NON-COCHLEAR SOUND
LIUBLIANA _9.-14. SEPTEMBER

_ICMCe01

THE MOBILE CSOUND PLATFORM

Victor Lazzarini, Steven Yi, Joseph Timoney

Sound and Digital Music Technology Group

National University of Ireland, Maynooth, Ireland

victor.lazzarini@nuim.ie
stevenyi@gmail.com
jtimoney@cs.nuim. ie

Damian Keller

Nucleo Amazonico de Pesquisa Musical (NAP)
Universidade Federal do Acre, Brazil
dkeller@ccrma.stanford.edu

Marcelo Pimenta

LCM, Instituto de Informatica
Universidade Federal do Rio Grande do Sul, Brazil

mpimenta@info.ufrgs.br

ABSTRACT

This article discusses the development of the Mobile Csou-
nd Platform (MCP), a group of related projects that aim to
provide support for sound synthesis and processing un-
der various new environments. Csound is itself an estab-
lished computer music system, derived from the MUSIC
N paradigm, which allows various uses and applications
through its Application Programming Interface (API). In
the article, we discuss these uses and introduce the three
environments under which the MCP is being run. The
projects designed for mobile operating systems, iOS and
Android, are discussed from a technical point of view, ex-
ploring the development of the CsoundObj toolkit, which
is built on top of the Csound host API. In addition to
these, we also discuss a web deployment solution, which
allows for Csound applications on desktop operating sys-
tems without prior installation. The article concludes with
some notes on future developments.

1. INTRODUCTION

Csound is a well-established computer music system in
the MUSIC N tradition [1] , developed originally at MIT
and then adopted as a large community project, with its
development base at the University of Bath. A major new
version, Csound 5, was released in 2006, offering a com-
pletely re-engineered software, as a programming library
with its own application programming interface (API).

This allowed the system to be embedded and integrated
into many applications. Csound can interface with a vari-
ety of programming languages and environments (C/C++,
Objective C, Python, Java, Lua, Pure Data, Lisp, etc.).
Full control of Csound compilation and performance is
provided by the API, as well software bus access to its
control and audio signals, and hooks into various aspects
of its internal data representation. Composition systems,
signal processing applications and various frontends have
been developed to take advantage of these features. The

Csound API has been described in a number of articles
(4], [6] [7].

New platforms for Computer Music have been brought
to the fore by the increasing availability of mobile devices
for computing (in the form of mobile phones, tablets and
netbooks). With this, we have an ideal scenario for a vari-
ety of deployment possibilities for computer music sys-
tems. In fact, Csound has already been present as the
sound engine for one of the pioneer portable systems, the
XO-based computer used in the One Laptop per Child
(OLPC) project [5]. The possibilities allowed by the re-
engineered Csound were partially exploited in this sys-
tem. Its development sparked the ideas for a Ubiquitous
Csound, which is now steadily coming to fruition with a
number of parallel projects, collectively named the Mo-
bile Csound Platform (MCP). In this paper, we would like
to introduce these and discuss the implications and possi-
bilities provided by them.

2. THE CSOUND APPLICATION ECOSYSTEM

Csound originated as a command-line application that pars-
ed text files, setup a signal processing graph, and pro-
cessed score events to render sound. In this mode, users
hand-edit text files to compose, or use a mix of hand-
edited text and text generated by external programs. Many
applications—whether custom programs for individual use
or publicly shared programs—were created that could gen-
erate text files for Csound usage. However, the usage sce-
narios were limited as applications could not communi-
cate with Csound except by what they could put into the
text files, prior to starting rendering.

Csound later developed realtime rendering and event
input, with the latter primarily coming from MIDI or stan-
dard input, as Csound score statements were also able to
be sent to realtime rendering Csound via pipes. These fea-
tures allowed development of Csound-based music sys-
tems that could accept events in realtime at the note-level,

_163



NON-COCHLEAR SOUND
LIUBLJANA _9.-14. SEPTEMBER

_ICMC201

such as Cecilia [8]. These developments extended the use
cases for Csound to realtime application development.

However, it was not until Csound 5 that a full API
was developed and supported that could allow finer grain
interaction with Csound [3]. Applications using the API
could now directly access memory within Csound, control
rendering frame by frame, as well as many other low-level
features. It was at this time that desktop development of
applications grew within the Csound community. It is also
this level of development that Csound has been ported to
mobile platforms.

Throughout these developments, the usage of the
Csound language as well as exposure to users has changed
as well. In the beginning, users were required to under-
stand Csound syntax and coding to operate Csound. To-
day, applications are developed that expose varying de-
grees of Csound coding, from full knowledge of Csound
required to none at all. Applications such as those created
for the XO platform highlight where Csound was lever-
aged for its audio capabilities, while a task-focused inter-
face was presented to the user. Other applications such
as Cecilia show where users are primarily presented with
a task-focused interface, but the capability to extend the
system is available to those who know Csound coding.
The Csound language then has grown as a means to ex-
press a musical work, to becoming a domain-specific lan-
guage for audio engine programming.

Today, these developments have allowed many classes
of applications to be created. With the move from desktop
platforms to mobile platforms, the range of use cases that
Csound can satisfy has achieved a new dimension.

3. CSOUND FOR I0S

At the outset of this project, it was clear that some mod-
ifications to the core system would be required for a full
support of applications on mobile OSs. One of the first
issues arising in the development of Csound for iOS was
the question of plugin modules. Since the first release of
Csound 5, the bulk of its unit generators (opcodes) were
provided as dynamically-loaded libraries, which resided
in a special location (the OPCODEDIR or OPCODEDIR64
directories) and were loaded by Csound at the orchestra
compilation stage. However, due to the uncertain situa-
tion regarding dynamic libraries (not only in iOS but also
in other mobile platforms), it was decided that all mod-
ules without any dependencies or licensing issues could
be moved to the main Csound library code. This was a
major change (in Csound 5.15), which made the majority
of opcodes part of the base system, about 1,500 of them,
with the remaining 400 or so being left in plugin modules.
The present release of Csound for iOS includes only the
internal unit generators.

With a Csound library binary for iOS (in the required
arm and x86 architectures, for devices and simulators), a
new API was created in Objective-C, called CsoundObj.
This is a toolkit that provides a wrapper around the stan-
dard Csound C API and manages all hardware connec-

_164

tivity. A CsoundObj object controls Csound performance
and provides the audio input and output functionality, via
the CoreAudio AuHAL mechanism. MIDI input is also
handled either by the object, by allowing direct pass-through
to Csound for standard Csound MIDI-handling, or by rout-
ing MIDI through a separate MIDIManager class to UI
widgets, which in turn send values to Csound. Addition-
ally, a number of sensors that are found on iOS devices
come pre-wrapped and ready to use with Csound through
CsoundOb;.

To communicate with Csound, an object-oriented call-
back system was implemented in the CsoundObj API. Ob-
jects that are interested in communicating values, whether
control data or audio signals, to and from Csound must
implement the CsoundValueCacheable protocol. These
CsoundValueCacheables are then added to CsoundObj and
values will then be read from and written to on each con-
trol cycle of performance (fig.1). The CsoundObj API
comes with a number of CsoundValueCacheables that wrap
hardware sensors as well as UI widgets, and examples of
creating custom CsoundValueCacheables accompany the
Csound for i0OS Examples project.

Application

CsoundValueCacheable

CsoundObj API LM

Figure 1. CsoundObj and the Application

While the CsoundObj API covers most of the general
use cases for Csound, it does not wrap the Csound C API
in its entirety. Instead, the decision was made to handle
the most common use cases from Objective-C, and for
less used functions, allow retrieval of the CSOUND ob-
ject. This is the lower-level object that encapsulates all
of the C API functionality. It is a member of CsoundObj
and it is exposed so that developers can use methods not
directly available in that class. It is expected that as more
developers use CsoundObj, the CsoundObj API may con-
tinue to further wrap C API functions as they are identified
as being popular.

Together with the API for iOS, a number of applica-
tion examples complete the SDK. These can be used dur-
ing development both as a practical guide for those inter-
ested in using Csound on i0S, as well as a test suite for the
API. Examples include a number of realtime instruments



Ping Pong Delay

Harmonizer
Hardware Test
Csound Haiku 4
Record Test
Multitouch XY
Waveview
Audio File Test

Console Qutput

A

Figure 2. Csound for iOS SDK sample app

(performed by screen or MIDI input), signal processing
applications (harmonizer, pitch shifter, ping-pong echo),
a generative music example, and other audio-related util-
ities (fig.2). These examples, together with the manual
created for the project, were assembled to assist in learn-
ing Csound for iOS.

4. CSOUND FOR ANDROID

Csound for Android is based on a native shared library
(libcsoundandroid.so) built using the Android Native De-
velopment Kit (NDK)', as well as pure Java code for the
Android Dalvik compiler. The native library is composed
by the object files that are normally used to make up the
main Csound library (libcsound), its interfaces extensions
(libcsnd), and the external dependency, libsndfile?. The
Java classes include those commonly found in the csnd.jar
library used in standard Java-based Csound development
(which wrap libcsound and libcsnd), as well as unique
classes created for easing Csound development on An-
droid.

As a consequence of this, those users who are familiar
with Csound and Java can transfer their knowledge when
working on Android. Developers who learn Csound on

Thttp://developer.android.com/sdk/ndk/index.html
Zhttp://www.mega-nerd.com/libsndfile/

NON-COCHLEAR SOUND
LIUBLIANA _9.-14. SEPTEMBER

_ICMC201

Android can take their experience and work on standard
Java desktop applications. The two versions of Java do
differ, however, in some areas such as classes for access-
ing hardware and different user interface libraries. Simi-
larly to i0S, in order to help ease development, a
CsoundObj class, here written in Java, of course, was de-
veloped to provide straightforward solutions for common
tasks.

As with i0S, some issues with the Android platform
have motivated some internal changes to Csound. One
such problem was related to difficulties in handling tem-
porary files by the system. As Csound was dependent on
these in the compilation/parsing stage, a modification to
use core (memory) files instead of temporary disk files
was required.

Two options have been developed for audio IO. The
first involves using pure Java code through the Audio-
Track API provided by the Android SDK. This is, at pres-
ent, the standard way of accessing the DAC/ADC, as it
appears to provide a slightly better performance on some
devices. It employs the blocking mechanism given by Au-
dioTrack to push audio frames to the Csound input buffer
(spin) and to retrieve audio frames from the output buffer
(spout), sending them to the system sound device. Al-
though low latency is not available in Android, this mech-
anism works satisfactorily.

As a future low-latency option, we have also devel-
oped a native code audio interface. It employs the OpenSL
API offered by the Android NDK. It is built as a replace-
ment for the usual Csound 10 modules (portaudio, alsa,
jack, etc.), using the provided API hooks. It works asyn-
chronously, integrated into the Csound performance cycle.
Currently, OpenSL does not offer lower latency than Au-
dioTrack, but this situation might change in the future, so
this option has been maintained alongside the pure Java
implementation. It is presented as an add-on to the na-
tive shared library. Such mechanism will also be used for
the future addition of MIDI IO (replacing the portmidi, al-
samidi, etc. modules available in the standard platforms),
in a similar manner to the present iOS implementation.

At the outset of the development of Csound for An-
droid, a choice was made to port the CsoundObj API from
Objective-C to Java. The implementation of audio han-
dling was done so in a manner following the general de-
sign as implemented on iOS (although, internally, the cur-
rent implementations differ in that iOS employs an asyn-
chronous mechanism, whereas in Android blocking IO is
used). Also, the APIs match each other as much as pos-
sible, including class and method names. There were in-
evitable differences, resulting primarily from what hard-
ware sensors were available and lack of a standard MIDI
library on Android. However, the overall similarities in
the APIs greatly simplified the porting of example appli-
cations from iOS to Android. For application developers
using MCP, the parity in APIs means an easy migration
path when moving projects from one platform to the other.

_165



NON-COCHLEAR SOUND
LIUBLJANA _9.-14. SEPTEMBER

_ICMC201

OFF

Note Rate ()
Duration (S

ADSR

Figure 3. Csound for Android SDK example

5. CSOUND FOR JAVA WEB START

Csound 5 has long included a Java wrapper API that is

used by desktop applications such as AVSynthesis and blue.

During research for a music-related project that required
being deployable over the web, work was done to explore
using Java as the technology to handle the requirements
of the project, particularly Java Web Start (JAWS). The
key difference between ordinary Java desktop and Java
Web Start-based applications is that with the former, the
Csound library must be installed by the user for the pro-
gram to function. With the latter, instead, the applica-
tion will be deployed, downloading the necessary libraries
to run Csound without the user having anything installed
(besides the Java runtime and plugin).

Regarding security, JAWS allows for certificate-signed
Java applications to package and use use native libraries.
Typically, JAWS will run an application within a sand-
box that limits what the application is allowed to do, in-
cluding things like where files can be written and what
data can be read from the user’s computer. However, to
run with native libraries, JAWS requires use of all permis-
sions, which allows full access to the computer. Appli-
cations must still be signed, verifying the authenticity of
what is downloaded, and users must still allow permission
to run. This level of security was deemed practical and ef-
fective enough for the purposes of this research.

In order to keep the native library components to a
minimum, JAWS Csound only requires the Csound core
code (and soundfile access through libsndfile, which is
packaged with it). Audio IO is provided by the Java-

_166

Sound library, which is a standard part of modern Java
runtime environments. JAWS Csound has been chosen as
the sound engine for the DSP eartraining online course
being developed at the Norwegian University of Science
and Technology [2].

CSDPlayer

play b pause S | Stop Y open C5D D quit )

Figure 4. Csound for JAWS example

6. CSOUND 6

In February 2012, the final feature release of Csound 5
was launched (5.16) with the introduction of a new bison/
flex-based orchestra parser as default. The development
team has now embarked on the development of the next
major upgrade of the system, Csound 6. The existence of
projects such as the MCP will play an important part in
informing these new developments. One of the goals for
the new version is to provide more flexibility in the use
of Csound as a synthesis engine by various applications.
This is certainly going to be influenced by the experience
with MCP. Major planned changes for the system will in-
clude:

e Separation of parsing and performance
e Loading/unloading of instrument definitions

e Further support for parallelisation

As Csound 6 is developed, it is likely that new ver-
sions of the MCP projects will be released, in tandem with
changes in the system.

7. CONCLUSIONS

The Mobile Csound Platform has been developed to bring
Csound to popular mobile device operating systems. Work
was done to build an idiomatic, object-oriented API for
both iOS and Android, implemented using their native
languages (Objective-C and Java respectively). Work was
also done to enable Csound-based applications to be de-
ployed over the internet via Java Web Start. By porting
Csound to these platforms, Csound as a whole has moved
from embracing usage on the desktop to become perva-
sively available. The MCP, including all the source code
for the SDK, and technical documentation, is available for
download from

http://sourceforge.net/projects/csound/files/csound5

For the future, it is expected that current work on Csou-
nd 6 will help to open up more possibilities for music ap-
plication development. Developments such as real-time
orchestra modification within Csound should allow for more



flexibility in kinds of applications that are possible to de-
velop. As mobile hardware continues to increase in num-
ber of cores and multimedia capabilities, Csound will con-
tinue to grow and support these developments as first-class
platforms.

8. ACKNOWLEDGEMENTS

This research was partly funded by the Program of Re-
search in Third Level Institutions (PRTLI 5) of the Higher
Education Authority (HEA) of Ireland, through the Digi-
tal Arts and Humanities programme.

9. REFERENCES

[1] R. Boulanger, Ed., The Csound Book. Cambridge,
Mass: MIT Press, 2000.

[2] O. Brandtsegg, J. Inderberg, H. Kvidal, V. Lazzarini,
J. Rudi, S. Saue, A.Tidemann, N. Thelle, and J. Tro,
“Developing an online course in dsp eartraining,” sub-
mitted to DAFx 2012, 2012.

[3] J. ffitch, “On the design of csound 5,” in Proceed-
ings of 4th Linux Audio Developers Conference, Karl-
sruhe, Germany, 2006, pp. 79-85.

[4] V. Lazzarini, “Scripting csound 5,” in Proceedings of
4th Linux Audio Developers Conference, Karlsruhe,
Germany, 2006, pp. 73-78.

[S] ——, “A toolkit for audio and music applications in
the xo computer,” in Proc. of the International Com-
puter Music Conference 2008, Belfast, Northern Ire-
land, 2008, pp. 62-65.

[6] V. Lazzarini and J. Piche, “Cecilia and tclcsound,” in
Proc. of the 9th Int. Conf. on Digital Audio Effects
(DAFX), Montreal, Canada, 2006, pp. 315-318.

[7] V. Lazzarini and R. Walsh, “Developing ladspa plug-
ins with csound,” in Proceedings of Sth Linux Audio
Developers Conference, Berlin, Germany, 2007, pp.
30-36.

[8] J. Piche and A. Burton, “Cecilia: a production inter-
face for csound,” Computer Music Journal, vol. 22,
no. 2, pp. 52-55, 1998.

_ICMC201

NON-COCHLEAR SOUND
LIUBLIANA _9.-14. SEPTEMBER

_167





