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Abstract -- Pitch detectors are used in a variety of speech processing
applications such as speech recognition systems where the pitch of the
speaker is used as one parameter for identification purposes. Furthermore,
pitch detectors are also used with adaptive filters to achieve high quality
adaptive noise cancellation of speech signals [1]. In voice conversion
systems, pitch detection is an essential step since the pitch of the modified
signal is altered to model the target voice [2].

This paper describes a VLSI ' implementation of the
computationally efficient and accurate pitch detection algorithm known as
the Average Magnitude Difference Function (AMDF). The superior speed
of a hardware pitch detector is essential particularly for use in real-time

-

signal processing devices such as mobile phones.
Keywords: Pitch Detection, AMDF, VLSI, CMOS Design

I INTRODUCTION

Pitch detection is an important step in many digital
speech processing systems. Various algorithms exist
for this purpose but for realtime VLSI
implementation, the most computationally efficient
algorithms must be chosen. This paper describes the
VLSI design of such a pitch detection algorithm.

The pitch detector developed will be
incorporated into an adaptive noise canceller in
conjunction with an adaptive filter where the pitch
period will be used as a delay step before the
adaptive filter and acts effectively as an enable to
update the filter coefficients. The speech delayed by
one pitch period is highly correlated with the original
speech and thus the adaptive filter can remove the
noise components of the speech signal [1]. For
potential implementation into a voice conversion
system, the pitch detector can be used as a speaker
recognition step or alternatively the pitch may be
shifted to change the speech characteristics of a
speaker.

a) Pitch
When generating speech sounds the lungs act as an
air reservoir and bellows, pushing air between

ligaments called the vocal cords which forces them to
vibrate by opening and closing. The area between the
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vocal cords is known as the glottis. The rate at which
this vibration occurs is called the pitch of the
resulting speech signal. The pitch is often referred to
as the fundamental frequency, Fo. The pitch period,
T, is related to the fundamental frequency by T=1/F,.
While the vocal cords are tensed the air passing
through them causes the cords to vibrate at a higher
pitch. When relaxed, the vocal cords vibrate slower,
causing a lower pitch. If not speaking, the vocal cords
are moved farther apart in the back, widening the
passage for breathing. In males, the vocal cords are
generally more relaxed than in females which thus
leads to the distinctive lower pitch in a male’s voice.
Typically, in humans pitch frequency ranges from
about 50 Hz — 500 Hz. This is approximately 50 Hz
to 250 Hz for males and as high as 500 Hz for
females [3].

b) Voiced and Unvoiced Speech

The decision whether a given segment of speech is
classified as voiced or unvoiced is crucial to the
accurate operation of the pitch detector that is
implemented. Forcing air through the glottis while
vibrating the vocal cords produces voiced speech. It
produces a quasi-periodic signal in the time-domain
and results in a spectrum of clearly defined pitch and
harmonics at multiples of this frequency. Vowel




sounds are typical of voiced speech, e.g. “eee”. Pitch
can only be measured if a particular segment of
speech is classified as voiced.

Unvoiced speech is produced when no
vibrations take place in the vocal cords. The resulting
speech signal is non-periodic and random in the time-
domain. The spectrum is broadband which makes it
almost indistinguishable from noise. Some consonant
sounds are typical of unvoiced speech, e.g. “s”. If a
segment of speech is classified as unvoiced, the pitch
cannot be measured. Therefore, a reliable pitch
detector must make voiced/unvoiced decisions and
only during periods of voiced speech provides a
measurement of the pitch period, T. -

Some speech segments consist of voiced and
unvoiced excitation simultaneously such as “z”.
These speech sounds are more difficult to classify

[4].

Figure 1 shows segments of approximately 40
ms of voiced (top) and unvoiced (bottom) speech in
the time-domain sampled at 8 kHz. The periodic
nature of voiced speech can be seen with the distance
between the largest peaks corresponding to the pitch
period. The non-periodic noise-like natre of
unvoiced speech is also shown in Figure 1.
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Figure 1: Voiced and Unvoiced Speech (40 ms)

I PITCH DETECTION ALGORITHM

Due to its importance in various applications, a wide

variety of algorithms have been developed for pitch

detection. These include the Autocorrelation method,

Simplified Inverse Filtering Technique (SIFT), Data

Reduction Method (DARD) and the Average

Magnitude Difference Function (AMDF) [3]. Pitch

detection algorithms can be divided into the

following three broad categories [5]:

i) Algorithms that utilise the time-domain properties

of speech signals.

ii) Algorithms that utilise the frequency-domain

properties of speech signals.

iii) Algorithms that utilise a hybrid of both i) and ii).
The AMDF is a time-domain pitch detection
algorithm. It is chosen because:

1) It provides a good estimate of pitch contour.

2) It has no multiply operations (unlike
Autocorrelation).

3) It has relatively low computational cost.
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4) The nature of its operations makes it suitable
of implementation in special purpose
hardware [6].

The AMDEF is defined by the relation [6]:

L

b =L
L j=1

| S, =8 ;e 1+ ™01 Buax (1)

S;are the samples of the input speech (=S, S, ... Sp)
§).care the samples shifted 7 seconds

L is the number of delays or “lags”

7is the delay value

Tnax 18 the maximum delay shift

In the AMDF, a difference signal is formed between
the shifted speech and the original. At each delay, the
absolute magnitude of the difference is taken. The
difference signal is always zero when the delay, 7=
0, and exhibits deep nulls at delays corresponding to
the pitch period of voiced sounds. In most AMDF
pitch detectors the lag for which the magnitude of the
difference function is a global minimum is chosen as
the pitch period for that speech segment. The number
of delays or “lags” per sample that is chosen is 64.
This is a suitable number for an 8 kHz sampling rate
and to obtain an accurate reflection of pitch period
while keeping the computation low. In addition, for
hardware implementation division by 64 in (1) is
easily achieved by discarding the 6 least significant
bits. Figure 2 shows a typical AMDF waveform of
duration 20 ms. The global minimum corresponds to
the pitch period as shown. Each AMDF point is
calculated using the relation in (1). A second
minimum is also apparent at twice the pitch period
due to the second harmonic. This can sometimes fall
lower than the actual pitch period, particularly in high
noise signals. This is known as pitch period doubling.

Magnitude

Pitch Period

Time

Figure 2: AMDF Waveform (20 ms)

m VOICED/UNVOICED DECISION

Three methods were implemented to determine
whether a segment of speech is voiced or unvoiced.
They are Short-Term Energy, Zero Crossings and the

AMDF Max/Min Ratio. The Short-Term Energy and
Zero Crossings functions complement each other and,
therefore, can be used more accurately together to
label different parts of speech [4]. By combining the
three methods and using all of their advantages, a
more accurate decision becomes increasingly
probable.

a) Short-Term Energy

Short-Term Energy allows calculation of the amount
of energy in a sound at a specific interval in time. It is
purely dependent upon the energy in the signal,
which depends on the method in which the sound is
recorded. For example, if a person records the same
phrase twice, one while whispering and one while
shouting, then the Short-Term Energy values will be
vastly different [4]. This is the main weakness in
using energy as the sole method of determining the
voiced/unvoiced decision. However, the standard
property is that the energy is higher for voiced than
unvoiced speech and should be zero for silent regions
in clean recording of speech. Energy computations
are performed on the original speech sample. The
total energy of a 160-sample frame is defined by:

160

E=Z:n2 )
=]

If the total energy of the frame crosses the defined
energy threshold, the frame is classified as voiced.
From observation, this threshold was chosen to be
one quarter of the maximum energy in a frame. The
reason for this is that the amplitude of most samples
in a voiced frame is greater than one quarter of the
normalised maximum. The reverse is the case for
unvoiced frames.

b) Zero Crossings

Zero Crossings is defined as the number of times in a
frame of speech that the amplitude of the sound wave
changes sign. For a 20 ms 160-sample frame of clean
speech, the zero crossing rate is approximately 24 or
less for voiced speech, 100 for unvoiced speech and ¢
for silence [4]. However, very few recordings consist
of perfectly clean speech. This means that often there
is some level of background noise, that interferes
with the speech, causing the silent regions to actually
have quite a high zero crossing rate. This is the
reason why a shifted zero axis is used which is above
the normal zero amplitude mean and thus eliminates
the problem of high zero crossings during silent
regions. The zero crossings rate in this
implementation is chosen to be 18 positive zero
crossings. If the number of crossings is below this
number, the frame is labelled as voiced. If this
number is exceeded, the frame is labelled as
unvoiced.
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¢) AMDF Max/Min Ratio

When the AMDF for a frame has been calculated,
another voicing decision is made by examining the
ratio between the global maximum and global
minimum in the frame [5]. The ratio for a voiced
frame was found to be approximately greater than 3
for a voiced frame. If the ratio exceeds 3, the frame is
classified as voiced. If it is less, the frame is
unvoiced. This is because the relative amplitudes
between samples in an unvoiced frame are less than
that of a voiced frame.

III CMOS IMPLEMENTATION

The pitch detector was coded and tested in VHDL.
The VHDL code was synthesised and tested using the
Synopsys Design environment. Two different
versions of the detector were developed — a serial
version and a parallel version. A block diagram of
the serial pitch detector is shown in Figure 3. The 8-
bit speech samples are stored in a Latch-Multiplexer
structure. The AMDF needs the first 64 samples of
the previous frame and so the structure consists of
224 storage locations to store the samples as opposed
to 160 (the frame size). The energy computation of
the circuit uses add-shift multiplication. The AMDF
Max/Min Ratio is computed as a final voicing
decision and operates with subtract-shift division.
The Min Location in the diagram is the pitch period,
which corresponds to the location of the global
minimum. The Moore Controller synchronises all
modules and will only enable the AMDF to compute
the pitch period if the energy and zero crossings
modules verify that a frame is voiced. This saves
power because the pitch will not be computed if the
frame is unvoiced.

The Latch-Multiplexer structure, the AMDF
Calculator and the Controller were implemented both
serially and in parallel. The parallel version is more
computationally efficient at 2724 clock cycles per
frame but results in a larger silicon area. Depending
on whether timing or silicon area is at a premium, a
different version of the detector may be chosen.
Assuming that the speech is sampled at 8 kHz, the
clock speed of the parallel detector must be 21.8
MHz and 84.4 MHz for the serial version. The serial
version would therefore lead to greater power
consumption due to the required faster clock cycles
of 10504 per frame — an unattractive property,
particularly for use in battery-powered devices such
as mobile phones.

v PERFORMANCE AND RESULTS

The pitch detector was tested with 8 kHz quantised 8-
bit speech samples. It was synthesised using the
European Silicon Structures 0.7 pm technology. The




silicon area of each module and the total silicon area
(in pm?) is shown in Figure 4. As can be seen, the
total area consumption of the parallel version is
approximately 30% greater than that of the serial
implementation. The main reason for this is the larger
Multiplexer. However, the. parallel version needs
only 25% of the clock frequency required for the
serial one. The total silicon area for the serial version
is about 7 mm? and just under 10 mm? for the parallel
one — either version is small enough to fit into a small
communication device. The data arrival time of both
schematics is nearly equal, i.e. the propagation delay
produced by the schematic is not greatly influenced
by the varying functionalities. The different timing

thus operation under worse conditions than 10 dB
SNR is possible.

Figure 5 (a) and (b) shows the performance
of the detector with a SNR of 25 dB and an SNR of
10 dB. As can be seen, pitch period doubling occurs
more often with a poorer SNR. However, for use in
an adaptive noise canceller, pitch period doubling is
not a problem since the delayed speech is still highly
correlated with the original speech [1]. For use in a
voice conversion system, this must be eliminated.
Figure 5 (b) shows the number of zero crossings but
does not show the energy computation since the
energy threshold is very high.

information is shown in Table 1. Time/ms | Global | Global | Ratio Label
MIN MAX
Serial Parallel 0 0 0 0 -
Version Version 20 7 70 10 Voiced
Module Data Arrival | Data Arrival 40 4 68 17 Voiced
Time (ns) Time (ns) 60 4 68 17 Voiced
Latches 2.03 2.03 80 3 67 22 Voiced
Multiplexer 2.02 2.04 100 4 68 17 Voiced
Energy Calc. 1.97 1.97 120 3 67 22 Voiced
Zero Crossings 1.92 1.92 140 3 69 23 Voiced
AMDF Calc. 1.98 1.99 160 4 68 17 Voiced
Min/Max Ratio 1.92 1.92 180 4 69 17 Voiced
Controller 2.07 2.07 200 4 68 17 Voiced
Combinedmodules 2.07 2.08

Table 1: Propagation Delays of Modules

The slower clock of the parallel
implementation implies lower power consumption
due to their proportional relationship. The serial
wersion is smaller but due to necessity of a clock
speed 4 times larger, this adversely affects the power
efficiency.

Tests were carried out on the pitch detector
using real speech samples with varying Signal-to-
Noise ratios (SNRs) ranging from —10 dB to +25 dB.
The performance of the detector worked well with
high SNRs above 10 dB. The woiced/unvoiced
classification worked perfectly and the pitch was
computed accurately and updated every frame. The
pitch extraction of the detector was very consistent
and was capable of computing the pitch with SNRs
better than or equal to 10 dB. For poor SNRs (below
10 dB) the results were not as good. With a large

amount of noise, the voiced/unvoiced decision was

sometimes inconsistent, particularly due to the
AMDF Max/Min Ratio being too high. If this is the
case, the pitch period will not be computed and thus
can be overcome by using a lower ratio. This is
apparent in Table 2 where a small change in global
minimum can cause the ratio to change by a
significant margin which can cause the frame to be
labelied as unvoiced when a lot of noise is present.
However, the threshold values are easy to change and
the structure can be adapted for particular usages and
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Table 2: Voiced/Unvoiced Decision by the Ratio
Calculator

\% CONCLUSIONS

A pitch detector was successfully implemented in
hardware using high-level VLSI design techniques
and VHDL. Two different versions of the detector
were realised and their relative merits were assessed.
Depending on the chosen application, either version
could be selected. The computational efficiency of
the parallel version was befter but had larger area.
The pitch detector worked well with high signal-to-
noise ratios. For poorer signal-to-noise ratios, the
pitch was not always computed due to incorrect
voicing decision of the Min/Max Ratio Calculator.
However, adjusting the threshold of the Ratio
Calculator can solve this problem. Further
improvements may be adapted into the design by
using the probabilistic approach to AMDF pitch
detection [7] which improves gross error probability
from 6% to 3%. In addition, power consumption tests
on both implementations will be run to assess which
version is more power efficient.

In summary, the detector was robust and
worked very effectively with signal-to-noise ratios
higher than 10 dB. Due to its efficiency, the detector
can be incorporated into many small communication
devices such as mobile phones, hearing aids and
dictaphones.
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Abstract — This paper examines a number of architectures for the
practical implementation of a Low-Density Parity Check (LDPC)
encoder. The encoding problem for LDPC codes can be reduced es-
sentially to vector-matrix multiplication. In order to ensure that a
LDPC code has good performance (relative to the Shannon limit) a
large codeword and generator matrix are required. This however re-
sults in a number of issues with regard to a practical implementation.
These issues include interconnect routing, memory size, pipelining
and parallelism, all of which will be examined in this paper. A ver-
satile LDPC encoding architecture is mapped on a FPGA (Field
Programmable Gate Array) and the cost of the implementation is
evaluated as function of area, speed and routability.

Keywords — LDPC, encoding, FPGA architectures

I INTRODUCTION

Low-Density Parity Check (LDPC) codes were
developed by Gallager [1] in the 1960’s and
though the code’s performance was remarkable
they remained largely unnoticed for the next 30
years. The main reason for this was probably
the fact, that in the 1960’s a practical implemen-
tation would have been unrealistically complex [2].

LDPC codes are set to challenge Turbo codes
as the coding scheme of choice for the future.
Two reasons in particular make them superior
to Turbo codes: an LDPC decoder is of an
order of magnitude less complex than that of a
Turbo code with similar Bit-Error Rate (BER)
performance, and an LDPC decoder is inherently
parallel [2]. Also, there is no need for interleaving
as the interleaver can be distributed in the code.
Translated into hardware implementation, these
properties make LDPC codes ideally suited to
communication applications that require a fast,
low-power encoder/decoder solution.

Recent advances, especially in the develop-
ment of practical LDPC decoding algorithms,
have resulted in a resurgence in interest in these
codes. LDPC codes are being considered for use
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in a wide variety of applications ranging from
wireless LAN, and ADSL to hard disk drives.

Before being sent over a noisy channel, a message
is first encoded and then a modulation scheme
is applied. At the other end, the received word,
which may contain some errors due to channel
noise, has to be decoded in order to remove the
errors. In particular the challenges involved in
the practical implementation of the decoder, have
been the focus of a quite a number of papers
[2](3][4]). Although the decoding is similar in
principle to the decoding of Turbo codes, the
encoding is more complicated. Encoding of LDPC
codes provide a number of unique challenges most
of which arise from the relatively large parity
check matrices involved. The implementation of
an LDPC encoder is of complexity O(n?) for a
block of data of length n.

This paper is organised as follows: an overview of
the LDPC codes including encoding and decoding
is given in Section II. Various architectures for en-
coding LDPC codes are introduced in Section III.
The main focus of the paper is prototyping and
design for re-use, which can be used as template
in an ASIC development flow. A versatile ar-
chitecture that will allow the encoding of codes




