBS layer at 0.70 V vs. SCE for 800 s. A semi-circle is evident at

high frequency, followed by a straight line portion in the low frequency region. The semi-circle

can be attributed to the charge transfer resistance and the double layer capacitance [277, 322].

The intercept of the semi-circle with the real axis gives the charge transfer resistance value.

The low frequency linear portion is generally believed to be attributed to diffusion [14, 322].

These data were fitted to the equivalent circuit shown in Figure 5.33. The capacitance term,

CPE1, has a value of the order of 100 µF cm-2, and again this can be equated with the double

layer capacitance. The exponent value, n, remains around 0.75 throughout the polarisation

period. Considering that a value of 1 for n constitutes an ideal capacitor, then it can be

concluded that there is some dispersion in the capacitance. This is consistent with the fact

that the polymer has a porous structure. It has been previously reported that at the beginning of

the polymer deposition process a very dense polymer is formed, but with subsequent polymer

chain growth, as in this study, loosely packed porous structures are produced, [1, 173, 286].

The CPE2 parameter has a much higher capacitance value, approximately 30 mF cm-2. These
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high capacitance values have been documented in previous works and are normally associated

with the conducting and charging of the PPy film [346, 347]. In this case the exponent,

n, was calculated as 0.95, indicating that the polymer film has a high capacitance. The bi-

layer appeared to remain stable in the chloride-containing solution and the R and CPE terms

remained essentially constant independent of the polarisation period.

The impedance response of the PPy-Tartrate/PPy-DBS film polarised at 0.40 V is shown in

Figures 5.34 and 5.35, while the date recorded at 0.60 V vs. SCE in a neutral 0.10 mol dm-3

NaCl are presented in Figure 5.36. The data presented in Figure 5.34, show the experimental

and simulated traces, which were recorded following a 40 min polarisation period at 0.40

V vs. SCE, while the data presented in Figure 5.35 were recorded following a 200 min

polarisation period, again at 0.40 V vs. SCE. These data were fitted to the equivalent circuit

depicted in Figure 5.33. There is an increase in the impedance of the bi-layer on continued

polarisation at 0.40 V vs. SCE. This is a clear indication that the bi-layer polymer coating is

indeed protecting the copper substrate from corrosion. This is in good agreement with the

OCP data, Figures 5.28, 5.29 and 5.30, the Tafel analysis, Table 5.1, and the polarisation

plots, Figures 5.24 and 5.25, recorded in the chloride-containing solutions. There appears

to be a diffusional term in both cases. However, this appears to become less prominent as

the polarisation time is increased, thus indicating that the polymer film is densely packed and

provides good corrosion protection to the underlying copper substrate.

The impedance data recorded at 0.60 V vs. SCE at 103, 134 and 165 min are very different

and it is clear that continued polarisation at 0.60 V vs. SCE gives rise to a modification of

the PPy-Tartrate/PPy-DBS bi-layer. The impedance is reduced with continued polarisation and

this is shown more clearly on plotting the impedance recorded at 0.01 Hz as a function of the

polarisation period for the bi-layers polarised at 0.20 V and 0.60 V vs. SCE.
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(a) (b)

Figure 5.34: (a) Complex plane and (b) Bode plot recorded in 0.10 mol dm-3 NaCl for PPy-
Tartrate/PPy-DBS (PPy-DBS layer formed at 0.70 V vs. SCE for 800 s) polarised at 0.40 V vs.
SCE, experimental (red) and simulated fitted traces (green).

(a) (b)

Figure 5.35: (a) Complex plane and (b) Bode plot recorded in 0.10 mol dm-3 NaCl for PPy-
Tartrate/PPy-DBS (PPy-DBS layer formed at 0.70 V vs. SCE for 800 s) polarised at 0.40 V
vs. SCE, experimental (red) and simulated fitted traces (green). Data recorded following 200
min.
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(a) (b)

Figure 5.36: (a) Complex plane and (b) Bode plot recorded in 0.10 mol dm-3 NaCl for PPy-
Tartrate/PPy-DBS (PPy-DBS layer formed at 0.90 V vs. SCE for 300 s) polarised at 0.60 V
vs. SCE, data recorded following 103 min (black), 134 min (red) and 165 min (blue).
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Figure 5.37: Impedance (Z/Ω) plotted as a function of time for the PPy-Tartrate/PPy-DBS
bi-layer film, where the PPy-DBS layer was deposited at 0.90 V vs. SCE for 300 s, held at 0.20
V vs. SCE (blue) and held at 0.60 V vs. SCE (green).
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It is clear from Figures 5.36 and 5.37 that the PPy-Tartrate/PPy-DBS film is not at steady-

state conditions as the impedance varies with time. In Figure 5.37 breakdown of the polymer

film is clearly evident at 0.60 V vs. SCE, when compared to the polymer film polarised at

the lower applied potential of 0.20 V vs. SCE. In this case, the impedance remains essentially

constant indicating very good stability over an extended polarisation period in a harsh chloride-

containing solution. Nevertheless, as the potential is further increased to 0.60 V vs. SCE for

the same extended time period the polymer film is no longer able to maintain this stability and

there is a significant drop in the impedance, indicating breakdown of the polymer at these high

applied potentials. Nevertheless, very good stability is seen at -0.20 and 0.40 V vs. SCE,

Figures 5.31, 5.32, 5.34 and 5.35 and furthermore, as shown earlier in the Tafel analysis,

Section 5.3.2, OCP measurements, Section 5.3.3, and polarisation data, Section 5.3.1, this

bi-layer provides very good corrosion protection properties.

5.4 Summary of Results

The results presented in this chapter show that the PPy-Tartrate/PPy-DBS bi-layer can be

readily formed at copper. The initial PPy-Tartrate layer was formed at 0.75 V vs. SCE for

600 s in 0.30 mol dm-3 pyrrole and 0.10 mol dm-3 tartrate. The PPy-DBS was then deposited

at the PPy-Tartrate film at 0.75 V vs. SCE for an additional 600 s from 0.30 mol dm-3 pyrrole

and 0.050 mol dm-3 DBS at pH of 7.0, to give the bi-layered film. The resultant polymer

layer is black in colour indicating that the PPy is generated in its stable oxidised state. Freshly

prepared solutions were used to deposit the PPy bi-layer, giving very good reproducibility.

EDX analyses confirmed that the DBS was incorporated within the PPy-DBS layer.

The influence of the applied potential and deposition times on the formation of the outer

PPy-DBS film was studied and it was shown that highly adherent and corrosion protective films

were deposited at 0.70 V vs. SCE for time periods ranging from 300 to 1000 s and at 0.90 V vs.

SCE for times between 300 and 400 s. At lower growth times the polymer was not sufficiently

thick to protect the copper substrate and at longer growth times the polymers formed were

less stable. The concentration of DBS was varied from 0.001 to 0.090 mol dm-3 and adherent

bi-layers were formed regardless of the concentration, within this range. However, a DBS

concentration of 0.050 mol dm-3 gave the best corrosion protection properties and as shown
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from SEM analysis of the surface morphology, a compact PPy-DBS was deposited at this

concentration. The cauliflower morphology was observed at the higher DBS concentrations,

however, when the concentration of DBS was reduced to 0.001 mol dm-3, oval-like structures

were observed at the surface and the rate of electropolymerisation was reduced, giving thinner

PPy-DBS layers.

The direct electopolymerisation of pyrrole in the DBS-containing solution to generate the

PPy-DBS film at the copper was successful at a pH of 6.0 in a 0.30 mol dm-3 pyrrole and

0.050 mol dm-3 DBS solution. Homogeneous, adherent and stable PPy-DBS films were formed

directly at the copper substrate at applied potentials from 0.60 V to 0.90 V vs. SCE. Although

these PPy-DBS films showed good corrosion protection properties, somewhat more protective

properties were observed with the PPy-Tartrate/PPy-DBS bi-layers.

The corrosion protective properties of the PPy-Tartrate/PPy-DBS bi-layers were assessed

and studied using a combination of cyclic voltammetry, polarisation curves, Tafel analysis,

open-circuit potential measurements and electrochemical impedance spectroscopy. The bi-

layer adopted a more positive open-circuit potential compared to the open-circuit potential of

the uncoated copper. In addition, the open-circuit potential was stable and constant and did

not decay to the potentials of the uncoated copper, indicating high stability and good corrosion

protection properties. Using cyclic voltammetry and anodic polarisation plots, breakdown of

the bi-layer was only observed at potentials higher than 0.85 V vs. SCE, highlighting the

stability and excellent corrosion protection properties of the bi-layer. Using Tafel analysis

the corrosion current for the bi-layer protected copper was estimated at 0.15 µA cm-2 in

a neutral 0.10 mol dm-3 NaCl solution. Good stability of the bi-layer was also observed

in the electrochemical impedance spectroscopy study. The impedance data were recorded

at potentials from -0.20 to 0.60 V vs. SCE. However, breakdown of the bi-layer coating

was observed at 0.60 V vs. SCE and this potential is somewhat lower than that observed

in the voltammetry measurements. However, this is probably connected with the extended

polarisation periods, at 0.60 V vs. SCE, in the chloride-containing electrolyte.

In conclusion, it appears from the results obtained that the PPy-DBS film is the key factor

in the formation of a highly protective bi-layer polymer. Indeed, the corrosion protection

properties of the PPy-Tartrate layer were significantly lower, with breakdown of the polymer

film at potentials from 0.20 to 0.50 V vs. SCE.
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CHAPTER 6

Synthesis of Viologen Films at the Copper Interface

In this chapter, an alternative approach to the previously discussed polymer coatings was

considered.Since viologens had been used in the past within the research group there was some

existing knowledge on their electrochemistry. However, there has been no previous reports

of viologens being using as corrosion protection films for the metal copper, therefore this

chapter details the results on the corrosion protection properties of methyl viologen (MV),

ethyl viologen (EV) and benzyl viologen (BV) which are presented and discussed. There is

however, some literature on the binding of viologens to the copper metal [348], so this was

useful to understand the chemical interactions taking place in order to obtain the corrosion

protection films at the copper surface.

Most corrosion inhibition involving viologens deals with anti-microbial corrosion. For

example, Yuan et al. [243] reported that viologens are effective in inhibiting microbiology-

induced corrosion, which is very prevalent in the maritime industry. The surface of an

oxidised CuNi alloy was modified, due to the successful build up of the viologen to give

inhibition of the bacterial growth. In a later study, Yuan et al. [265] modified the surface

of stainless steel by covalent coupling of the viologen moieties to the tertiary amino groups of

P(DMAEMA) (2-diamino) ethyl methacrylate brushes on the stainless steel. Enhanced anti-

bacterial and anti-corrosion capabilities against the bacteria, desulfovibrio desulfuricans, were
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revealed using anti-bacterial assays and electrochemical studies in anaerobic seawater. With

the inherent advantages of the high corrosion resistance of stainless steel and the good anti-

bacterial and anti-corrosion capabilities of the viologen-quaternised P(DMAEMA) brushes,

the functionalised stainless steel is potentially useful in harsh seawater environments and for

desalination plants.

As described in more detail, in Section 1.8, viologen molecules exist in nature in the

stable form of dications [241]. When an appropriate potential is applied, they undergo

electron transfer reactions by two consecutive one-electron reduction reactions, as highlighted

in Figure 6.1, leading firstly to the generation of a radical species followed by the formation

of a neutral compound [17]. Viologens have been adsorbed onto metal surfaces, particularly

copper, but this generally involves the deposition of an anionic chloride layer at the surface.

The electrostatic attraction between the partially solvated viologen dications and the anionic

chloride layer is discussed as the main driving force for the viologen stabilisation on the

electrode surface. The laterally ordered V2+ monolayer is hydrophilic with at least four

water molecules for each viologen present within this cationic organic film. The chloride

anions are specifically adsorbed, and in direct contact with the metallic copper surface

underneath the organic layer [241]. The interfacial behaviour becomes even more complex

when reactants and/or products of the electron transfer process are adsorbed on the anion-

modified electrodes. Provided the anions retain to a large extent their negative charge upon

specific adsorption, the subsequent adsorption of cationic reactants from the electrolyte onto

the electrode surface will be facilitated through electrostatic attraction, thus, giving rise to

the formation of “paired” anion-cation layers [349, 350] which remain stable even during

an electron transfer reaction with the bulk solution species. Such an anion-cation layering

effect has recently been reported for the adsorption and subsequent reaction of redox-active

viologens, (1,1’-disubstituted-4,4’-bipyridinium molecules) on a chloride modified Cu (100)

electrode surface [17, 241, 349, 351].

The anodic dissolution of copper in alkaline solutions has attracted a great deal of attention

due to its relevance to the understanding of the corrosion mechanisms of copper [352, 353].

The subject has been studied using galvanic techniques, however cyclic voltammetry has been

widely used to characterise the oxidation process [354]. The formation of weak passivating

layers on copper in aqueous media, especially in alkaline solutions, has been observed and this
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has attracted considerable attention in corrosion research [278, 355]. Electrochemical studies

present conflicting views about the nature and composition of surface oxides especially in

relation to the initial oxidation processes. However, it is generally accepted that the lowest

oxidation state, Cu2O, or a Cu(I) hydroxide, CuOH layer, forms initially at the bare copper

anode [356, 357]. This has a significant influence on the corrosion processes. However, these

films do not offer long-term protection of the copper metal from corrosion and alternative films

or coatings are needed.

Based on previous research on the corrosion protection of copper metal, most studies

involve the formation of polymers in various electrolytes at the surface interface [185, 358].

Accordingly, this study focuses on an alternative method to combat the dissolution of copper

into solution. In this case, three viologens, MV, EV and BV, were deposited at copper

and their corrosion protection properties were assessed. The viologens are depicted in

Figure 6.2, showing the BV, EV and MV groups and the counter anions. As discussed

earlier viologen-modified copper electrodes have been previously used in microbiological

influenced corrosion [243]. However, there has been no focus on atmospheric corrosion or

the development of coatings for the corrosion protection of copper using viologens. The

development of a cheap and environmentally acceptable corrosion protection film for copper

would be a significant step.

Figure 6.1: Scheme representing the first and second reduction for viologen compounds.
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(a) (b)

(c)

Figure 6.2: Chemical structures of the viologens investigated in this study (a) benzyl
viologen (C24H22Cl2N2), (b) ethyl viologen (C14H18Cl2N2O8) and (c) methyl viologen
(C12H14Cl2N2. × H2O)

In this chapter, results are presented and discussed on the deposition of the viologens in the

presence of chloride anions at the copper surface. This was achieved using a simple one-step

electrochemical synthesis using cyclic voltammetry. Surface analytical techniques were used to

obtain information on the morphology and composition of the films. The BV film appeared to

offer the best corrosion protection and the deposition of this viologen at the copper surface was

further explored to optimise the deposition and stability of the layer. The corrosion protection

properties of this layer were compared to the well known benzotriazole (BTA) inhibitor [83].

6.1 Experimental

The experimental approach used in the formation of the viologen films at the copper electrode

and the techniques employed in the analysis of the films are provided in Section 6.1.1,

Section 6.1.2 and Section 6.1.3.

6.1.1 Reagents

The viologens, benzyl viologen dichloride (97%), ethyl viologen diperchlorate (98%) and

methyl viologen dichloride hydrate (98%) were obtained from Aldrich and stored at room

temperature. Unless otherwise stated, a 2.0 × 10-3 or 5.0 × 10-3 mol dm-3 solution of the

viologen was prepared in a 0.10 mol dm-3 NaCl solution, using distilled water. All the

viologen-containing solutions were purged with nitrogen to remove any traces of dissolved

oxygen, before and during the experiments. Other analytical reagents included benzotriazole

(BTA), sodium hydroxide (NaOH) and hydrochloric acid (HCl). These were purchased from
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Aldrich and used as received. Buffers used to calibrate the pH meter, at pH 4.0 and pH 7.0,

were purchased from Lennox Ltd.

6.1.2 Electrodes and Instruments

The electrochemical deposition of the viologens was carried out using a CHi 760C potentiostat.

All measurements were made at room temperature. For the cyclic voltammetry experiments

a copper rod (4 mm diameter) electrode encased in a Teflon holder, previously described in

Chapter 2, Figure 2.3, was used with an exposed surface area of 0.1257 cm2. The rod electrodes

were polished using a 1 µm diamond polish and Buehler micro-cloth, sonicated to remove

any polishing residue using a Branson 1510 sonicator and rinsed well with distilled water to

give a smooth surface finish, as outlined in Chapter 2. A saturated calomel electrode, (SCE),

was used as the reference electrode and a high surface area platinum wire was employed as

the counter electrode. An Orion 720A pH meter, calibrated daily using both pH 4.0 and pH

7.0 buffers, was used in all pH measurements. Scanning electron micrographs were obtained

using a Hitachi FE-scanning electron microscope, with an Oxford instruments Inca X-act 4.12

software package, and EDX analysis was carried out using an EDX Model 51-ADD0009 with

the software package Micro Analysis Suite, while a Emitech K550x was used to sputter thin

films of gold onto the samples for SEM analysis.

6.1.3 Procedures

The viologens were deposited at copper from a 0.10 mol dm-3 NaCl supporting electrolyte

and the viologen concentration was 2.0 × 10-3 or 5.0 × 10-3 mol dm-3, unless otherwise

stated. The solution was adjusted to pH 3.0, using a few drops of concentrated HCl. This

facilitated the deposition of a viologen-Cl-Cu film, as the chloride is the only anion present,

in the case of the MV and BV. The EV diperchlorate salt was used. However, the chloride

concentration is in large excess compared with the ethyl viologen diperchlorate. The chloride

anion is incorporated into the viologen film to balance the charge and give a stable viologen-Cl

complex at the copper interface. The viologen-Cl-Cu film was deposited by cycling the copper

in the viologen-containing chloride electrolyte from -0.20 to 1.00 V vs. SCE at 1 mV s-1 for

the desired number of cycles. The influence of the pH of the viologen-containing solution was

studied by varying the pH of the 0.10 mol dm-3 NaCl solution with the added viologen from a
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pH of 2.0 to 9.0. The pH was adjusted using concentrated HCl or NaOH, ensuring that no other

anions were added to the electrolyte. The chloride concentration was varied from 1.25 × 10-3

to 0.30 mol dm-3 and the pH was maintained at a value of 3.0, while the concentration of the

viologens was varied from 1.0 × 10-4 to 5.0 × 10-3 mol dm-3 in a 0.10 mol dm-3 NaCl solution

at a pH of 3.0. Electrochemical studies were also carried out using BTA as a corrosion inhibitor.

The BTA (2.0 × 10-3 mol dm-3) was added to the 0.10 mol dm-3 NaCl solution and the pH of

the solution was varied between 2.0 to 9.0 using HCl or NaOH. Then the copper was cycled

from -0.20 to 1.00 V vs. SCE at 1 mV s-1 in the BTA-containing solution and the results were

compared to the viologen systems.

After electrochemical deposition, the viologen films were characterised using cyclic

voltammetry by cycling in a potential window from -0.20 to 1.00 V vs. SCE. Scanning electron

microscopy (SEM) was used to study the morphology of the deposited films, while energy

dispersive X-Ray analysis (EDX) was employed to identify the chemical components of the

films. In both cases, flat disc electrodes were used and when necessary, the samples were

sputter coated with a thin gold layer prior to the SEM measurements.

6.2 Results and Discussion

Results are presented and discussed on the formation of the MV, EV and BV films at the copper

surface. The factors that influence the formation of these films are highlighted, while the

corrosion protection properties of the films are compared to the well-known corrosion inhibitor

BTA.

6.2.1 Formation of the Viologen Films

Initially the viologen films were formed on the copper surface using cyclic voltammetry.

This technique appeared to produce uniform films of the viologens on the copper surface.

In Figure 6.3a the cyclic voltammogram recorded at 1 mV s-1 for 2.0 × 10-3 mol dm-3 BV

dissolved in 0.10 mol dm-3 NaCl is presented. As detailed in Section 6.1.3, the solution was

maintained at a pH of 3.0, and the voltammograms were recorded from an initial potential of

-0.20 V vs. SCE to a final potential of 1.00 V vs. SCE. The corresponding charge-potential

plot is depicted in Figure 6.3b.
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(a)

(b)

Figure 6.3: Current plotted as a function of increasing applied potential and (b) charge plotted
as a function of potential for Cu cycled at 1 mV s-1 in 0.10 mol dm-3 NaCl, 2.0 × 10-3 mol dm-3

BV, at a pH of 3.0.

At -0.20 V vs. SCE, the currents are low, indicating little dissolution of the copper at this

potential. This is not surprising given the Pourbaix diagram of copper, Section 1.3, Chapter 1.

However, as the potential is increased to about 0.05 V vs. SCE, the onset of copper dissolution

is observed. The current continues to increase to reach a maximum value of 0.50 mA at

about 0.10 V vs. SCE and then decays rapidly to give a pseudo-passive region. These highly

active conditions are maintained for a short period and indicate active dissolution of the copper.

Indeed, this peak has been explained in terms of the dissolution of copper and the nucleation
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of copper oxides, hydroxides and chloride-containing species, such as CuCl and the soluble

CuCl2- species [283, 359]. According to Kear et al [338] the rate of dissolution is usually

governed by mixed charge transfer and mass transport. As the potential is increased further the

current decays to give a pseudo-passive region, with a current of approximately 0.3 mA. This

indicates the formation of a pseudo-passive film on the copper electrode, following the initial

dissolution of copper. The pseudo-passive region extends from about 0.20 to 0.60 V vs. SCE

and then a more gradual decay in the current is seen. Very good reproducibility was observed

and nearly identical peak potentials, peak currents and a pseudo-passive range were obtained

in all experiments.

The charge-potential plot presented in Figure 6.3b again shows very good stability of the

copper from -0.20 to 0.05 V vs. SCE. Then the charge increases with increasing potential

to give three linear regions. The first extends from about 0.05 to 0.15 V vs. SCE and this

corresponds to the active dissolution of copper. The next linear segment is related to the

formation of the pseudo-passive film and the final segment, with a slightly lower slope, is

consistent with the final more gradual decay in the current as the copper is cycled from

approximately 0.60 to 1.00 V vs. SCE.

In Figure 6.4 the voltammograms recorded for copper cycled in the absence and presence of

the BV are compared. Again, the pH was adjusted to a pH of 3.0. A considerable difference in

the two plots is evident, highlighting the protective properties of the BV films. In the absence of

the viologen, the initial dissolution of copper occurs to give a peak centered at about 0.03 V vs.

SCE, while this initial dissolution appears to be inhibited in the presence of the viologen, with

the peak current at 0.10 V vs. SCE. As the CuCl complex species are formed and deposited at

the surface, the current decays, but then increases to reach high values in the vicinity of 1.0 mA

cm-2 in the absence of the viologen. This indicates that while the initial copper-chloride deposit

offers some corrosion protection, this is limited and dissolution of the copper predominates,

generating Cu(II) species at the higher potential. It is clear that significant dissolution and

corrosion of the copper occurs. Indeed, the currents measured from 0.25 to 0.60 V vs. SCE

are dominated by deposited corrosion products and the periodic removal of these deposits, and

poor reproducibility was obtained in this potential window.
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Figure 6.4: Current plotted as a function of increasing applied potential for Cu cycled at 1 mV
s-1 in 0.10 mol dm-3 NaCl at a pH of 3.0, in the presence (blue) and absence (red) of 2.0 × 10-3

mol dm-3 BV.

Similar data were recorded for the MV and EV and representative plots are shown in

Figure 6.5. Again dissolution of copper is observed from about 0.05 to 0.20 V vs. SCE.

The peak current is similar to that recorded in the BV-containing solution, indicating a similar

dissolution rate of the copper. However, the peaks occur at slightly different peak potentials and

are closer to the peak potentials observed for copper in the absence of the viologen, Figure 6.4.

The current decays rapidly to reach values in the vicinity of 0.05 mA and then increases slightly

to give a pseudo-passive film, with a current of 0.20 mA for the MV and approximately 0.30

mA for the EV. This second broad peak, extending from 0.10 to 0.20 V vs. SCE, indicates

further dissolution of copper. In the case of the MV solution a stable pseudo-passive region is

formed and this remains stable as the copper is polarised at 1 mV s-1 to potentials in the vicinity

of 1.00 V vs. SCE. Again, this highlights that the films are stable and protective. However, for

the EV, the current increases gradually, from about 0.30 to 1.00 V vs. SCE, indicating that these

EV films are not as protective as the MV or BV films. Again, when these data are compared to

that presented in Figure 6.4, it is clear that there is no evidence to support the formation of a

pseudo-passive film in the absence of the viologens. This pseudo-passive layer is only formed

when the viologens are added to the chloride-containing electrolyte.

These results are consistent with the early adsorption of chloride anions at the copper

electrode followed by the viologens to give a protective viologen-containing film. The
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adsorption of anions from the supporting electrolyte can alter the electronic properties of the

surface and as a consequence the charge distribution at the surface-electrolyte interface [39, 41].

Although the initial adsorbed chloride layer is not protective in the case of copper, it gives rise

to the anionic conditions that favour the formation of the viologen films. It is well known that

viologens can form well ordered thin films on metal surfaces, normally consisting of π-stacking

formations [241]. It is clear from Figures 6.3, 6.4 and 6.5 that these films are protective. In

particular, the BV and MV-containing films afford very good corrosion protection to the copper

substrate.

Figure 6.5: Current plotted as a function of increasing applied potential for Cu (red) cycled at
1 mV s-1 in 0.10 mol dm-3 NaCl at a pH of 3.0, in the presence of 2.0 × 10-3 mol dm-3 MV
(black) and 2.0 × 10 -3 mol dm-3 EV (green).

6.2.2 Influence of the Concentration of the Viologens

Another aspect that was investigated was the influence of the viologen concentration on the

formation of the viologen film at the copper surface. Here, the concentration of the viologens

was altered in order to determine if an optimum concentration existed that would provide good

corrosion protection for the copper metal. The concentration of the viologens was varied from

1.0 × 10-4 to 5.0 × 10-3 mol dm-3. Again, the copper was cycled in the viologen-containing

solution adjusted to a pH of 3.0 at a scan rate of 1 mV s-1.

The data recorded for the higher viologen concentrations, 2.0 × 10-3 and 3.0 × 10-3 mol

dm-3 are summarised in Figure 6.6. Data are presented for the BV and EV. In the case of the
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EV, the concentration appears to have some influence, with more stable pseudo-passive films

formed at the higher concentration. This is clearly evident in Figure 6.6b, where the charge

is plotted as a function of the applied potential. In this case, there is very little difference

between the plots until potentials higher than 0.40 V vs. SCE are reached. Then it is clear

that the charge is lower at the higher concentration. Although, there is evidence of copper

dissolution at the lower concentration, it is clear that better stability is observed with the higher

concentration. Accordingly, the EV films are equally as protective as the MV and BV, but a

higher concentration of the EV is required in forming the film. The concentration of the BV

appears to have little influence. The charge is essentially independent of the BV concentration.

Although not shown in the figure, the data recorded for the 5.0 × 10-3 mol dm-3 BV solution

were similar to that presented at the lower concentrations. Similar results were obtained when

the concentration of the viologen was reduced, as highlighted in Figure 6.7. Here data are

presented for the MV, EV and BV systems at a concentration of 4.0 × 10-4 mol dm-3 in

Figure 6.7a and 6.7b, while the plots shown in Figure 6.7c and 6.7d were recorded with EV

and BV at concentrations of 1.0 × 10-4 and 3.0 × 10-4 mol dm-3.

As shown in Figure 6.7a the plot recorded for the BV is similar to that presented in

Figure 6.3a. Indeed, the plots shown in Figure 6.7c and 6.7d, where the BV concentration

is 1.0 × 10-4 mol dm-3 are similar, indicating that the BV films can be successfully formed

using relatively low concentrations of the viologen. Moreover, these films are stable and highly

protective giving stable pseudo-passive films and low charges. Similar results were observed

with the MV. The plot depicted in Figure 6.7a, where the concentration of the MV is reduced

to 4.0 × 10-4 mol dm-3 exhibits equally good stability. Indeed, this is particularly evident in

the charge plot, where a near linear increase in the charge is observed to extend from 0.30 to

1.00 V vs. SCE, indicating no evidence for the dissolution of the underlying copper substrate.

However, very different results are obtained with the EV. When the concentration of the EV

was reduced to 4.0 × 10-4 mol dm-3 significant dissolution of the copper was observed. This

is clearly evident in the increasing currents measured from 0.50 to 1.00 V vs. SCE. Indeed, a

rapid increase in the charge is seen, Figure 6.7b. Even higher rates of dissolution are observed

when the EV concentration is reduced further, as highlighted in Figure 6.7d.
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(a)

(b)

Figure 6.6: (a) Current plotted as a function of increasing applied potential and (b) charge
plotted as a function of applied potential for Cu cycled at 1 mV s-1 in 0.10 mol dm-3 NaCl at a
pH of 3.0 with the addition of BV and EV at a concentration of 2.0 × 10-3 (BV-blue, EV-black)
and 3.0 × 10-3 mol dm-3 (BV-red, EV-green).

Again, these data show that the concentration of the MV and BV, has relatively little

influence on the formation and stability of the films, however protective and stable EV films

can only be formed at concentrations higher than 5.0 × 10-3 mol dm-3. This is interesting

as there is little difference in the MV and EV, as shown in Figure 6.2, except for a slight

difference in the length of the alkyl chain. However, it has been shown by Min et al. [348],

in studying the effects of alkyl chain length on the structure of the viologens formed on a

Cu(100) surface, that the final structure is highly dependent on the length of the alkyl chain.
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(a) (b)

(c) (d)

Figure 6.7: (a) Current plotted as a function of increasing applied potential and (b) charge
plotted as a function of applied potential for Cu cycled in 4.0 × 10-4 mol dm-3 MV (black),
EV (green) and BV (red), (c) current plotted as a function of applied potential and (d) charge
plotted as a function of applied potential for Cu cycled in 1.0 × 10-4 and 3 × 10-4 mol dm-3 EV
(green and black) or BV (blue and red) in 0.10 mol dm-3 NaCl at a pH of 3.0.

The dicationic heptyl viologen showed a highly ordered two dimensional array structure on

the chloride-modified Cu(100) electrode, while the dicationic EV did not show any evidence

of a well-ordered compact structure. As detailed in Section 6.1.1, the EV diperchlorate salt

was employed as the source of the viologen. However, it is unlikely that the perchlorate anion

has any significant effect, as the chloride anion is in large excess and the initial dissolution of

copper is controlled by the chloride anions. The possible participation of the perchlorate anions

in the formation of the viologen films was explored by adding a comparable concentration of

perchlorate salt to the MV solution. However, there was little difference between the data
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recorded in the presence and absence of the perchlorate, suggesting that the observed results

for the EV system are connected with the nature and structure of the deposited films.

6.2.3 The Influence of pH

As previously discussed in Chapter 1, the pH of the solution has a significant effect on the

stability of copper in aqueous solutions. In acidic or slightly acidic solution, dissolution of

copper is observed, Equation 6.1, as the stable domain is the Cu2+ phase, while the oxides are

the stable phases at higher pH values, as shown in the Pourbaix diagram, Chapter 1.

Cu(s)→ Cu2+ + 2e− (6.1)

It is generally accepted that the anodic dissolution of copper is influenced by chloride

concentration independently of pH [85, 360]. However, it is also observed that the chloride

ions have less influence on the dissolution of copper at higher pH values. The E-pH diagram

compiled by Tromans and Sun [361] shows that the CuCl2- complex is stable at low applied

potentials and it becomes increasingly more stable with decreasing pH, while at higher pH it

does not form at all. Instead copper oxides and hydroxy-containing species are generated [85,

361, 362]. Therefore, another factor that was considered in the synthesis of the viologens at

the copper surface was the pH of the solution.

The pH was varied between pH 2.0 and 9.0. This covers a wide pH range extending from

the soluble Cu2+ phase to the Cu2O and hydrated copper oxides. Moreover, it is well known that

OH- adsorption is facilitated at higher pH values to give passivation of the copper surface [78,

278, 279]. The pH of the 0.10 mol dm-3 NaCl with 2.0 × 10-3 mol dm-3 viologen solution was

adjusted using either HCl or NaOH, ensuring that no additional anions were introduced into

the solution. The viologen films were deposited by cycling the copper electrode from -0.20 to

1.00 V vs. SCE at 1 mV s-1. Representative data are presented in Figure 6.8, for copper cycled

in the absence of the viologens and in Figure 6.9 for the BV system at pH values from 2.0 to

9.0.
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Figure 6.8: Current plotted as a function of increasing applied potential for Cu cycled at 1 mV
s-1 in 0.10 mol dm-3 NaCl at pH values of 3.0 (black), 4.0 (green), 5.0 (blue) and 7.0 (red).

The data presented for copper cycled in the absence of the viologens is typical of active

dissolution of the copper substrate. The current continues to increase from about 0.05 V vs.

SCE to the final potential of 0.60 V vs. SCE. The characteristic peak seen at about 0.02 V vs.

SCE, Figure 6.4, is observed at pH 3.0 to 7.0 and there appears to be very little difference in

either the peak position or indeed the peak current as the pH is varied. The current continues

to increase on further polarisation and there appears to be little variation in either the charge or

the current as the pH is varied over this pH range. This is evident from the data presented in

Table 6.1 where the current and charge, measured from the voltammograms at 0.40 V vs. SCE,

are presented for copper in the absence of the viologens.

The data presented for the BV system again are consistent with the formation of a pseudo-

passive film and are significantly different to that obtained for copper in the absence of the

viologens. The initial dissolution peak appears to be dependent on the pH of the solution,

with higher peak currents measured in the more acidic solutions. At a pH of 9.0, this peak is

no longer observed and the current remains higher from about 0.10 to 0.80 V vs. SCE, but

then the current decays as the potential is cycled to values in the vicinity of 1.00 V vs. SCE,

Figure 6.9. This is consistent with the adsorption of OH- and the formation of oxides at pH 9.0.

This inhibits the formation of the initial chloride-containing anionic layer and consequently the

BV-containing films are slower to form at the surface.

196



CHAPTER 6. SYNTHESIS OF VIOLOGEN FILMS AT THE COPPER INTERFACE

(a)

(b)

Figure 6.9: (a) Current plotted as a function of increasing applied potential and (b) charge
plotted as a function of applied potential for Cu cycled at 1 mV s-1 in 0.10 mol dm-3 NaCl with
the addition of 2.0 × 10-3 mol dm-3 BV at pH values of 2.0 (green), 3.0 (purple), 5.0 (black),
6.0 (blue), 7.0 (grey), 8.0 (pink) and 9.0 (blue) and at a pH of 7.0 in the absence of the viologen
(red).

Although the pH has some influence at the lower applied potentials, the formation of the

pseudo-passive layer seems to have little influence on the pH of the solution. Indeed, this

is clearly evident in the charge plots where essentially identical charges are computed as a

function of the pH. Similar data were recorded for the MV and EV and these are summarised

in Tables 6.1, 6.2, 6.3 and 6.4. There is no significant variation in the charge or the current,

measured at 0.40 V vs. SCE, as a function of the pH of the solution, indicating that the pH

has little influence on the formation of the viologen films or on the stability and protective

properties of the films. This is significant as the viologen-containing films have the potential to

protect the copper from dissolution over a wide pH range, extending from pH 2.0 to 9.0.
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Table 6.1: Current and charge recorded at 0.40 V vs. SCE for Cu in the absence of viologens.

Copper (Cu)
pH Current/A Charge/C
3.0 9.59 × 10-4 2.90 × 10-1

4.0 8.58 × 10-4 2.61 × 10-1

5.0 1.66 × 10-3 3.02 × 10-1

7.0 9.46 × 10-4 2.62 × 10-1

Table 6.2: Current and charge recorded at 0.40 V vs. SCE for Cu in the presence of BV.

Benzyl viologen (BV)
pH Current/A Charge/C
2.0 2.71 × 10-4 1.05 × 10-1

3.0 2.71 × 10-4 1.13 × 10-1

5.0 2.44 × 10-4 8.45 × 10-2

6.0 2.26 × 10-4 7.80 × 10-2

7.0 2.46 × 10-4 8.04 × 10-2

8.0 2.54 × 10-4 8.04 × 10-2

9.0 2.59 × 10-4 1.10 × 10-2

Table 6.3: Current and charge recorded at 0.40 V vs. SCE for Cu in the presence of EV.

Ethyl viologen (EV)
pH Current/A Charge/C
2.0 2.74 × 10-4 5.55 × 10-2

3.0 2.38 × 10-4 6.00 × 10-2

5.0 2.28 × 10-4 8.66 × 10-2

6.0 1.51 × 10-4 8.26 × 10-2

7.0 1.82 × 10-4 7.72 × 10-2

8.0 1.86 × 10-4 8.76 × 10-2

9.0 1.88 × 10-4 8.11 × 10-2

Table 6.4: Current and charge recorded at 0.40 V vs. SCE for Cu in the presence of MV.

Methyl viologen (MV)
pH Current/A Charge/C
3.0 3.72 × 10-5 5.00 × 10-2

5.0 8.42 × 10-5 7.28 × 10-2

7.0 1.78 × 10-5 7.00 × 10-2

9.0 6.66 × 10-5 6.88 × 10-2
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6.2.4 The Influence of the Chloride Concentration

The concentration of chloride anions is well known to influence the corrosion products formed

at copper. Different soluble and insoluble chloride-containing copper species have been

observed and identified, and it has been shown that the nature of the corrosion products is

highly dependent on the concentration of the chloride anions.

A number of studies on the mechanism of copper electro-dissolution in chloride media has

been reported [8, 165, 338] and the role of various chloride-containing corrosion products has

been discussed. At chloride concentrations lower than 1.0 mol dm-3, the dissolution of copper

proceeds with the formation of CuCl, as shown in Equation 6.2 [363]. However, several authors

have observed the formation of CuCl2- species, Equations 6.3 and 6.4, and have proposed that it

is these soluble species that control the kinetics of the anodic dissolution of copper in inhibitor-

free solutions. It has also been proposed that the soluble CuCl2- species arise from the oxidation

of copper to the cuprous ion, as shown in Equations 6.5 and 6.6.

Cu + Cl− → CuCl + e− (6.2)

CuCl + Cl− → CuCl−2 (6.3)

Cu + 2Cl− → CuCl−2 + e− (6.4)

Cu→ Cu+ + e− (6.5)

Cu+ + 2Cl− → CuCl−2 (6.6)

At chloride concentrations higher than 1.0 mol dm-3, complexes such as CuCl2−3 and

CuCl3−4 are formed [262, 363]. However, in alkaline solutions containing chloride ions the

mechanism can be very different, with the additional formation of various oxides and hydroxy-

containing species [338, 364]. Indeed in alkaline solutions the formation of Cu2O films can

be favoured over the formation of CuCl [338, 364]. This suggests that the electrochemical

behaviour of copper is governed by two parallel reactions leading to either the formation of the

Cu2O film, that leads to passivity, or nucleation and growth of CuCl layers [91, 365].

The influence of chloride concentration on the breakdown of passive films formed on

copper has been reported. Anodic polarisation data obtained by Thomas and Tiller [80] in
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0.01 and 0.10 mol dm-3 NaCl reveal that although copper is passive in a wide potential region,

breakdown of the passive film occurs and the breakdown potential shifts to more negative

potentials as the chloride concentration is increased. It was also shown that the breakdown

resulted in localised corrosion, or pitting attack. Starosvetsky et al. [282] investigated the

effect of varying the concentration of chloride ions and found that at higher concentrations of

NaCl the anodic current rapidly increased with a positive potential shift, reaching a maximum

current density of approximately 20 mA cm-2 at 50 mV vs. SCE. A reduction in the anodic

current was then observed. This type of anodic behaviour is associated with copper dissolution

through a soluble chloride complex of CuCl2- [338]. Indeed, these CuCl2- species have been

discussed [85, 361] in the dissolution of copper. A linear relationship between the electrode

potential and the logarithm of the current density was obtained and this was explained in terms

of the diffusion of soluble CuCl2- species as the rate-determining step. It was concluded that

dissolution of the copper was diffusion controlled [85, 361]. In addition, the formation of a

CuCl film was proposed [85] in agreement with Equation 6.2.

As chloride anions were used to prepare the viologen films and the concentration of

chloride clearly has a significant influence on the dissolution of copper, the influence of the

chloride concentration on the formation of the viologen films was studied. The chloride

concentration was varied from 2.5 × 10-3 to 0.30 mol dm-3, the concentration of the viologen

was maintained at 2.0 × 10-3 mol dm-3 and the pH of the final solution was adjusted with HCl

to pH 3.0. The viologen-containing films were formed by cycling the copper electrode at a scan

rate of 1 mV s-1 from an initial potential of -0.20 V to 1.00 V vs. SCE. Representative data

are shown in Figure 6.10a where the voltammograms recorded in 0.0125 mol dm-3 NaCl are

presented, for the MV, EV and BV, while data recorded for the BV in the presence of 0.0125,

0.0250 and 0.0500 mol dm-3 NaCl are shown in Figure 6.10b.

It is clear on comparing the data recorded for copper in the absence of the viologen,

Figure 6.10a, to that data presented in Figure 6.4 at the higher concentration, that the

concentration of chloride has a significant influence on the rate of copper dissolution. At the

lower concentration, the current begins to increase at about 0.05 V vs. SCE and relatively high

currents in the vicinity of 0.80 mA cm-2 are observed at 0.80 V vs. SCE, indicating dissolution

of the copper. However, there is no evidence of any peak at the lower potentials, instead the

current increases in a near linear manner with increasing potential. The data recorded for the
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violgens are also very different. The peak observed at 0.08 V vs. SCE, Figure 6.4, is again

evident in the data shown in Figure 6.10. However the peak is considerably broader and occurs

at higher potentials, at approximately 0.22 V vs. SCE. This effect is more clearly evident in

Figure 6.10b. Indeed, the peak currents depend on the chloride concentration, giving a peak

current of 0.14 mA cm-2 in the presence of 0.0125 mol dm-3 NaCl, but increasing to 0.23

and 0.40 mA cm-2 as the chloride concentration is increased from 0.025 to 0.050 mol dm-3.

It is clear that the chloride concentration has a significant influence on the initial dissolution

of copper and as this dissolution is extended over a wider potential range the formation of

the viologen films is somewhat inhibited. This effect is observed for the three viologens, as

highlighted in Figure 6.10a.

(a)

(b)

Figure 6.10: Current plotted as a function of increasing applied potential for Cu cycled at 1
mV s-1 in (a) 0.0125 mol dm-3 NaCl in the absence (red) and presence of 2.0 × 10-3 mol dm-3

BV (green), EV (black), MV (blue) at a pH of 3.0, (b) 2 × 10-3 mol dm-3 BV and 0.0125 (blue),
0.025 (green) and 0.050 (red) mol dm-3 NaCl, at a pH of 3.0.

201



CHAPTER 6. SYNTHESIS OF VIOLOGEN FILMS AT THE COPPER INTERFACE

The influence of higher concentrations of chloride on the formation of the BV films are

shown in Figure 6.11, where data are presented for the BV in 0.10, 0.20 and 0.30 mol

dm-3 NaCl. Relatively sharp peaks are observed, indicating the deposition of a stable CuCl

complex, in a relatively short period, that facilitates the deposition of the viologen. However,

at these higher concentrations, the formation of various soluble copper-chloride species, such

as CuCl2-, CuCl32- and CuCl43-, is possible [283]. Again, the peak current is clearly dependent

on the concentration of the chloride anion and increases to approximately 1 mA cm-2 in the

presence of 0.30 mol dm-3 NaCl. The BV-containing films are formed successfully at these

higher chloride concentrations and accordingly good corrosion protection of the underlying

copper is observed. It appears that 0.10 mol dm-3 is the optimum concentration of the chloride

electrolyte. At this concentration the formation of the CuCl layer is efficient, but the chloride

anion concentration is not sufficiently high to convert the CuCl layer to the soluble CuCl2-,

CuCl32- and CuCl43- species. Similar results were obtained with the MV, while the EV films

were only protective with higher concentrations of the viologen. Again, a 0.10 mol dm-3

concentration of chloride was found to be the optimum in depositing the MV and EV films.

Figure 6.11: Current plotted as a function of increasing applied potential for Cu cycled at 1
mV s-1 in 2.0 × 10-3 mol dm-3 BV and 0.10 (blue), 0.20 (red) and 0.30 (blue) mol dm-3 NaCl,
at a pH of 3.0.
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6.2.5 The Influence of the Immersion Time and Electrochemical Window

The influence of the immersion period in the viologen-containing solution was studied to

determine if the initial immersion in the presence of viologen had any influence on the

formation and protective properties of the viologen-containing films. In these experiments

the copper was immersed in the 2.0 × 10-3 mol dm-3 viologen solution in 0.10 mol dm-3 NaCl

at a pH of 3.0 for periods ranging from 0 to 30 min, then the copper was polarised from an

initial potential of -0.20 V vs. SCE. Representative data are presented in Figure 6.12 for the

BV, EV and MV systems. The data recorded for the BV, Figure 6.12a, clearly show that the

initial immersion period has no influence on the voltammograms, or on the formation of the

BV film at the copper. Likewise, the immersion period has little or no significant influence

on the data recorded for the EV and MV systems. In particular, the initial immersion in

the EV solution does not give rise to any additional protective properties to the film. The

current increases as the potential is increased and the rate of this increase is independent of the

immersion period. It is clear that protective EV-containing films can only be deposited with

higher viologen concentrations. Furthermore, with the longer immersion periods there is no

significant variation in the second broad peak, observed from about 0.10 to 0.30 V vs. SCE,

for the MV system, Figure 6.12.

Studies on the influence of the electrochemical window, in particular the initial potential,

were carried out. Voltammograms were recorded by varying the initial potential from -0.50 to

-0.20 V, and then the copper was cycled at 1 mV s-1 from this initial potential to 1.00 V vs.

SCE in the MV, EV and BV-containing solutions. Although, not shown here, data identical to

that presented in Figure 6.12 were obtained, indicating that the initial potential has no influence

on the formation of the viologen-containing films.
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(a)

(b)

(c)

Figure 6.12: Current plotted as a function of increasing applied potential for Cu cycled at 1
mV s-1 in 0.10 mol dm-3 NaCl, pH 3.0 solution as a function of the immersion period in the
presence of (a) 2.0 × 10-3 mol dm-3 BV (b) 2.0 × 10-3 mol dm-3 EV and (c) 2.0 × 10-3 mol
dm-3 MV (5 min-red, 10 min-black, 15 min-purple, 20 min-green and 30 min-blue).
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6.2.6 Morphology and Surface Analysis of the Benzyl Viologen Films

It is evident from the data presented in Sections 6.2.1 to 6.2.5 that the BV films and, to a

somewhat lesser extent, the MV films are stable and protective, while the EV films are only

protective when higher concentrations of the viologen are employed. Therefore, a surface

analytical study was carried out with the BV system.

As shown in Figure 6.13, the measured current depends on the applied potential, with

relatively high currents from about 0.00 to 0.20 V vs. SCE, then a pseudo-like passive region,

which extends from about 0.20 to 0.60 V vs. SCE and then a further more gradual decay

in the current from 0.60 to 1.00 V vs. SCE, in the presence of the BV. However, as shown in

Figures 6.4 and 6.5, this third region depends on the nature of the viologen and it is not observed

in the absence of the viologen. Instead, there is a considerable increase in the current from 0.60

to 1.00 V vs. SCE in the absence of the viologen, indicating active dissolution of the copper. In

an attempt to determine the morphology and composition of the films deposited at the copper

electrode during this cycling period, the copper electrode was cycled from an initial potential

of -0.20 V vs. SCE to higher potential limits of 0.00, 0.20 and 0.60 V vs. SCE as highlighted

in Figure 6.13, and removed from the solution. The morphology of the modified copper

surface was then analysed using scanning electron microscopy (SEM), while information on

the composition of the viologen-containing films was obtained using energy dispersive X-Ray

analysis (EDX). The copper electrode was immersed in the 0.10 mol dm-3 NaCl solution or

a 0.10 mol dm-3 NaCl solution containing 2.0 × 10-3 mol dm-3 BV and cycled from -0.20

V vs. SCE to upper potential limits of 0.00 V, 0.20 V or 0.60 V vs. SCE at 1 mV s-1. The

electrode was then removed from the electrochemical cell, rinsed several times with distilled

water to ensure a clean surface that was free from any viologens that were not incorporated

within the film and finally dried in a stream of air. This procedure was repeated a number of

times in order to achieve more accurate and reliable EDX results as shown in Figure 6.14.
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Figure 6.13: A typical voltammogram for the formation of BV at the Cu interface. The areas
circled on the plot indicate the potential where the surface analyses were performed.

Figure 6.14: EDX spectrum of Cu cycled from -0.20 to 0.00 V vs. SCE in 0.10 mol dm-3

NaCl, 2.0 × 10-3 mol dm-3 BV, at pH 3.0.
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In Figure 6.15 scanning electron micrographs are shown for the copper electrode polarised

from -0.20 to 0.00 V vs. SCE in the chloride solution and in the BV-containing solution, while

the EDX spectrum recorded for the BV modified copper is shown in Figure 6.14. There is

a considerable difference between the micrographs presented in Figure 6.15 for the copper

cycled in the chloride solution and in the BV solution. A layer or film is clearly evident on the

copper cycled in the BV-containing solution and as shown in the EDX spectrum, Figure 6.14,

this layer is composed of chloride, at a relatively high concentration, oxygen and carbon. The

presence of the chloride is consistent with the formation of a CuCl complex layer, while the

oxygen indicates the formation of copper oxides or hydroxides, possibly Cu2O, Cu(OH), or

hydrated oxides of Cu2O. Although Cu2O is in equilibrium with CuO, it is unlikely given the

Pourbaix diagram of Cu, Chapter 1, Section 1.3.1, that significant amounts of CuO are formed

as the potential was only cycled to 0.00 V vs SCE. The presence of the carbon, which was

not detected when the copper was cycled in the simple chloride solution, is evidence for the

presence of the BV.

(a) (b)

(c) (d)

Figure 6.15: SEM micrographs of Cu cycled from -0.20 to 0.00 V vs. SCE in (a) 0.10 mol
dm-3 NaCl, pH 3.0 at 10 µm (b) 0.10 mol dm-3 NaCl, 2.0 × 10-3 mol dm-3 BV, pH 3.0, at 10
µm (c) 0.10 mol dm-3 NaCl, pH 3.0 at 100 µm and (d) 0.10 mol dm-3 NaCl. 2.0 × 10-3 mol
dm-3 BV, pH 3.0 at 20 µm.
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The EDX spectrum, presented in Figure 6.14, for the viologen-modified surface clearly

shows the formation of a CuCl layer, or film, at the surface, while the carbon signal indicates

the presence of the BV. The EDX spectrum was recorded at a number of different points on

the surface and the spectra collected were similar. In particular, carbon was detected in all

analyses, indicating a uniform or near uniform viologen-containing film at the copper surface.

Although not shown, the EDX spectra of the copper cycled in the acidified chloride solution

but in the absence of the BV, indicate the formation of the chloride layer, however the intensity

of the signal at 2.7 keV is somewhat reduced, which may indicate that the formation of the

CuCl complex is facilitated in the presence of the BV. In addition, there was no evidence of

carbon in any of the spectra, suggesting that the carbon is indeed related to the presence of the

BV.

The SEM micrographs obtained for the copper cycled in the presence and absence of the

BV from -0.20 to 0.20 V vs. SCE are shown in Figure 6.16. These micrographs are very

different compared to the micrographs depicted in Figure 6.15, showing a considerable change

in the surface morphology, when the copper is polarised to 0.20 V vs. SCE. At this potential,

significant dissolution of the copper is observed, as shown in Figure 6.4 and this alters the

morphology of the surface. At this potential, there is little difference between the morphology

of the copper cycled in the presence and absence of the BV. The EDX spectrum recorded for

the BV-modified surface is presented in Figure 6.17. Again, the C signal indicates the presence

of the viologen, while the O and Cl arise from the formation of copper oxides and the CuCl

layer. At this potential, the copper oxides, are likely to be dominated by the Cu(II) oxide

species, such as CuO, Cu(OH)2, Cu2(OH)3Cl, as indicated in the Pourbaix diagram of copper,

Chapter 1, Section 1.1. Interestingly, the ratio of the Cu to Cl signals is similar to that observed

in Figure 6.14, where the potential was cycled to 0.00 V vs. SCE. This indicates that a higher

concentration of chloride-containing species is not observed on cycling the copper to 0.20 V

vs. SCE in the BV solution. The EDX spectrum of the copper cycled to 0.20 V vs. SCE,

but in the absence of the BV, showed evidence for the presence of the oxides and again no

carbon was detected. However, the ratio of Cl to Cu was considerably higher. This indicates a

significant increase in the concentration of chloride-containing species at the higher potential

of 0.20 V vs. SCE. This is not surprising as significant dissolution of the copper is observed at

this potential, as shown in Figure 6.4.
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(a) (b)

(c) (d)

Figure 6.16: SEM micrographs of Cu cycled from -0.20 to 0.20 V vs. SCE in (a) 0.10 mol
dm-3 NaCl, pH 3.0 at 30 µm (b) 0.10 mol dm-3 NaCl, 2.0 × 10-3 mol dm-3 BV, pH 3.0, at 30
µm (c) 0.10 mol dm-3 NaCl, pH 3.0 at 100 µm and (d) 0.10 mol dm-3 NaCl. 2.0 × 10-3 mol
dm-3 BV, pH 3.0 at 100 µm.

Figure 6.17: EDX spectrum of Cu cycled from -0.20 to 0.20 V vs. SCE in 0.10 mol dm-3

NaCl, 2.0 × 10-3 mol dm-3 BV, pH 3.0.
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The morphology of the copper cycled in the absence and presence of the BV from -0.20

to 0.60 V vs. SCE is shown in the micrographs presented in Figure 6.18. Again, there is

little difference between the morphology in the absence and presence of the BV. On comparing

these micrographs to those presented in Figure 6.16, it is clear that the morphology is slightly

different, with clear leaf-like structures formed at the higher potential in the presence of the

viologen. These are somewhat less developed in the simple chloride-containing solution,

Figure 6.18. Although, not shown, the EDX spectra are dominated by the CuCl complex at this

potential in the absence of the viologen. Again, the CuCl complex is evident in the presence of

the viologen and the main difference between the spectra is the carbon signal, which indicates

the presence of the BV.

(a) (b)

(c) (d)

Figure 6.18: SEM micrographs of Cu cycled from -0.20 to 0.60 V vs. SCE in (a) 0.10 mol
dm-3 NaCl, pH 3.0 at 30 µm (b) 0.10 mol dm-3 NaCl, 2.0 × 10-3 mol dm-3 BV, pH 3.0, at 30
µm (c) 0.10 mol dm-3 NaCl, pH 3.0 at 100 µm and (d) 0.10 mol dm-3 NaCl. 2.0 × 10-3 mol
dm-3 BV, pH 3.0 at 100 µm.
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Although it is well known that EDX is only a qualitative technique [260, 366], a quantitative

analysis was attempted to obtain information on the composition of the films as the potential

was varied. The EDX analyses were repeated several times on different samples and at different

points on the surface. Very good reproducibility was obtained at different points on the same

sample, indicating uniform coverage of the copper. The intensity of the Cl and Cu signals

for both the copper and the viologen-modified copper electrode were recorded, while the C

signal was monitored in the case of the viologen-modified surface. The results for the copper

cycled in the chloride solution, and in the absence of the BV are summarised in Tables 6.5, 6.6

and 6.7, while the data recorded in the presence of the viologen are shown in Tables 6.8, 6.9

and 6.10, where the upper potential limits are 0.00, 0.20 and 0.60 V vs. SCE. The data shown

in these tables correspond to different samples. There is reasonably good reproducibility and

the standard deviations, which are provided in the table, are relatively small, indicating that

while this analysis may not be appropriate to determine the actual composition of the films,

trends as the potential is varied and the viologen is added can be observed.

At -0.20 V vs. SCE, the EDX spectra are dominated by the Cu signal and only low

amounts of the CuCl complex are formed, with the Cl signal at about 0.16 ± 0.04%, Table 6.5.

This is consistent with the micrographs, presented in Figure 6.15, which show no evidence of

corrosion. However, as the potential is increased to 0.20 V vs. SCE, a considerable increase

in the concentration of chloride-containing species is evident, Tables 6.5, 6.6 and 6.7. This

is consistent with the dissolution of copper and the generation of corrosion products, such as

CuCl, CuCl2- and Cu2(OH)3Cl species. It is also evident from Tables 6.5, 6.6 and 6.7, that the

Cu signal is reduced from approximately 90% to 69% on increasing the potential from -0.20 to

0.60 V vs. SCE. This indicates the formation of a layer of corrosion products on the surface,

which is clearly visible in the SEM micrographs, shown in Figures 6.16 and 6.18.

The data obtained in the presence of the BV are presented in Tables 6.8, 6.9 and 6.10 and

in this case the C signal is also monitored as a function of the upper potential limit. From

the results presented it is obvious that the carbon content increases slightly as the potential is

increased from -0.20 to 0.60 V vs. SCE. This suggests that although the BV is adsorbed onto

the copper at -0.20 V vs. SCE, slightly higher amounts are incorporated as the potential is

increased. There is a significant reduction in the concentration of chloride-containing species

in the presence of the BV, particularly at the higher applied potentials, Tables 6.8, 6.9 and 6.10.
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This clearly shows that very good corrosion protection is achieved by incorporating the BV

into the films. The data obtained at -0.20 V vs. SCE, shows that the BV adsorbs onto the

chloride-modified copper surface, but there is no further increase in the chloride content as the

potential is increased. The presence of the viologen at the surface seems to stabilise the initial

CuCl complex layer that is formed at -0.20 V vs. SCE to give good corrosion protection of the

underlying copper substrate.

Table 6.5: The % of Cl and Cu (n = 4) for Cu cycled to 0.00 V vs. SCE in 0.10 mol dm-3

NaCl.

% Cl % Cu
0.20 93.8
0.16 86.0
0.10 97.4
0.16 86.0

Average 0.16 90.8
Standard Deviation 0.04 5.7

Table 6.6: The % of Cl and Cu (n = 13) for Cu cycled to 0.20 V vs. SCE in 0.10 mol dm-3

NaCl.

% Cl % Cu
27.9 72.3
27.0 63.7
15.4 82.2
20.9 71.3
23.0 66.8
13.0 81.4
19.0 74.4
30.7 57.9
26.5 64.2
26.2 71.7
20.3 70.3
20.0 80.3
20.7 78.3

Average 22.3 71.4
Standard Deviation 5.1 7.4
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Table 6.7: The % of Cl and Cu (n = 7) for Cu cycled to 0.60 V vs. SCE in 0.10 mol dm-3

NaCl.

% Cl % Cu
31.8 75.2
21.6 64.0
21.5 71.9
16.5 72.5
22.5 65.5
22.7 65.7
21.8 70.3

Average 22.5 69.3
Standard Deviation 4.5 4.2

Table 6.8: The % of Cl, C and Cu (n = 12) for Cu cycled to 0.00 V vs. SCE in 0.10 mol dm-3

NaCl and 2.0 × 10-3 mol dm-3 BV.

% C % Cl % Cu
3.7 7.1 89.0
1.9 4.0 90.7
2.3 7.8 81.0
0.6 7.4 82.6
0.6 1.8 91.9
1.5 7.4 81.0
1.8 7.1 81.6
0.5 1.2 93.4
2.6 6.3 81.0
0.5 4.9 88.2
0.9 6.2 85.8
1.2 4.1 90.9

Average 1.5 5.4 86.4
Standard Deviation 0.9 2.2 4.8

Table 6.9: The % of Cl, C and Cu (n = 6) for Cu cycled to 0.20 V vs. SCE in 0.10 mol dm-3

NaCl and 2.0 × 10-3 mol dm-3 BV.

% C % Cl % Cu
4.4 3.8 90.4
4.1 4.7 90.3
5.8 4.4 90.1
6.5 3.5 89.6
4.4 3.6 89.6
5.3 4.1 90.4

Average 5.1 4.0 90.1
Standard Deviation 0.9 0.4 0.3
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Table 6.10: The % of Cl, C and Cu (n = 8) for Cu cycled to 0.60 V vs. SCE in 0.10 mol dm-3

NaCl and 2.0 × 10-3 mol dm-3 BV.

% C % Cl % Cu
4.9 3.7 87.1
4.1 3.4 92.1
5.9 3.9 89.2
7.6 3.7 89.5
6.7 3.4 90.8
5.3 3.6 89.1
6.7 3.5 83.5
6.0 3.9 90.8

Average 5.91 3.6 89.0
Standard Deviation 1.1 0.19 2.6

6.2.7 Comparison with Benzotriazole (BTA)

Benzotriazole (BTA) is one of the most widely used inhibitors in the corrosion protection

of copper and its alloys [7], and for this reason the properties of the viologen system were

compared to this well-known and documented corrosion inhibitor. BTA is a heterocyclic

compound, as shown in Figure 6.19, and it appears to function as an inhibitor through chemical

bonding to the metal or metal oxide surface [83]. The presence of the nitrogen atoms in

the triazole ring enables bonding with copper and this gives a highly stable film with good

corrosion protection properties.

Commencing with the pioneering work of Cotton and co-workers [367] many investiga-

tions relating to the inhibition phenomenon observed with BTA have been published [69, 90].

These include comparative electrochemical and corrosion studies in the presence and absence

of BTA. The early work published by Cotton et al. [70, 82] postulated that the corrosion

inhibition effect of BTA is due to the formation of a strongly bonded chemisorbed two-

dimensional barrier film less than 50 Å thick. This insoluble film, which may be a

monomolecular layer, protects copper and its alloys in aqueous media, and also in the presence

of lubricants, and hydraulic fluids. BTA has been described as an anodic corrosion inhibitor

and its deposition at the copper surface has been shown to follow the Langmuir isotherm,

followed by the formation of complex Cu(I)-BTA [368, 369]. Coordination between the

BTA molecule and the copper occurs through the nitrogen atom of the triazole ring. BTA

molecules can be oriented in parallel or vertical to the surface [90, 370]. The orientation of

the inhibitor molecule is important because of the possibility of formation of stronger bonds if
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the orientation is parallel due to interaction of the π electrons of the ring with vacant d orbitals

of copper [90, 368, 370, 371]. The complex formation can be described by Equation 6.7,

where Cu-BTAH(ads) corresponds to the adsorbed BTA at the copper surface. In the presence

of oxidants or by anodic polarisation, the adsorbed BTAH is transformed to the Cu(I)-BTA

complex, as shown in Equation 6.8.

Cu(s) + BT AH → Cu − BT AH(ads) (6.7)

Cu − BT AH(ads) → Cu(I) − BT A + H+ + e− (6.8)

Figure 6.19: Chemical structure of benzotriazole (BTA).

From this equation it can be seen that an increase in the BTA concentration shifts the

reaction towards formation of larger amounts of protective complex, Cu(I)-BTA. Indeed, this

is confirmed in numerous experiments. For example, Tromans and Sun [85] constructed the

E-pH diagrams for systems containing copper and BTA that provide an indication when the

protective action can be expected, and when not, depending on pH, potential and inhibitor

concentration. As the adsorption is an exothermic process an increase in temperature has an

adverse effect on the inhibition efficiency.

In these experiments the protective properties of the viologen films were compared to that

afforded by the BTA in 0.10 mol dm-3 NaCl with pH values ranging from 2.0 to 9.0. The

concentration of the BTA was 2.0 × 10-3 mol dm-3. This is typical of the concentrations used in

literature reports [313], and compares well with the values given by Tromans and Sun [85], but

in some cases BTA concentrations as high as 0.01 mol dm-3 have been employed [313, 368]. In

addition, the BTA solutions were not de-oxygenated, as it has been reported that the presence of

dissolved oxygen facilitates the formation of the Cu(I)-BTA [313, 369]. This is connected with

the oxidising properties of the adsorbed oxygen, which gives rise to Cu(I) and the formation
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of the Cu(I)-BTA complex [372, 373]. The data recorded in the acidified solution, at a pH of

3.0, are shown in Figure 6.20. Here the data recorded for copper in the 0.10 mol dm-3 NaCl

solution, in the absence and presence of the viologens, and in the presence of BTA are shown.

Again the potential was cycled at 1 mV s-1 from -0.20 to 1.00 V vs. SCE. Apart from the EV

system, the BV and MV and the BTA show good corrosion protection. However, the charge

plots indicate the formation of a highly stable and protective film in the presence of BTA.

Accordingly, under these slightly acidic conditions the BTA provides the more protective film.

The protective properties of the BTA are more clearly shown in Figure 6.21, where the results

recorded under identical conditions are compared [7]. There is no evidence of the characteristic

peak at about 0.08 V vs. SCE observed for the viologen system. Instead, the currents remain

low until the breakdown of the film occurs between 0.20 and 0.80 V vs. SCE.

It has been shown that relatively thick BTA films are formed under slightly acidic

conditions and that these films can be porous and permeable to oxygen and indeed other

species [371]. This might account for the difference observed in the breakdown potentials

recorded in Figure 6.21, which vary by about 600 mV. It has also been reported by Musiani et

al. [374] that the degree of Cu(I)-BTA polymerisation is pH dependent, with higher rates at

higher pH values due to the presence of stable copper oxides. The role of copper oxides in

the adsorption of BTA is controversial with several reports indicating that oxides are essential

for the adsorption of BTA [375, 376], while other reports indicate that these oxide phases are

not particularly important [69, 70, 90, 377, 378, 379, 380]. In the presence of 0.10 mol dm-3

NaCl and at a pH of 3.0, these copper oxides are not stable. However, Tromans and Sun [85]

have shown that the Cu(I)-BTA complex can be formed on oxide-free copper in the presence

of chloride anions, in accordance with Equations 6.9, 6.10 and 6.11.

Cu + BT AH → Cu − BT AH(ads) (6.9)

nCuCl−2 + nBT AH → (Cu(I) − BT A)n + nH+ + 2nCl− (6.10)

Cu − BT AH(ads) + Cu(I) − BT An → [Cu − BT AH + (Cu(I) − BT A)n](ads) (6.11)
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(a)

(b)

Figure 6.20: Current and charge plotted as a function of increasing applied potential for Cu
cycled at 1 mV s-1 in 0.10 mol dm-3 NaCl, pH 3.0 solution in the absence (red) and in the
presence of 2.0 × 10-3 mol dm-3 BV (blue), 2.0 × 10-3 mol dm-3 EV (green), 2.0 × 10-3 mol
dm-3 MV (black) and 2.0 × 10-3 mol dm-3 BTA (purple).

Figure 6.21: Current plotted as a function of increasing applied potential for Cu cycled at 1
mV s-1 in 0.10 mol dm-3 NaCl, pH 3.0 solution in the presence of 2.0 × 10-3 mol dm-3 BTA.
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The adsorption of BTA occurs as shown in Equation 6.9, while the Cu(I)-BTA complex is

formed in the diffusion layer through reaction with CuCl2-, Equation 6.10. Then, this complex

is adsorbed on the initial Cu-BTAH(ads) monolayer to form a polymeric film, Equation 6.11.

The protective properties observed with the BTA molecule, Figures 6.20 and 6.21, are

consistent with this sequence of reactions.

The protective properties of the MV, EV and BV films are compared with the BTA inhibitor

in 0.10 mol dm-3 NaCl solutions at a pH of 5.0 in Figure 6.22 and at a pH of 7.0 in Figure 6.23.

Again, there is no evidence of the initial dissolution of copper in the presence of BTA at pH 5.0

or at pH 7.0. Indeed, this may be related to Equations 6.9 and 6.10, where the adsobed BTA

inhibits the dissolution of copper and complexes with any CuCl2- species that are generated.

The data recorded at a pH of 5.0 show the breakdown of the film at about 0.58 V vs. SCE. This

is followed by significant dissolution of the copper.

The data shown for the pH 7.0 solution indicate little difference between the copper cycled

in the presence of the BTA and in the absence of the BTA, this is particularly evident in the

charge-potential profile. Similar results were obtained as the pH was increased further [368].

This is somewhat surprising as many reports indicate that BTA is more effective at higher

pH values. However, at these higher pH values the copper oxides are more stable and

the BTA action may be hindered, and under these conditions the reactions highlighted in

Equations 6.9, 6.10 and 6.11 will no longer be the predominant steps in the formation of the

Cu(I)-BTA complex.

Figure 6.22: Current plotted as a function of increasing applied potential for Cu cycled at 1
mV s-1 in 0.10 mol dm-3 NaCl, pH 5.0 solution in the absence (red) and presence of 2.0 × 10-3

mol dm-3 BV (blue), EV (green) , MV (black) or BTA (purple).
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This lack of corrosion protection at the higher pH values may also be connected to the

nature of the BTA molecule and the initial adsorption of the BTA at the copper surface. The

BTA molecule can exist in three different forms depending on the pH in aqueous solution, as

shown in Equations 6.12 and 6.13 [368]. It is clear that in alkaline conditions the molecule is

predominantly present as the anionic form, while at a pH of 7.0 a mixture of the neutral and

anionic species are present. At a pH of 3.0, a significant concentration of the cationic species

exists.

BT AH+
2 → BT AH + H+, pK = 1.0 (6.12)

BT AH → BT A− + H+, pK = 8.2 (6.13)

As the CuCl complex layer is anionic, the adsorption of the BTA- is inhibited due to the

unfavourable electrostatic interactions. This, in turn, will give rise to poor or weak adsorption

on the CuCl layer [380].

The breakdown of the BTA film is clearly very different to that observed with the EV

system. A rapid increase in the current is observed with the BTA system, as shown in

Figures 6.21 and 6.22. This breakdown has been described in terms of the local rupture of the

Cu(I)-BTA film [368]. It has been proposed that once the initial Cu(I)-BTA film is formed, a

Cu2O underlayer is formed. As the potential is increased the higher flux of Cu(I) ions gives rise

to the precipitation of CuCl between the Cu2O and the Cu(I)-BTA overlayer. As the Cu2O is

doped with chloride anions, the conductivity of the layer is increased and this enhances the rate

of CuCl formation between the Cu2O and the Cu(I)-BTA layers. At some point the mechanical

stress and tension between the layers gives rise to the local rupture of the Cu(I)-BTA film and

significant dissolution of the underlying copper is observed. This is consistent with the results

presented in Figures 6.20, 6.21 and 6.22, while the data presented in Figure 6.23 are more

consistent with poor adsorption of BTA at the CuCl layer and the loss of the resulting Cu(I)-

BTA due to poor adhesion of the film to the surface. These effects are not observed with the

BV-containing film. Indeed, it has been shown in the literature that once the viologen adsorbs

at the CuCl complex layer there is no further uptake of chloride anions [17]. This is in good

agreement with the EDX analyses presented in Tables 6.8, 6.9 and 6.10 which clearly show no

increase in the chloride content with increasing potential. Consequently, the local rupture of

the BV film or indeed the EV or MV films is not observed.
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(a)

(b)

Figure 6.23: Current and charge plotted as a function of increasing applied potential for Cu
cycled at 1 mV s-1 in 0.10 mol dm-3 NaCl, pH 7.0 solution in the absence (red) and presence
of 2.0 × 10-3 mol dm-3 BV (blue), 2.0 × 10-3 mol dm-3 EV (green), 2.0 × 10-3 mol dm-3 MV
(black) and 2.0 × 10-3 mol dm-3 BTA (purple).

6.3 Summary of Results

In this chapter results are presented and discussed on the electrochemical deposition of three

viologens, MV, BV and EV at copper in the presence of a 0.10 mol dm-3 NaCl supporting

electrolyte. Sodium chloride was found to be a suitable electrolyte for the electrochemical

formation of these viologen-containing films at the copper interface. There was no need for the

addition of any further supporting electrolyte. A 2.0 × 10-3 mol dm-3 solution of each viologen

was sufficient to enable its formation in a highly reproducible manner at the copper electrode.

The formation of the viologen films was achieved by cycling the copper electrode from the

potential of -0.20 to 1.00 V vs. SCE at a scan rate of 1 mV s-1. For comparison, the copper

was cycled under the same conditions in the 0.10 mol dm-3 NaCl solution, but in the absence
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of the viologens. Significant dissolution of the copper was observed in the absence of the

viologens, with currents as high as 0.30 mA cm-2 recorded as copper was cycled to potentials

in the vicinity of 0.60 V vs. SCE at the relatively slow scan rate of 1 mV s-1. However,

considerably lower currents were measured in the presence of the viologens, indicating a

reduction in the rate of dissolution and the formation of a protective film. The voltammograms,

recorded in the presence and absence of the viologens, had similar characteristics at the lower

applied potentials. At relatively low potentials, -0.02 V vs. SCE, there was no evidence of any

dissolution, but as the potential was increased, the current increased to give a peak centered at

about 0.08 V vs. SCE. This peak has been explained in terms of the dissolution of copper and

the nucleation of copper oxides, hydroxides and chloride-containing species. Indeed, these

species were identified and confirmed using EDX analysis. However, once these chloride

species are initially formed it appears that the adsorbed viologens inhibit any further dissolution

of the copper substrate.

The formation of the MV and BV-containing films at the copper surface appears to be

independent of the pH of the solution, between a pH of 2.0 and 9.0, the concentration of the

viologen, from 2.0 × 10-3 to 5.0 × 10-3 mol dm-3, and the immersion time in the viologen-

containing solution prior to formation of the film by cycling the copper electrode in the same

solution. However, the formation of the EV-containing film is dependent on the viologen

concentration and protective films are only formed using the higher viologen concentration

of 5.0 × 10-3 mol dm-3.

In order to establish the role of the chloride anion in the formation of the viologens at the

copper surface, the concentration of the chloride solution was varied from 1.25 × 10-3 mol

dm-3 to 0.30 mol dm-3. The optimum chloride concentration was determined as 0.10 mol dm-3.

At the lower concentrations, the formation of the viologen films was inhibited by the slow

formation of the CuCl complex layer. This was clearly evident from the appearance of broad

oxidation waves, at the lower chloride concentrations. At concentrations higher than 0.10 mol

dm-3, the CuCl complex was formed and stable viologen-containing films were formed.

Although it is well known that EDX analysis is strictly a qualitative technique, a

quantitative study was carried out to determine if the concentration of the BV and the

composition of the initial chloride adsorbed layer varied with the applied potential. There was a

significant increase in the concentration of chloride-containing species as the copper electrode
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was polarised to higher potentials in the absence of the viologen, indicating dissolution and

corrosion of the copper substrate. However, on addition of the BV to the solution, the

concentration of the chloride-containing species was reduced significantly and varied little with

the applied potential, indicating a stable and protective film. Moreover, clear evidence for the

presence of the BV was obtained using EDX analysis. Carbon was detected in all samples

cycled in the BV solution, however no carbon was observed for the copper electrode cycled in

the chloride solution.

The protective properties of the viologen films were compared to the well-known copper

inhibitor, BTA. While the BTA offered very good corrosion protection of the copper substrate

at pH values ranging from 3.0 to 5.0, the performance of the inhibitor was considerably reduced

at pH values below 3.0 and higher than a pH of 5.0. In contrast, the viologen-containing films

were protective across a much wider pH range, extending from a pH of 2.0 to 9.0.
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Analysis of the Corrosion Protective Performance of the Viologen

Films

It was clearly shown in Chapter 6, that MV, EV and BV can be deposited successfully at a

chloride-modified copper surface. Preliminary investigations into the protective nature of these

films were presented, and it was concluded that the BV forms the more protective films. In this

chapter, the results of a more in-depth study into the corrosion performance of the BV films are

presented and discussed. An assessment of the corrosion protection properties of the films is

made using an array of electrochemical, spectrophotometric and surface-analytical techniques

that are well known in the field of corrosion science [2, 186, 240].

As the chloride interface between the viologen and the copper appears to enhance the

stability of the film, Chapter 6, the formation and stability of the BV films in the presence

of acetates, sulfates, oxalates and bromides were studied. There are no reports in the literature

on the formation of viologen films in the presence of these anions and this was important in

determining the role of the chloride anions in the formation of stable viologen films. Then,

the electrochemical properties of the BV films were studied in NaOH, and the influence of

the electrochemical window, particularly at potentials from -0.20 to -1.50 V vs. SCE, was

explored. Again, there are no reports in the literature on the stability of viologen films in

alkaline conditions or at potentials in the vicinity of -1.50 V vs. SCE.
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Finally, the films were examined for their stability and corrosion protection properties

using a spectrophotometric analysis of the copper ion concentrations, open-circuit potential

measurements, electrochemical impedance spectroscopy (EIS), potentiodynamic polarisation

measurements and Tafel analyses [4, 40, 260, 277, 381, 382]. These results are examined and

discussed with reference to the uncoated copper, while in some cases the EV and MV films are

included for comparison.

7.1 Experimental

The experimental approach used in recording the data is similar to that outlined previously

in Section 6.1, Chapter 6. All chemicals were obtained from Aldrich and in addition to the

reagents described in Section 6.1.1, sodium oxalate (Na2C2O2), sodium acetate (CH3COONa),

sodium sulfate (Na2SO4), sodium hydroxide (NaOH) and sodium bromide (NaBr) were

used. The electrodes were prepared, as outlined in Section 6.1.2, while the equipment and

procedures, described in Sections 6.1.2 and 6.1.3 were employed. Unless otherwise stated, the

BV films were deposited from 2.0 × 10-3 mol dm-3 BV in 0.10 mol dm-3 NaCl at a pH of 3.0

by cycling the copper from -0.20 to 1.00 V vs. SCE at 1 mV s-1 for a single sweep.

A spectrophotometric analysis was used to monitor the concentration of dissolved copper.

This involved complexing the copper ions with the well-known chelating agent, bathocuproine

disulfonate [383, 384, 385], as detailed in Section 4.3.1, Chapter 4. The complexing reagent

was added, at a known concentration, to the solution. An orange-coloured complex, with a

λmax at 480 nm was formed and this was monitored using UV-Vis spectroscopy. A Cary UV-

Vis spectrometer was used to record all the data. A quartz crystal cuvette was used with a

diameter of 1 cm and the wavelength was scanned from 300 to 800 nm.

The stability of the complex was monitored as a function of time, by recording the

absorbance of the complex over a 72 h period. Calibration curves were obtained using stock

solutions of CuSO4, and a typical calibration curve is shown in Section 4.3.1, Figure 4.10.

The pH of the solution was increased to 7.0, as it is possible that H+ ions may hinder

the complexation reaction between the copper ion and the bathocuproine, as indicated in

Equation 7.1. Another consideration was the presence of chloride anions in the electrolyte.

It has been reported that chloride anions can participate in the bathocuproine reaction [307], in
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accordance with Equation 7.2. Therefore, the influence of chloride anions on the calibration

curve was studied and the optimum conditions for monitoring the copper ion concentration

were found, as detailed in Section 4.3.1.

Cu(bathocuproine)+
2 + 2H+ → Cu+ + 2H(bathocuproine)+ (7.1)

CuCl(n−1)
n + (bathocuproine)→ Cu(bathocuproine)Cl + (n − 1)Cl− (7.2)

Electrochemical impedance spectroscopy (EIS) was used to study the stability of the BV

films at the open-circuit potential (OCP) and at applied potentials ranging from -0.20 to 0.60

V vs. SCE. These data were recorded in 0.10 mol dm-3 NaCl following an initial 30 min

polarisation period at the desired potential to give steady-state conditions. This was tested

further by recording the impedance data from high to low frequencies, then reversing the sweep

and recording the data from low to high frequencies. The impedance data were recorded using

a Solartron Model SI 1285 or Model SI 1287 potentiostat coupled with a frequency response

analyser, Model SI 1250. A potential perturbation of 5 mV was used to ensure a pseudo-linear

response of the system, while the frequency was varied from 65 kHz to 10 mHz. Similar data

were recorded for copper immersed and polarised in the 0.10 mol dm-3 NaCl solution. The

data were fitted to equivalent circuits as detailed in Chapter 2, Section 2.5.3.

7.2 Results and Discussion

7.2.1 Influence of the Nature of the Anion on the Formation of BV Films

It was clearly shown in Section 6.2.4 that the concentration of the chloride anion influences

the formation of the viologen films and that specific concentrations of the chloride anion are

required for the successful formation of a stable and protective viologen film. The influence

of this anionic layer, between the viologens and the copper substrate, was further investigated

by varying the nature of the anion. This was an obvious step before a more detailed study

on the corrosion performance of the films was carried out [5, 364, 386, 387]. A number of

anions was examined and these included the oxalate, acetate, sulfate, bromide and chloride

anions. In order to assess the effect of each of the anions on the formation of the viologen

film at the copper surface, the formation of the BV film in the presence of the anions was
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investigated using cyclic voltammetry [4, 186, 240, 336]. A 0.10 mol dm-3 solution of the

anion was prepared, a concentration of 2.0 × 10-3 mol dm-3 BV was added and the pH of the

solution was adjusted to a value of 3.0. The copper electrode was then immersed in the solution

and polarised from -0.20 V vs. SCE, at 1 mV s-1 up to a final potential of 1.00 V vs. SCE, as

detailed in Chapter 6, Section 6.1.3. The voltammograms were recorded for copper polarised

in the presence and absence of the BV. Then, the modified copper electrodes were removed

and placed in a fresh solution of the corresponding anion, and cycled in the anion-containing

electrolyte. This analysis gives an indication of the stability of the films formed at the copper

interface in both the anion solution and in the BV solution.

In Figure 7.1a and 7.1b, data are presented for the oxalate system. The formation of an

insoluble copper oxalate film, which gives rise to the passivation of the copper surface, is

clearly evident in Figure 7.1a [1]. Dissolution of the copper starts at -0.05 V vs. SCE and

continues until potentials in the vicinity of 0.30 V vs. SCE are reached. This indicates that

the dissolution continues until a sufficient concentration of Cu2+ ions are generated at the

surface for precipitation of the insoluble copper oxalate. Once this oxalate layer is formed, the

dissolution of copper is inhibited, giving good stability from 0.40 to 1.00 V vs. SCE. However,

when the oxalate-modified copper is transferred to a new oxalate solution and cycled from the

potential of -0.20 V vs. SCE, the protective properties of the oxalate layer are no longer evident

or retained. In the presence of the BV, the initial precipitation of the copper oxalate is clearly

inhibited. There is a significant increase in the peak potential from -0.01 V to 0.15 V vs. SCE,

Figure 7.1a, and the rapid decay in the current, which is consistent with the precipitation of the

copper oxalate deposit, is not observed. Instead, there is a more gradual decay in the current

indicating a slower rate of copper oxalate deposition in the presence of the BV. However, when

this BV-modified surface is cycled in the oxalate solution, but in the absence of the viologen,

Figure 7.1b, there is little evidence for the dissolution of copper, indicating the formation of a

protective viologen containing film.
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Figure 7.1: (a) Cyclic voltammograms recorded for Cu at 1 mV s-1 in 0.10 mol dm-3 Na2C2O2
adjusted to a pH of 3.0 in the presence (blue) and absence (green) of 2.0 × 10-3 mol dm-3 BV
and (b) cyclic voltammogram recorded for BV-modified Cu (blue) and oxalate-modified Cu
(green) in 0.10 mol dm-3 Na2C2O2 adjusted to a pH of 3.0.

The surface morphology of the copper electrode polarised in the presence of the BV

and oxalate anion is shown in the micrographs presented in Figure 7.2. This morphology is

very different to that observed in the chloride-containing solutions, Section 6.2.6, Chapter 6,

indicating that the nature of the anion has a significant effect on the morphology of the surface.

The surface is reasonably homogeneous, and is crack and defect free. The surface is clearly

covered with a deposit and this is consistent with the deposition of insoluble copper oxalate

species. As shown in the accompanying EDX spectrum, Figure 7.3, this layer is sufficiently thin

to observe the signal from the copper, while the intensity of the O and C signals is low, again

indicating a relatively thin layer of insoluble copper oxalate. Indeed, the apparent protective

nature of the deposited viologen film, Figure 7.1b, may be connected to the formation of these

insoluble copper oxalates at the surface.

Similar data were recorded for the acetate system and these are shown in Figure 7.4. Again,

dissolution of copper is observed in the acetate solution and this dissolution extends from the

initial potential of -0.01 V to the final potential of 1.00 V vs. SCE. However, there are several

reports in the literature which show that copper acetates are formed during the dissolution of

copper and these have relatively low solubility and consequently give rise to the deposition of

copper acetates at the surface [84, 388]. Compounds, such as Cu(CH3COO)2CuO.×H2O, have

been identified on copper exposed to acetates [84, 389]. While this passivation effect is not very

evident in Figure 7.4a, it is clearly seen in Figure 7.4b, where there is a significant decay in the

227



CHAPTER 7. ANALYSIS OF THE CORROSION PROTECTIVE PERFORMANCE OF
THE VIOLOGEN FILMS

current at about 0.75 V vs. SCE. This is consistent with the precipitation of copper acetates at

the surface, which inhibit further dissolution of the underlying copper. Again, in the presence of

the BV, the voltammograms are very different. A considerable reduction in the dissolution rate

is observed in the presence of the viologen in Figure 7.4a, while the deposited BV film shows

reasonably good stability when cycled in 0.1 mol dm-3 CH3COONa, Figure 7.4b. However, in

this case, the presence of the BV has little effect on the peak potential or peak current as shown

in Figure 7.4b.

(a) (b)

Figure 7.2: SEM micrographs recorded for Cu cycled in 2.0 × 10-3 mol dm-3 BV and 0.1 mol
dm-3 Na2C2O2, (a) the scale bar corresponds to 100 µm and (b) the scale bar corresponds to 60
µm.

Figure 7.3: EDX spectrum of BV-oxalate modified Cu electrode.
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Figure 7.4: (a) Cyclic voltammograms recorded for Cu at 1 mV s-1 in 0.10 mol dm-3

CH3COONa at a pH of 3.0 in the presence (blue) and absence (green) of 2.0 × 10-3 mol dm-3

BV and (b) cyclic voltammogram recorded for BV-modified Cu (green) and acetate-modified
Cu (blue) in 0.10 mol dm-3 CH3COONa at a pH of 3.0.

The data recorded for the halide and sulfate systems are shown in Figures 7.5, 7.6 and 7.7

and are consistent with dissolution of copper in the absence of the BV. The voltammograms

shown in Figures 7.5a, 7.6a and 7.7a, have similar shapes, with an initial peak followed

by further dissolution and higher currents. Although relatively high concentrations of Cu2+

are generated, there is no evidence for the formation of protective layers or deposits on the

surface. The dissolution mechanism of copper in bromide solutions is similar to that proposed

in chloride media [274, 280, 282, 283]. It has been suggested that soluble CuBr2
- species

are generated through the oxidation of copper, however at higher current densities, CuBr

precipitates onto the copper surface. This CuBr layer reacts with Br- ions to generate soluble

complex anions, such as CuBr2
-, CuBr3

2- and CuBrn
(n-1)-, and it is the diffusion of these species

into the bulk solution that controls the rate of dissolution. The anodic current eventually reaches

a limiting value that is dependent on the rate of dissolution of the CuBr layer. Indeed, this

sequence of steps is consistent with the data presented in Figure 7.5a.

On addition of the BV to the solution, the dissolution of copper is clearly inhibited. Similar

data are recorded for the bromide and chloride systems, Figures 7.5a and 7.6a, indicating

the formation of stable viologen films. The formation of the BV film in the sulfate solution

is somewhat different and less efficient, as shown in Figure 7.7a. An increase in the current

is observed at about -0.03 V vs. SCE, and this continues to increase to give a peak current at
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0.10 V vs. SCE. The subsequent decay in the current is slow, and stable conditions are only

achieved at 0.35 V vs. SCE, Figure 7.7a. This suggests that the formation of the BV film in the

sulfate solution is slow, compared to the chloride or bromide solutions.
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Figure 7.5: (a) Cyclic voltammograms recorded for Cu at 1 mV s-1 in 0.10 mol dm-3 NaBr
adjusted to a pH of 3.0 in the presence (blue) and absence (green) of 2.0 × 10-3 mol dm-3 BV
and (b) cyclic voltammogram recorded for BV-modified Cu (blue) and Br-modified Cu (green)
in 0.10 mol dm-3 NaBr at a pH of 3.0.
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Figure 7.6: (a) Cyclic voltammograms recorded for Cu scanned in the forward direction Ý at
1 mV s-1 in 0.10 mol dm-3 NaCl adjusted to a pH of 3.0 in the presence (blue) and absence
(green) of 2.0 × 10-3 mol dm-3 BV and (b) cyclic voltammogram recorded for BV-modified Cu
(blue) and Cl-modified Cu (green) in 0.10 mol dm-3 NaCl at a pH of 3.0.
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Figure 7.7: (a) Cyclic voltammograms recorded for Cu at 1 mV s-1 in 0.10 mol dm-3

Na2SO4, at a pH of 3.0 in the presence (blue) and absence (green) of 2.0 × 10-3 mol dm-3

BV and (b) cyclic voltammogram recorded for BV-modified Cu (blue) and sulfate-modified Cu
(green) in 0.10 mol dm-3 Na2SO4 at a pH of 3.0.

The stability of the viologen films and the bromide, chloride or sulfate-modified copper are

shown in Figures 7.5b, 7.6b and 7.7b. The data recorded for the chloride-modified copper are

similar to that recorded for copper in the chloride solution and are dominated by dissolution

and the generation of chloride-containing corrosion products. Similar effects are observed with

the sulfate-modified copper. Indeed, very high dissolution rates were observed, with currents

as high as 8 mA cm-2 at 0.70 V vs. SCE, as highlighted in Figure 7.7b. The behaviour of the

bromide-modified copper is somewhat surprising compared to the chloride-modified surface.

However, this may be connected to the buildup of a CuBr layer that is only converted to the

more soluble CuBrn
(n-1)- species at the higher potential. High currents are observed when

the potential is increased to 0.80 V vs. SCE and then a rapid increase in the current is seen,

indicating significant dissolution.

The BV films formed in the chloride or bromide solutions show very good stability and

corrosion protective properties when cycled in the halide solutions, with low currents of about

0.5 mA cm-2 from 0.10 to 1.0 V vs. SCE. However, the viologen film formed in the sulfate

solution has poor protective properties, as shown in Figure 7.7b. Dissolution of copper is

observed at 0.20 V vs. SCE and while this dissolution is limited compared to the sulfate-

modified copper the currents reach a limiting value with some fluctuations, which are consistent

with dissolution of the underlying copper. This is probably connected with the nature of the

film deposited in the presence of the sulfate anions, and as shown in Figure 7.7a, the deposition
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of the BV film is inhibited.

The surface morphology of the copper electrode cycled in the presence of the BV and

sulfate anions is evident in the micrographs shown in Figure 7.8. Again, this morphology is

very different to that observed in the chloride-containing solutions, Section 6.2.6, Chapter 6, or

the oxalate solution, Figure 7.2. The morphology is consistent with the high rate of dissolution,

which was observed in Figure 7.7. Randomly oriented scale-like deposits are seen distributed

over the surface. Again, this clearly shows that the surface morphology is dominated by the

nature of the anions.

It is clear from these data that significant dissolution of copper occurs in the sulfate

solutions and that the formation and deposition of the BV films are inhibited in the presence

of the sulfate anions. In the acetate and oxalate solutions the formation of the BV films is

influenced by the formation of copper oxalate and acetate species and in direct competition

with the formation of insoluble copper oxalates and acetates at the copper surface. Although

the BV films deposited from these solutions have protective properties, these results are in good

agreement with the data presented in Chapter 6 which show that the adsorption of chloride

anions and the formation of a CuCl complex layer at the copper surface is critical in the

formation of stable and protective BV films.
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(a) (b)

(c) (d)

Figure 7.8: SEM micrographs recorded for Cu cycled in 2.0 × 10-3 mol dm-3 BV and 0.10 mol
dm-3 Na2SO4 (a) the scale bar corresponds to 500 µm (b) the scale bar corresponds to 200 µm
(c) the scale bar corresponds to 100 µm and (d) the scale bar corresponds to 60 µm.

7.2.2 Electrochemical Properties of the Viologen-Coated Copper in Sodium

Hydroxide

It is well known that the formation of copper oxide species, such as CuO and Cu2O, can be

followed by cycling copper in NaOH solutions [64, 390, 391, 392]. Sinapi et al. [393] achieved

distinct peaks for both the oxidation and the reduction of copper oxides in NaOH. In the forward

sweep three anodic peaks were observed, a first oxidation peak and a broader feature composed

of two oxidation waves. The first peak was assigned to the oxidation of Cu to Cu2O, and the

broader feature to the formation of CuO and its conversion to Cu(OH)2. In the reverse sweep,

two cathodic peaks were observed and these were attributed to the reduction of the CuO and

Cu2O oxides that were formed during the anodic process.

Cyclic voltammograms were recorded for copper in 0.10 and 0.15 mol dm-3 NaOH,

with a pH at approximately 12.0, at 20, 50 and 100 mV s-1. The peaks increased with
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increasing scan rate, which is in good agreement with the studies reported by Marchiano et

al. [64]. Representative voltammogram recorded at 20 mV s-1 are shown in Figure 7.9,

where the data presented in Figure 7.9a were recorded in 0.10 mol dm-3 NaOH and the

voltammograms depicted in Figure 7.9b were recorded in 0.15 mol dm-3 NaOH. It is evident

that the voltammograms are similar in 0.10 and 0.15 mol dm-3 NaOH and the slight change in

the NaOH concentration has little influence on the peak positions and only a slight effect on

the peak currents.
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Figure 7.9: Cyclic voltammograms recorded at 20 mV s-1 of Cu in (a) 0.10 and (b) 0.15 mol
dm-3 NaOH.

Two reduction peaks, at approximately -0.50 V and -0.90 V vs. SCE, are clearly observed

and these were attributed to the reduction of the Cu(II) oxide (CuO or Cu(OH)2) to the Cu(I)

oxide (Cu2O or Cu(OH)), and the further reduction of Cu(I) to Cu. The position and magnitude

of these peaks are in good agreement with the reduction peaks reported in the literature, [64,
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382, 391, 393, 394]. Using integration to estimate the charge associated with the reduction

waves, a higher charge was computed for the reduction of the copper (I) species (either from

Cu2O or from Cu(OH) or Cu(OH)2
- species). This is to be expected since some of the Cu(I)

is generated from the reduction of the Cu(II) species and this will contribute to the total charge

computed for the reduction of the Cu(I) species. Two clear oxidation peaks at about -0.40

and -0.20 V vs. SCE are observed and these are in good agreement with those reported by

Marchiano et al. [64], Schwartz and Muller [395, 396] and Wilhelm et al. [397] and were

attributed to the reactions, which are given in Equations 7.3 and 7.4.

2Cu + 2OH− → Cu2O + H2O + 2e− (7.3)

Cu2O + 2OH− → 2CuO + H2O + 2e− (7.4)

The BV-modified copper electrode was analysed under the same conditions. The modified

copper was prepared using 2.0 × 10-3 mol dm-3 BV in 0.10 mol dm-3 NaCl and adjusted to pH

3.0 with a few drops of concentrated HCl. The copper electrode was cycled in this solution

from -0.20 to 1.00 V vs. SCE at a scan rate of 1 mV s-1 for a single sweep, as detailed

in Section 7.1. The BV-modified copper was then rinsed thoroughly in distilled water and

transferred to the NaOH solutions. The resulting voltammograms recorded in 0.10 and 0.15

mol dm-3 NaOH at 20 mV s-1 are shown in Figure 7.10. Although the NaOH concentration had

little influence on the voltammograms recorded for copper, it is clear from Figure 7.10b that the

NaOH concentration has a more significant influence on the redox reactions taking place at the

BV-modified copper electrode. In the more concentrated 0.15 mol dm-3 NaOH solution, two

oxidation waves, centred at -0.40 and -0.10 V vs. SCE are clearly evident and these correspond

with the data recorded for the unmodified copper, Figure 7.9b and Equations 7.3 and 7.4. The

two reduction peaks observed at about -0.90 and -0.50 V vs. SCE, are in good agreement with

the reduction peaks reported elsewhere, [64, 76] and are similar to that recorded in Figure 7.9b.

However, there is evidence of a shoulder peak at -0.70 V vs. SCE, which is not seen for

the copper system, or at the lower NaOH concentration for the BV coated copper electrode.

Complex cathodic reduction peaks in highly alkaline solutions have been reported previously

by Marchiano et al. [64], Schwartz et al. [395] and Park and Pyun [76]. They attributed such

peaks to the reduction of copper hydroxide species.
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Figure 7.10: Cyclic voltammograms recorded at 20 mV s-1 for BV-modified Cu in (a) 0.10
and (b) 0.15 mol dm-3 NaOH.

The data recorded in 0.10 mol dm-3 NaOH, Figure 7.10a are similar to that recorded at

the copper electrode, Figure 7.9. In the forward scan the oxidation waves appear as two

distinct peaks and a very broad wave extending from 0.0 to 0.50 V vs. SCE. These peaks

are attributed to the oxidation of copper metal (Cu0) to Cu2O at -0.40 V vs. SCE, Equation 7.3,

and the oxidation of Cu2O to CuO at -0.20 V vs. SCE, Equation 7.4, and the wave centred

at approximately 0.25 V vs. SCE can be assigned to the further oxidation and dissolution of

copper. This oxidation reaction may be connected to the formation of soluble Cu(I) or soluble

Cu(II) species from the underlying copper substrate and soluble Cu(II) species from Cu(I)

oxides or hydroxides. However, the currents are low indicating that these dissolution reactions

are not significant and at the higher NaOH concentration these reactions are further inhibited
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and protective CuO and Cu2O oxides and hydroxides are only formed. Two reduction waves

are observed at approximately -0.90 V and -0.50 V vs. SCE. When compared to the reduction

peaks recorded for the uncoated copper, Figure 7.9, the peak positions are similar. These results

show that the BV-modified copper is stable in both the 0.15 and 0.10 mol dm-3 NaOH solutions

and the only significant difference between the data recorded for copper and the viologen-

modified copper is the presence of a shoulder peak in the more concentrated solution, which

may indicate the formation of copper hydroxide species. The influence of the concentration

of the NaOH solution on the peak currents for the two reduction reactions is summarised in

Table 7.1. In all cases, the peak currents are higher for the second reduction wave, seen at -0.90

V vs. SCE. It is also evident that the peak currents are higher for the copper cycled in 0.15 mol

dm-3 NaOH, while the concentration of NaOH has less influence on the peak currents of the

viologen-modified copper electrodes.

Table 7.1: Peak currents of Cu and BV-modified Cu in 0.10 mol dm-3 NaOH.

Concentration of
NaOH / mol dm-3

Peak current / A cm-2 Peak current / A cm-2

(at -0.50 V vs. SCE) (at -0.90 V vs. SCE)
BV-modified Cu Cu BV-modified Cu Cu

0.15 3.12 × 10-4 7.19 × 10-5 8.63 × 10-4 1.32 × 10-4

0.10 8.22 × 10-4 4.34 × 10-5 9.11 × 10-4 6.61 × 10-5

7.2.3 Influence of the Electrochemical Window on the Stability of the Viologen-

Coated Copper in the Presence of Chloride Anions

Given the results obtained in the alkaline NaOH solution, the stability and properties of the

BV-modified copper were compared to the unmodified copper under similar applied potential

conditions, but in the presence of chloride anions. A 0.10 mol dm-3 NaCl solution, adjusted to

a pH of 7.0, was employed as the chloride-containing solution and the copper and BV-modified

copper electrodes were cycled from -1.50 to 0.00 V vs. SCE at scan rates varying from 1 to 200

mV s-1. Again the BV film was prepared using the method highlighted in Section 7.1. Once

the film was prepared the surface was well rinsed with distilled water and then transferred to

the neutral 0.10 mol dm-3 NaCl solution.

Typical voltammograms are shown in Figure 7.11 for data recorded at 50 and 25 mV s-1.

Similar data and features were recorded at higher scan rates and these data are summarised
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in Table 7.2. The data recorded for copper show a clear reduction wave at about -0.50 V vs.

SCE, however there is no evidence of any oxidation wave. Two reduction peaks are clearly

evident for the BV-modified copper, at about -0.70 and -0.50 V vs. SCE and the corresponding

oxidation waves are seen at approximately -0.50 and -0.40 V vs. SCE. These reduction waves

are somewhat different to that observed in the NaOH solutions, Figures 7.9 and 7.10. The first

reduction wave, at about -0.50 V vs. SCE, is broad, while the second reduction peak has a

somewhat lower current and charge. It is clear that the charge associated with the first peak

is higher than that arising from the second reduction wave and again this is very different to

that observed in the NaOH solution. The broad reduction wave observed with the unmodified

copper is probably related to the formation of CuCl at the surface. Indeed, this is consistent with

the EDX analysis presented in Figure 7.12a, where a strong Cl signal is seen. However, it is also

evident from the EDX spectrum that oxide species are generated and these are probably related

to the formation of Cu2O or hydrated Cu2O species. Similar EDX spectra were recorded for

the viologen-modified film, as shown in Figure 7.12b. Again, the spectrum is consistent with

the presence of Cu2O and CuCl, however carbon is also detected, which indicates the presence

of the viologen. As shown in Table 7.2, the peak currents associated with these oxidation and

reduction waves increase with an increase in the scan rate, while the peaks are not well defined

or visible at 1 mV s-1.

Table 7.2: Peak currents for the BV-modified Cu as a function of the scan rate in 0.10 mol
dm-3 NaCl.

BV-modified Peak current I/A
Cu

Scan rate/ Oxidation Reduction
mV s-1

Peak 1 Peak 2 Peak 1 Peak 2
200 2.82 × 10-4 2.35 × 10-4 1.94 × 10-4 2.11 × 10-4

100 1.91 × 10-4 1,91 × 10-4 1.49 × 10-4 1.59 × 10-4

50 1.31 × 10-4 1.48 × 10-4 1.05 × 10-4 1.02 × 10-4

25 9.43 × 10-5 9.43 × 10-5 7.42 × 10-5 5.90 × 10-5

10 7.19 × 10-5 6.98 × 10-5 5.18 × 10-5 3.35 × 10-5

1 - - 2.12 × 10-5 -
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Figure 7.11: Cyclic voltammograms recorded for Cu (green) and the BV-modified Cu (blue)
in 0.10 mol dm-3 NaCl, at a pH of 7.0 (a) scanned in the forward direction at 50 mV s-1 and (b)
at 25 mV s-1.

(a) (b)

Figure 7.12: EDX spectra recorded for (a) Cu and (b) BV-modified Cu on cycling the
electrodes in 0.10 mol dm-3 NaCl, at a pH of 7.0 from -1.50 to 0.00 V vs. SCE.
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The surface morphology of the copper and the viologen-modified copper electrodes,

which was recorded following this cycling from -1.50 to 0.00 V vs. SCE, is evident from

the micrographs presented in Figures 7.13 and 7.14. There is little difference between the

micrographs recorded for the copper and the viologen-modified copper, as shown from a

comparison of these micrographs. The surface is covered by a high density of rod like deposits,

which consist of CuCl and copper oxide species, such as Cu2O and CuO and the corresponding

hydroxyl species, as shown from the EDX analyses, Figure 7.12. These are observed with

copper and the viologen-modified copper. However, the high signal from the copper indicates

that this layer is sufficiently thin for detection of the copper substrate.

(a) (b)

Figure 7.13: SEM micrographs recorded of Cu on cycling the Cu in 0.10 mol dm-3 NaCl, at
a pH of 7.0 from -1.50 to 0.00 V vs. SCE (a) the scale bar corresponds to 300 µm and (b) the
scale bar corresponds to 20 µm.

(a) (b)

Figure 7.14: SEM micrographs recorded of BV-modified Cu on cycling the electrode in 0.10
mol dm-3 NaCl, at a pH of 7.0 from -1.50 to 0.00 V vs. SCE (a) the scale bar corresponds to
60 µm and (b) the scale bar corresponds to 10 µm.
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The influence of the electrochemical window on the stability of the electrodes is shown

in Figure 7.15. Here, the copper and viologen-modified copper electrodes were cycled from

-1.50 to 1.00 V vs. SCE at a scan rate of 1 mV s-1 in the neutral 0.10 mol dm-3 NaCl solution.

Significant dissolution is observed for the copper electrode. At potentials higher than about

0.05 V vs. SCE, the current increases and continues to rise as the potential is further increased.

On the reverse cycle, a distinct reduction wave is evident. The data recorded for the viologen-

modified copper electrode are very different. Dissolution of copper is observed at about 0.05

V vs. SCE and the current increases to give a broad-like wave, which extends from about

0.05 to 0.35 V vs. SCE. However, at higher applied potentials the current decays and limited

dissolution of the copper is observed. On the reverse cycle a clear and well defined reduction

peak is seen. Interestingly, this peak is observed at a potential that is considerably lower than

that measured for the unmodified copper electrode. Moreover, the peak current is higher in

magnitude. These peaks are probably connected to the formation of CuCl at the surface.
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Figure 7.15: Cyclic voltammogram recorded of uncoated Cu (blue) and BV-modified Cu
electrode (green) at a scan rate of 1 mV s-1 in 0.10 mol dm-3 NaCl solution at a pH of 7.0.

The surface morphologies of the viologen-modified copper and the copper electrodes were

studied and recorded, and typical micrographs for the copper system are shown in Figure 7.16,

while the micrographs recorded under identical conditions are shown in Figure 7.17 for the

viologen-modified copper electrode. These micrographs were recorded after the electrodes

were cycled from -1.50 to 1.00 V vs. SCE. The micrograph presented for the copper electrode

shows a high density of rod and cube-like deposits across the entire surface, and although
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not presented, the recorded EDX spectra show the presence of CuCl and copper oxides, such

as CuO and hydrated CuO species which are formed at these higher applied potentials. The

micrographs recorded for the viologen-modified copper are similar. However, it is evident

that the surface has a lower density of these rod and cube-like structures. Again, the EDX

spectra confirmed the presence of copper oxides, such as CuO or hydrated CuO, chloride

species, consistent with the formation of CuCl and higher chloride containing copper species

and carbon, which can be explained by the presence of the BV.

(a) (b)

Figure 7.16: SEM micrographs recorded of Cu on cycling the electrode in 0.10 mol dm-3

NaCl, at a pH of 7.0 from -1.50 to 1.00 V vs. SCE (a) the scale bar corresponds to 100 µm and
(b) the scale bar corresponds to 20 µm.

(a) (b)

Figure 7.17: SEM micrographs recorded for BV-modified Cu on cycling the electrode in 0.10
mol dm-3 NaCl, at a pH of 7.0 from -1.50 to 1.00 V vs. SCE (a) the scale bar corresponds to
100 µm and (b) the scale bar corresponds to 30 µm.
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7.3 Corrosion Assessment of the Viologen Films

The corrosion protection properties of the viologen-modified copper was studied using a

combination of electrochemical techniques, some of these included cyclic voltammetry,

open-circuit potential measurements, potentiodynamic polarisation plots, Tafel analyses and

electrochemical impedance spectroscopy. In addition, a spectrophotometric analysis was used

to monitor the copper ion concentration.

7.3.1 Spectrophotometric Analysis of the Copper Ion Concentration

The concentration of copper dissolved from the BV-modified copper and copper electrodes

was monitored using the spectrophotometric approach described in Section 7.1. The first test

involved a study on the stability of the complex. Test solutions with different concentrations of

copper ions were prepared in the 0.10 mol dm-3 NaCl solution and the bathocuproine was added

to form the complex, as detailed in Section 4.3.1. The absorbance was recorded at 480 nm as a

function of time to monitor the stability of the complex. These data are summarised in Table 7.3

and show that the absorbance varies only slightly with time, indicating good stability of the

complex. Moreover, this stability is observed at a range of copper ion concentrations, indicating

that the presence of chloride anions has little influence on the stability of the complex. Indeed,

the concentration of the chloride anion was varied and the absorbance of the complex was

followed, as a function of time, and again very good reproducibility and stability was observed,

making this approach suitable in the quantitative analysis of the copper ion concentration.

Table 7.3: Stability of the complex as a function of time and concentration of Cu ions.

Concentration Absorbance Absorbance Absorbance
mol dm-3 t = 5 min t = 5 h t = 24 h

5.25 × 10-7 0.0940 0.0969 0.0969
1.07 × 10-6 0.1650 0.1667 0.1676
1.14 × 10-6 0.2021 0.2062 0.2106

The copper and BV-modified copper electrodes were cycled in 0.10 mol dm-3 NaCl from

-0.20 V vs. SCE up to final potentials of 0.00, 0.20 and 0.60 V vs. SCE and then the solutions

were treated with the bathocuproine reagent, as detailed in Section 4.3.1. However, poor

reproducibility was observed, as shown in Table 7.4. In this table the absorbance recorded at

480 nm is shown as a function of the upper applied potential for the copper electrode. Although
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there is a general increase in the absorbance with increasing applied potentials, consistent

with higher dissolution rates at the higher applied potentials, the reproducibility is poor. The

absorbance varies from 0.0988 to 0.1415 at 0.00 V vs. SCE and from 0.1650 to 0.2021 at 0.60

V vs. SCE. These variations may be related to the dissolution and precipitation of corrosion

products at the copper surface.

Table 7.4: Absorbance recorded as a function of the upper potential for Cu cycled in 0.10 mol
dm-3 NaCl at 1 mV s-1.

Upper potential/ Absorbance Absorbance
V vs. SCE t = 5 min t = 5 h

0.00 0.0998 0.1027
0.1106 0.1129
0.1415 0.1506

0.20 0.0925 0.0939
0.0995 0.1011
0.1611 0.1639
0.1650 0.1699

0.60 0.1694 0.1699
0.2021 0.2026

Although not shown, poor reproducibility was also observed for the data recorded with the

BV-modified copper. For example, the absorbance varied from 0.1337 to 0.1695, when the BV-

modified copper was polarised to 0.60 V vs. SCE and from 0.1462 to 0.1971 when polarised

to 1.0 V vs. SCE. When these data are compared with the results obtained with the copper

system, Table 7.4, it is clear that lower absorbance values are obtained for the BV-modified

copper, indicating a lower rate of copper dissolution. However, the reproducibility is poor and

it is difficult to assess the corrosion protection properties of the BV film.

In an attempt to increase the reproducibility of the data, the copper and BV-modified copper

were polarised at fixed potentials of 0.00, 0.20, 0.60 and 1.00 V vs. SCE for 30 min and

then the resulting solution was treated with the bathocuproine reagent and the absorbance was

recorded at 480 nm. These data are summarised in Table 7.5. A considerable improvement

in the reproducibility was observed and trends in the data can now be seen. It is clear that

higher concentrations of copper are measured when the copper and viologen modified copper

are polarised at higher applied potentials. This corresponds well with the SEM and EDX

analyses presented in Section 6.2.6, Chapter 6. It is also evident that lower concentrations

of dissolved copper ions are measured for the viologen-modified films. However, these
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concentrations are influenced by the deposition of copper-containing corrosion products at the

copper electrode. Indeed, this can be seen from the data presented for the copper system, where

similar concentrations of dissolved copper ions are evident at 0.60 and 1.00 V vs. SCE. In this

case, the deposition of corrosion products inhibits the release of the dissolved copper ions into

the solution giving solution concentrations that are lower than the true rate of dissolution. This

is not seen with the viologen-modified copper and in this case, the copper ion concentration

represents the true rate of copper dissolution. Consequently, the final concentrations are not

significantly different from the values recorded for the copper system, as shown in Table 7.5.

Table 7.5: Concentration of dissolved Cu ions (n = 4) from Cu and BV-modified Cu as a
function of the applied potential.

System Applied Potential Concentration
/ V vs. SCE µmol dm-3

Cu 0.00 3.65 ± 0.15
0.20 4.19 ± 0.20
0.60 4.68 ± 0.17
1.00 4.58 ± 0.21

BV-modified Cu 0.00 3.21 ± 0.10
0.20 3.66 ± 0.16
0.60 4.09 ± 0.14
1.00 4.13 ± 0.16

7.3.2 Cyclic Voltammetry

It is well known that chloride anions affect the passivation of copper, resulting in the breakdown

of the passive film. It is also well accepted that copper rapidly dissolves through the formation

of soluble CuCl2- complex species [80, 85, 313, 321, 338, 398]. This dissolution occurs at

more positive potentials, compared to the potential values where the oxide films are formed or

detected [39, 65, 67, 284, 399, 400]. These breakdown events can be easily monitored using

cyclic voltammetry and this technique was employed to study the stability of the viologen-

modified copper and copper electrodes. A neutral 0.10 mol dm-3 NaCl solution was used and

the electrodes were cycled from -0.20 V to 1.00 V vs. SCE at a scan rate of 1 mV s-1. The

viologen-modified copper electrodes were prepared as detailed in Section 7.1. Representative

data are presented in Figure 7.18, where the current-potential and charge-potential plots are

compared for the BV-modified copper and uncoated copper. Similar data are shown in

245



CHAPTER 7. ANALYSIS OF THE CORROSION PROTECTIVE PERFORMANCE OF
THE VIOLOGEN FILMS

Figure 7.19. However, in this case a plot recorded for the viologen-modified copper, which

was previously cycled in the chloride solution, is compared with the freshly deposited viologen

film and the uncoated copper.
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Figure 7.18: Voltammograms at 1 mV s-1 for Cu (green) and BV-modified Cu (blue) in 0.10
mol dm-3 NaCl, at a pH of 7.0, (a) current-potential plots and (b) charge-potential plots.

Dissolution of copper is observed for the uncoated copper and the current continues to rise

with increasing applied potential, as shown in Figures 7.18 and 7.19. The initial dissolution

is observed at about 0.02 V vs. SCE, however this potential varies slightly from -0.03 to

0.12 V vs. SCE. The charge-time plots show that the rate of dissolution varies with the

applied potential and at higher potentials the charge increases at a slower rate, which is

consistent with the deposition of corrosion products [32, 50, 68, 285], such as CuCl and
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copper oxides. The formation of these CuCl deposits has been observed on the electrode

surface at potentials corresponding to dissolution [6, 48, 280, 282]. These data are in good

agreement with literature reports and are connected with the adsorption of chloride ions and

the formation of a two-dimensional salt layer that is known to play an important role in the

passivity breakdown of copper [78, 390, 401]. Indeed, the adsorption of chloride ions has been

detected at potentials negative to that of active dissolution by several authors [351, 359, 402].

For example, Becerra et al. [403] reported the formation of a chloride adsorbed layer on the

copper surface at -0.60 V vs. SCE in 0.10 mol dm-3 NaCl, while Marchiano et al. [64]

detected chloride adsorption in 0.3 mol dm-3 NaCl at potentials as low as -0.80 V vs. SCE.

It was suggested that the onset of copper dissolution is connected with the degree of metal

surface coverage by chloride and hydroxide electro-adsorbates. Benedetti et al. [394] have

shown that the chloride adsorption/desorption equilibrium precedes active dissolution, while

Starosvetsky et al. [282] have shown that dissolution is initiated when the potential exceeds a

breakdown value, consistent with the data presented in Figures 7.18 and 7.19.

In contrast, very good stability is observed when the viologen modified copper electrodes

are cycled under the same conditions. There is no evidence of these dissolution reactions and

the charge remains essentially constant and independent of the applied potential, signifying a

highly protective coating. It is also significant that the protective properties of the viologen

coating are maintained even though the viologen-modified copper was previously cycled at the

scan rate of 1 mV s-1 from -0.20 to 1.00 V vs. SCE in the chloride-containing solution. This is

shown clearly in Figure 7.19, where the protective properties of a freshly deposited coating are

compared with the aged film. Clearly, the current-potential and charge-potential profiles are

similar, indicating that the BV has indeed very good protective properties.

247



CHAPTER 7. ANALYSIS OF THE CORROSION PROTECTIVE PERFORMANCE OF
THE VIOLOGEN FILMS

−0.20  0.00  0.20  0.40  0.60  0.80  1.00

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

Potential, E/V

C
u
rr

en
t,

I/
m

A

(a)

−0.20  0.00  0.20  0.40  0.60  0.80  1.00

0.00

0.10

0.20

0.30

0.40

0.50

Potential, E/V

C
h
ar

ge
,
Q

/C

(b)

Figure 7.19: Voltammograms at 1 mV s-1 in 0.10 mol dm-3 NaCl, at a pH of 7.0 for Cu
(red), BV-modified Cu (green), previously cycled in the chloride solution, and BV-modified Cu
(blue), (a) current-potential plots and (b) charge-potential plots.

7.3.3 Open-Circuit Potential (OCP) Measurements

In order to investigate the corrosion protection properties further and the stability of the

viologen-modified copper, immersion experiments were performed and the potential adopted

was recorded as a function of time in the aggressive chloride-containing solution. Typically

in corrosion, the principle of charge conservation dictates that the sum of all the oxidation

currents must equal the sum of all the reduction currents, to avoid the accumulation of charge

on a freely immersed electrode. Therefore, at the corrosion potential, the oxidation currents,
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Ia, are equal in magnitude to the reduction currents, Ic, Equation 7.5.

∑
Ia +

∑
Ic = 0 (7.5)

The corrosion potential is a mixed potential and it depends on the rate of the anodic

and the cathodic half reactions. This can be explained by the Evans diagram, depicted in

Figure 7.20 [44]. The relative values of the slopes of the anodic or cathodic polarisation curves

determine whether the anodic, cathodic, or both reactions control the rate of the corrosion

process and, in turn, the adopted corrosion potential.

(a) (b)

(c)

Figure 7.20: Evans diagram illustrating three main ways in which the corrosion potential can
be influenced (a) control by the reactions on the anode (b) control by the reactions on the
cathode and (c) control by a mixture of both [44].

As shown in Figure 7.20, the corrosion potential can be used to give information on the

protective properties of a metal, which is susceptible to dissolution or corrosion. Accordingly,

the open-circuit potentials adopted by copper and the BV-modified copper were recorded as a

function of time in 0.10 mol dm-3 NaCl solutions adjusted to pH values between 3.0 and 7.0.

These results are summarised in Figures 7.21 and 7.22. The results presented in Figure 7.21

correspond to the copper and BV-modified copper immersed at a pH of 5.0 and 3.0. For the

data presented at a pH of 3.0, the results recorded for the viologen-modified copper following
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approximately 96 h period in the chloride solution are also included. In this case, the electrode

was stored for approximately 96 h in the acidified 0.10 mol dm-3 NaCl solution, it was then

transferred to fresh 0.10 mol dm-3 NaCl and the open-circuit potential was recorded for 7000 s.

In Figure 7.22, the data recorded at a pH of 6.0 are shown on initial immersion in Figure 7.22a,

while the data recorded following a 4 day immersion period are presented in Figure 7.22b.
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Figure 7.21: Open-circuit potential plotted as a function of immersion times for Cu and the
BV-modified Cu immersed in 0.10 mol dm-3 NaCl (a) uncoated Cu (green) and BV-modified
Cu (blue) at a pH of 5.0 and (b) pH of 3.0, uncoated Cu (red), the BV-coated Cu (green) and
the BV-coated Cu (blue) after 96 h immersion.
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Figure 7.22: Open-circuit potential plotted as a function of immersion time for Cu and
the BV-modified Cu immersed in 0.10 mol dm-3 NaCl at a pH of 6.0 (a) data recorded on
immersion, uncoated Cu (blue) and BV-modified Cu (green) (b) data recorded following 4
days of immersion, uncoated Cu (green) and BV-modified Cu (blue).
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On examination of these figures, it can be seen that the open-circuit potentials recorded

for the BV-modified copper are significantly higher than that recorded for the uncoated copper.

This is observed at pH values of 3.0, 5.0 and 6.0, and although the data are not shown, similar

results were obtained at pH values of 4.0 and 7.0. On immersion of the uncoated copper in

the chloride-containing solutions, the potential decays to reach near steady-state conditions

at about 5000 to 7000 s. This slow decay in the potential is consistent with the adsorption

of chloride anions and the formation of copper-containing corrosion products at the surface.

However, at this potential the dissolution rate of copper is very low, as shown in Figure 7.18.

A similar potential-time profile is observed for the viologen-modified copper electrodes.

However, in this case, steady-state conditions are attained at much shorter times. For example,

the potential reaches a near constant value within 100 s at a pH of 3.0, and 2500 s at a pH

of 5.0 and 6.0, Figures 7.21 and 7.22. This suggests that while the surface of the uncoated

copper electrode is modified on immersion in the chloride solutions, these modifications do

not occur, or at least they occur to a lesser extent, for the viologen-modified copper. This is

consistent with the protective properties of the viologen films. Furthermore, these open-circuit

potentials are stable for considerable periods of time for the viologen-modified copper. As

shown in Figure 7.22, the open-circuit potential adopts values of approximately -0.08 to -0.09

V vs. SCE from 2000 s to periods exceeding 4 days. This indicates very good stability over

extended periods of time.

As the OCP value is determined by the rate of both the anodic and cathodic reactions,

according to the electro-neutrality theory and the Evans diagram in Figure 7.20, a decrease

in the rate of the anodic current will give rise to more positive OCP values. This clearly

shows that the rate of the anodic dissolution of copper at the viologen-modified copper is

reduced and this is consistent with the cyclic voltammetry data, presented in Section 7.3.2

and the spectrophotometric data presented in Section 7.3.1. Furthermore, the OCP values of

the viologen-modified copper remain at these more positive values and do not decay to the

values adopted by the uncoated copper electrodes, indicating very good stability over extended

periods.
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7.3.4 Potentiodynamic Polarisation Curves and Tafel Analyses

The corrosion protection properties of the viologen-modified copper electrodes were also

compared to the uncoated electrodes in 0.1 mol dm-3 NaCl at a pH of 7.0 using potentiodynamic

polarisation curves and Tafel analyses. These data were recorded at a relatively slow scan

rate of 1 mV s-1 and the electrodes were polarised from below the corrosion potential to

higher potential values to monitor the cathodic reduction and anodic dissolution reactions at

the surface.

Shown in Figure 7.23b is a typical polarisation curve recorded for copper. It is evident

that on polarising the copper in the anodic direction that dissolution of the copper occurs. The

anodic current increases rapidly at potentials higher than the corrosion potential. The plots

depicted in Figure 7.23a, show the corresponding data recorded for the BV-modified copper.

Again, an increase in the current is observed when the electrode is polarised above the corrosion

potential. The current increases rapidly to give a peak current and then the current decays to

give a pseudo-passive film. These data are similar to the voltammetry measurements presented

and discussed in Section 7.3.2. However, the corrosion potentials observed in Figure 7.23 are

somewhat different to the values measured in Section 7.3.3, but this is probably connected with

the manner in which the electrodes were polarised in the chloride-containing solutions.
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Figure 7.23: Potentiodynamic polarisation plots recorded in 0.1 mol dm-3 NaCl at 1 mV s-1,
(a) uncoated Cu and (b) BV-modified Cu.
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Using the data presented in Figure 7.23, the corrosion current and corrosion potential were

obtained by computing the Tafel slopes of the cathodic and anodic polarisation curves [263,

310]. At the corrosion potential, the rate of the reduction reaction is equal to the rate of the

metal dissolution, and this point corresponds to the corrosion rate of the system expressed in

terms of current density. The reduction reaction depends on the pH of the solution and involves

either the reduction of hydrogen ions or the reduction of dissolved oxygen to hydroxide ions,

Equations 7.6 and 7.7.

2H+ + 2e− → H+
2 (7.6)

O2 + 2H2O + 4e− → 4OH− (7.7)

However, it should be pointed out that this analysis is strictly only applicable to activation

controlled corrosion processes. It is well known that the dissolution of copper in chloride-

containing solutions is under mixed activation and diffusion control [280, 282] and this may

impair the usefulness of this approach. However, on inspection of the data presented in

Figure 7.23, there appears to be sufficient linear regions for the analysis for both the uncoated

copper and the viologen-modified copper. The computed corrosion potential, Ecorr, corrosion

current, Icorr and Tafel slopes, ba and bc are summarised in Table 7.6, where values for the

uncoated copper and the BV coated copper are presented. Included are data for the EV-

modified copper and the MV-modified copper, while the data obtained in the presence of the

BTA inhibitor are also provided for comparison. The proportionality constant, B, which can be

calculated from the anodic and cathodic Tafel slopes, ba and bc using Equation 7.8, [310, 404],

is also shown for each system.

B =
babc

2.303(ba + bc)
(7.8)

The Tafel slopes and corrosion current obtained for copper are in relatively good agreement

with the data obtained by Mansfeld et al. [310] for copper in chloride solutions, where ba was

calculated as 68 mV, bc as 81 mV, B as 16.1 mV and Icorr as 2.0 µA cm-2. On comparing the

different systems in Table 7.6, there is little variation in the Icorr values, except slightly lower

values were recorded for the MV modified copper. Indeed, on computing, Rp, where Rp =

B/Icorr, a relatively high value of 15 kΩ was obtained compared to a value of 11 kΩ recorded

for the uncoated copper. The Icorr value recorded for the BV-modified copper is somewhat
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high at 1.67 µA cm-2, giving a relatively low Rp value of 10 kΩ . This indicates that the

BV-modified copper has no significant influence on the rate of corrosion, but as pointed out

earlier these analyses are only appropriate for activation-controlled processes. On the other

hand, it is seen from the voltammetry data, presented in Figures 7.15, 7.18 and 7.19, the SEM

micrographs, presented in Figures 7.16, and 7.17 and the open-circuit potential data presented

in Figures 7.21 and 7.22, that the viologen-modified copper has indeed corrosion protection

properties and these are particularly evident at higher applied potentials.

Table 7.6: Tafel analysis in 0.10 mol dm-3 NaCl, at a pH of 7.0.

System
ba bc Ecorr Icorr B

mV decade-1 mV decade-1 V vs. SCE µA cm-2 mV
Uncoated Cu 54 89 -0.111 1.29 14.8
BV-modified Cu 83 94 -0.104 1.67 16.8
EV-modified Cu 74 57 -0.102 4.83 14.1
MV-modified Cu 51 59 -0.149 0.81 11.9
BTA in solution 37 72 -0.135 1.24 10.7

7.3.5 Electrochemical Impedance Spectoscopy

Electrochemical impedance spectroscopy (EIS) was used to investigate and compare the

properties and stability of the BV-modified copper with copper. The data were recorded over

a range of potentials in 0.10 mol dm-3 NaCl, but only at potentials where the copper and

viologen-modified copper were stable. The BV-modified copper was prepared as detailed in

Section 7.1.

Representative impedance plots of the uncoated copper and the viologen-modified copper

recorded at 0.00 V vs. SCE are shown in Figures 7.24 and 7.25, respectively. This corresponds

to a potential where the dissolution of copper is first observed, as shown from the data presented

in Figures 7.18 and 7.19. The modulus of the impedance, Z, and the phase angle presented as

a function of the frequency result in the Bode plot, while the imaginary and real components

of the impedance are plotted to give the complex plane. In all cases, the data were recorded as

a function of the immersion period for a total of 12 h in 0.10 mol dm-3 NaCl. Three traces are

shown in Figure 7.24 for the uncoated copper and these correspond to the data recorded after 60,

120 and 180 min. The data presented for the viologen-modified copper were recorded following

240 min at 0.00 V vs. SCE. For the uncoated copper, Figure 7.24, the Nyquist plot shows two
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merged semi-circles at high and low frequency and this is typical of a corroding surface [405].

At longer times, the radius of the semicircle, corresponding to the film resistance, increases.

Again, this is consistent with the behaviour of a corroding surface, where the dissolution gives

rise to the deposition of a corrosion product layer, comprising copper oxides, hydroxides and

various copper chloride species, such as CuCl. As this layer increases in thickness and ages,

there is a corresponding increase in the film resistance, as shown in Figure 7.24. Indeed,

impedance studies have been performed on copper in the near-active and active dissolution

regions and these data have been interpreted in terms of the diffusion through the copper

chloride salt layer, CuCl, deposited at the surface [260, 345, 401]. The impedance data recorded

for the viologen-coated copper are very different, as shown in Figure 7.25. Although not shown

on this plot, the impedance remained essentially constant and did not vary with the polarisation

period. This indicates that the corrosion products are not formed on continued polarisation

at 0.00 V vs. SCE. Instead, the viologen film protects the underlying copper and minimises

the formation of these corrosion products. The impedance data are characterised by a single

depressed semi-circle.

(a) (b)

Figure 7.24: (a) Complex plane and (b) Bode plots recorded for uncoated Cu in 0.10 mol dm-3

NaCl at 0.00 V vs. SCE. Both the experimental data (red/blue dot trace) and the simulated fitted
traces (green) are shown, data shown as a function of time at 60, 120 and 180 min.
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(a) (b)

Figure 7.25: (a) Complex plane and (b) Bode plots recorded for the BV-modified Cu in 0.10
mol dm-3 NaCl at 0.00 V vs. SCE. Both the experimental data (red/blue dot trace) and the
simulated fitted traces (green) are shown.

These impedance data were fitted to the equivalent circuit depicted in Figure 7.28 using

a non-linear least squares fitting minimisation method in the ZView fitting programme, as

detailed in Section 2.5.3. In this circuit, Rs represents the solution resistance, R1 represents

the charge-transfer resistance, while CPE1 and CPE2 are constant phase elements. Very good

agreement between the experimental and the simulated data was obtained as shown in the

figure, where the experimental data are compared to the simulated traces. In addition, the %

errors obtained were < 3% suggesting a good fit for the data. In this fitting routine, constant

phase elements were used to determine the capacitance of the interface and also to model the

diffusional processes. These were used rather than pure capacitors to take into account the

inhomogeneity of the surface of the electrode. The impedance of a constant phase element,

ZCPE is defined in accordance with Equation 7.9, with the fractional exponent, n, having values

between 0 and 1 [256, 344]. Here, j is the imaginary number, ω is the angular frequency and n

represents a phase shift that is a measure of surface inhomogeneity.

ZCPE =
1

Q( jω)n (7.9)
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When the exponent is zero, n = 0, the CPE describes an ideal resistor and when the

exponent is unity, n = 1.0, the CPE is equivalent to an ideal capacitor, while an exponent

of 0.5, n = 0.5, corresponds to homogeneous semi-infinite diffusion. The higher exponent

values, n > 0.95, point to a relatively high degree of surface homogeneity, while lower values,

0.85 < n < 0.95, indicate poor surface homogeneity, which may be related to a more porous

structure. Excellent agreement between the experimental data and the theoretical fitted data

was obtained when these frequency-dependent constant phase elements (CPE) were used,

as opposed to ideal capacitors or Warburg elements. For the uncoated copper, the parallel

combination between CPE1 and R1 is related to the mid-frequency range, where CPE1

represents the double layer capacitance. The low frequency Warburg response, modelled by

CPE2, is probably due to the intermediate species generated during the dissolution of copper,

which are then adsorbed or precipitated on the surface forming a layer. The dissolution is thus

limited by the formation of this layer. In the case of copper, the n value is close to unity in the

case of CPE1, at 0.92, indicating that CPE1 represents a capacitor while the n value of CPE2

is close to 0.5 signifying that this is a Warburg diffusional term. For the viologen-modified

copper, R1 represents the resistance of the viologen film and the resistance of the initial CuCl

layer formed on copper prior to the deposition of the viologen, while CPE1 corresponds to the

capacitance of the film. The capacitance was computed as 1.50 × 10-4 F cm-2 and this remained

constant during the polarisation period, from 30 to 720 min. The resistance, R1, was calculated

as 500 Ω cm2, and again there was little change in this resistance with continued polarisation.

The impedance data recorded at -0.20 V vs. SCE are depicted in Figures 7.26 for the

uncoated copper and in Figure 7.27 for the viologen-modified copper. At this potential, the

copper is stable and the potential is sufficiently removed from the active dissolution region, as

shown in Figures 7.18 and 7.19, that the copper remains stable as a function of time. Indeed

this was observed on recording the data as a function of the polaristion period from 30 to 720

min. The impedance data for the viologen-coated and uncoated copper are similar and consist

of a depressed semi-circle and a diffusion tail and can be fitted to the two-time constant model

shown in Figure 7.28. Again, the simulated data are compared with the experimental data

and very good agreement is seen over the entire frequency range. The fitted parameters are

provided in Tables 7.7 and 7.8.
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(a) (b)

Figure 7.26: (a) Complex plane and (b) Bode plots recorded for the uncoated Cu in 0.10 mol
dm-3 NaCl at -0.20 V vs. SCE. Both the experimental data (red/blue dot trace) and the simulated
fitted traces (green) are shown.

(a) (b)

Figure 7.27: (a) Complex plane and (b) Bode plots recorded for the BV-modified Cu in 0.10
mol dm-3 NaCl at -0.20 V vs. SCE. Both the experimental data (red/blue dot trace) and the
simulated fitted traces (green) are shown.
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Figure 7.28: Equivalent circuit used in the fitting of the experimental data.

Table 7.7: Fitted parameters for the BV-modified Cu at -0.20 V vs. SCE in 0.10 mol dm-3 NaCl
solution.

BV-modified Rs/Ω CPE2/F cm-2 n R1/Ω

R1Cu
60 min 132 1.17 ×10 -4 0.67 910
180 min 134 1.15 ×10 -4 0.69 991
300 min 136 1.12 ×10 -4 0.70 1096

Table 7.8: Fitted parameters for Cu at -0.20 V vs. SCE in 0.10 mol dm-3 NaCl solution.

Cu Rs/Ω CPE2/F cm-2 n R1/Ω

60 min 112 1.77 ×10 -3 0.42 21167
180 min 109 1.71 ×10 -3 0.46 17342
300 min 105 1.66 ×10 -3 0.52 14411

Under these applied potential conditions, chloride adsorption occurs at the surface of the

bare electrode. This slows down the electron kinetics and the adsorbed chloride acts like

an insulation layer affecting the rate at which redox species are oxidised or reduced at the

surface. The capacitance of the uncoated copper, represented as CPE1 in Figure 7.28, with n

= 0.81, is 40 µF cm-2, and this is in good agreement with the double-layer capacitance of bare

electrodes [27, 174]. The CPE2 represents a diffusional process at the adsorbed chloride layer,

while R1 corresponds to the resistance of this adsorbed layer. A lower resistance is measured

for the viologen-modified copper, as shown in Tables 7.7 and 7.8. From the analysis presented

in Tables 7.7 and 7.8, it is clear that the circuit parameters remain nearly constant. This suggests

good stability and the establishment of steady-state conditions after 180 min.

Babioc and Metikos-Hukovioc [2] have reported an increase in total resistance with

increasing inhibitor and immersion times. The increase in charge transfer resistance is

generally associated with improved corrosion protection. Babic et al. [84] have shown a

decrease in the capacitance for both Cu and CuNi in a BTA-containing acetate solution and have

attributed this decrease to the formation of a protective film on the electrodes. Subramanian et

al. [95] have proposed that the double layer capacitance reduces after absorption of the
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inhibitor since the absorbed layer reduces the dielectric constant (K) between the metal and the

electrolyte as shown in Equation 7.10. This is consistent with the data presented in Tables 7.7

and 7.8.

C = K
ε0A
d

(7.10)

At higher applied potentials the uncoated copper was unstable and the impedance response

varied with the polarisation period as corrosion products were formed and deposited at the

surface. On the other hand, the viologen-modified copper electrode continued to remain stable

up until a fixed potential of 0.60 V vs. SCE was applied. This breakdown potential is slightly

lower than that observed in the polarisation plots and cyclic voltammetry analysis, Figures 7.18

and 7.19. However, this can be related to the relatively long periods of time at these high

applied potentials. The stability of the viologen-modified copper is summarised in Figure 7.29,

where the resistance of the film is plotted as a function of the polarisation period at 0.00, 0.20

and 0.60 V vs. SCE. Steady-state conditions are achieved after approximately 80 min and then

the resistance remains constant with no evidence for modification of the film or dissolution of

copper from the underlying substrate. These data clearly show that the BV film has corrosion

protection properties and the film is stable for considerable periods of time.
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Figure 7.29: Resistance, R1, for BV-modified Cu, plotted as a function of the polarisation
period at 0.00 V (red), 0.20 V (blue) and 0.60 (green) V vs. SCE in 0.10 mol dm-3 NaCl.
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7.4 Summary of Results

From the results presented in this chapter it can be concluded that stable and protective BV films

are readily deposited from a chloride solution. The formation and deposition of the BV films

are inhibited in the presence of sulfates, while in acetate and oxalate solutions the formation

of insoluble copper oxalates and acetates at the copper surface, inhibits the deposition of the

viologen. Although the BV films deposited from these acetate and oxalate solutions have some

protective properties, these results are in good agreement with the data presented in Chapter 6

and highlight that the adsorption of chloride anions and the formation of a CuCl complex layer

at the copper surface is critical in the formation of stable and protective BV films. The BV-

modified copper showed good stability on cycling to -1.50 V vs. SCE in 0.10 and 0.15 mol dm-3

NaOH. The formation of CuO and Cu2O oxides were observed, but there was no evidence of

the dissolution of the underlying copper on cycling the modified electrode to an upper potential

of 0.50 V vs. SCE. Good stability was also observed when the modified electrode was cycled

from -1.50 to 1.00 V vs. SCE in the presence of 0.10 mol dm-3 NaCl.

In the assessment of the corrosion protection properties of the BV films it appears that the

film offers relatively good corrosion protection to the copper. This was observed using a com-

bination of a spectrophotometric analysis of the copper ion concentration and electrochemical

techniques, ranging from OCP measurements, cyclic voltammetry, polarisation curves, Tafel

analyses and electrochemical impedance spectroscopy. The spectrophotometric analysis of the

dissolved copper ion concentration showed higher copper ion concentrations for the uncoated

copper. However, in the absence of the viologen coating, the deposition of insoluble copper-

containing corrosion products limits the release of the copper ions into the solution phase,

giving ion concentrations that are lower than the true rate of dissolution of the uncoated copper.

Nevertheless, the copper ion concentration was lower for the BV-modified copper, indicating

good corrosion protection properties. Very good stability was observed on cycling the BV-

modified copper from -0.20 to 1.00 V vs. SCE in the presence of 0.10 mol dm-3 NaCl. There

was no evidence of copper dissolution, low currents and nearly constant charges were observed

throughout the electrochemical window. The OCP data, recorded at pH values from 3.0 to 7.0,

showed that the potential adopted by the BV-modified copper was higher than that recorded

for the uncoated copper. This potential remained constant, highlighting the stability of the film
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over time in highly aggressive solutions. Moreover, the characteristic decay of the potential to

the value adopted by the uncoated electrode, which indicates loss in the protective properties,

was not observed for the BV films over a 5 day period. Tafel analyses, which are routinely

applied to compute corrosion currents and rates of corrosion, were difficult to interpret as these

are limited to activation controlled conditions. However, the impedance study showed that the

BV films remained stable for periods in excess of 12 h, when polarised to potentials in the

vicinity of 0.60 V vs. SCE, highlighting the good protective properties of the BV films.
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Conclusions

In the research presented in this thesis, corrosion protection films were synthesised and

characterised. The films were based on polypyrrole coatings doped with combinations of

tartrate, oxalate and DBS along with the incorporation of MWCNT and viologen films adsorbed

at copper. The corrosion protective properties of these films were studied and compared to the

uncoated pure copper substrate.

As copper is easily oxidised it was challenging to obtain a protective film at the

copper interface without the possibility of the dissolution of the copper substrate. However,

polypyrrole films were successfully deposited at copper from a 0.10 mol dm-3 oxalate solution

at pH 8.0 and a 0.10 mol dm-3 tartrate solution at pH 7.0 to generate PPy-Tartrate and PPy-

Oxalate films on copper. Highly adherent polymer films were formed using these optimised

conditions. SEM micrographs confirmed that the polymers were homogeneous, defect and

crack-free. It was also possible to deposit the PPy-Tartrate film at pH values of 6.0 and 8.0. In

addition, bi-layers comprising PPy-Tartrate/PPy-Oxalate and PPy-Oxalate/PPy-Tartrate were

successfully formed at the copper surface. The PPy-Tartrate and PPy-Oxalate films were also

deposited at platinum, however a more acidic pH was required. Adherent and homogeneous

polymer films were only formed at a pH of 4.0 in the presence of either the oxalate or tartrate

anions.
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The electropolymerisation period was varied from 200 s to 3600 s to give polymer films

with different thickness. The breakdown potential of the PPy-Tartrate film was approximately

0.45 V vs. SCE and this remained essentially independent of the electropolymerisation period.

However, more protective PPy-Oxalate films were formed with electropolymerisation periods

between 2400 and 3600 s. The bi-layer coating was also more protective with increasing

electropolymerisation periods. The bi-layer provided the more corrosion protective coatings.

Higher breakdown potentials were observed with the bi-layer. Furthermore, the open-circuit

potential recorded for the bi-layer remained constant at about 0.10 V vs. SCE for a 30 day

period in a neutral 0.10 mol dm-3 NaCl solution. Slightly lower open-circuit potentials were

recorded for the PPy-Tartrate and the PPy-Oxalate film, but again the open-circuit potentials

remained essentially constant over a 12-day period. However, at longer immersion times,

the open-circuit potentials decayed to the values adopted by the uncoated copper electrode,

indicating a loss in the protective properties of the films. This loss in corrosion protection

was not observed with the PPy-Oxalate/PPy-Tartrate bi-layer, highlighting the more corrosion

protective properties of the bi-layer.

In an attempt to further improve the corrosion protective properties of the bi-layer coatings,

multi-walled carbon nanotubes, MWCNT, were incorporated into the polymer films. The

dispersion of the MWCNT proved difficult; however, they were successfully dispersed using

dodecylbenzene sulfonate (DBS) [218]. The concentration ratio of the MWCNT to DBS was

important in forming a stable and well dispersed solution of MWCNT, in agreement with

several literature reports [298]. Stable and well dispersed solutions were obtained using a 0.05

mol dm-3 DBS solution with 0.02 mg of MWCNT. The critical micelle content (CMC), which

is defined as the concentration of surfactants above which micelles are formed, was obtained

using conductivity and fluorescence measurements. The CMC was computed as 6.8 × 10-3

mol dm-3 and the aggregation number, N, which gives information on the number of surfactant

molecules contained within the micelle, was estimated at 52.7. These values correspond well

with literature reports [305, 406] and show that the micelles are present together with the DBS

monomer in the MWCNT dispersed DBS solutions.

Once dispersed in the DBS solution and in the presence of pyrrole, the MWCNT were

successfully incorporated within the polypyrrole films. Highly adherent and protective

coatings were formed by incorporating the MWCNT in polypyrrole films deposited at tartrate
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and oxalate doped polymer films. The PPy-Tartrate/PPy-DBSCNT and PPy-Oxalate/PPy-

DBSCNT were deposited at a constant potential of 0.75 V vs. SCE from a solution containing

0.1 mol dm-3 tartrate or 0.1 mol dm-3 oxalate and 0.30 mol dm-3 pyrrole. The initial PPy-

Tartrate or PPy-Oxalate films were deposited for 300 s and then the PPy-DBSCNT polymer

films were formed for an additional 300 s. Both bi-layers and multi-layers, which consisted

of four consecutive layers deposited for 300 s to give a total electropolymerisation time

period of 1200 s, were successfully formed. In addition, PPy-Tartrate/DBSCNT and PPy-

Oxalate/DBSCNT were formed by adsorbing the MWCNT onto the initial PPy-Oxalate or

PPy-Tartrate films at a fixed potential in a solution containing DBS and MWCNT.

The corrosion protection properties of the polymer films PPy-Tartrate/PPy-DBSCNT, PPy-

Tartrate /DBSCNT, PPy-Oxalate/PPy-DBSCNT and PPy-Oxalate/DBSCNT multi-layers were

assessed. Excellent corrosion protection properties were observed for copper with the tartrate-

based system, with the PPy-Tartrate/PPy-DBSCNT and PPy-Tartrate/DBSCNT multi-layers

providing similar corrosion protection. Breakdown of the polymer films was only observed

at approximately 0.80 V vs. SCE, while the open-circuit potential measurements indicated

excellent long-term corrosion protection properties exceeding 30 days. A spectrophotometric

analysis using bathocuproine was employed to monitor the concentration of dissolved copper.

Low concentrations of dissolved copper were observed, consistent with low rates of copper

dissolution and very good corrosion protection properties. The corrosion protective capabilities

of the tartrate based polymers were further studied by forming a scratch in the polymer coating

to expose the copper substrate. Then potentiodynamic polarisation tests were carried out on

this scratched polymer in 0.10 mol dm-3 NaCl at a pH of 7.0 and the results were compared

to an unscratched polymer under the same experimental conditions. However, the excellent

corrosion protective properties were somewhat lost and dissolution of the copper substrate was

evident. Lower breakdown potentials were recorded with the oxalate-based system and the

corrosion protection properties were lost following a 15 day immersion period in 0.10 mol

dm-3 NaCl. Nevertheless, the tartrate-based polymer films were stable and highly adherent,

and exhibited excellent corrosion protection properties.

As DBS was used to disperse the MWCNT, it was difficult to determine if the DBS or

the MWCNT was responsible for the corrosion protection observed with the PPy-Tartrate/PPy-

DBSCNT polymer films. Accordingly, a PPy-DBS film was studied as the outer polymer film
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in a bi-layer structure. The PPy-Tartrate/PPy-DBS bi-layer was readily formed at copper. The

initial PPy-Tartrate layer was formed at 0.75 V vs. SCE for 600 s in 0.30 mol dm-3 pyrrole

and 0.10 mol dm-3 tartrate. The PPy-DBS layer was then deposited at the PPy-Tartrate film at

0.75 V vs. SCE for an additional 600 s from 0.30 mol dm-3 pyrrole and 0.05 mol dm-3 DBS

at pH of 7.0, to give the bi-layered films. Freshly prepared solutions were used to deposit the

polypyrrole bi-layers, giving very good reproducibility. EDX analysis confirmed that the DBS

was successfully incorporated within the PPy-DBS layer. The influence of the applied potential

and deposition times on the formation of the outer PPy-DBS polymer film was studied and it

was shown that highly adherent and corrosion protective films were deposited at 0.70 V vs. SCE

for time periods ranging from 300 to 1000 s and at 0.90 V vs. SCE for times between 300 and

400 s. At lower electropolymerisation periods the polymer was not sufficiently thick to protect

the copper substrate and at longer growth times less stable polymer films were formed. The

concentration of DBS was varied from 0.001 to 0.090 mol dm-3 and adherent bi-layers were

formed regardless of the concentration of DBS. However, a DBS concentration of 0.05 mol

dm-3 gave the best corrosion protection properties and as shown from SEM micrographs of the

surface morphology, a compact PPy-DBS was deposited at this concentration. The cauliflower

morphology was observed at the higher DBS concentrations, however, when the concentration

of DBS was reduced to 0.001 mol dm-3, oval-like structures were observed at the surface and

the rate of electropolymerisation was reduced, giving thinner PPy-DBS layers.

The direct electropolymerisation of pyrrole in the DBS-containing solution, to generate the

PPy-DBS film at the copper, was successful at a pH of 6.0 in a 0.30 mol dm-3 pyrrole and

0.05 mol dm-3 DBS solution. Homogenous, adherent and stable PPy-DBS films were formed

directly at the copper substrate at applied potentials from 0.60 V to 0.90 V vs. SCE. Although

these PPy-DBS films showed good corrosion protection properties, somewhat more protective

properties were observed with the PPy-Tartrate/PPy-DBS bi-layers.

The corrosion protective properties of the PPy-Tartrate/PPy-DBS bi-layers were assessed

and studied using a combination of cyclic voltammetry, polarisation curves, Tafel analysis,

open-circuit potential measurements and electrochemical impedance spectroscopy. The bi-

layer adopted a more positive open-circuit potential compared to the open-circuit potential of

the uncoated copper. In addition, the open-circuit potential was stable and constant and did

not decay to the potentials of the uncoated copper, indicating high stability and good corrosion
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protection properties. Breakdown of the bi-layer was only observed at potentials higher than

0.85 V vs. SCE, highlighting the stability and excellent corrosion protection properties of

the bi-layers. Using Tafel analysis the corrosion current for the bi-layer protected copper was

estimated at 0.11 µA cm-2 in a neutral 0.10 mol dm-3 NaCl solution. Good stability of the bi-

layer was also observed in the electrochemical impedance spectroscopy study. The impedance

data were recorded at potentials from -0.20 V to 0.60 V vs. SCE. However, breakdown of

the bi-layer coating was observed at 0.60 V vs. SCE. This is probably connected with the

extended polarisation periods, at 0.60 V vs. SCE, in the chloride-containing electrolyte. It

appears from the results obtained that the PPy-DBS film is the key factor in the formation of a

highly protective bi-layer polymer. The incorporation of the MWCNT into the outer polymer

film appears to have little additional influence on the protective properties of the films.

An alternative approach was then considered. The electrochemical deposition of three

viologens, MV, BV and EV at copper in the presence of a 0.10 mol dm-3 NaCl supporting

electrolyte was studied. Sodium chloride was found to be a suitable electrolyte for the

electrochemical formation of these viologen-containing films at the copper substrate. There

was no need for the addition of any further supporting electrolyte. A 2.0 × 10-3 mol dm-3

solution of each viologen was sufficient to enable its formation in a highly reproducible manner

at the copper electrode.

The formation of the viologen films was achieved by cycling the copper electrode from

the potential of -0.20 to 1.00 V vs. SCE at of 1 mV s-1. For comparison, the copper was

cycled under the same conditions in the 0.10 mol dm-3 NaCl solution, but in the absence

of the viologens. Significant dissolution of the copper was observed in the absence of the

viologens. However, considerably lower currents were measured in the presence of the

viologens, indicating a reduction in the rate of dissolution and the formation of a protective film.

Dissolution of copper, and the nucleation of copper oxides, hydroxides and chloride-containing

species, was observed in the absence of the viologens. Indeed, these species were identified

and confirmed using EDX analysis. However, once these chloride species were initially formed

the adsorbed viologens inhibited any further dissolution of the copper substrate.

The formation of the MV and BV-containing films at the copper surface appeared to be

independent of the pH of the solution, between pH 2.0 and 9.0, the concentration of the

viologen, from 2.0 × 10-3 to 5.0 × 10-3 mol dm-3, and the immersion time in the viologen-
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containing solution prior to formation of the film by cycling the copper electrode in the same

solution. However, the formation of the ethyl viologen-containing film was dependent on

the viologen concentration and protective films were only formed using the higher viologen

concentration of 5.0 × 10-3 mol dm-3.

In order to establish the role of the chloride anion in the formation of the viologens at the

copper surface, the concentration of the chloride solution was varied from 1.25 × 10-3 mol

dm-3 to 0.30 mol dm-3. The optimum chloride concentration was determined as 0.10 mol dm-3.

At the lower concentrations, the formation of the viologen films was inhibited by the slow

formation of the CuCl complex layer. At concentrations higher than 0.10 mol dm-3, the CuCl

complex was formed and stable viologen-containing films were formed. Although it is well

known that EDX analysis is strictly a qualitative technique, a quantitative study was carried out

to determine if the concentration of the BV and the composition of the initial chloride adsorbed

layer varied with the applied potential. There was a significant increase in the concentration

of chloride-containing species as the copper electrode was polarised to higher potentials in the

absence of the viologen, indicating dissolution and corrosion of the copper substrate. However,

on addition of the BV to the solution, the concentration of the chloride-containing species

was reduced significantly and varied little with the applied potential, indicating a stable and

protective film. Moreover, clear evidence for the presence of the BV was obtained using EDX

analysis. Carbon was detected in all samples cycled in the BV solution, however no carbon

was observed for the copper electrode cycled in the chloride solution.

The protective properties of the viologen films were compared to the well-known corrosion

inhibitor benzotriazole (BTA). The BTA offered very good corrosion protection of the copper

substrate at pH values ranging from 3.0 to 5.0, the performance of the inhibitor was

considerably reduced at pH values below 3.0 and higher than 5.0. In contrast, the viologen-

containing films were protective across a much wider pH range, extending from pH 2.0 to 9.0.

The formation and deposition of the BV films were inhibited in the presence of sulfates, while

in acetate and oxalate solutions the formation of insoluble copper oxalates and acetates at the

copper surface, inhibited the deposition of the viologen. Although the BV films deposited from

these acetate and oxalate solutions did exhibit some protective properties, it was found that the

formation of a CuCl complex layer at the copper surface was critical in forming stable and

protective BV films. The BV modified copper showed good stability on cycling to -1.50 V vs.
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SCE in 0.10 and 0.15 mol dm-3 NaOH. The formation of CuO and Cu2O oxides were observed,

but there was no evidence of the dissolution of the underlying copper on cycling the modified

electrode to an upper potential of 0.50 V vs. SCE. Good stability was also observed when the

modified electrode was cycled from -1.50 to 1.00 V vs. SCE in the presence of 0.10 mol dm-3

NaCl.

In the assessment of the corrosion protection properties of the BV films it appeared

that the film offered relatively good corrosion protection to the copper. This was observed

using a combination of a spectrophotometric analysis of the copper ion concentration and

electrochemical techniques, ranging from open-circuit potential measurements, cyclic voltam-

metry, polarisation curves, Tafel analyses and electrochemical impedance spectroscopy. The

spectrophotometric analysis of the dissolved copper ion concentration showed higher copper

ion concentrations for the uncoated copper. However, in the absence of the viologen coating,

the deposition of insoluble copper-containing corrosion products limited the release of the

copper ions into the solution phase, giving ion concentrations that were lower that the true

rate of dissolution of the uncoated copper. Nevertheless, the copper ion concentration was

lower for the BV modified copper, indicating good corrosion protection properties. Very good

stability was observed on cycling the BV modified copper from -0.20 to 1.00 V vs. SCE in the

presence of 0.10 mol dm-3 NaCl. There was no evidence of copper dissolution.

The OCP data, recorded at pH values between 3.0 and 7.0, showed that the potential

adopted by the BV modified copper was higher than that recorded for the uncoated copper.

This potential remained constant, highlighting the stability of the film over time. Moreover,

the characteristic decay of the potential to the value adopted by the uncoated electrode, which

indicates loss in the protective properties, was not observed for the BV films over a 5 day

period. The impedance study showed that the BV films remained stable for periods in excess

of 12 h, when polarised to potentials in the vicinity of 0.60 V vs. SCE, highlighting the good

protective properties of the BV films deposited at copper.
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October 1st 2010.

Ursula Carragher and Carmel Breslin; Inhibition of Copper corrosion using Conducting
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