
Road Features Extraction Using

Terrestrial Mobile Laser Scanning

System
by

Pankaj Kumar

A thesis presented in fulfilment of the requirements for the Degree of

Doctor of Philosophy

Supervisors: Dr. Timothy McCarthy, Dr. Conor P. McElhinney

National Centre for Geocomputation

Faculty of Science

National University of Ireland Maynooth

Maynooth, Co. Kildare, Ireland

October, 2012



To My Wife, Parents & GrandParents.

I



Declaration

This thesis has not been submitted in whole or in part to this

or any other university for any other degree and is, except

where otherwise stated, the original work of the author.

Signed:

Pankaj Kumar

II



Acknowledgments

I would like to thank my supervisor, Timothy McCarthy, for providing me

this opportunity and keeping a faith from beginning to end of this Ph.D.

research. A profound gratitude to my supervisor, Conor P. McElhinney, for

his continuous guidance and intellectual support, without which it was diffi-

cult to complete this thesis. His suggestions and positive remarks provided

a new direction to my thinking towards tackling the research problems. I

would thank, Paul Lewis, for taking his time out to read my thesis draft

and providing valuable corrections to it. Moreover, a weekly meeting of our

Mobile Mapping Group helped in terms of providing a platform, where we

could have a wider discussion on various research issues.

My sincere thanks to Jan Rigby, who supported and motivated me to

continue my Ph.D. research study during my difficult period, especially in

the first year. To Martin Charlton, for providing me valuable suggestions

and support during the thesis.

I would like to thank my all other lab mates especially Binbin, Conor C.,

Ishwari, Cathal, Fergal, Carson, Burchin, Ambra, Zoe, Seamus who made my

stay in Ireland pleasant by creating a helpful and friendly environment. This

list of acknowledgement would be incomplete without mentioning the admin-

istrative and technical staff of NCG who provided me a valuable support. I

would also thank to all those persons, who directly or indirectly, helped me

to reach this stage of life.

I would acknowledge IRCSET Enterprise, PMS and StratAG as the re-

search presented in this thesis was conducted with their financial support.

III



Contents

1 Introduction 1

1.1 Mobile Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Mobile Mapping with Digital Cameras . . . . . . . . . 4

1.1.2 Mobile Mapping with Laser Scanners . . . . . . . . . . 8

1.2 Road Safety Applications of Mobile Mapping . . . . . . . . . . 11

1.3 Road Features Extraction . . . . . . . . . . . . . . . . . . . . 15

1.3.1 Road Edges . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.2 Road Markings . . . . . . . . . . . . . . . . . . . . . . 19

1.3.3 Road Roughness . . . . . . . . . . . . . . . . . . . . . 21

1.3.4 Snake Curves . . . . . . . . . . . . . . . . . . . . . . . 27

1.4 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . 31

1.5 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 33

2 Terrestrial Mobile Mapping Technology 37

2.1 Components of Mobile Mapping Technology . . . . . . . . . . 38

2.1.1 Imaging System . . . . . . . . . . . . . . . . . . . . . . 38

2.1.2 Laser Scanning System . . . . . . . . . . . . . . . . . . 41

2.1.3 Navigation System . . . . . . . . . . . . . . . . . . . . 46

2.1.4 Data Acquisition System . . . . . . . . . . . . . . . . . 50

IV



2.2 XP-1 System . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3 Approaches For Extracting Road Features 58

3.1 Road Edge Extraction . . . . . . . . . . . . . . . . . . . . . . 59

3.1.1 Hierarchical Thresholding . . . . . . . . . . . . . . . . 60

3.1.2 Canny Edge Detection . . . . . . . . . . . . . . . . . . 64

3.1.3 Active Contour Models . . . . . . . . . . . . . . . . . . 66

3.2 Road Marking Extraction . . . . . . . . . . . . . . . . . . . . 78

3.3 Road Roughness Estimation . . . . . . . . . . . . . . . . . . . 81

3.3.1 RANSAC . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 Road Edge Extraction 87

4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.1.1 Terrain Pyramids Generation . . . . . . . . . . . . . . 88

4.1.2 2D Raster Surfaces Generation . . . . . . . . . . . . . 90

4.1.3 Snake Energy Estimation . . . . . . . . . . . . . . . . . 92

4.1.4 Snake Curve Initialisation . . . . . . . . . . . . . . . . 94

4.1.5 Final Snake Curve . . . . . . . . . . . . . . . . . . . . 97

4.1.6 Batch Processing . . . . . . . . . . . . . . . . . . . . . 97

4.1.7 3D Road Edges . . . . . . . . . . . . . . . . . . . . . . 99

4.2 Validation Algorithm . . . . . . . . . . . . . . . . . . . . . . . 101

4.3 Automation Analysis . . . . . . . . . . . . . . . . . . . . . . . 103

4.3.1 2D Raster Surfaces Generation . . . . . . . . . . . . . 104

4.3.2 Optimal Cell Size . . . . . . . . . . . . . . . . . . . . . 106

4.3.3 Optimal Road Length . . . . . . . . . . . . . . . . . . 119

V



4.3.4 Optimal Internal Energy Parameters . . . . . . . . . . 122

4.3.5 Optimal External Energy Parameters . . . . . . . . . . 124

4.4 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.4.1 Manual Processing . . . . . . . . . . . . . . . . . . . . 130

4.4.2 Automated Processing . . . . . . . . . . . . . . . . . . 141

4.4.3 Results Validation . . . . . . . . . . . . . . . . . . . . 148

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5 Road Marking Extraction 167

5.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.1.1 Road Surface Estimation . . . . . . . . . . . . . . . . . 168

5.1.2 2D Raster Surface Generation . . . . . . . . . . . . . . 170

5.1.3 Range Dependent Thresholding . . . . . . . . . . . . . 171

5.1.4 Morphological Operations . . . . . . . . . . . . . . . . 173

5.1.5 3D Road Markings . . . . . . . . . . . . . . . . . . . . 178

5.2 Automation Analysis . . . . . . . . . . . . . . . . . . . . . . . 178

5.2.1 Optimal Cell Size . . . . . . . . . . . . . . . . . . . . . 179

5.2.2 Range Dependent Threshold . . . . . . . . . . . . . . . 184

5.3 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.3.1 Broken and Continuous Line Markings . . . . . . . . . 187

5.3.2 Word Markings . . . . . . . . . . . . . . . . . . . . . . 190

5.3.3 Hatch Markings . . . . . . . . . . . . . . . . . . . . . . 195

5.3.4 Arrow Markings . . . . . . . . . . . . . . . . . . . . . . 196

5.3.5 Pedestrian Crossing Markings . . . . . . . . . . . . . . 198

5.3.6 Zig-Zag Markings . . . . . . . . . . . . . . . . . . . . . 202

5.3.7 Results Validation . . . . . . . . . . . . . . . . . . . . 204

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

VI



6 Road Roughness Estimation 208

6.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

6.1.1 Road Surface Estimation . . . . . . . . . . . . . . . . . 209

6.1.2 Data Rotation . . . . . . . . . . . . . . . . . . . . . . . 211

6.1.3 Surface Grid . . . . . . . . . . . . . . . . . . . . . . . . 211

6.1.4 Road Roughness . . . . . . . . . . . . . . . . . . . . . 213

6.2 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . 214

6.2.1 Urban Roads . . . . . . . . . . . . . . . . . . . . . . . 215

6.2.2 National Primary Roads . . . . . . . . . . . . . . . . . 218

6.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

7 Conclusion 234

7.1 Road Edge Extraction . . . . . . . . . . . . . . . . . . . . . . 234

7.2 Road Marking Extraction . . . . . . . . . . . . . . . . . . . . 239

7.3 Road Roughness Estimation . . . . . . . . . . . . . . . . . . . 241

8 Future Work 243

8.1 Road Edge Extraction . . . . . . . . . . . . . . . . . . . . . . 243

8.2 Road Marking Extraction . . . . . . . . . . . . . . . . . . . . 246

8.3 Road Roughness Estimation . . . . . . . . . . . . . . . . . . . 247

VII



List of Figures

1.1 Road accident statistics in Europe [CAR07]. . . . . . . . . . . 12

1.2 Main causes of road accidents [TTM+79]. . . . . . . . . . . . . 13

1.3 Road edges: (a) kerbs in an urban road section and (b) grass-

soil in a rural road section. . . . . . . . . . . . . . . . . . . . . 18

1.4 Road markings: (a) continuous line, triangle and (b) arrow. . . 20

1.5 Roughness along the road surface. . . . . . . . . . . . . . . . . 22

1.6 Quarter car simulator. . . . . . . . . . . . . . . . . . . . . . . 23

1.7 Measurement of elevation points at a 1.5 m interval along the

longitudinal profile of the road surface. . . . . . . . . . . . . . 24

1.8 Snake curve and MRI scan [LS95]. . . . . . . . . . . . . . . . . 28

2.1 XP-1’s digital camera image of a road section. . . . . . . . . . 39

2.2 XP-1’s LiDAR data of a road section. . . . . . . . . . . . . . . 41

2.3 Principle of (a) multiple returns from targets and returned (b)

echo pulses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 TOF method . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5 Phase shift method. . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6 Intensity and pulse width of reflected pulse. . . . . . . . . . . 45

2.7 XP-1’s navigation data along a road section. . . . . . . . . . . 46

2.8 Georeferencing process of MMS. . . . . . . . . . . . . . . . . . 47

VIII



2.9 Process for estimating navigation parameters of the mobile

mapping vehicle using a GNSS base station and a navigation

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.10 Data acquisition system. . . . . . . . . . . . . . . . . . . . . . 51

2.11 XP-1 MMS with an inset picture of the laser scanning and

navigation system mounted on the roof rack. . . . . . . . . . . 52

2.12 XP-1’s navigation data plotted over a Google earth image,

highlighted in yellow, with an inset picture of its small section

(Image courtesy: Google Earth). . . . . . . . . . . . . . . . . . 53

2.13 Inclined laser scanner along with GPS antenna and LandINS

GPS/INS mounted on the XP-1’s roof rack. . . . . . . . . . . 54

2.14 XP-1’s (a) imaging and (b) LiDAR data of a road section. . . 56

3.1 Segmentation approaches in the road edge extraction algorithm. 59

3.2 2D Gaussian distribution with mean (0, 0) and σ = 1 [FPWW00]. 61

3.3 Convolution kernel that produces a discrete approximation to

the 2D Gaussian distribution function with mask size=5 and

σ = 1 [FPWW00]. . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Hierarchical thresholding: (a) input image, (b) thresholded

object cells in the lowest resolution image, at level n and (c)

thresholded neighbourhood object cells in the next lowest res-

olution image, at level n− 1 [SHB08]. . . . . . . . . . . . . . . 62

3.5 Hierarchical thresholding: (a) original LiDAR data, (b) input

slope image and (b) estimated objects. . . . . . . . . . . . . . 63

3.6 Sobel convolution kernels, which are used to find the gradients

of an image along its (a) X and (b) Y axis. . . . . . . . . . . . 64

IX



3.7 Canny edge detection: (a) input hierarchical thresholded ob-

jects and (b) their estimated boundaries. . . . . . . . . . . . . 66

3.8 Initial snake curve in the form of parametric ellipse. . . . . . . 67

3.9 Parametric ellipse snake curve initialised on a gradient image

of road object boundaries. . . . . . . . . . . . . . . . . . . . . 69

3.10 Traditional parametric active contour model applied to an ob-

ject with a concave boundary [XP98]. . . . . . . . . . . . . . . 70

3.11 Balloon external energy added to the snake curve. . . . . . . . 71

3.12 Parametric ellipse snake curve initialised on GVF image of

road object boundaries. . . . . . . . . . . . . . . . . . . . . . . 74

3.13 GVF active contour model applied to an object with a concave

boundary [XP98]. . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.14 Geometric active contour model. . . . . . . . . . . . . . . . . . 76

3.15 Balloon energy pushes the snake curve and GVF energy at-

tracts the snake curve toward the object boundaries. . . . . . 78

3.16 Final position of the snake curve. . . . . . . . . . . . . . . . . 79

3.17 Range dependent thresholding in the road marking extraction

algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.18 Range dependent thresholding: (a) input 2D intensity raster

surface and (b) extracted road markings. . . . . . . . . . . . . 80

3.19 RANSAC in the road roughness estimation algorithm. . . . . . 81

3.20 RANSAC surface grid fitted to the LiDAR points, with an

inset picture of a magnified portion. . . . . . . . . . . . . . . . 84

4.1 Road edge extraction algorithm. . . . . . . . . . . . . . . . . . 89

4.2 Terrain pyramids generated from the LiDAR attributes: (a)

elevation, (b) reflectance and (c) pulse width. . . . . . . . . . 91

X



4.3 Raster cell laid over the Voronoi polygons constituting the

thinned LiDAR points in the natural neighbourhood interpo-

lation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4 2D raster surfaces generated from their respective terrain pyra-

mids using natural neighbourhood interpolation: (a) slope, (b)

reflectance and (c) pulse width. . . . . . . . . . . . . . . . . . 93

4.5 Snake curve initialisation in (a) parametric ellipse form and

(b) centre of the road estimation. . . . . . . . . . . . . . . . . 95

4.6 φ angle is calculated from θ, which is an average heading angle

of the mobile van along the road section under investigation

that can lie in between (a) 0◦ and 90◦, (b) 90◦ and 180◦, (c)

180◦ and 270◦ and (d) 270◦ and 360◦. . . . . . . . . . . . . . . 96

4.7 Snake curve positions: (a) initial, (b) iterative and (c) final. . 97

4.8 Intersection point in between two overlapped snake curves. . . 98

4.9 Three processed road sections with (a) first intersection points

highlighted, (b) second intersection points highlighted and (c)

final left and right road edges. . . . . . . . . . . . . . . . . . . 100

4.10 3D left and right road edges. . . . . . . . . . . . . . . . . . . . 101

4.11 Road edge validation algorithm. . . . . . . . . . . . . . . . . . 102

4.12 Slope surface estimated from the elevation raster surface gen-

erated using linear interpolation applied to (a) full resolution,

(b) first level terrain pyramid and using natural neighbour-

hood interpolation applied to (a) full resolution, (b) first level

terrain pyramid. . . . . . . . . . . . . . . . . . . . . . . . . . . 105

XI



4.13 Reflectance raster surface generated from (a) full resolution

terrain pyramid using linear interpolation and (b) first level

terrain pyramid using natural neighbourhood interpolation.

Pulse width raster surface generated from (c) full resolution

terrain pyramid using linear interpolation and (b) first level

terrain pyramid using natural neighbourhood interpolation. . . 106

4.14 Final position of the snake curve over the slope raster surface

with (a) 0.02 m2, (b) 0.04 m2, (c) 0.06 m2, (d) 0.08 m2, (e) 0.1

m2 and (f) 0.2 m2 cell size. . . . . . . . . . . . . . . . . . . . . 109

4.15 Plot of completeness obtained from the snake curve in the six

test cases of an optimal cell size estimation analysis. . . . . . . 110

4.16 Plot of the time taken by the snake curve to move from its

initial position to the final position in the six test cases of an

optimal cell size estimation analysis. . . . . . . . . . . . . . . 111

4.17 3D LiDAR data: (a) 6 m ×10 m, (b) 4.5 m ×5 m and (c) 3 m

×4 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.18 LiDAR point data along the (a) left and (b) right side of the

road section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.19 Road edge digitised from the LiDAR data: (a) 3.2 m ×3.3 m

and (b) 1.8 m ×2 m. . . . . . . . . . . . . . . . . . . . . . . . 113

4.20 Box plots for the (a) 2D and (b) 3D accuracy of the extracted

left edges in the six test cases of an optimal cell size estimation

analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.21 Box plot for the (a) 2D and (b) 3D accuracy of the extracted

right edges in the six test cases of an optimal cell size estima-

tion analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

XII



4.22 Missed points as circled in blue in the section of LiDAR data. 120

4.23 Final position of the snake curve over the slope raster surface

with (a) 10 m, (b) 20 m and (c) 30 m road length. . . . . . . . 121

4.24 Final position of the snake curve over the slope raster surface

in the (a) first, (b) second, (c) third, (d) fourth and (e) fifth

case of the internal energy parameter analysis. . . . . . . . . . 123

4.25 Final position of the snake curve over the slope raster surface

in the (a) first, (b) second, (c) third, (d) fourth, (e) fifth, (f)

sixth, (g) seventh, (h) eighth and (i) ninth case of the external

energy parameter analysis. . . . . . . . . . . . . . . . . . . . . 126

4.26 Hierarchical thresholding applied to the reflectance raster sur-

face provided the objects with road marking cells near the

road edge points as circled in blue. . . . . . . . . . . . . . . . 127

4.27 Hierarchical thresholding applied to the slope raster surface

was not able to remove the noisy cells in between the road

edge points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.28 Final position of the snake curve over the slope raster surface

with (a) κ4 = 1 and (b) κ4 = 3 parameters. . . . . . . . . . . . 130

4.29 Digital image of the rural road section consisting of grass-soil

edges (Geographic location: 53◦34
′
28.07

′′
N 7◦10

′
13.76

′′
W). . . 131

4.30 Final position of the snake curve over the slope raster surface

obtained through the manual selection of parameters in the

(a) first, (b) second, (c) third, (d) fourth, (e) fifth and (f)

sixth data section in the rural road. . . . . . . . . . . . . . . . 133

4.31 Extracted 3D left and right edges in the rural road section

obtained through the manual selection of parameters. . . . . . 134

XIII



4.32 Digital image of the urban road section consisting of kerb edges

(Geographic location: 53◦36
′
37.42

′′
N 7◦5

′
41.00

′′
W). . . . . . . 135

4.33 Final position of the snake curve over the slope raster surface

obtained through the manual selection of parameters in the

(a) first, (b) second, (c) third, (d) fourth, (e) fifth and (f)

sixth data section in the urban road. . . . . . . . . . . . . . . 136

4.34 Extracted 3D left and right edges in the urban road section

obtained through the manual selection of parameters. . . . . . 137

4.35 Digital image of the national primary road section consist-

ing of grass-soil edges with shoulders (Geographic location:

53◦38
′
8.80

′′
N 7◦29

′
11.06

′′
W). . . . . . . . . . . . . . . . . . . . 138

4.36 Final position of the snake curve over the slope raster surface

obtained through the manual selection of parameters in the

(a) first, (b) second, (c) third, (d) fourth, (e) fifth and (f)

sixth data section in the national primary road. . . . . . . . . 139

4.37 Extracted 3D left and right edges in the national primary road

section obtained through the manual selection of parameters. . 140

4.38 Automated final position of the snake curve over the slope

raster surface for the (a) first, (b) second, (c) third, (d) fourth,

(e) fifth and (f) sixth data section in the rural road. . . . . . . 142

4.39 Automatically extracted 3D left and right edges in the rural

road section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.40 Automated final position of the snake curve over the slope

raster surface for the (a) first, (b) second, (c) third, (d) fourth,

(e) fifth and (f) sixth data section in the urban road. . . . . . 144

XIV



4.41 Automatically extracted 3D left and right edges in the urban

road section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.42 Automatic final position of the snake curve for the (a) first,

(b) second, (c) third, (d) fourth, (e) fifth and (f) sixth data

section in the national primary road. . . . . . . . . . . . . . . 146

4.43 Automatically extracted 3D left and right edges in the national

primary road section. . . . . . . . . . . . . . . . . . . . . . . . 147

4.44 Box plot for the (a) 2D and (b) 3D accuracy of the manually

and the automatically extracted left edges in the rural road

section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.45 Box plot for the (a) 2D and (b) 3D accuracy of the manually

and the automatically extracted right edges in the rural road

section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.46 Box plot for the (a) 2D and (b) 3D accuracy of the manually

and the automatically extracted left edges in the urban road

section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.47 Box plot for the (a) 2D and (b) 3D accuracy of the manually

and the automatically extracted right edges in the urban road

section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.48 Box plot for the (a) 2D and (b) 3D accuracy of the manu-

ally and the automatically extracted left edges in the national

primary road section. . . . . . . . . . . . . . . . . . . . . . . . 158

4.49 Box plot for the (a) 2D and (b) 3D accuracy of the manually

and the automatically extracted right edges in the national

primary road section. . . . . . . . . . . . . . . . . . . . . . . . 159

5.1 Road marking extraction algorithm. . . . . . . . . . . . . . . . 169

XV



5.2 Snake curve is (a) laid over the LiDAR points to (b) estimate

the road surface. . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.3 2D raster surfaces generated from the LiDAR data: (a) inten-

sity and (b) range. . . . . . . . . . . . . . . . . . . . . . . . . 171

5.4 Navigation data is used to select a range value to apply mul-

tiple threshold values to the intensity raster surface. . . . . . . 172

5.5 Side view of the non-planar road surface. . . . . . . . . . . . . 173

5.6 Road markings extracted from the intensity raster surface us-

ing range dependent thresholding. . . . . . . . . . . . . . . . . 174

5.7 Structuring elements: (a) diamond shaped with radius = 1,

(b) linear shaped with length = 3 and angle, φ′ = 45◦ and (c)

linear shaped with length = 5 and angle, φ′ = 90◦. . . . . . . . 174

5.8 Estimation of φ′ angle of the linear shaped structuring element

from the average heading angle of the mobile van, θ, along the

road section that can lie in between (a) 0◦ and 90◦, (b) 90◦

and 180◦, (c) 180◦ and 270◦ and (d) 270◦ and 360◦. . . . . . . 176

5.9 Dilation operation: (a) input binary image with an inset pic-

ture of their road marking cells and (b) dilated image with an

inset picture of their dilated road marking cells. . . . . . . . . 177

5.10 Noise removal process: (a) input dilated image and (b) noise

cells removed from it. . . . . . . . . . . . . . . . . . . . . . . . 178

5.11 Erosion operation: (a) input dilated image with an inset pic-

ture of their road marking cells and (b) eroded image with an

inset picture of their eroded road marking cells. . . . . . . . . 179

5.12 Extracted road markings (a) before and (b) after applying the

morphological operations. . . . . . . . . . . . . . . . . . . . . 180

XVI



5.13 LiDAR points (a) belonging to the road surface and the ex-

tracted (b) 3D road markings. . . . . . . . . . . . . . . . . . . 180

5.14 Road markings extracted from the intensity image with (a)

0.01 m2, (b) 0.04 m2, (c) 0.06 m2, (d) 0.08 m2 and (e) 0.1 m2

cell size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.15 Range dependent thresholding applied to the intensity raster

surface in the road section with (a) narrower and (b) greater

width. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.16 Road markings extracted using the (a) lower, (b) higher and

(c) optimal threshold value applied to the intensity raster sur-

face. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.17 Digital image of (a) rural and (b) urban road section contain-

ing both broken and continuous line markings (Geographic lo-

cations: (a) 53◦34
′
28.07

′′
N 7◦10

′
13.76

′′
W and (b) 53◦36

′
33.43

′′
N

7◦5
′
46.96

′′
W). . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.18 2D broken and continuous line markings extracted from the

(a) first, (b) second, (c) third, (d) fourth, (e) fifth and (f) sixth

data section of the rural road. . . . . . . . . . . . . . . . . . . 189

5.19 2D broken and continuous line markings extracted from the

(a) first, (b) second, (c) third, (d) fourth, (e) fifth and (f) sixth

data section of the urban road. . . . . . . . . . . . . . . . . . 190

5.20 Road markings extraction: (a) original LiDAR data and (b)

extracted 3D broken and continuous line markings of the rural

road section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

XVII



5.21 Road markings extraction: (a) original LiDAR data and (b)

extracted 3D broken and continuous line markings of the ur-

ban road section. . . . . . . . . . . . . . . . . . . . . . . . . . 192

5.22 Digital image of the rural road section containing word mark-

ings along with broken and continuous line markings (Geo-

graphic location: 53◦34
′
50.546

′′
N 7◦8

′
57.62

′′
W). . . . . . . . . 193

5.23 Output snake curve in the rural road section containing word

markings along with broken and continuous line markings. . . 194

5.24 Road markings extraction: (a) original LiDAR data and (b)

extracted 3D word, broken and continuous line markings of

the rural road section. . . . . . . . . . . . . . . . . . . . . . . 194

5.25 Digital image of the national primary road section containing

hatch and broken line markings (Geographic location: 53◦33
′
49.878

′′
N

7◦21
′
24.148

′′
W). . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5.26 Output snake curve in the national primary road section con-

taining hatch and broken line markings. . . . . . . . . . . . . 196

5.27 Road markings extraction: (a) original LiDAR data and (b)

extracted 3D hatch and broken line markings of the national

primary road section. . . . . . . . . . . . . . . . . . . . . . . . 197

5.28 Digital image of the national primary road section containing

arrow and broken line markings (Geographic location: 53◦35
′
30.558

′′
N

7◦22
′
28.428

′′
W). . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.29 Output snake curve in the national primary road section con-

taining arrow and broken line markings. . . . . . . . . . . . . 199

XVIII



5.30 Road markings extraction: (a) original LiDAR data and (b)

extracted 3D arrow and broken line markings of the national

primary road section. . . . . . . . . . . . . . . . . . . . . . . . 199

5.31 Digital image of the urban road section containing pedestrian

crossing, broken transverse and zig-zag markings (Geographic

location: 53◦36
′
43.721

′′
N 7◦5

′
32.871

′′
W). . . . . . . . . . . . . 200

5.32 Output snake curve in the urban road section containing pedes-

trian crossing, broken transverse and zig-zag markings. . . . . 201

5.33 Road markings extraction: (a) original LiDAR data and (b)

extracted 3D pedestrian crossing, broken transverse line and

zig-zag markings of the urban road section. . . . . . . . . . . . 201

5.34 Digital image of the urban road section containing zig-zag

markings (Geographic location: 53◦39
′
19.225

′′
N 7◦31

′
9.792

′′
W).202

5.35 Output snake curve in the urban road section containing zig-

zag markings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

5.36 Road markings extraction: (a) original LiDAR data and (b)

extracted 3D zig-zag markings of the urban road section. . . . 203

5.37 2D hatch and broken line markings of the national primary

road section with the noise (a) removed only once before ap-

plying the erosion operation and (b) removed twice, before

and after applying the erosion operation. . . . . . . . . . . . . 206

6.1 Road roughness estimation algorithm. . . . . . . . . . . . . . . 210

6.2 Snake curve is (a) laid over the LiDAR data and (b) the points

belonging to the road surface are identified. . . . . . . . . . . 211

XIX



6.3 Input LiDAR and navigation data in the (a) 3D, (b) 2D plane

and rotated LiDAR and navigation data in the (c) 3D, (d) 2D

plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

6.4 Surface grid is fitted to the LiDAR points that belong to (a)

whole road surface and (b) the left side of the road surface. . . 213

6.5 RANSAC surface grid fitted to the LiDAR points in the (c)

3D and (d) 2D plane. . . . . . . . . . . . . . . . . . . . . . . . 214

6.6 Inversely rotated surface grid and LiDAR points along the

navigation track of the mobile van in the (c) 3D and (d) 2D

plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

6.7 Digital image of (a) first, (b) second and (c) third section of ur-

ban road (Geographic locations: (a) 53◦36
′
33.68

′′
N 7◦5

′
46.39

′′
W,

(b) 53◦36
′
36.587

′′
N 7◦5

′
41.671

′′
W and (c) 53◦36

′
40.584

′′
N 7◦5

′
37.789

′′
W).216

6.8 Output snake curve in the (a) second and (b) third section of

urban road. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

6.9 Duplicate points were removed in the first LiDAR section to

provide non-overlapped sections. . . . . . . . . . . . . . . . . . 218

6.10 Surface grids and LiDAR points along the navigation track in

the (a) first, (b) second and (c) third section of urban road. . . 220

6.11 Digital image of the national primary road section (Geographic

locations: 53◦38
′
14.407

′′
N 7◦29

′
24.622

′′
W). . . . . . . . . . . . 221

6.12 Inversely rotated surface grids and LiDAR points along the

navigation track in the national primary road section. . . . . . 222

6.13 Road surface deviation maps for the first urban road section:

(a) 3D and (b) 2D. . . . . . . . . . . . . . . . . . . . . . . . . 223

XX



6.14 Road surface deviation maps for the second urban road sec-

tion: (a) 3D and (b) 2D. . . . . . . . . . . . . . . . . . . . . . 224

6.15 Road surface deviation maps for the third urban road section:

(a) 3D and (b) 2D. . . . . . . . . . . . . . . . . . . . . . . . . 225

6.16 Road surface deviation maps for the national primary road

section: (a) 3D and (b) 2D. . . . . . . . . . . . . . . . . . . . 226

6.17 Plot of the LiDAR points and the surface grid points along

the navigation track in (a) the first and (b) the second urban

road section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

6.18 Plot of the LiDAR points and the surface grid points along the

navigation track in (a) the third urban and (b) the national

primary road section. . . . . . . . . . . . . . . . . . . . . . . . 228

6.19 Box plot of the standard deviation of the elevation residual

points along the navigation track in (a) the first and (b) the

second urban road section. . . . . . . . . . . . . . . . . . . . . 229

6.20 Box plot of the standard deviation of the elevation residual

points along the navigation track in (a) the third urban and

(b) the national primary road section. . . . . . . . . . . . . . . 230

8.1 Fitted surface grid with an inset picture of its skewed cells. . . 248

XXI



List of Tables

1.1 Examples of terrestrial MMSs. . . . . . . . . . . . . . . . . . . 6

2.1 IXSEA LandINS navigation system specifications. . . . . . . . 53

2.2 Riegl VQ-250 specifications. . . . . . . . . . . . . . . . . . . . 55

4.1 Global minimum and maximum values of the LiDAR attributes.107

4.2 Different parameters used in the six test cases of an optimal

cell size estimation analysis. . . . . . . . . . . . . . . . . . . . 108

4.3 Statistical analysis of the 2D accuracy of the left edges along

with completeness and time in the six test cases. . . . . . . . . 116

4.4 Statistical analysis of the 3D accuracy of the left edges along

with completeness and time in the six test cases. . . . . . . . . 116

4.5 Statistical analysis of the 2D accuracy of the right edges along

with completeness and time in the six test cases. . . . . . . . . 117

4.6 Statistical analysis of the 3D accuracy of the right edges along

with completeness and time in the six test cases. . . . . . . . . 117

4.7 Different parameters used in the three test cases of an optimal

road length estimation analysis. . . . . . . . . . . . . . . . . . 120

4.8 Internal energy weight parameters used in the five test cases. . 122

4.9 External energy weight parameters used in the nine test cases. 125

XXII



4.10 LiDAR point density over the left and right sides of different

road sections, acquired with the XP-1 system. . . . . . . . . . 128

4.11 φ angle calculated from θ, average heading angle in each nav-

igation section in the rural road. . . . . . . . . . . . . . . . . . 132

4.12 φ angle calculated from θ, average heading angle in each nav-

igation section in the urban road. . . . . . . . . . . . . . . . . 135

4.13 φ angle calculated from θ, average heading angle in each nav-

igation section in the national primary road. . . . . . . . . . . 138

4.14 Hierarchical threshold parameters selected empirically for each

road section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.15 Statistical analysis of the 2D and 3D accuracy of the manually

and the automatically extracted left edges in the rural road

section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.16 Statistical analysis of the 2D and 3D accuracy of the manually

and the automatically extracted right edges in the rural road

section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.17 Statistical analysis of the 2D and 3D accuracy of the manually

and the automatically extracted left edges in the urban road

section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.18 Statistical analysis of the 2D and 3D accuracy of the manually

and the automatically extracted right edges in the urban road

section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.19 Statistical analysis of the 2D and 3D accuracy of the manu-

ally and the automatically extracted left edges in the national

primary road section. . . . . . . . . . . . . . . . . . . . . . . . 157

XXIII



4.20 Statistical analysis of the 2D and 3D accuracy of the manu-

ally and the automatically extracted left edges in the national

primary road section. . . . . . . . . . . . . . . . . . . . . . . . 160

5.1 Maximum and minimum values of the LiDAR intensity and

range attributes. . . . . . . . . . . . . . . . . . . . . . . . . . 181

5.2 Length and average width values of the extracted road mark-

ings in the five cases. . . . . . . . . . . . . . . . . . . . . . . . 183

5.3 φ′ angle calculated from θ angle in each navigation section of

rural road section. . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.4 φ′ angle calculated from θ angle in each navigation section of

urban road section. . . . . . . . . . . . . . . . . . . . . . . . . 188

6.1 φ angle calculated from θ, average heading angle in the navi-

gation sections of second and third urban road section. . . . . 217

6.2 t and ε parameters used for fitting the surface grid to each

LiDAR section of the urban road. . . . . . . . . . . . . . . . . 219

6.3 t and ε parameters used for fitting the surface grid to each

LiDAR section of the national primary road. . . . . . . . . . . 219

6.4 Statistical analysis of the standard deviation of the elevation

residual points along the navigation track in the first, second,

third urban and the national primary road section. . . . . . . 231

XXIV



Abstract

In this thesis, we present the experimental research and key contributions we

have made in the field of road feature extraction from LiDAR data. We de-

tail the development of three automated algorithms for the extraction of road

features from terrestrial mobile LiDAR data. LiDAR data is a rich source

of 3D geo-referenced information whose volume and scale have inhibited the

development of automated algorithms. Automated feature extraction algo-

rithms enable the wider geospatial industry to transition from traditional

road feature surveying approaches to terrestrial mobile laser scanning tech-

nologies.

Our first contribution to this field is an automated road edge extraction

algorithm which can be applied to LiDAR data and navigation information

acquired by mobile survey vehicles. This novel algorithm relies on the com-

bination of thresholding and a parametric active contour model to precisely

extract road edges. We describe an automated validation algorithm we de-

veloped to determine the accuracy of our road edge extraction algorithm.

Using the extracted road edges, we are able to accurately extract the

road surface from the LiDAR data. This enables us to develop an efficient

automated road marking extraction algorithm which is our second contribu-

tion. Through the thresholding of the intensity values of road surface LiDAR

points, we can extract the road marking LiDAR points. The third contri-

bution of this thesis is the development of an automated road roughness

estimation algorithm which is also dependent on the accurate detection of

road surface LiDAR points. We fit a surface grid to the LiDAR points rep-

resenting an ideal road surface and measure the elevation difference between

this surface and the actual LiDAR points to compute the surface deviation

XXV



along a track representing a vehicle wheel.

We automated these algorithms through exhaustive examination of opti-

mal parameters and methods for their implementation. To verify these novel

algorithms, we tested them on varying types of road sections representing

rural, urban and national primary road sections. The research work carried

out in the course of this thesis provides valuable insights as well as a pro-

totype road feature extraction tool-set, for both national road authorities

and survey companies. These findings and knowledge contribute to a more

rapid, cost-effective and comprehensive approach to surveying road networks

which, in turn, enables a more efficient, comfortable and safer journey for all

road users.
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Chapter 1

Introduction1

The demand for accurate 3D mapping of natural environments and man-

made features has increased due to the spatial detail required by scientists,

engineers and planners [BMS06]. Light Detection And Ranging (LiDAR) is a

relatively recent technology, enabling 3D modelling of real world environment

by measuring the time of return of an emitted light pulses. The information

obtained through laser scanning systems, which use LiDAR technology, have

application in road safety, urban planning, flood plain, glacier and avalanche

mapping, bathymetry, geomorphology, forest survey, bridge and transmission

line detection [Bur02]. Laser scanning systems enable the acquisition of an

accurately georeferenced set of dense LiDAR point cloud data [PT08]. Other

benefit of this type of system is the high level of automation during data

capture and the ability of this system to acquire data beneath tree’s canopy.

Laser scanning systems are used to acquire LiDAR data from aerial and

terrestrial platforms. The data acquired from these systems differs in terms

of its intrinsic accuracy and resolution for a variety of reasons but primarily

1Throughout the thesis, the terms ’we’ and ’our’ are used to describe the doctorate
research carried out solely by the author of this thesis.
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due to the distance of the scanner to the target objects [ROPV09]. In recent

years, the use of laser scanners onboard terrestrial based moving vehicles has

increased for the collection of high quality 3D data. The applicability of

these terrestrial mobile laser scanning systems continue to prove their worth

in route corridor mapping due to the rapid, continuous and cost effective 3D

data acquisition capability compared with static terrestrial laser scanning

systems [HPKH08, BMS06]. LiDAR data records a number of attributes

including elevation, intensity, pulse width, range and multiple echo informa-

tion, all of which can be used for extracting road features. The volume of data

produced by a terrestrial mobile laser scanning system such as Riegl VQ-250

is large, generating 300,000 points per second resulting in approximately 20

GB of data per hour. However, manual processing of LiDAR data for road

features extraction is very time consuming. These sensor characteristics, po-

tential applications and challenges provide the underlying motivation for this

thesis.

We present three key contributions we have made to the field of auto-

mated road feature extraction from LiDAR data. Correct identification of

the road boundaries is essential in order to obtain a precise estimation of road

geometry and associated features. Our first contribution is the development

of an automated algorithm for extracting road edges from terrestrial mo-

bile LiDAR data. A priori knowledge of the road boundaries and associated

surface in the LiDAR data facilitates efficient extraction of the road mark-

ings and roughness. The second contribution deals with the development of

an automated algorithm for extracting road markings from terrestrial mo-

bile LiDAR data. The third contribution focuses on the development of an

automated algorithm for estimating road roughness from terrestrial mobile

2



LiDAR data.

In this chapter, we introduce the reader to terrestrial Mobile Mapping

Systems (MMSs). In Section 1.1, we describe terrestrial MMSs and their

ability to provide georeferenced spatial data. We review various MMSs com-

prising digital cameras, navigation sensors and laser scanners over the past

two decades. In Section 1.2, the importance of road safety and its linkage to

road geometry and road features is discussed. Terrestrial MMSs can be used

to acquire 3D information about the road environment that can, in turn, as-

sist decision makers in identifying safety risk elements along road networks.

We discuss an application of terrestrial MMSs in road safety. In Section

1.3, we review various methods developed for extracting road features from

LiDAR data. We investigate methods based on snake curves that has been

developed for segmentation. Following the review, we identify the research

limitations which have been addressed by doctorate research. Section 1.4

deals with the key contributions of this thesis to the field of road feature

extraction from LiDAR data. Finally, an outline of the thesis is presented in

Section 1.5.

1.1 Mobile Mapping

Mobile mapping refers to a means of collecting geospatial data using mapping

and navigation sensors that are mounted rigidly onboard a mobile platform

[TL07]. The concept of mobile mapping dates back to early 1990’s and since

then has been primarily driven by the advances in kinematic positioning,

machine vision, laser scanning systems, data fusion and spatial information

technologies. The mobile platform term relates to the transportation mode

of the MMS which can be land-based (car, train), air-borne (aircraft) or

3



marine (ship, submarine) [Nov93]. Mapping sensors can consist of imaging

and laser scanning system while the navigation system is based on integrated

Global Navigation Satellite System (GNSS) and Inertial Navigation System

(INS). The navigation system may also be complemented with dead reckoning

sensors such as a Distance Measuring Instrument (DMI), an odometer or a

digital compass.

The effectiveness of mobile mapping lies in its ability to directly georef-

erence the acquired spatial and spectral data with the recorded navigation

data within the global coordinate frame. The direct georeferencing provided

by MMSs removes the need for Ground Control Points (GCPs) or any other

external geographic referencing system. This is different to some other spa-

tial data acquisition systems where a suitable number of well spread GCPs

are required from a field survey prior to or after data acquisition [EES02].

However, GCPs can be used to increase the data accuracy in MMSs where

higher levels of accuracy are required for some projects. In the following

sections, we review various terrestrial MMSs developed using digital cameras

and laser scanners.

1.1.1 Mobile Mapping with Digital Cameras

Terrestrial MMSs have been actively researched and developed over the past

two decades [BMS06]. In their initial development phase, the MMSs were

developed based on GNSS/INS integration and digital cameras which were

used for the acquisition of road inventories and surrounding route corridor

environment. Some examples of terrestrial MMSs with digital cameras have

been listed in Table 1.1. The first terrestrial MMS, GPSVan, was developed

by the Centre of Mapping at The Ohio State University in the early 1990’s

4
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[Goa91]. The absolute object accuracy was 1-3 m in Easting and Northing

which describes the accuracy achieved by GPSVan in object positioning with

respect to the ground truth values. This limited accuracy was attributed

to the use of a code-only Global Positioning System (GPS) receiver and

gyro based inertial system [EES02]. In 1993, the Video Inertial SATellite

(VISAT) system was developed at the University of Calgary. This system was

based on dual frequency carrier-phase Differential Global Positioning System

(DGPS) and a more accurate Inertial Measurement Unit (IMU) [SMES+93].

The VISAT system reported an improved horizontal accuracy of 0.3 m in

Easting and Northing while operating at a speed of up to 60 km/hr but it

had drawbacks including increased cost and a much higher level of system

complexity [Es05].

By the mid 1990’s additional systems based on a similar architecture were

developed worldwide. In 1995, the KInematic Surveying System (KISS) was

designed and developed by the University of the Federal Armed Forces for

kinematic Geographical Information System (GIS) data acquisition [HCH+95].

During post-mission mode, the surveyed data was processed to produce 3D

georeferenced information of the road network and its surrounding environ-

ment. In 1998, the Car Driven Survey System (CDSS) system was developed

at the Geodetic Institute Aachen for acquiring road data using a low-cost

navigation system which comprised a Coarse Acquisition (C/A) code GPS,

odometer and barometer [BA98]. In 2000, the Geodetic Engineering Labo-

ratory of the Swiss Federal Institute of Technology, Lausanne designed the

PHOTOBUS system which was distinguishable from other systems by its

ability to georeference the road centre line using a camera oriented vertically

and acquire road sign data using a camera oriented horizontally [GSG03].
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The object accuracy achieved was 20-40 cm with respect to the central axis

of the road.

1.1.2 Mobile Mapping with Laser Scanners

Laser scanning has been accepted as an effective method for spatial data

acquisition in MMSs due to the highly accurate and dense point cloud data

that can be captured and recorded by these systems. The integration of laser

scanners with terrestrial MMSs facilitated the rapid and cost effective captur-

ing of 3D data for larger urban areas [HPKH08]. Some examples of terrestrial

MMSs with laser scanners have also been listed in 1.1. In 1995, the applica-

bility of terrestrial mobile laser scanning system for surveying and mapping

transmission line corridors was demonstrated by Reed et al. [RLW96]. Their

van-based system, TruckMAP, incorporated real time positioning, a reflector-

less laser range finder and high resolution video cameras which were used to

map the sub-stations and electric transmission line corridor while the sections

of transmission line with no vehicular access were surveyed with an airborne

laser scanning system, FLI-MAP. In 2000, the Cartographic Institute of Cat-

alonia developed the GEOMOBIL system which included all the navigation

and mapping sensors required for acquiring digital stereo pair images and

subsequent direct georeferencing [TBA+04]. Later, the group integrated a

laser scanner into their system which was able to collect 10,000 points per

second [TAB+04]. The absolute accuracy of the laser scanning system was

measured as 0.18 m in Easting, 0.35 m in Northing and 0.13 m in the vertical

plane. The design and development of several other MMSs based on laser

scanners were reported over subsequent years [ZS03, GNA+06, KAS+07].

The advent of LiDAR technology enabled the application areas of terres-
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trial MMSs to be broadened to include 3D route corridor and urban map-

ping, traffic simulation studies, virtual reality modelling and utility mapping.

This expansion of application areas has led to the development of a number

of commercial enterprises based around MMS across the world. Over the

last 20 years, MMSs have slowly developed from research projects in the aca-

demic sector to becoming commercially viable activities [Pet10]. According

to a market research study conducted by ARC advisory group, the 3D laser

scanning market is expected to double in size from 2010 to 2015 [Rio11].

There are a number of companies which provide MMS products for fast

and automated data acquisition. 3D Laser Mapping is one such company

which developed the StreetMapper system in collaboration with IGI mbH to

meet the requirements of clients for rapid 3D mapping of highways, road fea-

tures, buildings and infrastructure using vehicle-mounted lasers [HC10]. The

StreetMapper system, which has been operating since early 2005, utilises a

GPS receiver, fibre optic gyro based IMU, Direct Inertial Aiding (DIA) sys-

tem, high resolution digital camera and two Riegl VQ-250 laser scanners.

Each scanner offers a 3600 Field Of View (FOV), a range of 300 m and a

measurement rate of 300,000 points per second. In 2009, another company,

Topcon positioning systems introduced IP-S2 (Integrated Positioning) MMS

which integrates a Topcon dual frequency GNSS receiver operating at 20 Hz,

Honeywell HG1700 tactical grade IMU based on Ring Laser Gyro (RLG),

wheel-mounted odometer, the Ladybug multi-camera unit that is capable of

3600 panoramic imaging and three LMS 291 laser scanners [Top10]. One

other company, Optech, provides a LYNX mobile mapping product which

incorporates an Applanix POSPac navigation system, imaging system and

laser scanners that are built in-house by Optech [Opt10]. Their LYNX M1
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model, launched in 2010, provides a laser measurement rate of 500,000 points

per second, scan frequency of 200 Hz and range of 200 m. Some of the other

MMS product suppliers include Mitsubishi Electric Corporation, Trimble and

Riegl which are all well-established in the mapping and surveying industry

[Pet10].

Apart from these MMS product suppliers, there are numerous companies

which offer mapping services. 3D Mapping Solutions GmbH offers services

in kinematic surveying of road networks with their mobile road mapping

system MoSES. Their system integrates DGPS, IMU, linear odometer, eight

multispectral cameras and two laser scanners [Gra08]. Google provides Street

View images to the users online which are acquired using their MMS Street

View cars. Their vehicle comprise a Topcon DGPS/IMU positioning system,

a wheel mounted odometer, three SICK LMS 291 laser scanners and nine

Elphel digital cameras that are configured to provide 3600 horizontal and 2900

degree vertical panoramic view [Wil07, Pet10]. Most recently, Google has

introduced a new tricycle platform, named Trikes which are equipped with a

similar set of positioning system, laser scanners and digital cameras. These

Trikes are being used for data collection in areas which are not accessible by

the cars. Similarly, other commercial companies like Tele Atlas and NAVTEQ

provide digital map databases for navigation and cartographic applications

which they generate using their own mobile mapping vehicles equipped with

positioning and imaging systems [Pet10]. MMSs have many applications and

in the next section, we describe one area where they can be used to improve

safety along road networks.
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1.2 Road Safety Applications of Mobile Map-

ping

Road transportation plays a vital role in the progress and socio-economic

growth of society enabling the safe movement of goods, people and services.

Roads are designed and built based on numerous design criteria, notably,

travel time, user comfort and convenience, fuel consumption, construction,

cost and environmental impact [ETS97]. A well designed and maintained

route infrastructure assists in driver safety as well as in the efficient use of

overall network in terms of route navigation.

Road accidents have become one of the main concerns for policy mak-

ers and road infrastructure developers due to thousands of deaths and the

economic loss caused by them. Each year, around 1.2 million people die in

road crashes around the world while around 50 million are severely injured

[WHO09]. Furthermore, these accidents cost between 1 and 2 % of a coun-

try’s annual Gross National Product (GNP) [WHO10]. According to the

World Health Organization (WHO) report, road traffic accidents are likely

to become the fifth leading cause of death in the world by 2030 [WHO11]. In

the member states of the European Union (EU), road traffic accidents claim

around 35,000 lives and leave more than 1.6 million people injured annu-

ally [BEY+10]. The economic cost has been estimated at around 2% of EU

countries Gross Domestic Product (GDP), around 180 billion Euro, which

is twice the EU’s annual budget [Saf09]. The statistics of road accidents,

fatalities and injuries occurred in the EU member states from 1990− 2006 is

graphically represented in Figure 1.1. The negative impact of road accidents

can not be ignored in terms of the very sizeable social and economic loss.
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Figure 1.1: Road accident statistics in Europe [CAR07].

Thus, the main challenge for policy makers is to ensure that road networks

are as safe as possible whilst maintaining quality and mobility.

The main causes of road accidents can be attributed to driver-behaviour,

vehicle and road infrastructure or a combination of all these as described in

Figure 1.2 [TTM+79]. Although driver behaviour is the main cause, the other

two factors, vehicle and the road infrastructure, usually contribute to the

final outcome. Road transport networks should be developed and maintained

by taking into account the interaction between the above mentioned three

factors. To date less consideration has been given to the road infrastructure

element [IRF03]. Analysis shows that accidents occur due to human error

mostly at specific accident hotspots. Road design has an immediate effect on

accident risk as it influences driver behaviour in terms of speed, acceleration

and lateral position. Safe road-way infrastructure has an important role in

reducing the accident risk as road infrastructure contributes to one out of

three fatal accidents [UNE08]. Road safety considerations must result in a
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Figure 1.2: Main causes of road accidents [TTM+79].

road environment that should be self-explaining and forgiving, in the sense

that users are not faced with unexpected situations and their mistakes can

be, if not avoided, corrected [ERS06].

Recent research investigations have described a significant correlation be-

tween road infrastructure and accident analysis values [GPG+07]. Road

user safety may be affected by road geometry and physical factors along the

route corridor. Road geometry includes the parameters used for designing

roads such as horizontal length section, curve radius, curvature change radius

(CCR), vertical grade, cross-sectional lane width, shoulder width, median,

number of lanes and stopping sight distance [GPG+07]. The physical factors

refer to the objects along the route corridor such as traffic signs, light poles,

trees, walls and signage. Route safety also depends on the existence and con-

dition of road safety interventions along the roads. For example, road signs

may be missing or suffer from reduced visibility due to temporary occlusion

arising from vegetation growth, weather or from some other factors. Road

geometry and physical road factors are required to be located, measured,

13



classified and recorded in a timely, cost effective manner in order to schedule

maintenance and ensure maximum safety conditions for road users.

Various safety schemes and standards such as Road Safety Audit (RSA),

Road Safety Inspection (RSI) and Network Safety Management (NSM) are

implemented to qualitatively estimate potential road safety issues along the

route corridor. The aim of these safety schemes is to identify the elements of

the road that may present a safety concern and explore the various opportuni-

ties to eliminate identified safety concerns [ETS97]. Current road surveys col-

lect this information manually which usually involves an engineer annotating

a digital map or using spatially referenced video to manually classify various

features along the route [ERE+08]. The information collected through these

surveys is sometimes incomplete and insufficient for qualitative estimation of

potential road safety issues. It can also be time consuming and expensive to

conduct these inspections on a large scale. A recent research call highlighted

the requirement for common evaluation tools and implementation strategies

in carrying out these inspections and assessing risk along route corridors

[PME+09]. One research project EuRSI [MM10] demonstrated that MMS

could be used to collect physical route corridor information for rapid safety

analysis.

With the potential of GIS technologies in road management, terrestrial

MMSs present a reliable and cost effective alternative for carrying out road

inspections along the route corridor. Terrestrial MMSs can be employed

to capture 3D spatially referenced information about road geometry and

physical road objects. This information can assist decision makers to identify

the possible risk elements of the road which may present a safety concern. In

the next section, we review various methods developed for extracting road
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features from LiDAR data

1.3 Road Features Extraction

Accurate information about the road and its features is a prerequisite for

effective management of road networks and to ensure maximum safe driv-

ing condition for road users. The extraction of road networks from aerial

and satellite multi spectral optical images has been extensively researched.

However, some limiting factors such as shadows, complex illumination and

spatial accuracy prevailed in those approaches [SNG10]. The use of LiDAR

technology for mapping road infrastructure provides accurate and dense 3D

point cloud data which contain elevation, intensity, pulse width, range and

multiple echo information. These data attributes can be used for reliable

and precise extraction of the different road features. The methods developed

for segmenting LiDAR data are mostly based on the identification of planar

or smooth surfaces and the classification of point cloud data based on its

attributes [Vos09]. In a related area, several methods have been developed

over the past decade for extracting urban building features from LiDAR data

[OTDS04, PV06, BH09, HDP09, RRP09, MEs10].

Some attempts have also been made to extract the road and its features

from LiDAR data. Clode et al. [CKR04] segmented airborne LiDAR point

cloud data into road and non-road objects using a hierarchical classification

technique based on elevation and intensity information. The accuracy of

their road segmentation approach was reduced due to the presence of car

parks and private roads in their survey area. Hu et al. [HTH04] segmented

LiDAR data into road and non-road areas based on elevation and intensity

attributes. The Hough transformation was then applied to extract the candi-
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date road stripes and parking areas. High resolution optical image data was

also used to obtain road areas by extracting the concrete or asphalt pixels

based on thresholding. Accuracy issues associated with the intermixing of

road networks with parking areas were resolved using shape analysis and ve-

hicle detection queues from the LiDAR and image data. Akel et al. [AKF+05]

identified roads from airborne LiDAR data which were used for generalising

the Digital Terrain Model(DTM). LiDAR data was segmented by applying a

region growing approach on the basis of surface normal direction and height

difference properties and then the extracted segments were classified into

road and non-road objects based on a certain set of decision rules. Mum-

taz et al. [MM09] identified buildings, trees and roads using a normalised

Digital Surface Model (DSM) generated from LiDAR data and a Normalised

Differential Vegetation Index (NDVI) estimated from high resolution aerial

imagery. The resulting accuracy in road extraction was poor due to occlu-

sions arising from buildings and tree shadows in the optical imagery. Oude

Elberink et al. [OV09] developed an automated method for 3D modelling of

highway infrastructure using airborne LiDAR data and 2D topographic map

data. The road polygons were extracted from the topographic map data

using a map based seed growing algorithm combined with a Hough transfor-

mation. The LiDAR points were added to the corresponding road polygons

using a LiDAR based seed growing algorithm. Subsequently, 3D reconstruc-

tion was achieved by assigning the third dimension to the map polygons.

Samadzadegan et al. [SBH09] used a multiple classifier system to classify

the airborne LiDAR points into road and non-road objects using first pulse,

last pulse, range and intensity attributes. Different combinations of LiDAR

attribute layers were classified based on different features using maximum
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likelihood and minimum distance methods. However, the optimum selection

of features, type of classification technique and classifier fusion method were

not conclusively addressed.

The majority of these road extraction methods attempt to delineate roads

by distinguishing them from non-road objects but do make any attempt

to extract the road edges. The road boundary is a fundamental feature,

knowledge of which can provide precise estimation of other road features such

as road markings and roughness. In the following sections, we review various

methods developed for extracting road edges, markings and roughness from

LiDAR data. We also investigate various methods based on snake curves

which were developed for extracting road and urban features.

1.3.1 Road Edges

Road edges usually distinguish the road surface from kerbs in urban roads

and from grass-soil in rural roads. Road edges with kerbs and grass-soil are

shown in Figure 1.3. We do not define the edge between a road and a hard

shoulder as the shoulders are used for emergency stopping or access. The

hard shoulders can be extracted based on a similar approach used for road

markings extraction as they both possess retro-reflective surface characteris-

tics.

Road edges need to be correctly identified and extracted in order to obtain

precise information about road geometry and physical road objects, . To

date, little research has been focused on extracting precise road edges. Yuan

et al. [YZC+08] proposed an algorithm for extracting road surface from

terrestrial LiDAR data. The algorithm used a fuzzy clustering method to

cluster LiDAR points. Straight lines were then fitted to the linearly clustered
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Figure 1.3: Road edges: (a) kerbs in an urban road section and (b) grass-soil
in a rural road section.

data using slope information for extracting the road surface area. Another

approach for extracting the terrain surface from LiDAR point cloud data was

formulated by Yoon et al. [YC09]. They calculated the slope and standard

deviation characteristics from the LiDAR points and used these values to

estimate the edges of the road. Vosselman et al. [VL09] developed a method

for detecting kerbstones from airborne LiDAR data. The approach was based

on the detection of small height jumps caused by the kerbstones in the LiDAR

point cloud data. However, their extraction accuracy was affected by parked

cars occluding the kerbstones. Zhang et al. [Zha10] proposed a method

for detecting road edges in an urban environment using terrestrial LiDAR

data. In their method, road edge points were identified based on elevation

information. The identified 3D road edge points were then projected on a

ground plane to estimate the road kerbs. Smadja et al. [SNG10] developed

an algorithm for extracting roads from LiDAR data based on the detection of

slope break points coupled with the RANdom SAmple Consensus (RANSAC)
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algorithm [SNG10]. The extracted road boundaries were further processed

to compute road curvature and road width information. McElhinney et al.

[MKCM10] developed an algorithm for extracting road edges from terrestrial

mobile LiDAR data. In the first stage of their algorithm, a set of lines were

fitted to the road cross sections based on the navigation data and then LiDAR

points within the vicinity of the lines were determined. In the second stage,

these points were analysed along the Northing axis based on slope, intensity,

pulse width and proximity to vehicle information in order to extract the

road edges. The algorithm did not use the Easting values of LiDAR data to

estimate the road edges.

Most of the methods reviewed have been developed for extracting road

edges in an urban environment where algorithms rely on the existence of

a sufficient height or slope difference between the road and kerb points for

detecting road edges. Little or no research has been carried out to extract

rural roads where the non-road surface comprises grass-soil and the edges are

not as easily defined by slope changes alone. There is a need to develop a

method that will provide an efficient and more accurate estimation of edges

for different road types. Approaches developed to date make partial use of

LiDAR data for extracting the road edges. The intensity and pulse width

attributes from LiDAR data can be a useful source of information for ex-

tracting these road edges. Their use in urban and rural road sections has yet

to be thoroughly explored.

1.3.2 Road Markings

Road markings play an important role in reducing accident frequency and

severity as they provide guidance and instruction to the road users for safe
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and comfortable driving. They are intended to direct traffic by indicating

the direction of travel, warn road users about specific obstacles or hazards

and define the territorial limit for traffic flows [GPG+07]. Road markings are

retro-reflective surfaces having an ability to reflect most of the incident light

back to its originating source. These markings retain their visibility criteria

in day and night. Examples of road markings are shown in Figure 1.4. Laser

Figure 1.4: Road markings: (a) continuous line, triangle and (b) arrow.

scanners usually record the reflectance of the illuminated road surface in the

form of intensity data which can be used to distinguish road markings.

Smadja et al. [SNG10] extracted road markings by applying a threshold

to intensity data acquired using terrestrial mobile laser scanning system. Vos-

selman et al. [Vos09] recommended a normalisation of the intensity data prior

to the threshold implementation or the use of a distance dependent threshold

for extracting road markings from terrestrial LiDAR data. Jaakkola et al.

[JHHK08] estimated road markings by first performing a radiometric correc-

tion of the LiDAR intensity data using a second order curve fitting function.

Finally, road markings were estimated by applying a threshold and morpho-
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logical filtering methods. Toth et al. [TPB08] used road pavement markings

as ground control for assessing the positioning quality of aerial LiDAR data.

The search window for finding the pavement markings in the LiDAR data

was reduced by making use of the GPS survey data collected over the pave-

ment. The pavement markings were extracted from LiDAR intensity values.

Later, extracted pavement markings were compared with the GPS survey

data to assess the quality of the LiDAR points. Chen et al. [CSW+09] devel-

oped a method to extract lane markings from the terrestrial LiDAR intensity

data. After detecting the road surface using the elevation information from

the LiDAR data, lane markings were extracted by applying a threshold. The

extracted lane markings were clustered using the Hough transform.

The majority of methods developed for extracting road markings are

based on threshold applied to the LiDAR intensity values. The development

of a robust threshold approach will provide a more precise extraction of road

markings. A threshold applied to the intensity values often introduces noise,

which needs to be reduced. The reflected intensity values depend upon the

distance from the laser scanner to the illuminated surface, incidence angle

of the laser pulse and surface characteristics. The intensity values need to

be normalised in relation to these factors. A priori knowledge of the road

boundaries and its surface will facilitate a more efficient extraction of road

markings.

1.3.3 Road Roughness

The roughness of the road surface can be considered an important factor that

influences safety condition for road users. It can be defined as the deviation

of a road surface from a designed surface grade that may develop as a result
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of road use, construction process or a combination of them [dFdS09]. Road

roughness affects rolling resistance, ride quality, vehicle operating cost and

safety of the road users [SK98]. Examples of roughness along the road sur-

face are shown in Figure 1.5. Several indices have been developed which are

Figure 1.5: Roughness along the road surface.

used to estimate roughness along a longitudinal profile of the road surface.

These indices are computed as dynamic or geometrical values [dFdS09]. The

dynamic indices such as International Roughness Index (IRI) provide contin-

uous estimation of the roughness based on a model that simulates a dynamic

response of a measuring vehicle along the road surface. The geometrical in-

dices such as standard deviation of longitudinal roughness provide discrete

estimation of the roughness in the form of standard deviation values of rela-

tive elevation points measured along the road surface.

The IRI was developed by the World Bank in the 1980’s in response to a

requirement for a reference scale for road roughness measurement [SGQ86].

This measure is used to provide a continuous estimation based on a model

that applies a mathematical simulation of a standard vehicle moving along
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the road surface profile at a certain speed. The model uses a Quarter Car

Simulator (QCS), shown in Figure 1.6 [dFdS09]. The QCS consists of a

Figure 1.6: Quarter car simulator.

sprung mass that represents the vehicle body and an unsprung mass that

represents the wheel and suspension. The sprung mass is connected to the

unsprung mass with the suspension spring and damper. The unsprung mass

is in a contact with the road surface using the wheel spring. During the

simulation process, the QCS runs along the road surface profile at a constant

speed V . The roughness along the road surface generates z′s and z′u vertical

speeds in the sprung and unsprung mass respectively. The IRI value for a

section of the road surface profile is estimated as

IRI =
1

L

x/V∫
0

|z′s − z′u|dt (1.1)

where L is a length of the road section in meters, x/V is a time taken by

the model to travel a certain distance x and dt is a time increment. Thus,
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the IRI is an accumulation of a vertical displacement and divided by the

distance travelled by the vehicle that, in turn, provides the roughness scale.

Its value is estimated in m/km or inch/mile units and ranges between 0 to

20 m/km. The 0 m/km value of IRI represents a perfectly smooth road

surface, approximately 6 m/km value represents a moderate road roughness

and 20 m/km value represents a bumpy unpaved road surface [Pat87]. One

key advantage of using the IRI scale for the roughness measurement is its

reliability as it facilitates both repeatability and stability of results with

respect to time [SK98].

The standard deviation of longitudinal roughness provides discrete es-

timation based on elevation points that are measured at a 1.5 m interval

along the longitudinal profile of the road surface as shown in Figure 1.7

[dFdS09]. These elevation points along the longitudinal profile are measured

Figure 1.7: Measurement of elevation points at a 1.5 m interval along the
longitudinal profile of the road surface.

using straight edge profilometers or laser profilers. The relative elevation di

for each point is computed as

di = hi −
1

2
(hi−1 + hi+1) (1.2)

where hi, hi−1 and hi+1 are the current, previous and next measured eleva-

tion values respectively. A standard deviation of longitudinal roughness is
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estimated as

σ =

√√√√ n∑
i=1

(di − d̄i)2

n
(1.3)

where d̄i is a mean of the di values and n is the number of points.

LiDAR data provides elevation values which have also been used for esti-

mating road roughness. Pattnaik et al. [PHS03] estimated grade and cross-

slope parameters of a road segment from LiDAR data. Road boundaries

were delineated using multi-resolution orthophotos, GIS street database and

a terrain model generated from LiDAR data. A centreline of the road was

then determined using the estimated road boundaries. A plane was fitted to

the LiDAR points using a linear regression model. Residuals for the grade

and cross-slope were then estimated by finding a goodness of fit of the re-

gression plane with the LiDAR points. Zhang et al. [ZF05] also presented

a method for estimating road grade and banking from LiDAR data using a

linear regression model, however road boundaries were extracted based on a

priori knowledge of the road width instead of using a surface terrain model.

Some other approaches have been developed for estimating roughness over

soil, river bed and other terrain surfaces. Zhang et al. [ZR04] demonstrated

prototype system for estimating a ground surface roughness information us-

ing a combination of a camera and laser scanning system. A multiscale

variance method was used over different ground surfaces to characterise an

elevation profile at different spatial scales. Hollaus et al. [HH10] investigated

two approaches for estimating terrain roughness from full waveform airborne

LiDAR data. In the first approach, an orthogonal regression plane was fitted

to the LiDAR data and then the standard deviation values of the residual

elevation points were calculated. In the second approach, the roughness pa-
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rameters were estimated from the echo width attribute of LiDAR data which

provides information on the range distribution of scatterers. Both these ap-

proaches were found to be useful for extracting terrain roughness information.

However, the echo width based approach produced a similar pattern results

even for moderate point densities. Diaz et al. [DJS+10] characterised sur-

face roughness in agricultural soil using terrestrial LiDAR data. LiDAR data

was interpolated to create a surface grid model with a cell spacing of 1 cm

which was used to estimate the surface roughness. Cavalli et al. [CTMF08]

analysed the capability of high resolution airborne LiDAR data for recognis-

ing morphological features of a river channel bed. The analysis was carried

out at 1D scale along the longitudinal channel profile and at 2D scale over

the full extent of the channel bed. In the 1D approach, residuals of the el-

evation and slope were computed orthogonal to regression line drawn along

the channel profile. In the 2D approach, elevation and slope residuals were

estimated based on their local variation along the channel bed. Yen et al.

[YAL+10] analysed terrestrial mobile laser scanning data to produce digital

terrain models of pavement surfaces. In one of their analyses, a linear plane

was fitted to the data points for 1 mile road section and then the vertical

offsets were calculated.

LiDAR data provides elevation information which can be used to estimate

road roughness without a requirement for any simulation process. Its ability

to provide reliable information for estimating road roughness needs to be

thoroughly explored. Unlike the traditional methods, laser scanning systems

can also be used to provide the spatially referenced roughness information

along the road surface. Most approaches used to compute roughness indices

are cumulative in nature. LiDAR data can be used to provide a localised
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roughness information along the longitudinal as well the transverse profile

of the road surface. The methods developed for estimating road roughness

from LiDAR data are based on fitting a regression plane and then computing

elevation residuals. There is a need for a more robust surface fitting approach

that will provide an ideal representation of the road surface. A priori infor-

mation of the road boundaries and its surface will facilitate the process of

estimating road roughness.

1.3.4 Snake Curves

The concept of snakes or parametric active contours was first introduced by

Kass et al. [KWT88] and has been widely used in many applications in-

cluding image segmentation, object boundary localisation, motion tracking,

shape modelling and 3D reconstruction. In the parametric model, the snake

is represented explicitly as a controlled spline curve, which is implemented

based on computed energy. It is defined within a 2D image domain that

moves towards a desired object boundary under the influence of an inter-

nal energy within the curve itself and an external energy derived from the

image data. The internal energy is applied to the curve which controls the

curve’s elasticity and rigidity, while the external energy attracts the snake

curve towards the object boundary. The energy of the snake is minimised

by maintaining a state balance between the internal and external energy

terms. When the snake’s energy function reaches a minimum, it converges

to the object boundary. Active contour models will be discussed in more

detail in Section 3.1.3. The use of a snake curve for the estimation of brain

parenchyma from Magnetic Resonance Imaging (MRI) scan is shown in Fig-

ure 1.8, with a yellow curve representing final position of the snake curve.
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Figure 1.8: Snake curve and MRI scan [LS95].

Several methods based on the snake concept have been developed for

extracting road and urban features from high resolution digital images. Ker-

schner et al. [Ker98] extended the concept of the traditional snake to twin

snakes for extracting linear features with two boundaries from high resolu-

tion digital imagery. An additional energy term was introduced in the snake’s

energy function which formulated the attraction force in between the twin

snake curves for detecting two parallel linear boundaries. Youn et al. [YB04]

developed an approach for extracting urban roads from aerial digital imagery

using an adaptive snake. In their method, an initial approximation was pro-

vided to the snake curve by detecting the preliminary road lines based on the

dominant road directions. These dominant directions were estimated using

the fact that road and buildings edges in an urban area are usually parallel.

After initialisation, an adaptive snake algorithm was applied in which the

weight coefficients provided to the snake energy terms were locally modified.

Rocca et al. [RFFP04] used a wavelet based parametric active contour model

for detecting linear features from satellite imagery. The wavelet transform

was used to determine high gradient values in the images filtered at multiple
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scales. An active contour model was applied over the image at the coarsest

scale. The final snake curve obtained at the coarsest scale was used to initi-

ate the snake curve at next coarsest scale and this process was repeated until

the original scale of the image was reached.

Mayunga et al. [MZC05] developed a radial casting approach to initialise

the snake curve for extracting building features from high resolution Quick-

bird earth observation imagery. In their method, a single seed point was

placed at the approximately the centre of each building object. The snake

points were then generated in accordance with the radial lines projected out-

wards at various angular intervals from the centre seed point. Yagi et al.

[YBKY05] used a parametric active contour model for tracking a road and

reconstructing the 3D road shape from road scenes recorded using monoc-

ular cameras. They assumed that the left and right road edges would be

parallel. This was applied as a constraint in the parametric active contour

model to converge the control points to the left and right boundaries of the

road. Zhang et al. [ZXZ08] used a self-adaptive template matching method

to provide the initialisation to the Least Square B-spline (LSB) snake model

for extracting road objects from high resolution satellite imagery. In the

template matching method, various templates of road width and luminance

attribute were matched with manually selected points in the image. The re-

sult with maximum matching was used to initialise the snake for extracting

road features.

Apart from digital images, methods based on the snake concept have

also been developed for extracting objects from LiDAR data. Tseng et al.

[TTC07] proposed an approach for surface reconstruction from LiDAR data.

In their algorithm, a surface was grown from an initial seed point in the
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LiDAR data based on the extended snake model. The internal energy was

provided by placing a constraint on the angle in between the normal vec-

tors of two adjacent planar patches in order to maintain the smoothness of a

reconstructed surface. The external energy was modelled as a function of dis-

tance from the LiDAR points to the corresponding planar patch. Goepfert et

al. [GR09] applied a snake model to extract the road network for integrating

and matching, 2D Digital Landscape Model (DLM) derived from 2D vector

data and DTM generated from airborne LiDAR data. In their approach,

the snake curve was initialised near the road feature using existing vector

data, stored as a polyline, while the external energy terms were derived from

intensity, elevation and surface roughness based images generated from the

LiDAR data. The energy of the snake contour was minimised which led

to its convergence to the road network. The extracted road network infor-

mation was then used to integrate the two datasets. Later, they extended

their work to include building and bridge information in order to support

the road extraction process using the snake model [GR10]. Kabolizade et al.

[KEA10] proposed an improved snake model for extracting buildings from

aerial images and LiDAR data. The initial estimation of building edges was

carried out by applying a threshold to the Normalised Digital Surface Model

(NDSM). The snake model was implemented by deriving the external energy

terms based on intensity and altitude variances of the snake curve points

with their neighbourhood points.

Snake curves present a useful approach for extracting objects. One of

the limiting factor associated with snake curves is a requirement for manual

intervention or a priori information for their initialisation. The development

of an automated initialisation method can provide for an efficient use of the
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snake curves for the segmentation process. There is a need to develop a

more robust approach for determining high gradient values in the 2D image.

These values are required for generating external energy terms. The use

of snake curves for the segmentation of LiDAR data is also required to be

thoroughly explored. LiDAR data provides elevation, intensity and pulse

width information which can be used for deriving external energy terms of

the snake curve. In the following section, we detail our contributions to the

field of road feature extraction from LiDAR data.

1.4 Contributions of the Thesis

In this thesis, we will primarily detail three key contributions we have made

in the field of road feature extraction from LiDAR data. These contribu-

tions relate to the development of automated algorithms for extracting road

features from terrestrial mobile LiDAR data. We also make novel use of

navigation information from the mobile van in our algorithms.

Our first contribution is the development of an automated algorithm for

extracting road edges from terrestrial mobile LiDAR data. We introduce

a new approach based on the combination of two modified versions of the

parametric active contour model that, in turn, provides a more precise ex-

traction of the road edges. Through the use of LiDAR elevation, reflectance

and pulse width attributes in the algorithm, we are able to differentiate the

road surface from grass-soil edges in rural road sections and kerb edges in

urban road sections. These attributes are input as 2D raster surfaces which

significantly reduces the computing time. A point thinning process smooths

these 2D raster surfaces as the raw LiDAR data is usually accompanied with

high frequency noise. Object boundaries in the 2D raster surfaces are auto-

31



matically extracted through the application of hierarchical thresholding and

Canny edge detection. These boundaries are then used in the external energy

terms of the parametric active contour models which helps converge the snake

curve to the road edges. Another novelty is in our automatic snake curve

initialisation based on the navigation track of the mobile van. Extraction of

road edges from large sections of road is facilitated through batch processing

of consecutive individual sections. We have automated our road edge extrac-

tion algorithm through the recommendation of most applicable methods and

optimal parameters. Finally, we have developed an automated algorithm for

validating the extracted left and right road edges. In this validation algo-

rithm, extracted road edges are validated with respect to manually digitised

road edges.

Our second contribution is the development of an automated algorithm

for extracting road markings from terrestrial mobile LiDAR data. We use our

automated road edge extraction algorithm to estimate the road boundaries in

the form of a snake curve. The output snake curve is used to identify LiDAR

points that belong to the road surface. A priori knowledge of the road surface

reduces false positives and the amount of processing in the road marking

extraction process. We have developed a novel range dependent thresholding

function to extract the road markings from intensity values. This is due to

the variations which occur in the intensity values due to varying distance

from the laser scanner to the illuminated surface and incidence angle of the

laser pulse. The range dependent threshold is applied through converting

the LiDAR intensity and range attributes to 2D raster surfaces. We use

morphological operations to complete the shapes of extracted road markings

and to remove noise that is introduced through the use of thresholding. These
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operations are applied using the navigation heading information of the mobile

van. To fully automate our algorithm, we have tested the most applicable

values of cell size required for converting LiDAR data to 2D raster surfaces

and range dependent threshold.

Our final contribution is development of an automated algorithm for esti-

mating road roughness from terrestrial mobile LiDAR data. A priori knowl-

edge of the road surface allows us to estimate the roughness over the road

surface. We use a RANSAC algorithm to fit a surface grid to the LiDAR

points belonging to left side of the road section. This is representative of what

the ideal road surface should be. A cell size in the surface grid is provided

based on the surface area of the foot-print of the mobile van’s wheel that

comes into contact with the road surface at any instant. We find a residual

between the elevation values of each LiDAR point and its respective surface

grid point and then the standard deviation of elevation residuals is calcu-

lated in each cell along the navigation track of the mobile van. The resulting

values provide a discrete estimation of the longitudinal road roughness.

To validate our algorithms, we have tested them on a variety of road

sections assessing the automated extraction of road edges, markings and

roughness from terrestrial mobile LiDAR data. The development of these

automated algorithms present a cost effective and time saving alternative to

the manual processing of LiDAR data for road features extraction. In the

next and final section, we provide an outline of the thesis.

1.5 Outline of the Thesis

Chapter 2, presents a detailed description of terrestrial mobile mapping tech-

nology and its components. It includes a description of imaging system and
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new developments for acquiring imaging data. We discuss the different range

measurement methods used by laser scanning systems to acquire 3D point

cloud data. We discuss the navigation system which is used to record navi-

gation parameters of the vehicle in the global coordinate frame. We describe

the data acquisition system which consists of control, synchronisation, data

storage and power supply units. We present the eXperimental Platform-1

(XP-1) MMS, which has been designed and developed at National Univer-

sity of Ireland Maynooth (NUIM). We describe its imaging, laser scanning,

navigation and data acquisition components.

Chapter 3, describes the theoretical background of the various approaches,

which have been used for developing our algorithms for extracting road edges,

road markings and road roughness from terrestrial mobile LiDAR data. We

discuss various segmentation approaches applied to extract road edges. This

includes an overview of hierarchical thresholding and Canny edge detection,

which are used to determine object boundaries from the LiDAR data. We

present active contour models describing both parametric or geometric cate-

gories. We describe how parametric active contour models are applied in our

road edge extraction algorithm. We discuss a range dependent thresholding

applied to extract road markings from the LiDAR intensity values. Finally,

we describe the RANSAC algorithm which is applied to fit a surface grid

to the 3D LiDAR points. The fitted surface grid is then used to find the

elevation residual values which in turn provides an estimation of the road

roughness.

Chapter 4, presents our road edge extraction algorithm. We provide a

stepwise description of our algorithm. It involves generating a 2D raster sur-

face from LiDAR data and estimation of energy terms required to implement
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the parametric active contour models. We describe an initialisation of the

snake curve based on the navigation track of the mobile van. We describe

the batch processing of consecutive individual sections to extract road edges

from the larger road sections. We also present our algorithm to validate the

extracted road edges with respect to the manually digitised road edges. We

analyse the most applicable methods and optimal parameters involved in our

algorithm to automate the process of extracting the road edges. We test our

algorithm on various road sections in both manual and automated modes.

We validate the results using our validation algorithm and carry out a com-

parative analysis of both manually and automatically extracted road edges.

Finally, we conclude the chapter by discussing the novelty and limitations of

our algorithm.

Chapter 5, describes our road marking extraction algorithm. We discuss

various steps involved in our algorithm to extract road markings from terres-

trial mobile LiDAR data. We detail how the output snake curve produced

from our automated road edge extraction algorithm is used to identify the

LiDAR points that belong to the road surface. We describe the 2D raster

surface generation process from LiDAR intensity and range attributes. The

range dependent thresholding function is presented, which is used to extract

road markings from the intensity values. We describe the morphological

operations used to complete the shapes of extracted road markings and to

remove noise. To automate our algorithm, we recommend the most applica-

ble values of input parameters through their experimental verification. We

test our algorithm on various sections which contained distinct type of road

markings. We validate the extracted road markings on the basis of their

quantitative assessment. In the final section of the chapter we discuss the
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advantages and limitations of our algorithm.

Chapter 6, presents our road roughness estimation algorithm. In a step-

wise description of our algorithm, we again describe the use of the output

snake curve to identify the LiDAR points belonging to the road surface. We

detail the RANSAC surface grid fitting to the LiDAR points that belong to

the left side of the road surface. We calculate the standard deviation of eleva-

tion residuals in each cell of the fitted grid along the navigation track of the

mobile van, which in turn provides an estimation of road roughness. We test

our algorithm on various road sections. We analyse the results to indicate

higher, moderate and lower roughness along the tested road sections. The

chapter is concluded by discussing the merits and demerits of our algorithm.

Chapter 7, summarises the three contributions, we have made to the

field of road feature extraction from LiDAR data. We discuss the novelty

of our algorithms and describe their limitations. Finally, Chapter 8, details

future research directions which are enabled by our work. We describe im-

provements which can be made to extend the algorithms and methodologies

presented in this thesis.
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Chapter 2

Terrestrial Mobile Mapping

Technology

Terrestrial mobile mapping technology has emerged as a reliable method

for mapping infrastructure along roads, streets and utility networks. Multi

sensor integrated mapping technology has enabled rapid and cost effective

acquisition of georeferenced information about natural, urban and road net-

work environments [LC08]. Their initial development was primarily driven

by the advances in digital cameras and navigation technologies. Later, laser

scanning systems were integrated with terrestrial MMSs which facilitated

more accurate, dense collection of 3D point cloud data.

This chapter provides a detailed description of terrestrial mobile mapping

technology and presents the XP-1 MMS, developed at NUIM. In Section 2.1,

we describe the various components of mobile mapping technology. This

includes a description of imaging systems and new developments for acquir-

ing imaging data. Different range measurement methods are used by laser

scanning systems to acquire 3D point cloud data. We describe these methods
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and all the attributes returned by the laser scanning system such as intensity,

pulse width, range and multiple echo. We describe a navigation system and

provide a detailed overview of the direct georeferencing process involved with

imaging, laser scanning and navigation systems. We detail a data acquisition

system consisting of control, synchronisation, data storage and power supply

units. Section 2.2 presents the XP-1 MMS and describes its imaging, laser

scanning, navigation and data acquisition components in more detail.

2.1 Components of Mobile Mapping Technol-

ogy

Terrestrial MMSs are based on the combination of four systems: imaging,

laser scanning, navigation and data acquisition systems. The imaging and

laser scanning systems are used to acquire spatial data and are generally

referred to as the mapping sensors. The navigation system is the combination

of multiple sensors which may include GNSS receiver, INS and DMI. The

navigation system is used to record the navigation parameters of the mobile

mapping vehicle in the global coordinate frame. The data acquisition system

provides synchronisation of various sensors and also facilitates data storage.

These components are discussed in detail in the following sections.

2.1.1 Imaging System

In a terrestrial MMS, the imaging system along with laser scanning and

navigation systems are integrated and mounted on a mobile vehicle for spa-

tial data acquisition [LC08]. An example of a digital image of a road sec-

tion acquired with camera onboard the XP-1 MMS is shown in Figure 2.1.
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With recent developments in imaging technology, film based optical cam-

Figure 2.1: XP-1’s digital camera image of a road section.

eras have been replaced with multi-spectral scanners and digital cameras.

Multi-spectral scanners are used to record large areas of the ground from

airborne and satellite platforms in across track and along track scanning

modes. Across track scanners record reflected radiations from terrain with

an oscillating mirror that moves at right angles to the aircraft or satellite’s

direction of travel, while along track scanners consist of a linear array of

detectors that record the reflected radiations along the aircraft or satellite’s

direction of movement [LKC08]. Digital frame cameras were generally de-

veloped for terrestrial based mapping. However, with the steady increase in

spatial resolution of digital cameras, these cameras are now being used in

airborne applications [SEs04]. Digital cameras are used to capture images

using either a Charge Coupled Device (CCD) or a Complementary Metal Ox-

ide Semiconductor (CMOS) system which converts acquired radiation into a

charged signal. In CCD based cameras, each pixel’s charge packet is trans-

ferred sequentially to a common output node which converts them into a
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voltage while in CMOS based cameras, the conversion of charge to voltage

takes place in each pixel [Lit01]. Both these systems provide high quality

images but CMOS systems have a more complex circuit design [Lit05]. How-

ever, CMOS systems have the advantage of lower power consumption over

CCD.

The selection of an imaging sensor in a MMS is dependent on the desired

accuracy, reliability, operational flexibility and end-use application require-

ments [Es05]. These imaging sensors can capture imagery across various

spectral bandwidths including visible, infrared and thermal regions. Stereo-

scopic imaging systems are popular for generating 3D georeferenced data. A

stereoscopic camera system consists of a pair of digital cameras mounted on a

mobile mapping vehicle which acquires a stereo image pair. After calibration,

3D positions can be computed for matching points. Spatial referenced 3600

panoramic images can be recorded using multiple digital cameras. Several

commercial companies such as Point Grey Research, Immersive Media Coor-

poration (IMC), Cyclomedia and Google employ multiple camera systems to

produce panoramic images. [Pet10].

Calibration of digital cameras is a requirement for extracting precise and

reliable information from an imaging system. The purpose of camera cali-

bration is to determine a true geometric model of the camera described by

its Interior Orientation (IO) parameters such as focal length, principal point

coordinates, radial and tangential distortion [LRKH06]. The computed geo-

metric camera model is used to produce undistorted imaging data. The most

popular approach for camera calibration has been bundle block adjustment

which was introduced in the early 1970’s [RF06]. This calibration process is

carried out by selecting a scene with easily identifiable target points. A digi-
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tal camera is then used to capture multiple images of the scene from different

known locations of the camera. Afterwards, the target points are identified

in each image and are input into a mathematical model of the bundle block

which leads to the determination of all the IO parameters. Transformation

parameters such as rotation offset and misalignment angle in between the

imaging and GNSS/INS sensors in the MMS are also estimated using the

calibration process which provides accurate positioning of image data at the

time of capture [TBA+04].

2.1.2 Laser Scanning System

Laser scanning systems have been recognised as an efficient and reliable

source of data acquisition in terrestrial MMSs for 3D mapping and mod-

elling. An example of LiDAR data of a road section acquired using Riegl

VQ-250 laser scanner in the XP-1 MMS is shown in Figure 2.2. LiDAR

Figure 2.2: XP-1’s LiDAR data of a road section.

technology provides several benefits over conventional sources of data acqui-

sition in terms of accuracy, resolution, information content and automation.
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The laser scanning system emits a laser pulse which is monochromatic and

coherent. The transmitted laser pulse may hit one or more targets which

causes one or multiple echo pulses. These echo pulses return to a receiver

instrument in the laser scanning system which converts the pulses into digital

signals. In Figure 2.3(a), the principle of multiple returns from targets is de-

scribed [Rie09]. A laser pulse is transmitted from the laser scanning system

Figure 2.3: Principle of (a) multiple returns from targets and returned (b)
echo pulses.

which strikes the tree canopy and produces echo pulses which are returned

to the sensor. A fraction of the laser pulse which was not occluded by the

tree canopy also strikes the building roof which leads to the return of an

additional echo pulse. The returned echo pulses are depicted in more detail
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in Figure 2.3(b). The first pulse refers to the transmitted laser pulse. The

next n−1 pulses correspond to reflection from the tree canopy, while the last

pulse corresponds to the reflection from the building roof. The laser scan-

ning system estimates the exact time position of each pulse as t1......tn for n

targets from an initial time position t0 of the transmitted laser pulse. The

estimated time is used to measure the distance or range in between the laser

scanner and target objects using a simple distance-time relation described as

R = s.t/2; (2.1)

where R is the range, s is the speed of light and t is the estimated time

interval. The laser scanning system is used in conjunction with navigation

sensors which are used to measure the position and orientation parameters

of the laser scanner in the global coordinate frame. The navigation mea-

surements along with the sensor head orientation and range measurements

are then used to obtain the 3D georeferenced information about the target

objects.

The time interval of the reflected pulse can be determined based on either

Time Of Flight (TOF) or phase shift ranging methods [PT08]. In a TOF

method, a laser pulse is transmitted from the laser scanning system which

strikes the target object and is reflected back to the sensor as shown in Fig-

ure 2.4. A reflected pulse returns to the receiver instrument and the time

interval from transmission to return of the pulse is measured. The range is

determined from the measured time interval using a simple distance-time re-

lation described in Equation 2.1. In a phase shift method, the laser scanning

system measures the phase difference between the transmitted and reflected

pulse, shown in Figure 2.5 [PT08]. The time interval is then determined from
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Figure 2.4: TOF method

Figure 2.5: Phase shift method.

the measured phase difference as

T = λ(n+ ξ/2π) (2.2)

where ξ is the phase difference, λ is the wavelength of the pulse and n is the

integer number which are measured using a digital pulse counting technique.

The range is estimated from the measured time interval using the distance-

time relation described in Equation 2.1.

The TOF method can be used to measure distances from a few hundred

metres to several hundred kilometres [PT08]. The phase shift method is only

suitable for short distances as an ambiguity can arise during long distance
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measurement due to the periodical variation of the phase [Pas10]. The laser

scanning system uses a Continuous Wave (CW) transmission in the phase

shift method for scanning terrain objects, which requires the use of high

power lasers. However, the use of the phase shift method provides better

accuracy than the TOF method [PJAA11]. The phase shift method can also

be used to measure the direction and velocity of a moving target in addition

to the range measurements [BEF+96].

Laser scanning systems also provide intensity and pulse width informa-

tion. Intensity is most commonly described as the maximum amplitude of a

reflected pulse [HP07]. In Figure 2.6, the intensity of reflected pulse is shown

as its maximum amplitude AB. The intensity value depends upon the sur-

Figure 2.6: Intensity and pulse width of reflected pulse.

face characteristic of a target object, distance from the laser scanner to the

target object and the incidence angle of laser pulse [JG09]. Intensity values

can be used to differentiate terrain objects. However in most cases, they

are found to be different for similar terrain objects. Intensity is required to

be normalised in order to determine true reflectance values from the terrain

objects. The pulse width from the laser scanning system is a recorded time

difference between half maximum amplitudes of the pulse. In Figure 2.6, the
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pulse width is described as the recorded time difference in between points

C and D which are at half maximum amplitude positions. It is measured

in nanoseconds. The pulse width values vary with the surface roughness of

terrain objects [LM10]. This property of the pulse width can be used to

classify different terrain objects.

2.1.3 Navigation System

The navigation system is considered an essential component of any MMS

since recorded navigation parameters are used to compute position and ori-

entation parameters of real world objects in the global coordinate frame.

Mapping sensors acquire spatial data in their local coordinate frame while

the navigation sensors are used to record navigation parameters of the vehi-

cle in the global coordinate frame. When these sensors are synchronised, the

recorded navigation parameters can be employed to reference the mapping

objects in the global coordinate frame. An example of navigation data from

the XP-1 system along a road section is shown in Figure 2.7.

Figure 2.7: XP-1’s navigation data along a road section.
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The georeferencing process of a MMS including a mapping sensor and

GNSS/INS navigation sensors is shown in Figure 2.8 [EES02, Tot09]. Let us

Figure 2.8: Georeferencing process of MMS.

consider that a mapping sensor is used to acquire spatial data point p in its s-

frame which represents a local coordinate frame. α and β are polar coordinate

angles which represent the mapping direction angles along XS and YS axis

of the s-frame respectively. The navigation sensors GNSS/INS are used to

record the navigation parameters of the vehicle in m-frame which represents

the global coordinate frame. The recorded parameters are used to measure

navigation parameters of the mapping sensor which are then employed to

reference the acquired data point p in the m-frame. The global coordinates

of the mapping point p are computed in the m-frame with a georeferencing

equation which can be described as [Tot09]
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rmp = rmGNSS +Rm
INS(Rs

X(α).Rs
Y (β).RINS

s .rsp + rINSs − rINSGNSS) (2.3)

where rmp is the coordinates of the point p in the m-frame and rmGNSS is

the coordinates of the GNSS in the m-frame determined using kinematic

GNSS. Rm
INS is the rotation matrix between the INS body and the m-frame

determined using INS measurements, Rs
X and Rs

Y are rotation matrices which

describe a rotation of the mapping direction around the X and Y-axis of the

s-frame respectively and RINS
s is the rotation matrix between the INS and the

s-frame determined through calibration. rsp are the coordinates of the point

p in the s-frame, rINSs are the coordinates of the mapping sensor in the INS

body frame determined through calibration and rINSGNSS are the coordinates

of the GNSS in the INS body frame determined through calibration.

GNSS has revolutionised conventional surveying and mapping by provid-

ing reliable positioning services with an accuracy range up to few millimetres

[KfBl03]. The GNSS sensor is used to determine translational and rotational

parameters of a trajectory from range measurements between satellite and

receiver. A roving GNSS sensor on a mobile mapping vehicle operates with

respect to a local GNSS base station [Pet10]. The GNSS base station cal-

culates its position based on a satellite signal and compares this position

with its known position. This difference is then applied to correct the roving

GNSS data in either Real time Kinematic (RTK) or Post Processing Kine-

matic (PPK) mode. In RTK mode, the roving GNSS sensor directly receives

corrections from the base station GNSS using a Ultra High Frequency (UHF)

modem communication. In PPK mode, the roving GNSS data and the base

station GNSS corrections are stored in a data logger and are combined in
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post processing [IXS09]. Thus, the processed GNSS data provides an ac-

curate estimation of the vehicle’s navigation parameters. The INS sensor

consists of three gyroscopes and three accelerometers which determine the

relative position and orientation parameters of the mobile mapping vehicle

by sensing angular velocity and specific force [Es05].

In urban areas with high rise buildings or in areas with dense canopies,

the GNSS sensor can output less accurate navigation due to satellite signal

obstruction and distortion [Pet10]. However, the INS sensor can help com-

pensate for this as it maintains reasonable level of position and orientation

accuracy for short intervals of time. The combination of the GNSS and INS

sensors provide an effective solution as both sensors can be used to update

each other frequently and maintain high global positioning accuracy. Their

integration is achieved using a Kalman filter algorithm which identifies and

corrects navigation errors in both the GNSS and INS sensors [GWA07]. In

the Kalman filter process, the navigation information from the GNSS and

INS sensors is compared to estimate the errors [IXS09]. These errors are

discriminated in the Kalman filter observation unit and are then fed back

into the GNSS and INS error models for correction. Thus, drifts in the

INS gyroscopes and accelerometers can be corrected with the GNSS derived

trajectories while in areas of poor or absent GNSS signal coverage, the posi-

tion and orientation parameters can be corrected with the INS observations

[Es05]. Terrestrial MMSs are also supplemented with DMI’s to provide ad-

ditional information for relative positioning. The DMI is attached to the

mobile mapping vehicle’s wheel and provides a measure of distance travelled

by the vehicle [GQS06]. The process for estimating navigation parameters

of the mobile mapping vehicle using a GNSS base station and a navigation
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system is shown in Figure 2.9. The measurements from a GNSS base station

Figure 2.9: Process for estimating navigation parameters of the mobile map-
ping vehicle using a GNSS base station and a navigation system.

are used to make corrections to a roving GNSS data collected with the mobile

mapping vehicle. The corrected GNSS data is then integrated with INS and

DMI data in a Kalman filter process to provide more accurate estimation of

the vehicle’s navigation parameters.

2.1.4 Data Acquisition System

The MMS data acquisition system consists of control, synchronisation, data

storage and power supply units which are shown in Figure 2.10. The pur-
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Figure 2.10: Data acquisition system.

pose of the synchronisation unit is to synchronise the mapping and navigation

sensors in a common temporal reference frame. A GNSS timer provides an

accurate and well defined Pulse Per Second (PPS) time signal to the synchro-

nisation unit which is used as a reference for all sensors in the MMS. In the

synchronisation unit, a time board device tags a Transistor-Transistor-Logic

(TTL) digital signal with respect to the received PPS time signal [TBA+04].

The tagged TTL signals are then used to synchronise mapping and naviga-

tion sensors in RTK mode.

A suitable data logging and storage system is required to record the high

volumes of data acquired by the mapping and navigation sensors in a MMS.

The synchronisation and data storage units are controlled by a central control

unit while the power supply unit provides electricity supply to enable contin-
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uous operation of the mapping sensors, navigation sensors, synchronisation

unit and control unit in the MMS.

2.2 XP-1 System

The XP-1 MMS at NUIM comprises of an IXSEA LandINS GPS/INS, a

Riegl VQ-250 laser scanner and an imaging system which are mounted on

a mobile van. A DMI is fitted to a wheel of the van which records the

distance travelled and is used in computing the final navigation parameters

during post processing. The XP-1 system is shown in Figure 2.11. The

Figure 2.11: XP-1 MMS with an inset picture of the laser scanning and
navigation system mounted on the roof rack.

LandINS navigation system is based on an INS, a rover GPS receiver and

antenna, a UHF modem and a data logger. In PPK mode, we correct the rov-

ing GPS data with Receiver INdependent EXchange (RINEX) files acquired

from permanent GPS base stations. The core of the LandINS system is an

INS which is an assembly of three Fibre Optic Gyroscopes (FOGs) and three

accelerometers with a drift rate of better than 0.005 degree/hour [IXS09].
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The navigation process in the LandINS system is based on Kalman filtering

which integrates measurements from the INS, GPS and DMI sensors to pro-

vide an accurate estimation of navigation parameters. The performance of

the LandINS system in the PPK mode are detailed in Table 2.1. The XP-1

True Heading 0.01 degree

Roll / Pitch 0.005 degree

Position X and Y 0.002 m

Position Z 0.05 m

Measurement Rate 100 Hz

Table 2.1: IXSEA LandINS navigation system specifications.

navigation data along a road section was plotted over Google earth image,

shown in Figure 2.12.

Figure 2.12: XP-1’s navigation data plotted over a Google earth image, high-
lighted in yellow, with an inset picture of its small section (Image courtesy:
Google Earth).

The Riegl VQ-250 laser scanner is mounted on the roof rack on the back of

the mobile van at a 450 angle with respect to both the horizontal and vertical

axis of the vehicle. This sensor orientation optimises sensor-target geometry

and ensures that the laser scanner produces richer 3D information than if
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mounted flat onboard the survey vehicle. The horizontal inclined position

enables the laser scanner to scan those sides of terrain objects which are

perpendicular to the direction of travel of the mobile van or else they may

be missed. The vertical inclined position of the laser scanner is useful for

scanning objects above the mobile van such as overhead road signs or bridge

faces whose sides are perpendicular to the direction of travel of the mobile

van. An inclined laser scanner configuration along with the navigation system

in the XP-1 system is shown in Figure 2.13. The range measurement in the

Figure 2.13: Inclined laser scanner along with GPS antenna and LandINS
GPS/INS mounted on the XP-1’s roof rack.

laser scanning system is based on the TOF method, while the use of online

waveform analysis technology allows for the digitisation of the waveform of

each reflected pulse. It captures up to 1 million points every 3.5 seconds

using a 300 KHz sensor which leads to approximately 20 GB of data per

hour. The specifications for the Riegl VQ-250 laser scanner are shown in

Table 2.2.

The imaging system consists of two progressive scan digital cameras

(1280 ∗ 1024) that are mounted behind the windscreen of the mobile van.

In the near future, 3 multispectral and a FLIR thermal SC-660 cameras
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Minimum Range 1.5 m

Operating Range (@300 KHz) 75-200 m

Accuracy 0.01 m

Precision 0.01 m

Measurement Rate 300 KHz

Signal Intensity 16 bit

Laser Wavelength 1550 nm

Beam Divergence 0.3 mrad

FOV 360 degree

Scan Speed 100 Hz

Table 2.2: Riegl VQ-250 specifications.

are intended to be included in the XP-1 system. These camera sensors will

provide visible, infrared and thermal imageries along route corridors. Ac-

tive infrared Light Emitting Diode (LED) illumination enables the mobile

mapping system to operate in dark or low-light conditions.

A power unit onboard the vehicle is capable of supplying 3 KW of power.

Synchronisation and triggering of the mapping and navigation sensors is

centrally controlled over a Local Area Network (LAN) using a Intelligent

Reference/TM-4 GPS timer device. Three 4U 19” servers provide data log-

ging services and are fitted with removable disks to facilitate fast data pro-

cessing. System initialisation usually takes 20 minutes before the vehicle can

begin surveying. This time is required to ensure that coarse and fine align-

ment of the navigation system is carried out correctly. An operator sits beside

the driver and controls all onboard systems using a central data acquisition

console. This includes monitoring image quality, navigation, LiDAR data as

well as power and computing resources. Examples of imagery and LiDAR

data of a road section collected using digital camera and Riegl VQ-250 laser

scanner onboard the XP-1 system is shown in Figure 2.14.
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Figure 2.14: XP-1’s (a) imaging and (b) LiDAR data of a road section.

2.3 Conclusion

This chapter provided a detailed review of terrestrial mobile mapping technol-

ogy. We discussed mapping, navigation and data acquisition systems which

are considered the essential components of a MMS. The mapping sensors can

include imaging and laser scanning systems which are used for spatial data

acquisition. The navigation sensors are used to record navigation parameters

of the mobile mapping vehicle in the global coordinate frame. The LiDAR

and image data can be geocoded using the synchronised navigation sensor

information.

The imaging sensors in terrestrial MMSs are usually based on digital

progressive scan cameras which capture images of real world environments.

Multiple digital cameras are also used in MMSs for acquiring 3D stereo-

scopic and 3600 panoramic images. The laser scanning systems are used

to obtain 3D point cloud information about natural and man-made envi-

ronments. These systems provide intensity, pulse width and multiple echo
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information which can be used to classify different target objects. The nav-

igation system in terrestrial MMSs comprises of multiple sensors including

GNSS, INS and DMI. The integration of data outputs from these sensors is

achieved using a Kalman filter process which identifies and corrects various

errors to provide a more accurate estimation of the navigation parameters.

The data acquisition system in terrestrial MMSs facilitates synchronisation,

data storage and power supply to the system sensors. The synchronisation

of the mapping and navigation sensors is carried out in a common temporal

reference frame provided by the GNSS timing device. We also presented the

XP-1 MMS and described its imaging, laser scanning, navigation and data

acquisition components.

Multi-sensor integrated terrestrial mobile mapping technology presents

an accurate, reliable and dynamic source of spatial data acquisition. This

chapter assists us in understanding mobile mapping technology and its oper-

ational principle in terms of sensor synchronisation, spatial data acquisition,

direct georeferencing and subsequent data storage processes. In the next

chapter, we detail a theoretical background of the approaches we used to

develop our road features extraction algorithm.
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Chapter 3

Approaches For Extracting

Road Features

The fundamental structure and intrinsic properties of LiDAR data enable

more efficient and accurate road feature extraction approaches to be explored.

Road features can be extracted from LiDAR data using a combination of the

elevation, reflectance and pulse width attributes. In this thesis, we present

our three algorithms which we have developed for extracting road edges,

road markings and road roughness from the terrestrial mobile LiDAR data.

In this Chapter, we introduce the theory and background of the approaches

used to develop these algorithms. In Section 3.1, we discuss the segmentation

approaches used to extract road edges from terrestrial mobile LiDAR data.

We provide an overview of hierarchical thresholding and describe the different

processing steps involved in Canny edge detection. We discuss two types of

active contour models, the parametric and geometric active contour models.

We also present the mathematical theory of these models as it pertains to

our segmentation process. We then describe how active contour models are
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applied in our road edge extraction algorithm. In Section 3.2, we describe

our range dependent thresholding which is used to extract road markings

from terrestrial mobile LiDAR data. In Section 3.3, we discuss the RANSAC

surface grid fitting algorithm used to estimate road roughness from terrestrial

mobile LiDAR data. In Section 3.4, we conclude with a discussion on the

approaches explained in this chapter.

3.1 Road Edge Extraction

We have developed a road edge extraction algorithm to extract the left and

right edges from terrestrial mobile LiDAR data. In the algorithm, we convert

the LiDAR elevation, reflectance and pulse width attributes into 2D raster

surfaces and then apply various segmentation approaches to extract the road

edges, as shown in Figure 3.1. We will present our road edge extraction

Figure 3.1: Segmentation approaches in the road edge extraction algorithm.

algorithm in detail in Chapter 4. In the following sections, we discuss the
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segmentation approaches which are used for developing our algorithm.

3.1.1 Hierarchical Thresholding

In the road edge extraction algorithm, we apply hierarchical thresholding to

the 2D raster surfaces generated from the LiDAR attributes to determine

objects from them. Hierarchical thresholding is a segmentation approach

which takes a 2D image as input. The input image is transformed into a

set of images representing a hierarchy of resolution [SHB08]. High resolution

images in the hierarchy provide finer details of the object. The image at the

highest resolution is the original input image. Low resolution images in the

hierarchy represent a blurred or smoothed version of the input image. These

images are generated by blurring the input image with a Gaussian filter. This

blurring is achieved by convolving each block in the image with a kernel that

consists of a matrix of numbers. A block in the image is N×N group of cells

that describes a mask size of the kernel. The value of each convolved block

is obtained by multiplying each kernel element with its underlying image cell

value and then adding them together.

The convolution kernel is a discrete approximation of a 2D Gaussian

distribution function that can be represented as

G(x, y) =
1√

2πσ2
exp
−(x2 + y2)

2σ2
(3.1)

where x and y are values along the X and Y axis respectively, while σ is

the standard deviation of the distribution [FPWW00]. The 2D Gaussian

distribution is shown in Figure 3.2. An example of the convolution kernel

that produces a discrete approximation to this 2D Gaussian distribution
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Figure 3.2: 2D Gaussian distribution with mean (0, 0) and σ = 1 [FPWW00].

function is shown in Figure 3.3.

Figure 3.3: Convolution kernel that produces a discrete approximation to the
2D Gaussian distribution function with mask size=5 and σ = 1 [FPWW00].

The Gaussian convolution kernel consists of weights where the highest

weight is at the central cell and the weight is lowered based on the cells

proximity to the central cell [FPWW00]. The degree of blurring is controlled

by modifying the standard deviation of the Gaussian distribution, which in

turn, is proportional to the mask size of the convolution kernel. One issue

with applying a Gaussian filter is that the convolution kernel can introduce

false boundaries at image borders. To overcome this, cells at the border of
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the image are usually ignored.

The hierarchical thresholding approach operates in the following way. It

takes an image I, a threshold value T and mask sizes sn, sn−1, ....s1, where

sn > sn−1 > ........s1, as input. Starting at level i = n and decrementing at

each iteration until i = 1, the image is blurred with a Gaussian convolution

kernel of mask size si. An initial estimation of an object O is made by

thresholding the lowest resolution image, at level i = n, using the threshold

value T , displayed in Figure 3.4(b). After this, corresponding neighbouring

Figure 3.4: Hierarchical thresholding: (a) input image, (b) thresholded object
cells in the lowest resolution image, at level n and (c) thresholded neighbour-
hood object cells in the next lowest resolution image, at level n− 1 [SHB08].

.

cells of the estimated object are thresholded in the next highest resolution

image, at level i = n− 1, in order to update the estimation, shown in Figure

3.4(c). This process is repeated for each hierarchical level until i = 1. This is

the process hierarchical thresholding applies to the input image which leads

to a precise estimation of objects in the image.

Hierarchical thresholding is particularly useful in dealing with noisy im-

ages as it provides a better estimation of the object by minimising the influ-

ence of background noise. This makes a single threshold value more robust,
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which in turn, allows for the hierarchical threshold to be applicable to au-

tomated algorithms. The threshold parameter can be estimated using the

difference between the brightness value of an object cell and representative

background cells in the image [MMHN08]. The mask size for the Gaussian

convolution kernel is determined based on the level of noise present in the

image. A larger mask size is used when there is a high amount of noise in the

image, while a small mask size is used when there is little or no noise. In our

road edge extraction algorithm, we have fixed the threshold value and mask

size for all road sections. This allows for the fully automated application of

hierarchical thresholding in our algorithm.

To give an example of the hierarchical thresholding used in our algorithm,

we take the Easting, Northing and elevation values of the LiDAR data, shown

in Figure 3.5(a). We convert these values to a 2D raster surface. The slope

of these elevation values is then calculated and is shown in Figure 3.5(b).

We apply hierarchical thresholding to this image with mask size=25 and

Figure 3.5: Hierarchical thresholding: (a) original LiDAR data, (b) input
slope image and (b) estimated objects.

threshold=50, to estimate the objects, shown in Figure 3.5(c).
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3.1.2 Canny Edge Detection

In our road edge extraction algorithm, we determine object boundaries by

applying Canny edge detection to the objects estimated using hierarchical

thresholding. A Canny edge detector is used to identify and locate sharp

discontinuities that characterise boundaries of objects in an image. It was

originally developed by Canny [Can86] and has become one of the standard

object boundary detection methods in image processing.

The Canny edge detection approach involves various processing steps

[Moe08]. These begin when an input image is blurred by applying a Gaussian

filter, which we explained in Section 3.1.1. The Gaussian filter is applied to

reduce any noise present in the image. Then, a Sobel operator is applied

over the blurred image to determine gradients that describe sharp changes

in the cell values of the image along the X and Y axis. The Sobel operator

finds the gradient components along the X and Y axis by applying two 3X3

convolution kernels over the image, which are shown in Figure 3.6. The gra-

Figure 3.6: Sobel convolution kernels, which are used to find the gradients
of an image along its (a) X and (b) Y axis.

dient components are combined to provide an absolute value of the gradient

magnitude and direction and can be described as

|G| =
√
G2
x +G2

y, (3.2)
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θ = arctan
|Gy|
|Gx|

(3.3)

where Gx, Gy are the gradient components along the X and Y axis, G is the

gradient magnitude and θ represents the gradient direction.

In the next step, local maximum values of gradients are estimated by

comparing the value of each cell with its neighbours along the gradient di-

rection. The estimated local maximum gradient values are preserved and

non-maximum values are removed from the image. After this, two thresh-

old values are applied to the image in order to remove any spurious changes

present in it. A cell with a gradient value larger than the upper threshold

is marked as strong and is accepted as a boundary cell. A cell with the gra-

dient value smaller than the lower threshold is rejected. The boundary cell

in between the two thresholds is marked as weak and is accepted only if it

is connected to the strong boundary cell. In this way, noise cells present in

the image are removed as they are unlikely to be connected with the strong

boundary cells.

Typically in Canny edge detection, the output is extremely sensitive to

changes in the two threshold values. To automatically apply Canny edge

detection to LiDAR data we would first have to overcome this threshold

sensitivity problem. We apply hierarchical thresholding which outputs an

image with only two values, 255 for object cells and 0 for non-object cells.

Inputting this image into Canny edge detection makes the selection of two

threshold values trivial. Setting 250 as an upper threshold limit and 5 as a

lower threshold limit will produce the same results for all inputs. This makes

our Canny edge detection fully automated and much more robust to noise.

An example of the Canny edge detection applied to the hierarchical thresh-

olded objects with upper threshold=250 and lower threshold=5 is shown in
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Figure 3.7.

Figure 3.7: Canny edge detection: (a) input hierarchical thresholded objects
and (b) their estimated boundaries.

3.1.3 Active Contour Models

After determining the object boundaries in the 2D raster surfaces, we use

active contour models in our road edge extraction algorithm. Active contour

models present a robust segmentation approach which make efficient use of

specific information available about objects in the input data rather than

processing all the data [BI98]. Active contour models are categorised as

parametric or geometric [XYP00]. The difference between the two versions

is in how the contour is defined and behaves. The parametric active contour

is represented explicitly as a controlled spline curve that is implemented

based on energy computations. The geometric active contour is represented

implicitly as a level set and is evolved based on geometric computations. In

the following sections, we discuss parametric and geometric active contour

models in detail. We describe how the parametric active contour model is

applied in our road edge extraction algorithm.
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3.1.3.1 Parametric Active Contour Model

A parametric active contour, or snake, is defined as an energy minimising

parametrised curve within a 2D image domain that moves towards a desired

object boundary. It does this under the influence of an internal energy within

the curve itself and an external energy derived from the image [KWT88]. The

movement of the snake curve is controlled through balancing the internal and

external energy terms until an energy minimisation condition is met. When

the snake’s energy function reaches a minimum, it converges to the object

boundary.

The snake is defined parametrically in the x, y plane of an image as

v(s) = [x(s), y(s)], (3.4)

where x(s), y(s) are coordinates along the snake curve and s is the nor-

malised arc length. The curve v(s) is represented by a set of control points

v0, v1.........vn−1 and is linearly obtained by joining each control point as

shown in Figure 3.8. The snake’s energy function can be described as

Figure 3.8: Initial snake curve in the form of parametric ellipse.

Esnake =

n−1∫
0

Esnake(v(s))ds. (3.5)
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The energy function constituting the internal and external energy terms is

described as

Esnake =

n−1∫
0

(Eint(v(s)) + Eext(v(s)))ds, (3.6)

where Eint represents the internal energy term and Eext denotes the external

energy term.

The internal energy controls the snake curve’s elasticity and stiffness prop-

erties. The internal energy function Eint can be written as

Eint =
1

2
(α(s)|dv

ds
|2 + β(s)|d

2v

ds2
|2), (3.7)

where α(s) and β(s) are weight parameters. Equation 3.7 is composed of two

terms, a first-order term designed to hold the curve together and a second-

order term designed to keep the curve from bending. The α weight parameter

controls elasticity while the β weight parameter controls stiffness in the snake

curve.

The external energy creates a gradient image that attracts the snake curve

toward the object boundaries as shown in Figure 3.9. The image gradient

based external energy is described as

Eext = −κ|Of(v(s))|2, (3.8)

where κ is a weighting parameter and Of is the gradient image of object

boundaries, f .

For the snake curve to converge on the object boundary, the snake’s

energy function, Esnake in Equation 3.6, should be minimised. To minimise

the energy function, the snake curve must satisfy the Euler condition as
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Figure 3.9: Parametric ellipse snake curve initialised on a gradient image of
road object boundaries.

[SHB08]
d

ds
(α(s)

dv

ds
)− d2

ds2
(β(s)

d2v

ds2
)− OEext(v(s)) = 0, (3.9)

where vs is a derivative of v with respect to s. To find a solution to Equation

3.9, the snake is made dynamic by treating v as a function of time t which

leads to

∂v(s, t)

∂t
=

∂

∂s
(α(s)

∂v(s, t)

∂s
)− ∂2

∂s2
(β(s)

∂2v(s, t)

∂s2
)− OEext(v(s, t)). (3.10)

A solution to Equation 3.10 is found by discretising it and solving the discrete

system iteratively [XP98]. When the term
∂v(s, t)

∂t
approaches 0, the snake’s

energy function reaches its minimum and is expected to have converged on

the object boundary.
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The traditional parametric active contour model has two limitations in

object boundary estimation. First, the initial snake curve must be initiated

close to a desirable object boundary or else it won’t converge to the object

boundary. Second, the snake curve fails to detect concave boundaries [XP98],

as shown in Figure 3.10. Several methods have been developed to overcome

Figure 3.10: Traditional parametric active contour model applied to an object
with a concave boundary [XP98].

these limitations in the parametric active contour model [KEA10]. In the

following paragraphs, we discuss two modified versions of the parametric ac-

tive contour model which have been developed to overcome these limitations,

namely, the balloon and GVF models .

Balloon Model

To overcome the snake initialisation limitation, Cohen [Coh91] introduced

a balloon concept in the parametric active contour model in which an ad-

ditional energy is added to the external energy term which pushes a snake

curve towards an object boundary. In the balloon model, the snake curve

behaves like a balloon which is inflated by the additional energy. The balloon
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energy acts in the normal direction to a point on the curve which makes the

behaviour of the snake curve more dynamic. The modified external energy

term in the parametric active contour model can be described as

Eext = κ1n(s)− κ|Of(v(s))|2 (3.11)

where κ1 is the weight parameter for the balloon energy and n(s) is the unit

vector normal to the snake curve at point v(s). If the sign of κ1 is negative, it

will have a deflating effect instead of an inflating effect over the snake curve.

The balloon energy pushes the snake curve towards object boundaries

while the image gradient based energy attracts the snake curve toward the

object boundaries, as shown in Figure 3.11. If the image gradient based en-

Figure 3.11: Balloon external energy added to the snake curve.
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ergy at a point is weaker than the balloon energy, the snake curve passes

beyond it. It stops at a point for which the image gradient based energy is

higher than the balloon energy. This can have the added benefit of overcom-

ing spurious noise in the data while detecting the object boundaries [SHB08].

The primary advantage of the balloon model is that it increases the move-

ment range of the snake curve towards the object boundaries. It overcomes

the snake curve initialisation drawback in the traditional parametric active

contour model but it does not provide a solution for the concave boundary

convergence problem. The value of balloon energy is also dependent on the

image gradient energy and noise in the data. To date, there has been no

method to automatically select this value.

GVF Model

Xu et al. [XP97] introduced a GVF external energy in the parametric active

contour model in an attempt to detect the concave boundaries. It is based

on diffused gradient vectors of the object boundaries. The GVF energy is

described as the energy field V (x, y) = (u(x, y), v(x, y)), where u and v are

its vector components in the x, y plane of an image. It minimises an energy

function

E =

∫ ∫
µ(u2x + u2y + v2x + v2y) + |Of |2|V − Of |2dxdy. (3.12)

Noise in the data can prohibit the GVF energy from being calculated effec-

tively. To control the impact of this noise, a regularisation parameter, µ, is

used to balance the first term, µ(u2x + u2y + v2x + v2y) and the second term,

|Of |2|V − Of |2 of the Equation 3.12. An increased noise in the image will

require a higher value for µ. When Of is small or negligible, the energy func-
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tion is dominated by the first term which is a sum of the squares of partial

derivatives of the vector components. When Of is large, the second term

dominates and minimises the energy function, when V = Of . It results in a

smoothly varying energy being produced over a homogeneous image region

while not affecting the gradient energy along the object boundary.

The GVF energy is obtained by solving the following Euler equations

[XP98]

µO2u− (f 2
x + f 2

y )(u− fx) = 0, (3.13)

µO2v − (f 2
x + f 2

y )(v − fy) = 0, (3.14)

where O2 is a laplacian operator and fx, fy are the gradient components

along the X and Y axis of the image. Equations 3.13 and 3.14 are solved by

treating u and v as functions of time t such that

ut(x, y, t) = µO2u(x, y, t)−(fx(x, y)2+fy(x, y)2)(u(x, y, t)−fx(x, y)), (3.15)

vt(x, y, t) = µO2v(x, y, t)−(fx(x, y)2+fy(x, y)2)(v(x, y, t)−fy(x, y)). (3.16)

Equations 3.15 and 3.16 are known as generalised diffusion equations [XP98].

After estimating the value of V (x, y, t), the external energy term, OEext(v(s, t)),

in Equation 3.10 is replaced giving us

∂v(s, t)

∂t
=

∂

∂s
(α(s)

∂v(s, t)

∂s
)− ∂2

∂s2
(β(s)

∂2v(s, t)

∂s2
) + V. (3.17)

The GVF energy attracts the snake curve toward the object boundaries,

as shown in Figure 3.12. The diffused energy allows the snake curve to detect

the concave boundaries [XP98], shown in Figure 3.13. It also helps increase

the movement range of the snake curve, which does not require it to be grown
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Figure 3.12: Parametric ellipse snake curve initialised on GVF image of road
object boundaries.

close to a desirable object boundary. The GVF model can overcome both

the limitations in the traditional parametric active contour model. However,

its ability to overcome the snake initialisation problem is limited. For this

reason, the balloon energy term is also required particularly in the case where

there is a relatively large distance between the initial snake and the object

boundaries.

The parametric active contour model presents a robust segmentation ap-

proach, which is implemented based on energy computations. The compu-

tation of external energy relies on the input gradient image having strong

boundaries. It is for this reason that the selection and implementation of the

thresholding function is significant, as detailed in Sections 3.1.1 and 3.1.2.

The parametric active contour model often requires prior estimation of the
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Figure 3.13: GVF active contour model applied to an object with a concave
boundary [XP98].

energy weight parameters. To date, there has been no method to automati-

cally select these parameters, which is required in order to make efficient use

of the parametric active contour model for the purpose of segmentation.

3.1.3.2 Geometric Active Contour Model

The geometric active contour model is based on a level-set and curve-evolution

theory [CCCD93, MSV95]. The primary advantage of the geometric active

model is that it does not require any parameters for its implementation. A

geometric curve is represented implicitly as a level-set and is evolved based

on geometric computations, with its speed locally dependent on the image

data [SHB08]. The level-set refers to a set of point variables for which their

function is equal to some constant value. For example, the level-set of the

variables (x, y, z) can be the sphere x2 +y2 + z2 = r2, with centre (0,0,0) and

radius r [Wei12].

In the geometric model, the curve is represented with a zero level-set

ψ(x, y, t), shown in Figure 3.14. The geometric curve evolves in time t on an
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Figure 3.14: Geometric active contour model.

image with a speed function,

∂ψ

∂t
= c(k + V0)|Oψ|, (3.18)

where c is given by

c =
1

1 + |O(Gσ ∗ I)|
(3.19)

and is the potential energy derived from the input image, I. This parame-

ter serves as the stopping term for the curve at the object boundary. The

term O(Gσ ∗ I) is the gradient of the Gaussian blurred image with standard

deviation of the Gaussian distribution, σ. k is curvature of the curve, which

makes it smoother, V0 is a constant which has the effect of controlling the

shrinking or expansion of the curve and Oψ is a gradient of the level-set, ψ.

The term c(k+ V0) determines the speed with which the curve evolves along

its normal direction.

The geometric curve does not stop at weak or indistinct boundary points

due to its evolution speed but continues its movement with little or no energy

drawing it back [XYP00]. To overcome this problem, an extra term can be
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added to Equation 3.18 as follows

∂ψ

∂t
= c(k + V0)|Oψ|+ OcOψ. (3.20)

This additional stopping term OcOψ is used to pull back the curve in case it

overpasses a weak object boundary.

The advantage of using the geometric active contour model is its ability

to change a curve’s topology in accordance with the shape of the object dur-

ing the curve evolution process. This can be useful in object tracking and

motion detection applications. The geometric active contour model is gen-

erally not useful for noisy data where the evolved curve can be accompanied

by topological inconsistencies [SHB08]. The implementation of the geometric

active contour model is based on geometric computations which results in it

being a computationally expensive process [KEA10].

3.1.3.3 Applied Parametric Active Contour Models

In our road edge extraction algorithm, we use the parametric active contour

model as its implementation is less computationally expensive in comparison

with the geometric active contour model and it gives us structured control

on the snakes elasticity and stiffness. We make novel use of the balloon and

GVF parametric active contour models. We combine both the models in our

algorithm, such that the balloon energy pushes the snake curve and the GVF

energy attracts the snake curve towards the object boundaries, as shown in

Figure 3.15. The use of this combined approach in our algorithm allows

the snake curve to detect the road edges automatically and more efficiently,

as shown in Figure 3.16. The internal energy weight parameters used in

the parametric active contour models can control the shape of the desired
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Figure 3.15: Balloon energy pushes the snake curve and GVF energy attracts
the snake curve toward the object boundaries.

object. The topology of the left and right edges in the road sections do not

vary much, thus, we can use the same internal energy weight parameters

for each road section. We estimate the external energy weight parameters

empirically and then apply the same values for each road section. In this

manner, we have created a fully automated road edge extraction algorithm.

In the next section, we discuss the range dependent thresholding used for

developing the road marking extraction algorithm.

3.2 Road Marking Extraction

We developed a road marking extraction algorithm to extract the road mark-

ings from terrestrial mobile LiDAR data. To effectively do this we first need
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Figure 3.16: Final position of the snake curve.

to find the LiDAR points belonging to the road surface. We apply our road

edge extraction algorithm to estimate the road boundaries in the form of a

snake curve. This snake curve is then used to identify the LiDAR points

that belong to the road surface. We convert the LiDAR intensity and range

attributes from these road surface points into 2D raster surfaces and then

apply a range dependent thresholding to extract the road markings, as shown

in Figure 3.17.

Figure 3.17: Range dependent thresholding in the road marking extraction
algorithm.

In our algorithm, we have developed range dependent thresholding func-
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tion to deal with the factors which affect the intensity returns. These factors

are the illuminated surface characteristics, distance from the laser scanner

to the illuminated surface and the incidence angle of the laser pulse. The

use of a threshold itself clusters data based on the surface characteristics,

while the range dependent thresholding takes account of the two other fac-

tors. We apply multiple threshold values to the intensity raster surface as

a function of the range across the road surface. The intensity values larger

than the threshold limit are accepted as road markings, while the smaller

intensity values are rejected. We then use binary morphological operations

to complete the shapes of extracted road markings and to remove noise that

is introduced through the application of a thresholding function.

We estimate a single threshold value empirically and then create a for-

mula for applying the threshold values to the intensity raster surface as a

function of the range. Through the use of range dependent thresholding, we

have automated our road marking extraction algorithm. An example of the

road markings extracted from the intensity raster surface using the range

dependent thresholding is shown in Figure 3.18. We will present our road

Figure 3.18: Range dependent thresholding: (a) input 2D intensity raster
surface and (b) extracted road markings.
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marking algorithm in detail in Chapter 5. In the next section, we describe a

surface grid fitting approach used for developing the road roughness estima-

tion algorithm.

3.3 Road Roughness Estimation

Our road roughness estimation algorithm requires the 3D LiDAR values of

the road surface and a surface grid fitting approach. We identify the LiDAR

points that belong to the road surface using the output snake curve. We

use the RANSAC algorithm to fit a surface grid to the 3D LiDAR points

as shown in Figure 3.19. We will describe our road roughness estimation

Figure 3.19: RANSAC in the road roughness estimation algorithm.

algorithm in detail in Chapter 6. In the following section, we discuss the

RANSAC surface grid fitting, which is used to develop our algorithm.

3.3.1 RANSAC

The RANSAC algorithm was developed by Fischler et al. [FB81] and is used

to provide a more robust fitting of a model to input data in the presence

of data outliers. Its application can be found in computer vision, image

processing, stereo camera calibration, panoramic image stitching and surface
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plane extraction. The RANSAC algorithm has also been used to extract

building facades and roof planes from the LiDAR data [FNSZ03, BLGTK07,

EAH08].

Unlike conventional model fitting techniques that use as much data as

possible to obtain an initial solution, the RANSAC algorithm uses the small-

est set of initial data required to fit a model and enlarges this set with

compatible data [Der10]. If there are enough compatible data, RANSAC can

improve the estimation of the model, without having to deal with the data

outliers. We will now describe the RANSAC algorithm in detail.

Suppose there are n points in a dataset, X = x1, x2, ....xn. A minimum

required number of m points are randomly selected, such that m ≤ n, to

fit a least-square model M . The least-square model is fitted to the points

based on minimising the sum of square residuals which are the difference

between the actual points and the fitted points. The model M is used to

estimate data points in X which are within an error tolerance parameter, ε.

These estimated data points are called consensus points. If the number of

consensus points is equal to or larger than a threshold, t, then a new least-

square model M∗ is fitted to these points. Otherwise, the whole process is

repeated beginning with a random selection of m points. After some pre-set

number of iterations, K, if the number of consensus points equal to or larger

than t is not found, then either the model fitted with the largest number of

consensus points is accepted or the process is terminated unsuccessfully.

The RANSAC algorithm uses three specified parameters: ε, K and t. The

ε parameter specifies an error tolerance which is used to determine whether

a data point should be considered as a consensus point or not. Its value is

calculated experimentally by fitting a model to the randomly selected data

82



points and then measuring the errors between the fitted model and the data

points. The value of ε is then set as the sum of the mean and standard

deviation of the measured errors [FB81]. This allows us to set ε automatically.

The K parameter describes the number of iterations required to repeat the

process to find the best consensus points. p is the probability that any

selected data point is within the error tolerance value ε and q is the desired

probability for getting a good set of data points, then the value of K is

calculated as [FB81]

(1− pm)K = (1− q) (3.21)

K =
log(1− q)

log(1− pm)
. (3.22)

The t parameter represents the number of consensus points required for es-

timating a correct model. Its value is calculated as [Col07]

t = p.n. (3.23)

An example of a RANSAC surface grid fitted to LiDAR points using

ε = 0.065 m, t = 7860 and K = 35 is shown in Figure 3.20. We then find the

elevation residual values by calculating the difference between the elevation

of the LiDAR points and the surface grid points over a given area. We

determine the standard deviation of the elevation residuals in each cell along

the navigation track of the mobile van. These in turn provide an estimation

of the road roughness. In the next section, we conclude with a discussion on

the various approaches presented in this chapter.
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Figure 3.20: RANSAC surface grid fitted to the LiDAR points, with an inset
picture of a magnified portion.

3.4 Conclusion

In this chapter, we presented the approaches used to develop algorithms for

extracting road edges, road markings and road roughness from terrestrial

mobile LiDAR data. These approaches were chosen due to their usefulness

for automated and precise extraction of road features. We discussed the

theoretical background of these approaches and described how they are used

in our algorithms.

In our road edge extraction algorithm, we first convert the selected LiDAR

attributes into 2D raster surfaces and apply various segmentation approaches

to extract the road edges. We apply hierarchical thresholding to determine

suitable objects in the raster surfaces. It segments an input image by thresh-

olding a hierarchy of low to high resolution versions of the input image. An

advantage of using the hierarchical thresholding approach is its ability to deal

with noisy images. It minimises any background noise in the input image

and so, provides a better estimation of the objects. The threshold and mask
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size parameters are fixed which allows the hierarchical thresholding to be

applied automatically. We apply Canny edge detection to the hierarchical

thresholded objects to determine their boundaries. The binary nature of the

input enables the automated computation of two threshold values. Through

the use of both hierarchical thresholding and Canny edge detection, we have

made the parameter estimation process more robust, which in turn facilitates

integration with our automated road edge extraction algorithm. These object

boundaries are input into the next stage of our algorithm, the active contour

model. We use the parametric active contour which is represented implicitly

as a controlled spline and is implemented based on energy computations.

The parametric active contour model is less computationally expensive than

the geometric active contour model and allows for more explicit control over

the snake curve’s growth. We make novel use of the modified versions of the

parametric active contour models, the balloon and GVF models. We com-

bine both models such that the balloon energy pushes the snake curve, while

the GVF energy attracts the snake curve toward the object boundaries. We

estimate the internal and external energy weight parameters empirically and

then apply the same values for each road section. This enables the applica-

tion of the balloon and GVF models to be fully automated in our algorithm.

In our road marking extraction algorithm, we convert the LiDAR road

surface intensity and range attributes into 2D raster surfaces. We apply range

dependent thresholding to the intensity raster surface which takes account of

the factors that affect the intensity return values. We create a formula to au-

tomatically apply multiple threshold values as a function of the range across

the road surface. We use morphological operations to deal with the incom-

plete shapes of the extracted road markings and noise introduced through
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the use of a thresholding function.

In our road roughness estimation algorithm, we use the RANSAC algo-

rithm to fit a surface grid to the 3D LiDAR points. The RANSAC algorithm

is initiated by selecting a minimum number of points to fit a model. This

sample is enlarged using compatible points to provide an improved estima-

tion of the model. Data outliers are excluded using this bottom up surface

grid fitting approach. The parameters used for this algorithm are calculated

experimentally and modified using statistical computations. This has al-

lowed us to produce an automated road roughness algorithm. We calculate

the difference between the elevation of the LiDAR points and the surface

grid points in order to compute the elevation residuals. We calculate the

standard deviation of these elevation residuals in each cell, which provides

an estimation of the road roughness. In the next chapter, we present our

road edge extraction algorithm.
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Chapter 4

Road Edge Extraction

Terrestrial mobile laser scanning systems provide 3D point cloud data which

can be useful for extracting road features. Accurate knowledge of road edges

increases the reliability and precision of road features extraction. LiDAR

data provides elevation, intensity and pulse width information which can be

useful in distinguishing the road surface from grass-soil edges in rural road

sections and kerb edges in urban road sections.

In this chapter, we present an algorithm based on the combined use of

the GVF and balloon parametric active contour models, to extract the road

edges from terrestrial mobile LiDAR data. The algorithm outputs 3D left

and right road edges extracted from the LiDAR data. In Section 4.1, we

provide a stepwise description of the road edge extraction algorithm. This

description provides details of 2D raster surfaces generation from the LiDAR

attributes. We describe an estimation of the GVF and balloon external

energy terms. The internal energy terms provided to a snake curve are also

discussed. We present our approach to initialise the snake curve based on

the navigation track of the mobile van along the road section. We explain
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the use of batch processing to extract the left and right road edges from

final position of the snake curves. In Section 4.2, we detail our automated

approach for validating the extracted road edges. In Section 4.3, we analyse

the most applicable method and optimal input parameters, which allow for

the automation of our road edge extraction algorithm. In Section 4.4, we

test our road edge extraction algorithm on different types of road sections

in both manual and automated modes. We analyse the results of road edge

extraction using our validation approach. In Section 4.5, we conclude by

discussing merits and demerits of our road edge extraction algorithm.

4.1 Algorithm

A work flow of the road edge extraction algorithm is shown in Figure 4.1. In

the following sections, we describe the various processing steps involved in

our algorithm.

4.1.1 Terrain Pyramids Generation

We convert the LiDAR elevation, reflectance and pulse width attributes into

2D raster surfaces. This step ensures a more computationally efficient ap-

proach to road edge extraction. We use the reflectance attribute which at-

tempts to represent normalised intensity values with respect to standard

reflector targets [RSPU10]. LiDAR data can be affected by high frequency

noise due to a lower vertical accuracy of points relative to their horizontal

sampling distance [Cra09]. For example, if the vertical accuracy of the data

points varies from 10 cm to 15 cm, then it can lead to a height difference

of 20 cm to 30 cm in between two adjacent points. This height difference
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becomes unusual for the data points that are only 1 m or less apart hori-

zontally. Similarly, LiDAR data can suffer from unusual intensity and pulse

width values. This high frequency noise present in LiDAR data can lead to

the generation of noisy raster surfaces.

To generate smooth raster surfaces, we minimise the effect of this noise

with a point thinning process [Cra09]. Point thinning is used to generate

multi resolution terrain pyramids by reducing the number of data points re-

quired to represent a terrain model in each pyramid level [ESR10]. In Step

1 of our road edge extraction algorithm, we generate terrain pyramids from

the LiDAR attributes. The point thinning operation is applied based on

a window size filter method in which the data points are partitioned into

equally sized window areas. In the first level terrain pyramid, the window

size is twice the selected cell size of the raster surface, while the window size

in the subsequent levels is increased by a power of two. A detailed analysis

on the selection of an optimum cell size is provided in Section 4.3.2. In each

window of the pyramid level, a data point nearest to the mean value is se-

lected as representative of the terrain model in each pyramid level. Thus, the

full resolution terrain pyramid corresponds to the highest resolution terrain

model, the first level corresponds to the second-highest resolution terrain

model while the last level corresponds to the lowest resolution terrain model.

Examples of the elevation, reflectance and pulse width terrain pyramids gen-

erated from the LiDAR attributes are shown in Figure 4.2.

4.1.2 2D Raster Surfaces Generation

In Step 2 of our algorithm, we generate 2D raster surfaces from the first

level terrain pyramids using natural neighbourhood interpolation. The first
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Figure 4.2: Terrain pyramids generated from the LiDAR attributes: (a)
elevation, (b) reflectance and (c) pulse width.

level terrain pyramid is found to be useful for generating the smooth raster

surface, as it minimises the noise effect without affecting much of the object

details and accuracy [Cra09]. A detailed analysis on the use of the first level

terrain pyramid along with natural neighbourhood interpolation is provided

in Section 4.3.1. In the natural neighbourhood interpolation method, the

thinned LiDAR points are partitioned into Voronoi polygons which are cre-

ated with each polygon constituting a single point and every location within

the polygon is closer to its constituted single point than to any other point

[ESR11]. A raster surface with its selected cell size is laid over the Voronoi

polygons. The value of each raster cell is then interpolated based on the

proportion of overlapping areas between the raster cell and Voronoi poly-

gons. An example of a raster cell laid over the Voronoi polygons is shown in

Figure 4.3. Thus, the 2D elevation, reflectance and pulse width raster sur-

faces are generated from their respective terrain pyramids using this natural

neighbourhood interpolation.

We estimate the slope values from the elevation raster surface as the rate

of change in elevation of the raster cells to its neighbours [ESR10]. A plane
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Figure 4.3: Raster cell laid over the Voronoi polygons constituting the
thinned LiDAR points in the natural neighbourhood interpolation.

is fitted to the z elevation values of a 3x3 neighbourhood around each raster

cell and then its slope value is calculated as the rate of change of z-values in

the horizontal x and the vertical y direction, which can be described as

arctan(

√
(
dz

dx
)2 + (

dz

dy
)2). (4.1)

The slope, reflectance and pulse width raster surface values are normalised

with respect to their global minimum and maximum values, and converted

to an 8-bit data type. This allows for a two-way transformation between the

8-bit values and their original LiDAR values for all road sections. This in

turn will allow for the use of a single threshold value for all road sections.

Examples of slope, reflectance and pulse width raster surfaces generated from

their respective terrain pyramids are shown in Figure 4.4.

4.1.3 Snake Energy Estimation

A snake curve is defined within a 2D raster surface domain that moves un-

der the influence of internal and external energy. In Step 3 of our road edge

extraction algorithm, we estimate these energy terms. The GVF external en-

ergy term is estimated as a dense vector energy field from the raster surfaces
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Figure 4.4: 2D raster surfaces generated from their respective terrain pyra-
mids using natural neighbourhood interpolation: (a) slope, (b) reflectance
and (c) pulse width.

which attract the snake curve towards the object boundaries. To estimate the

GVF energy, the object boundaries are determined from the slope, reflectance

and pulse width raster surfaces through the consecutive use of hierarchical

thresholding and Canny edge detection, described in Chapter 3. The mask

size M and threshold Tslope, Tref and Tpw parameters applied to the slope,

reflectance and pulse width raster surfaces in the hierarchical thresholding

are found empirically. Their values are fixed for all the road sections, which

allows for the fully automatic application of hierarchical thresholding. The

upper threshold T1 and lower threshold T2, parameters used in the Canny

edge detection are selected based on the output binary cell values obtained

from the hierarchical thresholding. This ensures that the Canny edge detec-

tion is fully automated in our algorithm. The GVF external energy terms

are estimated by iteratively diffusing the gradient vector values of the object

boundaries determined from the slope, intensity and pulse width raster sur-

faces. This iterative process is used to estimate the appropriate GVF energy

terms required for attracting the snake curve towards the object boundaries.

Finally, the balloon energy is included in the external energy by providing
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a weight to the normal unit vector of the snake curve that helps push it

outwards.

Internal energy is provided to the snake curve by adjusting its elasticity

and stiffness properties. These properties are adjusted with the α and β

weight parameters, while the γ weight parameter is used to control the snake

curve step size in one iteration. The snake’s energy function Esnake can be

described as

Esnake = Eint+(κ1×Eslope)+(κ2×Ereflectance)+(κ3×Epulsewidth)+(κ4×Eballoon)

(4.2)

where Eint is the internal energy term. Eslope, Ereflectance and Epulsewidth

are the GVF external energy terms estimated from the slope, reflectance

and pulse width raster surfaces respectively, while κ1, κ2 and κ3 are their

respective weight parameters. Eballoon is the balloon external energy term and

κ4 is its weight parameter. These weight parameters are found empirically

after examining several combinations. All parameters with the exception of

κ4 are the same for all road sections. κ4 is modified in some cases due to

the inconsistent point density in our data which is uncommon in professional

surveyed terrestrial mobile LiDAR data.

4.1.4 Snake Curve Initialisation

In Step 4 of our algorithm, we initialise the snake curve over a 2D raster

surface based on the navigation track of the mobile van along the road section.

We choose a parametric ellipse for initialising the snake curve due to the

dimensions of the LiDAR data, shown in Figure 4.5.
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Figure 4.5: Snake curve initialisation in (a) parametric ellipse form and (b)
centre of the road estimation.

The snake points are expressed in the form of parametric ellipse as

X(t) = XC + a cos(δt) cos(φ)− b sin(δt) sin(φ) (4.3)

Y (t) = YC + a cos(δt) sin(φ) + b sin(δt) cos(φ) (4.4)

where δt is the parametric angle interval which is used to provide the number

of points in the snake curve from 0 to 2π radian, φ is the angle between

the X-axis and major axis of the ellipse and (XC , YC) is the centre point

of the ellipse. The semi-major axis of the snake ellipse, a, is computed as

the difference between the middle and the first or last navigation points,

described in Figure 4.5(a). The centre of the road is estimated based on the

ω angle in between the major axis and slant height from the first or last

navigation point, shown in Figure 4.5(b). This angle is found empirically

and fixed for the road sections with similar width. The semi-minor axis of

the snake ellipse, b, is computed as a tanω.
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The φ angle is calculated from the θ, average heading angle of the mobile

van under investigation, described in Figure 4.6. The average heading angle

Figure 4.6: φ angle is calculated from θ, which is an average heading angle
of the mobile van along the road section under investigation that can lie in
between (a) 0◦ and 90◦, (b) 90◦ and 180◦, (c) 180◦ and 270◦ and (d) 270◦ and
360◦.

is estimated as a mean of the mobile van’s heading angle along the road

section under investigation. If the value of θ angle lies in between 0◦ and 90◦

angles, then the φ angle is estimated as 90◦-θ, shown in Figure 4.6(a). If the

θ angle lies in between 90◦ and 180◦ angles, then the φ angle is estimated as

90◦-θ, shown in Figure 4.6(b). Similarly, the φ angle can be estimated for

other possible values of the θ angle, shown in Figure 4.6(c) and (d). Thus,

the estimation of φ angle is completely automated in our algorithm.
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4.1.5 Final Snake Curve

In Step 5 of our road edge extraction algorithm, the snake curve moves under

the influence of the internal and external energy terms. During an iterative

process it approaches the minimum energy state and converges to the road

edges. Examples of the initial, iterative and final positions of the snake curve

are shown in Figure 4.7.

Figure 4.7: Snake curve positions: (a) initial, (b) iterative and (c) final.

4.1.6 Batch Processing

In Step 6 of our algorithm, we extract the left and right road edges using

batch processing. We obtain overlapping snake curves by batch processing

consecutive individual road sections, where there are small common areas

between the adjacent sections. We then find the intersection points between

the overlapping snake curves.

To estimate the intersection points, we use the following process. Let

us consider that two overlapped snake curves, S1 and S2, intersect at point

P (x, y), shown in Figure 4.8. Points P1(x1, y1) and P2(x2, y2) belong to the

S1 snake curve while points P3(x3, y3) and P4(x4, y4) belong to the S2 snake
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Figure 4.8: Intersection point in between two overlapped snake curves.

curve. The intersecting lines P1P2 and P3P4 can be described in the para-

metric form as

P = P1 +m(P2 − P1) (4.5)

P = P3 + n(P4 − P3) (4.6)

where m and n are unknown parameters. The above equations can be rewrit-

ten as

x1 +m(x2 − x1) = x3 + n(x4 − x3) (4.7)

y1 +m(y2 − y1) = y3 + n(y4 − y3). (4.8)

Solving the equations 4.7 and 4.8, for the m and n parameters provide

m =
(x4 − x3)(y1 − y3)− (y4 − y3)(x1 − x3)
(y4 − y3)(x2 − x1)− (x4 − x3)(y2 − y1)

(4.9)

n =
(x2 − x1)(y1 − y3)− (y2 − y1)(x1 − x3)
(y4 − y3)(x2 − x1)− (x4 − x3)(y2 − y1)

. (4.10)

Substituting the values of m and n in their corresponding line equations
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provide the intersection point P (x, y) as

x = x1 +m(x2 − x1) (4.11)

y = y1 + n(y2 − y1). (4.12)

After estimating the intersection points in between the overlapping snake

curves, the non road edge points in between them are removed and only the

left and right road edge points remain.

An example of the overlapping snake curves is shown in Figure 4.9, where

the 30 m long road section has been processed with 2 m overlap in between

the consecutive individual sections. The intersection points in between the

overlapping snake curves are estimated and then intersection points with the

highest and lowest Northing are selected, as circled in blue in Figure 4.9(a)

and (b). In Figure 4.9(a) and (b), the non road edge points in between

the circled intersection points are removed clockwise in the first snake curve

and anti-clockwise in the next snake curve to provide the left and right road

edge points, as shown in Figure 4.9(c). The selection of intersection points

with the highest and lowest Northing is arbitrary. However, we will need to

investigate the selection of those intersection points which will remove the

points in the most irregular snake curve.

4.1.7 3D Road Edges

In Step 7 of our road edge extraction algorithm, we provide the third dimen-

sion to the extracted left and right road edge points. We provide the elevation

value from the nearest LiDAR point to the road edge point. An example of

the 3D left and right road edges is shown in Figure 4.10. In the next section,
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Figure 4.10: 3D left and right road edges.

we present our automated algorithm for validating the extracted road edges.

4.2 Validation Algorithm

We present an automated algorithm for validating the road edges extracted

from terrestrial mobile LiDAR data. The developed algorithm is based on

their comparison with manually digitised road edges. This comparison is

carried out using navigation points that are considered as reference points.

A stepwise description of our validation algorithm is provided in Figure 4.11

in which the navigation points are represented with yellow, the extracted

road edge points are represented with red, while the digitised road edge

points are represented with blue. In Step 1 of our validation algorithm, we

select the 2D navigation points, at a 0.5 m interval. The selected navigation

reference points are represented with green in Figure 4.11. In Step 2, the

heading angle of each navigation point is used to rotate the points towards

the Easting direction. The process of calculating the rotation angle from the

heading angle is similar to that described in Figure 4.6. Smoothing splines
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are fitted to both the extracted and digitised road edge points after each

rotation in Step 3. The smoothing spline is fitted to the points using a

minimised function that can be described as

p
∑
i

(yi − s(xi))2 + (1− p)
∫

(
d2s

dx2
)2dx (4.13)

where i is the number of points, s is the smoothing spline through the (x, y)

points and p is the user specified smoothing parameter in between 0 and 1.

A 0 value of p produces a straight line fitting to the points, while a 1 value

produces a cubic spline interpolation in which the interpolation is based on

a third degree polynomial function. The value of p can be specified based on

the noise present in the data. We select orthogonal points in each spline with

respect to the Easting value of the navigation point. In Step 4, we reassign

the elevation value to the selected road edge points. This is achieved by

providing the elevation value from the nearest LiDAR point to the road edge

point. In Step 5, the points are inversely rotated to their original positions.

We then calculate the euclidean distance between the extracted and digitised

road edge points. The positive or negative sign is assigned to the calculated

distance based on their Northing values of their rotated positions in Step 3.

This process is iterated for all the navigation reference points to calculate

the error in our road edge extraction process. In the next section, we present

an analysis of our road edge extraction algorithm.

4.3 Automation Analysis

The automation of our road edge extraction algorithm required a detailed

analysis of all the input parameters and their relative impacts. In the follow-
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ing sections, we present these analyses.

4.3.1 2D Raster Surfaces Generation

This analysis involved the generation of 2D raster surfaces from the full reso-

lution and the first level terrain pyramid using linear and natural neighbour-

hood interpolation. This comparative analysis was undertaken to investigate

which pyramid level and interpolation method generated the most applicable

raster surface.

In linear interpolation, the value of a raster cell is directly interpolated

from the triangulated planes of the LiDAR points in which it falls. We

applied linear interpolation to the full resolution and the first level terrain

pyramids, resulting in a generation of elevation raster surfaces from which

slope surfaces were estimated as shown in Figure 4.12(a) and (b) respectively.

In both the cases, the estimated slope surfaces contained noisy cells due to

the high frequency noise present in the LiDAR data.

In natural neighbourhood interpolation, the raster cell value is interpo-

lated based on the proportion of its overlapped areas with Voronoi polygons,

as described in Section 4.1.2. We applied natural neighbourhood interpola-

tion to the full resolution and the first level terrain pyramids, resulting in

the generation of elevation raster surfaces from which slope surfaces were

estimated as shown in Figure 4.12(c) and (d). The natural neighbourhood

interpolation along with the first level terrain pyramid, were found to be use-

ful for estimating a smooth slope surface without loosing much of the object

details and accuracy.

Similarly, noisy reflectance and pulse width raster surfaces were generated

using linear interpolation applied to the full resolution and the first level ter-
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Figure 4.12: Slope surface estimated from the elevation raster surface gen-
erated using linear interpolation applied to (a) full resolution, (b) first level
terrain pyramid and using natural neighbourhood interpolation applied to
(a) full resolution, (b) first level terrain pyramid.

rain pyramids and using natural neighbourhood applied to the full resolution

terrain pyramid. This was due to noise in the reflectance and pulse width

LiDAR data. The use of natural neighbourhood interpolation along with the

first level terrain pyramid was also found to be useful for generating smooth

reflectance and pulse width raster surfaces. To give an example, the re-

flectance and pulse width raster surfaces generated using linear interpolation

applied to the full resolution terrain pyramid and using natural neighbour-

hood interpolation applied to the first level terrain pyramid are shown in

Figure 4.13.
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Figure 4.13: Reflectance raster surface generated from (a) full resolution ter-
rain pyramid using linear interpolation and (b) first level terrain pyramid
using natural neighbourhood interpolation. Pulse width raster surface gen-
erated from (c) full resolution terrain pyramid using linear interpolation and
(b) first level terrain pyramid using natural neighbourhood interpolation.

4.3.2 Optimal Cell Size

A suitable cell size is required in order to calculate a 2D raster surface. The

selection of the optimal cell size is essential as it may effect the accuracy and

computational cost of our road edge extraction algorithm. To find its optimal

value, we analysed the performance of our road edge extraction algorithm in

raster surfaces generated with different cell sizes. We selected one 10 m

section of rural road consisting of grass-soil edges. To process this road

section, we used one 30 m ×10 m ×5 m section of LiDAR data and one 10

m section of navigation data which was collected with the XP-1 system.
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We considered six test cases in which raster surfaces were generated with

cell sizes 0.02 m2, 0.04 m2, 0.06 m2, 0.08 m2, 0.1 m2 and 0.2 m2 from the

LiDAR elevation, reflectance and pulse width attributes. These cell sizes

were selected with decreasing and increasing values based on an average

point spacing of 0.08 m in the LiDAR points. We normalised the slope,

reflectance and pulse width values with respect to their global minimum and

maximum, shown in Table 4.1 and converted to 8-bit data type prior to

processing them in our algorithm. These minimum and maximum values

LiDAR attribute Global minimum Global maximum

Slope 0 90

Reflectance -2365.86 159.66

Pulse width 0 486.58

Table 4.1: Global minimum and maximum values of the LiDAR attributes.

were selected globally from all the data sections processed in the road edge

extraction experiments.

In each test case, we applied our road edge extraction algorithm to the

road section with the following parameters: Mslope = 25,Mref = 25,Mpw =

25, T1 = 250, T2 = 5, α = 9, β = 0.001, κ1 = 4, κ2 = 2, κ3 = 2, κ4 = 1,

ω = 20◦ and φ = 21.49◦. These parameters were found empirically after

examining several values in the algorithm. The φ value was calculated from

the θ = 68.51◦ which is an average heading angle of the mobile van along

the selected road section. The number of iterations required to converge

the snake curve to the road edges was 40. Optimal parameters used in the

algorithm were different in each case to correctly test the cell size effect, as

shown in Table 4.2.

We used different sets of T, the hierarchical threshold, parameter in each

case. The value of γ was increased to decrease the snake curve step size
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Cell Size
(m2)

Tslope Tref Tpw γ δt
(radian)

GVF it-
eration

0.02 75 100 85 1 0.01 1800

0.04 60 100 70 2 0.02 900

0.06 55 100 65 3 0.03 600

0.08 50 100 65 4 0.04 450

0.1 40 100 65 5 0.05 360

0.2 30 100 65 10 0.1 180

Table 4.2: Different parameters used in the six test cases of an optimal cell
size estimation analysis.

during one iteration, δt was increased to decrease the number of points in

the snake curve, while the number of GVF iterations were decreased. These

parameters were changed to account for the effect of the change the raster

surfaces resolution would have on the algorithm. The γ, δt and GVF iteration

parameters were changed proportionally to the change in the cell size of the

raster surfaces. The final positions of the snake curve in the six test cases

are shown in Figure 4.14.

In order to complete our comparative analysis, we estimated the length

of both the left and right road edges as extracted in each test case. In each

case, a plot of completeness was obtained from the snake curve as determined

from the left and right edges, as shown in Figure 4.15. For cell sizes 0.02

m2, 0.04 m2, 0.06 m2 and 0.08 m2, the snake curve converged to more than

79% of the left and right road edges. In the 0.1 m2 cell size case, the snake

curve converged to around 75% of the left road edge and 71.3% of the right

road edge while in the large cell size of 0.2 m2, the snake curve converged to

around 55% of the left road edge and 46.7% of right edge. In our road edge

extraction algorithm, the road edges are extracted using iterative partially

overlapping road sections. The 0.1 m2 and 0.2 m2 cell cases produced snake

curves which were not able to converge to the road edges to the extent with
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Figure 4.14: Final position of the snake curve over the slope raster surface
with (a) 0.02 m2, (b) 0.04 m2, (c) 0.06 m2, (d) 0.08 m2, (e) 0.1 m2 and (f)
0.2 m2 cell size.

which the overlapping snake curves can be obtained.

For each test case, we also estimated the time taken by the snake curve to

move from its initial position to the final position. A plot of these estimates

is shown in Figure 4.16. For cell sizes 0.02 m2 and 0.04 m2, the snake curve

required more time, with 5280 and 1327 seconds respectively, to converge

to the road edges. The increased time taken was due to the use of higher

resolution raster surfaces. With cell sizes of 0.06 m2 and 0.08 m2, the snake

curve required 384 and 178 seconds respectively, to move to the final position.

In the final two cases, the snake curve required less time with 78 and 9 seconds

respectively. This reduced time was due to the use of lower resolution raster

surfaces.
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Figure 4.15: Plot of completeness obtained from the snake curve in the six
test cases of an optimal cell size estimation analysis.

The road edges extracted in the six test cases were validated using our

road edge validation algorithm. We manually digitised the left and right

road edges in the road section from the 3D LiDAR data. Our validation

algorithm is designed to measure the error between the extracted road edges

and the manually digitised road edges. In the digitisation process, a user

clicks the LiDAR point in a 3D environment where they perceive the road

edge to be located. This can introduce an error source in the manual process

of selecting this LiDAR road edge point. The error can arise primarily due to

the trade off between selecting the road edge at lower zoom levels or higher

zoom levels. At a lower zoom level, the road edge is much more identifiable

because of the additional information of the road and its structure as shown

in Figure 4.17(a). However, clicking on the road edge leads to uncertainty as
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Figure 4.16: Plot of the time taken by the snake curve to move from its
initial position to the final position in the six test cases of an optimal cell
size estimation analysis.

to which LiDAR point was actually clicked. The converse is true at higher

zoom levels where there is absolute certainty as to which LiDAR point was

clicked but whether or not the point is actually a road edge candidate. This

can be ambiguous without the wider perspective view showing the road, as

seen in Figures 4.17(b) and (c). This is demonstrated for both the left and

right road edges as shown in Figure 4.18. The left road edge has a much

higher LiDAR point density relative to the right edge as the XP-1 system

employed a single laser scanner during data acquisition process. A section of

the road edge digitised from the LiDAR data in a 3D environment is shown

in Figure 4.19. Our road edge extraction accuracy may be affected with the

errors inherited through the digitisation process.

We applied our validation algorithm to estimate both the 2D and 3D
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Figure 4.17: 3D LiDAR data: (a) 6 m ×10 m, (b) 4.5 m ×5 m and (c) 3 m
×4 m.

accuracy of our extracted left and right road edges. In the 2D accuracy

estimation, we calculated the euclidean distances between the 2D positions

of the extracted and digitised road edge points, while in the 3D accuracy

estimation, we considered their 3D positions.

Box plots for the 2D and 3D accuracy of the extracted left edges are shown

in Figure 4.20. In each box, the central line mark in the red represents the

median value while its lower and upper edges represent the 25th and 75th

percentiles. Its lower and upper adjacent values represent the minimum and

maximum values without outliers. Outlier points are drawn if their value is

smaller than p1 − w(p3 − p1) or larger than p3 + w(p3 − p1), where p1 and

p3 are the 25th and 75th percentiles, while w is the user specified whisker

length. We provided the standard value of 1.5 to w after examining its other

values in the box plot. In Figure 4.21, box plots for the 2D and 3D accuracy

of the extracted right edges are shown.
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Figure 4.18: LiDAR point data along the (a) left and (b) right side of the
road section.

Figure 4.19: Road edge digitised from the LiDAR data: (a) 3.2 m ×3.3 m
and (b) 1.8 m ×2 m.

We also carried out statistical analysis of the 2D and 3D accuracy of

the extracted left edges, shown in Tables 4.3 and 4.4 respectively. Similarly,

statistical analysis of the 2D and 3D accuracy of the extracted right edges are

shown in Tables 4.5 and 4.6 respectively. In these tables, the completeness

and time taken by the snake curve for the six test cases are also included to

make a comparative analysis.

The negative and positive accuracy values of the extracted left and right

edge points respectively indicate that they were outside the digitised edges of
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Figure 4.20: Box plots for the (a) 2D and (b) 3D accuracy of the extracted
left edges in the six test cases of an optimal cell size estimation analysis.

114



Figure 4.21: Box plot for the (a) 2D and (b) 3D accuracy of the extracted
right edges in the six test cases of an optimal cell size estimation analysis.
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0.02 0.04 0.06 0.08 0.1 0.2

minimum (m) -0.055 -0.063 -0.092 -0.131 -0.039 -0.099

maximum (m) 0.104 0.094 0.075 0.056 0.044 0.137

lower adjacent (m) -0.055 -0.063 -0.092 -0.131 -0.039 -0.099

upper adjacent (m) 0.104 0.094 0.075 0.056 0.044 0.137

25th percentile (m) -0.015 -0.035 -0.045 -0.051 -0.021 -0.070

75th percentile (m) 0.052 0.055 0.029 0.020 0.028 0.083

mean (m) 0.014 0.014 -0.007 -0.016 0.005 0.018

median (m) 0.005 0.026 0.009 -0.014 0.01 0.021

outliers (%) 0 0 0 0 0 0

inside ±0.01 (%) 40 5.88 6.25 5.88 21.43 0

inside ±0.025 (%) 53.33 17.65 25 41.18 50 22.23

inside ±0.05 (%) 66.67 58.82 68.75 70.59 100 22.23

outside ±0.2 (%) 0 0 0 0 0 0

completeness (%) 90 92 85.1 94.2 75 55

time (sec) 5280 1327 384 178 78 9

Table 4.3: Statistical analysis of the 2D accuracy of the left edges along with
completeness and time in the six test cases.

0.02 0.04 0.06 0.08 0.1 0.2

minimum (m) -0.087 -0.071 -0.106 -0.134 -0.073 -0.121

maximum (m) 0.108 0.097 0.078 0.056 0.044 0.175

lower adjacent (m) -0.087 -0.071 -0.106 -0.134 -0.073 -0.121

upper adjacent (m) 0.108 0.097 0.078 0.056 0.044 0.175

25th percentile (m) -0.017 -0.054 -0.049 -0.054 -0.021 -0.071

75th percentile (m) 0.053 0.063 0.029 0.020 0.028 0.092

mean (m) 0.008 0.011 -0.011 -0.019 0.001 0.024

median (m) 0.005 0.026 0.011 -0.014 0.01 0.021

outliers (%) 0 0 0 0 0 0

inside ±0.01 (%) 40 5.88 6.25 5.88 21.43 0

inside ±0.025 (%) 46.67 11.76 25 41.18 50 22.23

inside ±0.05 (%) 60 41.18 68.75 70.59 92.86 22.23

outside ±0.2 (%) 0 0 0 0 0 0

completeness (%) 90 92 85.1 94.2 75 55

time (sec) 5280 1327 384 178 78 9

Table 4.4: Statistical analysis of the 3D accuracy of the left edges along with
completeness and time in the six test cases.
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0.02 0.04 0.06 0.08 0.1 0.2

minimum (m) 0.071 0.0007 -0.049 -0.036 -0.116 -0.794

maximum (m) 0.176 0.215 0.171 0.191 0.089 -0.065

lower adjacent (m) 0.071 0.0007 -0.049 -0.036 -0.116 -0.794

upper adjacent (m) 0.176 0.215 0.171 0.191 0.027 -0.065

25th percentile (m) 0.097 0.073 0.012 -0.003 -0.065 -0.443

75th percentile (m) 0.145 0.152 0.077 0.079 -0.007 -0.183

mean (m) 0.120 0.107 0.043 0.046 -0.036 -0.322

median (m) 0.122 0.090 0.032 0.031 -0.044 -0.238

outliers (%) 0 0 0 0 7.14 0

inside ±0.01 (%) 0 5.88 0 11.76 14.29 0

inside ±0.025 (%) 0 5.88 25 41.18 21.43 0

inside ±0.05 (%) 0 11.76 62.5 58.82 57.14 0

outside ±0.2 (%) 0 5.88 0 0 0 66.67

completeness (%) 79.4 92.2 85 88.4 71.3 46.7

time (sec) 5280 1327 384 178 78 9

Table 4.5: Statistical analysis of the 2D accuracy of the right edges along
with completeness and time in the six test cases.

0.02 0.04 0.06 0.08 0.1 0.2

minimum (m) 0.072 0.0007 -0.049 -0.036 -0.117 -0.799

maximum (m) 0.184 0.216 0.171 0.191 0.089 -0.065

lower adjacent (m) 0.072 0.0007 -0.049 -0.036 -0.117 -0.799

upper adjacent (m) 0.184 0.216 0.171 0.191 0.030 -0.065

25th percentile (m) 0.099 0.073 0.012 -0.003 -0.065 -0.447

75th percentile (m) 0.152 0.158 0.077 0.080 -0.007 -0.183

mean (m) 0.124 0.108 0.045 0.048 -0.036 -0.324

median (m) 0.124 0.091 0.034 0.031 -0.045 -0.238

outliers (%) 0 0 0 0 7.14 0

inside ±0.01 (%) 0 5.88 0 11.76 14.29 0

inside ±0.025 (%) 0 5.88 25 35.29 21.43 0

inside ±0.05 (%) 0 11.76 62.5 52.94 57.14 0

outside ±0.2 (%) 0 5.88 0 0 0 66.67

completeness (%) 79.4 92.2 85 88.4 71.3 46.7

time (sec) 5280 1327 384 178 78 9

Table 4.6: Statistical analysis of the 3D accuracy of the right edges along
with completeness and time in the six test cases.
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the road surface. Similarly, the positive and negative accuracy values indicate

that they were inside. The 2D accuracy values were some what better than

their respective 3D values and this was due to the inclusion of elevation points

in the estimation of 3D accuracy values. The left edge displayed higher 2D

and 3D accuracy than the right edge. This was due to the lower LiDAR

point density along the right side of the road section when compared to the

left side. Using just the minimum and maximum values as a metric, the

highest accuracy for the left edge was obtained by applying the 0.1 m2 cell

size and for the right edge using the 0.02 m2 cell size. However, this is not

the best suited method to determine which cell size to apply. For the 2D and

3D left edge, the cell sizes whose mean and median values were closest to 0

were 0.1 m2 and 0.02 m2 cell size respectively. A mean and median value

close to 0 indicates high accuracy. For the right edge, cell sizes of 0.1 m2 and

0.08 m2 produced mean and median values closest to 0. When examining

the accuracy, we considered four cases for values inside ±0.01 m, ±0.025

m, ±0.05 m and outside ±0.2 m. These would demonstrate which cell sizes

produced the highest accuracy edges for various acceptable distances. For

the left edge, the highest accuracy values inside ±0.01 m, ±0.025 m and

±0.05 m were in the 0.02 m2, 0.02 m2 and 0.1 m2 cell size respectively, while

for the right edge, they were in the 0.1 m2, 0.08 m2 and 0.06 m2 cell size

respectively.

We examined the results obtained in the six test cases. For the 0.02 m2

and 0.04 m2 cell sizes, the snake curves were computationally expensive with-

out providing any considerable improvement in the accuracy of the extracted

road edges. In the 0.1 m2 and 0.2 m2 cell size cases, the snake curves did not

converge to the road edges to the extent that will allow for overlapping snake
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curves to be obtained. Overlapping snake curves are required to process

multiple road sections and to facilitate general application of the algorithm.

For the 0.06 m2 cell size, the minimum-maximum range, mean and median

accuracy values were better than in the 0.08 m2 cell size. The snake curve

in the 0.06 m2 case required a reasonable amount of time to move from its

initial position to the final position and was able to converge to the road

edges to the extent with which the overlapped snake curves can be obtained.

Thus, we chose an optimal cell size value of 0.06 m2 to generate the raster

surfaces from the LiDAR attributes.

4.3.3 Optimal Road Length

We performed this analysis to find the optimal length of the road section to

which our road edge extraction algorithm can be applied. To find the optimal

length with respect to computational efficiency, we considered three test cases

in which a temporal performance of our road edge extraction algorithm was

analysed in a road section with 10 m, 20 m and 30 m length. We selected one

national primary road section consisting of grass-soil edges with shoulders.

To process this road section, we used three 30 m ×10 m ×5 m, 30 m ×20 m

×5 m, 30 m ×30 m ×5 m sections of LiDAR data and three 10 m, 20 m, 30

m section of navigation data which was collected with the XP-1 system.

In each test case, we applied our road edge extraction algorithm to the

road section using a cell size c=0.06 m2, Mslope = 185,Mref = 25,Mpw =

25, Tslope = 45, Tref = 132, Tpw = 55, T1 = 250, T2 = 5, α = 9, β = 0.001, γ =

3, κ1 = 4, κ2 = 2, κ3 = 2, κ4 = 1 and φ = −37.27◦. The value of φ was

calculated from the average heading, θ = 127.27◦. The number of GVF

iterations used were 600 while the number of iterations required to move the
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snake curve were 40. The variation in road length required slight modification

of two parameters in the algorithm, as shown in Table 4.7.

Road Length
(m)

ω
(degree)

δt
(radian)

10 34◦ 0.03

20 17◦ 0.015

30 11◦ 0.01

Table 4.7: Different parameters used in the three test cases of an optimal
road length estimation analysis.

We applied the higher Mslope parameter to the slope raster surface due to

inherent noise. This noise was due to missing points in the section of LiDAR

data, shown in Figure 4.22, which are due to the mobile van overtaking a

stationary vehicle during the data acquisition process along the road section.

In the reflectance and pulse width raster surfaces, the use of a lower, Mref

Figure 4.22: Missed points as circled in blue in the section of LiDAR data.

and Mpw, parameters respectively was sufficient to remove the inherent noise.

The values of ω and δt were decreased proportionally to reflect the change in

the length of the road section. The final positions of the snake curve in the

three test cases are shown in Figure 4.23.
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Figure 4.23: Final position of the snake curve over the slope raster surface
with (a) 10 m, (b) 20 m and (c) 30 m road length.

We examined the results obtained in the three test cases of this analysis.

In all cases, the snake curve was able to converge to the road edges. In

the first case, the snake curve required around 623 seconds to move from its

initial position to the final position. In the second and third case, the snake

curve was computationally expensive as it required 1570 and 3191 seconds

respectively to converge to the road edges. This analysis was performed on a

computer with 2 Intel Xeon E5607 processors @2.27 GHz, 12 GB RAM and a

64-bit operating system. For example, to process a 60 m section of road with

30 m ×10 m ×5 m would require approximately 3738 seconds, with 30 m

×20 m ×5 m would require 4710 seconds and with 30 m ×30 m ×5 m would

require 6382 seconds, without overlap. Thus, on the basis of computational

cost, we chose the 10 m length of the road section to which our road edge

extraction algorithm can be applied.
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4.3.4 Optimal Internal Energy Parameters

This analysis was performed to demonstrate the importance of the internal

energy weight parameters in our road edge extraction algorithm. We consid-

ered five test cases in which the performance of our algorithm was analysed

with the use of optimally higher and lower values of the internal energy

weight parameters. We selected one 10 m section of national primary road

consisting of grass-soil edges with shoulders. To process this road section, we

used one 30 m ×10 m ×5 m section of LiDAR data and one 10 m section of

navigation data which was collected with the XP-1 system.

In each test case, we applied our road edge extraction algorithm to the

road section with the following parameters: c=0.06 m2, Mslope = 25,Mref =

25,Mpw = 25, Tslope = 45, Tref = 132, Tpw = 55, T1 = 250, T2 = 5, γ = 3, κ1 =

4, κ2 = 2, κ3 = 2, κ4 = 1, φ = −37.27◦, ω = 34◦ and δt = 0.03. The value

of φ was calculated from the average heading, θ = 127.27◦. The number of

GVF iterations were 600, while the number of iterations required to move the

snake curve were 40. The internal energy parameters used in the algorithm

in each case are shown in Table 4.8. The final positions of the snake curve

Test Case α β

1 9 0.001

2 40 0.001

3 0 0.001

4 9 40

5 9 0

Table 4.8: Internal energy weight parameters used in the five test cases.

in the five test cases are shown in Figure 4.24.

We examined the results obtained in the five test cases of this analysis.

In the first case, we provided the optimal values of α and β parameters in
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Figure 4.24: Final position of the snake curve over the slope raster surface in
the (a) first, (b) second, (c) third, (d) fourth and (e) fifth case of the internal
energy parameter analysis.

the algorithm that enabled the snake curve to converge to the road edges.

Their respective optimal values were found empirically after examining sev-

eral combinations in the algorithm. In the second case, with a higher value

of α parameter, the snake curve was unable to fully converge to the road

edges, while in the third case, with the lower value of α parameter, the snake

curve was found to be jagged at some of the points. The α parameter is

used to hold the snake curve together and controls its elasticity. Its higher

value increased the binding energy in the snake curve while its lower value

caused the snake curve to move without any binding energy. The optimal

value of the α parameter is essential to obtain better results in the road edge
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extraction process.

In the fourth case, with a higher value of β parameter, the snake curve was

affected with extreme bending at some of its points, while in the fifth case,

with the lower value of β parameter, there was no change in the final position

of the snake curve from its position in the first case. The β parameter is used

to keep the snake curve from bending and controls its stiffness. The lower

value allowed the snake curve to move without any bending but its higher

value caused extreme bending in the snake curve. The extraction of the road

edges does not require much bending in the snake curve so a lower value of

the β parameter was found to be optimal.

4.3.5 Optimal External Energy Parameters

We performed this analysis to demonstrate the importance of the external

energy weight parameters in our road edge extraction algorithm. We consid-

ered nine test cases in which the performance of our algorithm was analysed

with the use of various combinations of GVF and balloon energy weight pa-

rameters. We selected one 10 m section of national primary road consisting

of grass-soil edges with shoulders. To process this road section, we used one

30 m ×10 m ×5 m section of LiDAR data and one 10 m section of navigation

data which was collected with the XP-1 system.

In each test case, we applied our road edge extraction algorithm to the

road section with the following parameters: c=0.06 m2, Mslope = 25,Mref =

25,Mpw = 25, Tslope = 45, Tref = 132, Tpw = 55, T1 = 250, T2 = 5, α = 9, β =

0.001, γ = 3, φ = −37.27◦, ω = 34◦ and δt = 0.03. The external energy

parameters used in the algorithm in each case are shown in Table 4.9. The

value of φ was calculated from the average heading, θ = 127.27◦. The number
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Test Case κ1 κ2 κ3 κ4

1 4 2 2 1

2 2 4 2 1

3 2 2 4 1

4 4 0 0 0

5 4 2 0 0

6 0 2 2 0

7 4 2 2 0

8 4 2 2 3

9 4 2 2 5

Table 4.9: External energy weight parameters used in the nine test cases.

of GVF iterations were 600, while the number of iterations required to move

the snake curve were 40. The final positions of the snake curve in the nine

test cases are shown in Figure 4.25.

We examined the results obtained in the nine test cases of this analysis.

In the first case, we set our optimal weights with the highest weight to the

slope GVF energy. Their respective optimal values were found empirically

after examining several combinations. In the second and the third case, we

set the highest weights to the reflectance GVF energy and the pulse width

GVF energy respectively. In all three cases, the snake curve converged to the

road edges in a similar way. The difference in the slope values over the road

surface and its nearby grass-soil surface was found to be useful in providing

the required external energy to the snake curve to converge to the road edges.

The reflectance values provided by the Riegl VQ-250 laser scanner are not

accurately normalised, which leads to different values over the road surface.

In most cases, the hierarchical thresholding applied to the reflectance raster

surface failed to remove the road marking cells near the road edge points,

as shown in Figure 4.26. These road marking cells create an obstruction

for the snake curve to move towards the road edges. The orientation of
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Figure 4.25: Final position of the snake curve over the slope raster surface in
the (a) first, (b) second, (c) third, (d) fourth, (e) fifth, (f) sixth, (g) seventh,
(h) eighth and (i) ninth case of the external energy parameter analysis.
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Figure 4.26: Hierarchical thresholding applied to the reflectance raster sur-
face provided the objects with road marking cells near the road edge points
as circled in blue.

top of the kerb edges relative to the vehicle is very similar to that of the

road surface. This together with their similar surface composition results

in the pulse width having similar values in these cases. This leads to pulse

width being less important in urban regions. Thus, we did not choose to set

the highest weight to the reflectance GVF energy and the pulse width GVF

energy in our selected optimal values.

In the next four cases, fourth to seventh, we tested the following permu-

tations without the balloon energy in our algorithm: the slope GVF energy,

the slope and reflectance GVF energy, the reflectance and pulse width GVF

energy and the slope, reflectance and pulse width GVF energy respectively.

In all these cases, the snake curve was not able to fully converge to the road

edges. This demonstrates the importance of using all the external energy

weight parameters including the balloon energy in our algorithm.

In the eighth case, we increased the weight of the balloon energy when

used with the optimal weights of the other GVF energy terms. The snake

curve fully converged to the road edges but also expanded along the non

road edge sides. This increased weight to the balloon energy can be useful
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in cases of noisy data as it can provide an additional inflation energy to

the snake curve to overcome the noise. In the final case, we increased the

balloon energy weight parameter from its value in the eighth case. However,

the snake curve grew beyond the road edges.

The XP-1 system employed a single laser scanner during the data acqui-

sition process, which leads to the acquisition of LiDAR data with a lower

point density along the right side of the road section than along its left side,

as shown for different road sections in Table 4.10. This lower point density

Road section Left side
(number of
points/m2)

Right side
(number of
points/m2)

Van
speed
(km/hr)

Geographic
location

Rural 702.83 127.32 61.12 53◦34
′
28.375

′′
N

7◦10
′
12.833

′′
W

Rural 697.74 137.51 60.97 53◦34
′
28.681

′′
N

7◦10
′
11.658

′′
W

Rural 702.83 138.78 61.61 53◦34
′
28.88

′′
N

7◦10
′
10.877

′′
W

Urban 861.98 143.88 51.48 53◦36
′
33.11

′′
N

7◦5
′
47.186

′′
W

Urban 884.90 140.06 51.57 53◦36
′
33.583

′′
N

7◦5
′
46.183

′′
W

Urban 895.09 142.60 51.76 53◦36
′
33.902

′′
N

7◦5
′
45.514

′′
W

National primary 1056.79 44.56 56.66 53◦38
′
15.168

′′
N

7◦29
′
26.328

′′
W

National primary 1033.87 45.84 56.79 53◦38
′
14.707

′′
N

7◦29
′
25.314

′′
W

National primary 1004.59 47.11 56.89 53◦38
′
14.407

′′
N

7◦29
′
24.622

′′
W

Table 4.10: LiDAR point density over the left and right sides of different
road sections, acquired with the XP-1 system.

along the right side of the road section resulted in noisy cells in between the

road edge points in the slope raster surfaces generated from the LiDAR ele-
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vation attribute. In most cases, the hierarchical thresholding applied to the

slope raster surface was not able to remove the noisy cells, as shown in one of

the examples in Figure 4.27. These noisy cells created an obstruction for the

Figure 4.27: Hierarchical thresholding applied to the slope raster surface was
not able to remove the noisy cells in between the road edge points.

snake curve to move towards the right road edges. Figure 4.28(a) shows the

final position of the snake curve over the slope raster surface accompanied

with noisy cells in between the road edge points where a value of κ4 = 1 was

provided. These noisy cells can be overcome by increasing the balloon energy

weight parameter. Figure 4.28(b) shows the final position of the snake curve

where we provided an increased balloon energy weight parameter of κ4 = 3.

4.4 Experimentation

We selected three sections of road to test our road edge extraction algorithm.

These sections covered 150 m of rural, urban and national primary roads

which consisted three types of road edges. We selected these road sections

to demonstrate the ability of our algorithm to extract these varying distinct

road edges without manual intervention. The processed data was acquired
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Figure 4.28: Final position of the snake curve over the slope raster surface
with (a) κ4 = 1 and (b) κ4 = 3 parameters.

using the XP-1 system along these road sections. Examples of the point

density for these three road sections along the left and right edge is shown in

Table 4.10. We applied our algorithm to these road sections in both manual

and automated modes. In the following sections, we present the road edge

results and discuss their qualitative validation.

4.4.1 Manual Processing

We applied our road edge extraction algorithm to the road sections where

we selected the hierarchical threshold parameters empirically for each road

section. This step is required to produce the qualitative best results from our

algorithm for later comparison with our fully automated algorithm. Other

parameters, barring balloon energy, used in the algorithm were constant for

all the road sections. In the following sections, we present our algorithm

applied to three types of the road section through the manual selection of

parameters.
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4.4.1.1 Grass-Soil Edges

We selected one 50 m section of rural road consisting of grass-soil edges on

both sides of the road, as shown in Figure 4.29. To process the 50 m road

Figure 4.29: Digital image of the rural road section consisting of grass-soil
edges (Geographic location: 53◦34

′
28.07

′′
N 7◦10

′
13.76

′′
W).

section, we used six 30 m ×10 m ×5 m sections of LiDAR data and six 10 m

section of navigation data. These data sections were selected with an overlap

of 2 m between them.

We applied our road edge extraction algorithm to this road section with

the following parameters: c=0.06 m2, Mslope = 25,Mref = 25,Mpw = 25, T1 =

250, T2 = 5, α = 9, β = 0.001, γ = 3, κ1 = 4, κ2 = 2, κ3 = 2, κ4 = 1, ω = 20◦

and δt = 0.03. The selected hierarchical threshold parameters were Tslope =

50, Tref = 100 and Tpw = 65. The φ angle was calculated from θ, as shown

in Table 4.11. The number of GVF iterations were 600 while the number

of iterations used to converge the snake curve to the road edges were 40.

The final positions of the snake curve over the slope surface in the six data

sections are shown in Figure 4.30. The extracted 3D left and right edges in
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Navigation Sec-
tion

θ
(degree)

φ
(degree)

1 65.59◦ 24.41◦

2 65.77◦ 24.23◦

3 65.97◦ 24.03◦

4 66.24◦ 23.76◦

5 66.46◦ 23.54◦

6 66.85◦ 23.15◦

Table 4.11: φ angle calculated from θ, average heading angle in each naviga-
tion section in the rural road.

the rural road section are shown in Figure 4.31.

Our algorithm was able to extract the left and right road edges in the

rural road section through the manual selection of parameters. In Figure

4.30(a), the snake curve extended incorrectly into the grass and soil area

along the left side. This was due to the stronger edge between the grass and

soil area compared to the left edge points between the road surface and the

soil. Otherwise, the extracted road edges were of high quality.

4.4.1.2 Kerb Edges

We selected one 50 m section of urban road consisting of kerb edges, as shown

in Figure 4.32. To process the road section, we used six 30 m ×10 m ×5 m

sections of LiDAR data and six 10 m sections of navigation data. These data

sections were again selected with an overlap of 2 m.

The following parameters were input: c=0.06 m2, Mslope = 25,Mref =

25,Mpw = 25, T1 = 250, T2 = 5, α = 9, β = 0.001, γ = 3, κ1 = 4, κ2 = 2, κ3 =

2, κ4 = 1, ω = 20◦ and δt = 0.03. The hierarchical threshold parameters

we selected were Tslope = 55, Tref = 85 and Tpw = 35. The φ angle was

calculated from θ, as shown in Table 4.12. The number of GVF iterations

were 600 while the snake curve converged to the road edges in 40 iterations.
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Figure 4.30: Final position of the snake curve over the slope raster surface
obtained through the manual selection of parameters in the (a) first, (b)
second, (c) third, (d) fourth, (e) fifth and (f) sixth data section in the rural
road.

The final positions of the snake curve over the slope raster surface in the

six data sections are shown in Figure 4.33. The extracted 3D left and right

edges in the urban road section are shown in Figure 4.34.

The algorithm successfully extracted the left and right road edges in the

urban road section through the manual selection of parameters. In Figure

4.33(e), the snake curve was also able to identify the drainage system along

the left edge. The snake curve did not properly converge to some of the

points along the right edge. This was due to the lower LiDAR point density

along the right side of the road section, as highlighted in Table 4.10, which

resulted in the noisy cells in the generated 2D raster surfaces.
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Figure 4.32: Digital image of the urban road section consisting of kerb edges
(Geographic location: 53◦36

′
37.42

′′
N 7◦5

′
41.00

′′
W).

Navigation Sec-
tion

θ
(degree)

φ
(degree)

1 51.90◦ 38.10◦

2 51.59◦ 38.41◦

3 51.62◦ 38.38◦

4 51.64◦ 38.36◦

5 51.34◦ 38.66◦

6 50.08◦ 39.92◦

Table 4.12: φ angle calculated from θ, average heading angle in each naviga-
tion section in the urban road.

4.4.1.3 Grass-Soil Edges with Shoulders

The final experiment consisted of one 50 m section of national primary road

consisting of grass-soil edges with shoulders, shown in Figure 4.35. Six 30

m ×10 m ×5 m sections of LiDAR data and six 10 m sections of navigation

data were processed. These data sections were selected with an overlap of 2

m overlap in between them.

The standard parameters of c=0.06 m2, Mslope = 25,Mref = 25,Mpw =

25, T1 = 250, T2 = 5, α = 9, β = 0.001, γ = 3, κ1 = 4, κ2 = 2, κ3 = 2, κ4 =
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Figure 4.33: Final position of the snake curve over the slope raster surface
obtained through the manual selection of parameters in the (a) first, (b)
second, (c) third, (d) fourth, (e) fifth and (f) sixth data section in the urban
road.

3, ω = 34◦ and δt = 0.03 were input. We provided an increased weight to the

balloon energy parameter to overcome noise which created an obstruction

for the snake curve to move towards the road edges. As shown in Table

4.10, the point density for the right edges was 1/3 of that for the previous

two examples. This was the primary cause for the noise. The hierarchical

threshold parameters we selected were Tslope = 45, Tref = 132 and Tpw = 55.

The φ angle was calculated from θ, as shown in Table 4.13. The number of

GVF iterations were 600 while the snake curve converged to the road edges

in 40 iterations. The final positions of the snake curve over the slope surface

in the six data sections are shown in Figure 4.36. The extracted 3D left and
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Figure 4.35: Digital image of the national primary road section consist-
ing of grass-soil edges with shoulders (Geographic location: 53◦38

′
8.80

′′
N

7◦29
′
11.06

′′
W).

Navigation Sec-
tion

θ
(degree)

φ
(degree)

1 127.27◦ −37.27◦

2 127.10◦ −37.10◦

3 126.90◦ −36.90◦

4 126.67◦ −36.67◦

5 126.41◦ −36.41◦

6 126.16◦ −36.16◦

Table 4.13: φ angle calculated from θ, average heading angle in each naviga-
tion section in the national primary road.

right edges in the national primary road section are shown in Figure 4.37.

Our algorithm was able to successfully extract the road edges in the

national primary road section through the manual selection of parameters.

In Figure 4.36(e), the snake curve extended incorrectly into the grass and

soil area along the left edge. This was due to the increased balloon energy

pushing the snake curve beyond the weak left edge points. The increased

balloon energy was applied due to the lower LiDAR point density along the
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Figure 4.36: Final position of the snake curve over the slope raster surface
obtained through the manual selection of parameters in the (a) first, (b)
second, (c) third, (d) fourth, (e) fifth and (f) sixth data section in the national
primary road.

right side of the road section. A dataset with uniform point density should

not exhibit these errors. In Figure 4.36(d) and (f), the snake curve was not

able to fully converge to the right edges which was due to the lower LiDAR

point density along that side. The increased balloon energy weight parameter

provided was not sufficient for the snake curve to overcome the stronger noisy

cells present at those points.
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4.4.2 Automated Processing

We applied our road edge extraction algorithm to the road sections with a

fixed set of hierarchical threshold parameters for all the road sections. In

the previous section, we applied our algorithm with hierarchical threshold

parameters selected empirically for each road section, as shown in Table 4.14.

We calculated the median of these empirically selected threshold parameters

Road Section Tslope Tref Tpw
Rural 50 100 65

Urban 55 85 35

National Primary 45 132 55

Table 4.14: Hierarchical threshold parameters selected empirically for each
road section.

as 50, 100 and 55 respectively. We use these median values in the algorithm

to provide the hierarchical threshold parameters for all the road sections. In

the following sections, we present our automated algorithm applied to these

road sections. In each case, we used the same parameters as used in Section

4.4.1.

4.4.2.1 Grass-Soil Edges

We applied our automated road edge extraction algorithm to the same rural

road section as described in Section 4.4.1.1. The hierarchical threshold pa-

rameters used in the algorithm were Tslope = 50, Tref = 100 and Tpw = 55,

while all other parameters were the optimal parameters used in the manual

processing. The final positions of the snake curve over the slope raster sur-

face in the six data sections are shown in Figure 4.38. The extracted 3D left

and right edges in the rural road section are shown in Figure 4.39.

The automated road edge extraction results were found to be as high
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Figure 4.38: Automated final position of the snake curve over the slope raster
surface for the (a) first, (b) second, (c) third, (d) fourth, (e) fifth and (f) sixth
data section in the rural road.

quality as the results obtained through the manual approach. This is linked

to the fact that the median and the empirically selected, Tslope and Tref ,

parameters for this rural road section were the same in both processes.

4.4.2.2 Kerb Edges

We then applied our automated road edge extraction algorithm to the urban

road section from Section 4.4.1.2. The median hierarchical threshold param-

eters were input along with the fixed optimal parameters. The final positions

of the snake curve over the slope raster surface for the six data sections are

shown in Figure 4.40. The extracted 3D left and right edges in the urban

road section are shown in Figure 4.41.
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Figure 4.40: Automated final position of the snake curve over the slope raster
surface for the (a) first, (b) second, (c) third, (d) fourth, (e) fifth and (f) sixth
data section in the urban road.

Our automated algorithm was able to extract the road edges in the urban

road section. In Figure 4.40(a), (b), (e) and (f), the snake curves extended

beyond the right edge at some of the points. The lower LiDAR point density

along the right side of the road section led to the generation of raster surfaces

with noisy and weak cells along the right road edge. The median values of

Tref and Tpw for this road section were higher when compared with their

empirically selected values. The use of these median values removed the

weak cells along the right road edge, which caused the snake curve to extend

beyond them.
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4.4.2.3 Grass-Soil Edges with Shoulders

Finally, we applied our automated road edge extraction algorithm to the

national primary road section from Section 4.4.1.3. The final positions of the

snake curve over the slope raster surface in the six data sections are shown in

Figure 4.42. The extracted 3D left and right edges in the national primary

Figure 4.42: Automatic final position of the snake curve for the (a) first,
(b) second, (c) third, (d) fourth, (e) fifth and (f) sixth data section in the
national primary road.

road section are shown in Figure 4.43.

The automated algorithm successfully extracted the left and right edges

in the national primary road section. In Figures 4.42(b), (c), (d) and (e),

the snake curves extended incorrectly into the grass and soil area along the
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left edge. In this section of the national primary road, the stronger edge was

between the grass and the soil rather than at the left road edge between the

road surface and the soil. The median value of Tslope for this road section

was higher than its empirically selected value. The use of this median value

for the automated application removed the weak soil edges, which caused the

snake curve to extend incorrectly into the grass and soil area in some areas.

4.4.3 Results Validation

We tested the road edge extraction results using our validation algorithm.

These results compared how closely our road edge extraction algorithm was

able to extract the road edges when compared to their manual digitisation.

The road edge validation results in the three road sections are presented in

the following sections.

4.4.3.1 Grass-Soil Edges

We digitised the left and right edges in the rural road section from the 3D

LiDAR data. We applied our validation algorithm to estimate both the 2D

and 3D accuracy of our manually and automatically extracted edges in the

rural road section.

Box plots for the 2D and 3D accuracy of the manually and the automat-

ically extracted left edges are shown in Figure 4.44, while box plots for the

manually and the automatically extracted right edges are shown in Figure

4.45. We also carried out statistical analyses of the 2D and 3D accuracy of

the manually and the automatically extracted left and right edges, as shown

in Tables 4.15 and 4.16 respectively.

The 2D accuracy values were better than their respective 3D values. This
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Figure 4.44: Box plot for the (a) 2D and (b) 3D accuracy of the manually
and the automatically extracted left edges in the rural road section.
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Figure 4.45: Box plot for the (a) 2D and (b) 3D accuracy of the manually
and the automatically extracted right edges in the rural road section.
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2D 3D
Manual Automated Manual Automated

minimum (m) -0.082 -0.108 -0.088 -0.112

maximum (m) 0.632 0.672 0.638 0.674

lower adjacent (m) -0.082 -0.108 -0.088 -0.059

upper adjacent (m) 0.310 0.291 0.314 0.30

25th percentile (m) 0.056 0.053 0.059 0.055

75th percentile (m) 0.160 0.162 0.164 0.163

mean (m) 0.129 0.126 0.132 0.128

median (m) 0.096 0.100 0.099 0.102

outliers (%) 8.55 7.69 8.55 8.55

inside ±0.01 (%) 3.51 0.85 2.56 0.85

inside ±0.025 (%) 5.98 8.55 5.13 7.69

inside ±0.05 (%) 17.95 21.37 15.38 18.80

outside ±0.2 (%) 21.38 21.38 21.38 21.38

Table 4.15: Statistical analysis of the 2D and 3D accuracy of the manually
and the automatically extracted left edges in the rural road section.

2D 3D
Manual Automated Manual Automated

minimum (m) -0.157 -0.192 -0.192 -0.194

maximum (m) 0.193 0.201 0.196 0.201

lower adjacent (m) -0.157 -0.137 -0.192 -0.166

upper adjacent (m) 0.193 0.201 0.196 0.201

25th percentile (m) -0.012 -0.005 -0.012 -0.005

75th percentile (m) 0.115 0.105 0.115 0.107

mean (m) 0.043 0.039 0.042 0.038

median (m) 0.034 0.029 0.036 0.030

outliers (%) 0 0.85 0 2.56

inside ±0.01 (%) 11.97 16.24 11.97 16.24

inside ±0.025 (%) 26.50 30.78 25.64 30.78

inside ±0.05 (%) 41.88 44.44 38.46 43.59

outside ±0.2 (%) 0 0.85 0 1.71

Table 4.16: Statistical analysis of the 2D and 3D accuracy of the manually
and the automatically extracted right edges in the rural road section.
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was again expected and due to the inclusion of elevation points in the esti-

mation of 3D accuracy values. In most cases, the minimum-maximum range

was lowest for both the manually extracted left and right edges. The mean

value closest to 0 was for both the automatically extracted left and right

edges. The median value closest to 0 was for the manually extracted left

edge and the automatically extracted right edge. The highest percentage of

accuracy inside ±0.01 m was for the manually extracted left edge and the

automatically extracted right edge, while the percentages inside ±0.025 m

and ±0.05 m were highest for both the automatically extracted left and right

edges. The percentage outside ±0.2 m was the same for the manually and

the automatically extracted left edges but it was lowest for the manually

extracted right edge.

Both the manual and the automated processes displayed high accuracy

with their mean values ranging from 0.126 m to 0.132 m for the left edge

and from 0.038 m to 0.043 m for the right edge. The left edge displayed

poorer results than the right edge in most cases. This was due to the snake

curve extending into the grass and soil area at some points along the left edge.

The difference between the accuracy results of the manual and the automated

road edges were minimal. This is because the median and the empirically

selected, Tslope and Tref , parameters used for this rural road section were the

same in both processes.

4.4.3.2 Kerb Edges

We asked a different LiDAR user to digitise the left and right edges in the

urban road section from the 3D LiDAR data. The reason for choosing a

different user was to remove any bias in the digitisation process of the road
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2D 3D
Manual Automated Manual Automated

minimum (m) -0.169 -0.146 -0.169 -0.151

maximum (m) 0.051 0.213 0.075 0.239

lower adjacent (m) -0.166 -0.146 -0.169 -0.151

upper adjacent (m) 0.051 0.073 0.025 0.078

25th percentile (m) -0.083 -0.066 -0.092 -0.073

75th percentile (m) -0.026 -0.009 -0.033 -0.011

mean (m) -0.057 -0.033 -0.063 -0.037

median (m) -0.056 -0.034 -0.069 -0.051

outliers (%) 1.01 2.06 4.04 4.12

inside ±0.01 (%) 4.04 14.43 3.03 12.37

inside ±0.025 (%) 21.21 31.96 17.17 23.71

inside ±0.05 (%) 41.41 59.79 27.27 41.24

outside ±0.2 (%) 0 1.03 0 1.03

Table 4.17: Statistical analysis of the 2D and 3D accuracy of the manually
and the automatically extracted left edges in the urban road section.

sections, as different users might have different perceptions when digitising

3D LiDAR data. We applied our validation algorithm to estimate both the

2D and 3D accuracy of the manually and the automatically extracted edges

in the urban road section.

Box plots for the 2D and 3D accuracy of the manually and the automat-

ically extracted left edges are shown in Figure 4.46, while box plots for the

manually and the automatically extracted right edges are shown in Figure

4.47. Statistical analyses of the 2D and 3D accuracy of the manually and the

automatically extracted left and right edges are shown in Tables 4.17 and

4.18.

The 2D accuracy values were again better than their respective 3D values.

The minimum-maximum range was lowest for both the manually extracted

left and right road edges. The mean and median values closest to 0 were

for the automatically extracted left edge and the manually extracted right

edge. The highest percentages of accuracy inside ±0.01 m, ±0.025 m and
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Figure 4.46: Box plot for the (a) 2D and (b) 3D accuracy of the manually
and the automatically extracted left edges in the urban road section.
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Figure 4.47: Box plot for the (a) 2D and (b) 3D accuracy of the manually
and the automatically extracted right edges in the urban road section.
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2D 3D
Manual Automated Manual Automated

minimum (m) -0.64 -1.528 -0.64 -1.529

maximum (m) 0.532 1.594 0.535 1.594

lower adjacent (m) -0.174 -0.46 -0.196 -0.47

upper adjacent (m) 0.532 1.35 0.535 1.35

25th percentile (m) -0.121 0.124 -0.129 0.144

75th percentile (m) 0.163 0.635 0.192 0.635

mean (m) 0.013 0.396 0.014 0.404

median (m) -0.078 0.267 -0.084 0.268

outliers (%) 1.01 8.25 1.01 8.25

inside ±0.01 (%) 0 1.03 0 1.03

inside ±0.025 (%) 1.01 2.06 0 2.06

inside ±0.05 (%) 5.05 3.09 5.05 2.06

outside ±0.2 (%) 23.23 60.82 24.24 42.27

Table 4.18: Statistical analysis of the 2D and 3D accuracy of the manually
and the automatically extracted right edges in the urban road section.

±0.05 m were associated, for the most part, with automatically extracted

left and right edges. The lowest percentage outside ±0.2 m was for both the

manually extracted left and right edges.

Our algorithm was able to manually and automatically extract the left

and right road edges with their mean accuracy values ranging from −0.063

m to −0.033 m for the left edge and from 0.013 m to 0.404 m for the right

edge. In most cases, the accuracy results for the left edge were better than

the right edge. This is due to the lower LiDAR point density along the right

side of the road section. The accuracy results for the automated right edge

were poor. This is related to the fact that the median values of Tref and Tpw

for this road section were higher than their empirically selected values. The

use of these median values for automatically extracting the edges removed

the weak cells along the right road edge which caused the snake curve to

move beyond them.
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4.4.3.3 Grass-Soil Edges with Shoulders

We asked a user to digitise the left and right edges in the national primary

road section from the 3D LiDAR data. We applied our validation algorithm

to estimate both the 2D and 3D accuracy of the manually and the automat-

ically extracted edges in the national primary road section.

Box plots for the 2D and 3D accuracy of the manually and the automat-

ically extracted left edges are shown in Figure 4.48, while box plots for the

manually and the automatically extracted right edges are shown in Figure

4.49. We made a statistical analysis of the 2D and 3D accuracy of the manu-

ally and the automatically extracted left and right edges as shown in Tables

4.19 and 4.20.

2D 3D
Manual Automated Manual Automated

minimum (m) -0.105 -0.069 -0.109 -0.091

maximum (m) 1.385 1.533 1.385 1.533

lower adjacent (m) -0.105 -0.069 -0.109 -0.091

upper adjacent (m) 0.35 1.15 0.358 1.149

25th percentile (m) 0.008 0.133 0.01 0.156

75th percentile (m) 0.162 0.557 0.169 0.582

mean (m) 0.165 0.41 0.169 0.426

median (m) 0.082 0.412 0.089 0.427

outliers (%) 9.89 4.25 9.89 4.25

inside ±0.01 (%) 8.79 2.13 7.69 1.06

inside ±0.025 (%) 18.68 9.57 18.68 4.26

inside ±0.05 (%) 31.87 12.77 29.67 8.51

outside ±0.2 (%) 19.78 69.15 21.98 70.21

Table 4.19: Statistical analysis of the 2D and 3D accuracy of the manu-
ally and the automatically extracted left edges in the national primary road
section.

The minimum-maximum range was lowest for the manually extracted left

edges and for the automatically extracted right edges. The mean and median

values closest to 0 were for both the manually extracted left and right edges.
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Figure 4.48: Box plot for the (a) 2D and (b) 3D accuracy of the manually and
the automatically extracted left edges in the national primary road section.
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Figure 4.49: Box plot for the (a) 2D and (b) 3D accuracy of the manually
and the automatically extracted right edges in the national primary road
section.
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2D 3D
Manual Automated Manual Automated

minimum (m) -1.622 -1.67 -1.622 -1.67

maximum (m) 0.219 0.162 0.225 0.165

lower adjacent (m) -0.154 -0.166 -0.181 -0.181

upper adjacent (m) 0.219 0.162 0.225 0.165

25th percentile (m) -0.063 -0.072 -0.068 -0.079

75th percentile (m) 0.067 0.025 0.067 0.025

mean (m) -0.03 -0.049 -0.031 -0.052

median (m) -0.001 -0.036 -0.001 -0.038

outliers (%) 3.29 3.19 3.29 3.19

inside ±0.01 (%) 8.79 7.45 8.79 7.45

inside ±0.025 (%) 28.57 21.28 25.27 19.15

inside ±0.05 (%) 40.66 44.68 38.46 43.62

outside ±0.2 (%) 4.39 3.19 4.39 3.19

Table 4.20: Statistical analysis of the 2D and 3D accuracy of the manu-
ally and the automatically extracted left edges in the national primary road
section.

The highest percentages of accuracy inside ±0.01 m, ±0.025 m and ±0.05

m were, in most cases, for the manually extracted left and right edges, while

the percentage outside ±0.2 m was lowest for the manually extracted left

edge and the automatically extracted right edge.

The algorithm was able to manually and automatically extract the left

and right edges with their mean accuracy values ranging from 0.165 m to

0.426 m for the left edge and from −0.052 m to −0.03 m for the right edge.

The left edge results were not good as the snake curve incorrectly extended

into the grass and soil area at some of the points. This was caused by the

increased balloon energy pushing the snake curve beyond the weak left edge

points. The manually extracted road edges displayed better results than

the automatically extracted process. The median value of Tslope for this road

section was higher than its empirically selected value. The use of this median

value for automatically extracting the edges removed the weak cells which
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caused the snake curve to move beyond them.

4.5 Discussion

We presented our algorithm, based on the combined use of GVF and balloon

parametric active contour models, to extract road edges from the terrestrial

mobile LiDAR data. Our algorithm was based around the assumption that

the LiDAR elevation, reflectance and pulse width attributes can be used to

distinguish the road surface from grass-soil edges and kerb edges. We con-

verted the LiDAR attributes into 2D raster surfaces to simplify the problem

domain and reduce computational expense. For example, one of a 30 m ×10

m ×5 m section of LiDAR data consisted of 92, 737 points, thus an iterative

estimation of the GVF external energy for each point attribute would be

computationally expensive.

We identified six challenges in developing an automated algorithm. The

first challenge was to generate smooth 2D raster surfaces from the LiDAR

attributes which are usually accompanied with high frequency noise. This

issue was dealt through the use of a point thinning process. In this process,

multi resolution terrain pyramids were generated from the LiDAR attributes

and then smooth 2D raster surfaces were generated from the first level terrain

pyramids using natural neighbourhood interpolation.

The second challenge was to estimate the GVF external energy terms from

the raster surface values. First, we determined the object boundaries from

the raster surfaces through the consecutive use of hierarchical thresholding

and Canny edge detection. The mask size and threshold parameters used in

the hierarchical thresholding were found empirically and were fixed for all the

road sections. The upper and lower threshold parameters used in the Canny
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edge detection were selected based on the output binary cell values obtained

from the hierarchical thresholding. Once we identified the parameters for the

internal and external energy terms, we were then able to apply our algorithm

to a road section given a valid initialisation area.

The third challenge was to initialise the snake curve automatically. We

developed a novel approach in which the snake curve was initialised over 2D

raster surfaces based on the navigation track of the mobile van along the road

section. We chose a parametric ellipse for initialising the snake curve as it

suited the dimensions of the LiDAR data. The navigation points were used

to estimate the semi-major and semi-minor axis of the snake ellipse, while the

average heading angle was used to estimate an angle in between the major

axis and the X-axis. The snake curve was initialised at the centre of the

road based on the slant angle. This angle was selected empirically and was

fixed for the road sections with similar width. Our developed initialisation

approach negated the limitation associated with the manual intervention

generally required in the parametric active contour models.

The fourth challenge was to extract the left and right edges from the

snake curve. We batch processed consecutive individual road sections to

obtain multiple snake curves. Including an overlap between the road sections

ensured that the snake curves overlapped. We removed non road edge points

in between the intersections points of the overlapping regions of the snake

curves. It left the snake curves with just the left and right road edge points.

The fifth challenge was to validate the road edge extraction results. We

developed an automated algorithm to test the accuracy of extracted left and

right road edges. The validation algorithm was used to find out how closely

our road edge extraction algorithm was extracting road edges, when com-
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pared to their manual digitisation. In our validation algorithm, we consid-

ered navigation points as a reference to compute euclidean distances between

the extracted and digitised road edge points.

The final challenge was to automate our road edge extraction algorithm.

This was carried out through the recommendation of a set of methods and

parameters. We analysed the generation of 2D raster surfaces, finding the

first level terrain pyramid and natural neighbourhood interpolation to be

efficient for generating smooth raster surfaces from the LiDAR attributes. We

analysed the performance of our algorithm in relation to the raster surfaces

generated with different cell sizes. The optimal value was selected for the

algorithm that produced the best results in terms of completeness obtained by

the snake curve, time taken by the snake curve to converge to the road edges

and the quality of the extracted road edges. We demonstrated that choosing

a small cell size increased the computational cost without providing any

considerable improvement in the road edge extraction results, while choosing

a large cell size affected the completeness and quality of the extracted road

edges. By analysing the temporal performance of the algorithm for road

sections with different dimensions, we identified the optimal length where

the snake curve required least time to converge accurately to the road edges.

We found the optimal internal energy parameters empirically after examining

several combinations in the algorithm and their output. We demonstrated

the importance of their optimal values in the algorithm. A higher value of

the α parameter caused an inability in the snake curve to fully converge

to the road edges, while a lower value caused the snake curve to be jagged

at some of its points. Similarly, a higher value of the β parameter caused

extreme bending in the snake curve, but a lower value produced the best
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results. We found the best GVF and balloon external energy parameters

where the highest weight was given to the slope GVF energy. Their values

were found empirically after examining several combinations in the algorithm

and their output. We also highlighted the importance of using all the external

energy weight parameters in our algorithm. We demonstrated that the use

of an increased balloon energy parameter can overcome noisy data as it can

provide an additional inflation energy to the snake curve to overcome the

noise. This noise can be due to a lower LiDAR point density along the right

side of the road section.

We tested our road edge extraction algorithm in a variety of examples.

We selected three different sections that covered 150 m of rural, urban and

national primary roads. These road sections consisted of three different types

of road edges. We selected these road sections to demonstrate the effective-

ness of our algorithm to extract these distinct road edges using the same

parameter set. We applied our algorithm to these road section using the

manually selected optimal and the automatically selected parameters. In

the manual processing, the optimal hierarchical threshold parameters were

selected manually for each road section, while in the automated processing,

the same set of these parameters were selected for all the road sections. All

other parameters were common for both sets of experiments.

We tested the accuracy of road edge extraction using our validation al-

gorithm. We calculated the accuracy of our manually extracted and auto-

matically extracted road edges when compared to their manual digitisation.

We asked different users to digitise the left and right edges in the road sec-

tions from the 3D LiDAR data. The reason for this was to remove any bias

in the digitisation process of the road sections. Our road edge extraction

164



algorithm successfully extracted high quality road edges. In the rural road

section, the best mean accuracy values were 0.126 m and 0.038 m for the

automated left and right edge respectively. The best median accuracy values

were 0.096 m and 0.029 m for the manual left edge and the automated right

edge respectively. The right edge accuracy results were better than the left

edge. This was due to the weak cells along the left edge which caused the

snake curve to extend incorrectly into the grass and soil area. The difference

between the manual and the automated accuracy results was minimal due to

the similar values of the empirically and the median selected, Tslope and Tref

parameters for this road section. In the urban road section, the mean and

median accuracy values, −0.033 m and −0.034 m, were found to be best for

the automated left edge, while 0.013 m and −0.078 m for the manual right

edge. For this road section, the left edge accuracy was better than the right

edge in most results. This is due to the lower LiDAR point density along

the right side of the road section. The automated right edge results were

poor due to the use of median values of Tref and Tpw which were higher than

their empirically selected values. These values removed the weak cells along

the right edge which resulted the snake curve to move beyond the actual

edge location. In the national primary road section, the mean and median

accuracy values, 0.165 m and 0.082 m, were best for the manual left edge,

while −0.03 m and −0.001 m for the manual right edge. The left edge accu-

racy results were poor due to the increased balloon energy pushing the snake

curve beyond the weak left edge points. The automated road edge results

were poor due to the use of median value of Tslope which was higher than its

empirically selected value. In the next chapter, we present our automated

algorithm for extracting road markings from terrestrial mobile LiDAR data

165



using the identified road edges.
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Chapter 5

Road Marking Extraction

Terrestrial mobile laser scanning systems usually record the reflectance of an

illuminated surface in the form of intensity data. The recorded intensity data

can be used to distinguish road markings that produce high reflectivity due to

their retro-reflective property. Road markings are used to provide guidance

and instruction to road users for safe and comfortable driving. Knowledge

of the location, dimension and condition of road markings can be useful for

driver assistance systems, road safety and route network maintenance.

In this chapter, we present an automated algorithm to extract road mark-

ings from terrestrial mobile LiDAR data. We apply our automated road edge

extraction algorithm to estimate road boundaries in the form of a snake curve.

The output snake curve is used to identify the LiDAR points that belong to

the road surface. Knowledge of the road surface area facilitates a more ef-

ficient and accurate road marking extraction algorithm. In Section 5.1, we

present a stepwise description of the road marking extraction algorithm. It

involves a description of 2D intensity and range raster surfaces generation

from the LiDAR points belonging to the road surface. We do not use the
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reflectance attribute in our algorithm as its values provided by the Riegl

VQ-250 laser scanner are not correctly normalised. We provide a detailed

description of a range dependent thresholding function which we have devel-

oped and applied to the intensity raster surface to extract road markings. We

discuss the application of morphological operations to complete the shapes of

extracted road markings and to remove noise. In Section 5.2, we present our

analysis to find the most applicable values of input parameters required to

automate our road marking extraction algorithm. In Section 5.3, we test our

algorithm on various road sections, demonstrating the successful extraction

of different types of road markings. We present the results following valida-

tion of the road marking extraction process. In Section 5.4, we conclude the

chapter by discussing the novelty and limitations of our algorithm.

5.1 Algorithm

A work flow of our road marking extraction algorithm is shown in Figure 5.1.

In the following sections, we describe a number of processing steps involved

in our algorithm.

5.1.1 Road Surface Estimation

We input the LiDAR data and the snake curve estimated using our auto-

mated road edge extraction algorithm, described in Chapter 4. In Step 1 of

our road marking extraction algorithm, we use the snake curve to identify

the LiDAR points that belong to the road surface. A snake curve is laid over

the LiDAR data, as shown in Figure 5.2(a). The LiDAR points outside the

snake curve are removed, while the inner points are retained to estimate the
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Figure 5.2: Snake curve is (a) laid over the LiDAR points to (b) estimate the
road surface.

road surface, as shown in Figure 5.2(b).

5.1.2 2D Raster Surface Generation

We use LiDAR intensity and range attributes in our algorithm to extract

the road markings. In Step 2 of our algorithm, we generate 2D intensity

and range raster surfaces from the LiDAR data using a preselected cell size.

A detailed analysis on the selection of an optimum cell size is provided in

Section 5.2.1. The value of each cell in the raster surfaces is estimated as

the average of the intensity and range values of the LiDAR points that fall

within the 2D boundary of the cell. The intensity and range raster surface

values are normalised with respect to their global minimum and maximum,

and converted into an 8-bit data type. This will allow for the use of one set

of values for all road sections. An example of 2D intensity and range raster

surfaces generated from the LiDAR data is shown in Figure 5.3.
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Figure 5.3: 2D raster surfaces generated from the LiDAR data: (a) intensity
and (b) range.

5.1.3 Range Dependent Thresholding

Road markings are generally more reflective than the road surface. This re-

sults in the intensity values of the laser returns from the road markings being

higher than the background surface. However, apart from the reflectivity of

the illuminated surface, there are two other factors affecting the intensity

values, the distance from the laser scanner and the incidence angle of the

laser pulse. These factors need to be addressed in any algorithm extract-

ing road markings. In Step 4 of our algorithm, we apply range dependent

thresholding to the intensity raster surface. We use the navigation data to

select a range value that is used to apply multiple threshold values. In most

terrestrial mobile laser scanning systems, the laser scanner is mounted on a

mobile van at some horizontal and vertical inclined position in order to pro-

duce rich 3D information. Let us suppose that a laser scanner is mounted on

the back of the mobile van at a η angle from both the horizontal and vertical

axes of the vehicle. This inclined position modifies the initial scanning point

from directly below the scanner to the position, O, shown in Figure 5.4. R is
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Figure 5.4: Navigation data is used to select a range value to apply multiple
threshold values to the intensity raster surface.

the range of a laser pulse from the navigation point N to the initial scanning

point O. The transverse range from the point N to O′ is estimated as R cos η.

For each laser return, we replace their range value with the new transverse

range value using the inclination angle η. We use the estimated transverse

range value R cos η to divide the intensity raster surface into different blocks

which allows us to threshold the intensity values based on their range from

the scanner.

We apply a different threshold value to each block of the intensity raster

surface to deal with the factors that effect intensity values. The road surface

is usually constructed with a non-planar shape, shown in Figure 5.5. This

surface is engineered to allow rain water to run off the road surface to reduce

water pooling which can damage the road surface over time. This type of

road surface changes the laser pulses incidence angle, resulting in an increased
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Figure 5.5: Side view of the non-planar road surface.

reduction in intensity returns as the range increases over a flat road surface.

We apply the threshold value T1 to data in block B1 to extract road markings.

In B2 block, the road surface is oriented towards the laser scanner relative

to block B1 which results in an acquisition of stronger reflections from the

road surface. For this reason, we apply a different threshold value T2 in

block B2 such that T2 > T1. The road surface is oriented away from the laser

scanner in blocks B3 and B4, for which we apply different threshold values T3

and T4. We select a single optimal threshold value empirically and use it to

estimate the values of T1, T2, T3 and T4. A detailed analysis on the selection

of the range dependent threshold values is provided in Section 5.2.2. An

example of road markings extracted from the intensity raster surface using

range dependent thresholding is shown in Figure 5.6.

5.1.4 Morphological Operations

The extracted road markings from Step 3 may be incomplete and contain

noise that is introduced through the use of thresholding. To overcome this,

we propose the use of binary morphological operations [HG92]. In Step 4 of

our algorithm, the thresholded raster surface is converted into a binary im-

age and is processed using morphological operations. The two morphological

operators we will use are dilation and erosion. We apply the dilation oper-

ation to the binary image in which a structuring element is placed over the
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Figure 5.6: Road markings extracted from the intensity raster surface using
range dependent thresholding.

cells of the image. The purpose of dilation is to use the structuring element

to grow cells with a value of 1 in order to fill in any holes. A structuring

element consists of a binary matrix that represents the selected shape and

size. Examples of structuring elements with different shapes and sizes are

shown in Figure 5.7. A central element of the matrix represents an origin and

Figure 5.7: Structuring elements: (a) diamond shaped with radius = 1, (b)
linear shaped with length = 3 and angle, φ′ = 45◦ and (c) linear shaped with
length = 5 and angle, φ′ = 90◦.

the elements with a value of 1 describe a neighbourhood of the structuring
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element. The origin of the structuring element is positioned over each cell in

the binary raster surface to dilate that cell along the neighbourhood of the

structuring element.

A linear shaped structuring element is used to dilate the cells of each

road marking. We choose a linear shape for the structuring elements due to

the general linear patterns of road markings. The linear shaped structuring

element is used with a φ′ angle that is calculated from the average heading

of the mobile van along the road section under investigation. This angle is

used in order to dilate the road markings along the longitudinal direction.

A process of calculating the φ′ angle from the average heading angle of the

mobile van, θ, is described in Figure 5.8. The θ angle provides the direction

of the mobile van’s trajectory with respect to the north direction and the φ′

angle is measured in the anticlockwise direction from the horizontal axis. If

the value of θ angle lies in between 0◦ and 90◦, then the φ′ angle is estimated

as 90◦− θ in the anticlockwise direction as shown in Figure 5.8(a). Similarly,

the φ′ angle can be estimated for other possible values of the θ angle as shown

in Figure 5.8(b), (c) and (d).

The length of the linear shaped structuring element is selected empirically.

We use the same value in each road section, which allows us to automate the

morphological operations in our algorithm. An example of the extracted road

markings dilated using a linear shaped structuring element with length=9

and φ′ = 38.37◦ is shown in Figure 5.9.

As can be seen from Figure 5.9(b), the process of dilation can negatively

affect the results by increasing the significance of the noise. We propose a

method to deal with this, which involves two processes. The first process

is based on a priori knowledge of the dimensions of road markings used to
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Figure 5.8: Estimation of φ′ angle of the linear shaped structuring element
from the average heading angle of the mobile van, θ, along the road section
that can lie in between (a) 0◦ and 90◦, (b) 90◦ and 180◦, (c) 180◦ and 270◦

and (d) 270◦ and 360◦.

remove the noise. The second is using another morphological operator called

erosion to counteract the artificial growth in the dimensions of the road

markings we caused using dilation to fill in the holes.

In the first process, we group cells into objects in the dilated image using

connectivity. If a cell has a value of 1 then it is connected to the cells whose

values are 1 and are directly above, below, left or right of that cell. We

calculate the length and average width values of each object in the dilated

image. Objects whose length and average width values are less than a min-
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Figure 5.9: Dilation operation: (a) input binary image with an inset picture
of their road marking cells and (b) dilated image with an inset picture of
their dilated road marking cells.

imum length and width threshold are considered as noise and are removed

from the image. An example of a noise cell removal process from the dilated

image is shown in Figure 5.10.

In the second process, we apply an erosion operation to the dilated image.

In an erosion operation, cells are removed from the road marking cells using a

structuring element. The linear shaped structuring element used for dilation

is also applied to erode the road markings. This is carried out in order to

retain the original boundary shape of the road markings. An example of the

dilated road markings eroded using the linear shaped structuring element

with length=9 and φ′ = 38.37◦ angle is shown in Figure 5.11.
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Figure 5.10: Noise removal process: (a) input dilated image and (b) noise
cells removed from it.

Thus, the morphological operations applied to the extracted road mark-

ings are able to reconstruct their inherent shape and to remove noise, as can

be seen in Figure 5.12.

5.1.5 3D Road Markings

In Step 5 of our algorithm, we extract the 3D road markings using the 2D

output. The original 3D LiDAR points which are contained within the 2D

road marking cell boundaries are extracted. An example of the extracted

3D road markings is shown in Figure 5.13. In the next section, we present

our analysis of the input parameters used to automate our road marking

extraction algorithm.

5.2 Automation Analysis

Our road marking extraction algorithm requires two input parameters, the

cell size value for converting the LiDAR data into 2D raster surfaces and the

range dependent threshold value. To implement an automated algorithm, we

178



Figure 5.11: Erosion operation: (a) input dilated image with an inset picture
of their road marking cells and (b) eroded image with an inset picture of their
eroded road marking cells.

need the most applicable value for each of these. In the following sections,

we will detail our recommended values and show the effect of changing these.

5.2.1 Optimal Cell Size

As described in Section 5.1.2, we convert the LiDAR data into 2D raster

surfaces. Each cell in the raster surface has a physical dimension. A selection

of the optimal cell size is essential as it may affect both the accuracy and

computational cost of any process. Our road marking extraction algorithm

is primarily based on thresholding which is not computationally expensive.

Therefore, we considered accuracy as the main criteria for cell size selection.
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Figure 5.12: Extracted road markings (a) before and (b) after applying the
morphological operations.

Figure 5.13: LiDAR points (a) belonging to the road surface and the ex-
tracted (b) 3D road markings.

To find its optimal value, we analysed the performance of our road marking

extraction algorithm in raster surfaces generated with different cell sizes.

We selected one 10 m section of rural road which contained broken and

continuous line markings over its surface. To process this road section, we

used one 30 m ×10 m ×5 m section of LiDAR data and one 10 m section of

navigation data, which was collected with the XP-1 system.

We used the output snake curve as obtained through the automated

road edge extraction algorithm applied to the data section, shown in Figure
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4.38(b). We considered five test cases in which raster surfaces were gener-

ated from the LiDAR intensity and range attributes with cell sizes 0.01 m2,

0.04 m2, 0.06 m2, 0.08 m2 and 0.1 m2. These cell sizes were selected with

decreasing and increasing values based on an average point spacing of 0.08 m

in the LiDAR points. We normalised the intensity and range values with re-

spect to their global minimum and maximum values, shown in Table 5.1 and

converted into 8-bit data type. These minimum and maximum values were

LiDAR attribute Minimum value Maximum value

Intensity 1085 5528

Range 1.73 21.92

Table 5.1: Maximum and minimum values of the LiDAR intensity and range
attributes.

selected globally from all the data sections processed for the road marking

extraction experiments.

In each test case, we applied our road marking extraction algorithm using

a threshold value of 70. This value was modified as a function of range and

applied to four blocks of the intensity raster surface. A detailed analysis on

the selection of range dependent threshold values is provided in Section 5.2.2.

For the five cases, the length of the structuring element was 51, 13, 9, 7 and

5, while φ′ = 24.23◦ was calculated from θ = 65.77◦, which is an average

heading of the mobile van along the selected road section. We found 0.5 m

and 0.1 m as a minimum length and width for road markings in the Ireland.

These values are detailed in a traffic signs manual published by the National

Roads Authority (NRA), Ireland [NRA10]. The road marking cells were

dilated along the longitudinal direction, with a minimum length threshold

for the five cases being 1 m, 1 m, 1.02 m, 1.04 m and 0.9 m. The minimum

width threshold was 0.1 m as the cells were not dilated along the transverse
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direction. The road markings extracted in the five cases are shown in Figure

5.14.

Figure 5.14: Road markings extracted from the intensity image with (a) 0.01
m2, (b) 0.04 m2, (c) 0.06 m2, (d) 0.08 m2 and (e) 0.1 m2 cell size.

In order to carry out a comparative analysis, we calculated the length

and average width of the final extracted road markings in the five cases. We

considered four broken line markings named as E1, E2, E3 and E4 and one

continuous line marking named as C, shown in Figure 5.14. The calculated

length and average width values are listed in Table 5.2. We also found a stan-

dard length and width of the five road markings from the NRA’s traffic signs

manual [NRA10]. The standard length and width values of the E1, E2, E3

and E4 road markings were 2 m and 0.15 m. The standard width of the

C road marking was 0.15 m and its length was found from the longitudinal

length of the snake curve as 8.6 m. We compared the extracted length and
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average width values of the road markings with the expected standard di-

mensions. For cell sizes 0.08 m2 and 0.1 m2, the average width values of the

road markings were generally found to be more than their standard width

values. For the 0.06 m2 cell size, the length and average width values of the

road markings were closest to their standard values. Thus, we selected 0.06

m2 cell size as the most applicable value to generate 2D intensity and range

raster surfaces from the LiDAR data.

5.2.2 Range Dependent Threshold

After selecting the optimal cell size, the final parameter requiring selection

is the range dependent threshold. The aim of this analysis was to determine

a method for automatically selecting this threshold value irrespective of the

road dimension. As described in Section 5.1.3, we use the navigation data

to select the range value that is used to divide the intensity raster surface

into different blocks. In a road section with a narrower width, the intensity

raster surface was divided into four blocks, shown in Figure 5.15(a). In a

road section with a greater width, the intensity raster surface was divided

into seven blocks, shown in Figure 5.15(b). We selected a single threshold

value T = 70 empirically and modified it as a function of the range. We

applied a T + ma threshold to each block of the intensity raster surface,

where a = 10 and m represents a block number. We applied the T +ma−nb

threshold to the blocks after the centre of the road, where b = 5 and n =

1, 2, 4, 8..... representing an integer for the third, fourth, fifth, sixth, etc.

blocks respectively. The threshold values applied before the centre of the

road were consecutively increased with the ma term, as the road surface in

those blocks begins to orient towards the laser scanner. The threshold values
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Figure 5.15: Range dependent thresholding applied to the intensity raster
surface in the road section with (a) narrower and (b) greater width.
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applied after the centre of the road were increased with the term ma and

then decreased with the nb term to account for the increased range and the

change in surface orientation. The purpose of finding these variables was to

automate the process of applying the range dependent thresholding to the

intensity raster surface.

To demonstrate the importance of the selection of this threshold, we

applied a lower, higher and optimal value of T to the intensity raster surface

as 55, 90 and 70. Each value was modified as a function of the range in

accordance with the aforementioned formulae and used to extract the road

markings, shown in Figure 5.16(a), (b) and (c). The use of a lower threshold

Figure 5.16: Road markings extracted using the (a) lower, (b) higher and (c)
optimal threshold value applied to the intensity raster surface.

value led to the extraction of road markings with large areas of noise, while

its higher value removed the noise at the expense of extracting all the road

markings. Thus, the selection of optimal threshold value is essential for the

robust extraction of road markings. In the next section, we test our road

marking extraction algorithm on various road sections.
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5.3 Experimentation

We selected seven sections of road to test our road marking extraction al-

gorithm. These seven sections covered 150 m of rural, urban and national

primary roads, which contained six distinct types of road markings to demon-

strate the effectiveness of our algorithm. The processed data was collected

with the XP-1 along these road sections. In the following sections, we will

present the results for these road marking types and discuss our validation.

5.3.1 Broken and Continuous Line Markings

The most common road marking types are broken and continuous line mark-

ings in the road centre and lane boundaries, which are used to guide and

confine traffic to its lane. We selected two 50 m sections of rural and urban

road containing both broken and continuous line markings, shown in Figure

5.17. To process each road section, we used six 30 m ×10 m ×5 m sections

Figure 5.17: Digital image of (a) rural and (b) urban road section contain-
ing both broken and continuous line markings (Geographic locations: (a)
53◦34

′
28.07

′′
N 7◦10

′
13.76

′′
W and (b) 53◦36

′
33.43

′′
N 7◦5

′
46.96

′′
W).

of LiDAR data and one 10 m section of navigation data in the same manner
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as in Chapter 4, with a 2 m overlap.

We used the automatically extracted snake curves on these data sections,

shown in Figure 4.38. We applied our road marking extraction algorithm to

the rural and urban road sections using a cell size c = 0.06 m2 and a threshold

value T = 70, with each road section being split horizontally into four blocks.

The length of the linear structuring element was 9, while φ′ was calculated

from θ, as shown in Tables 5.3 and 5.4. The 2D broken and continuous line

markings extracted from the six data sections of the rural and urban road

sections are shown in Figures 5.18 and 5.19 respectively. The original LiDAR

data and extracted 3D broken and continuous line markings of the rural and

urban road sections are shown in Figures 5.20 and 5.21 respectively.

Navigation
Section

θ φ′

1 65.59◦ 24.41◦

2 65.77◦ 24.23◦

3 65.97◦ 24.03◦

4 66.24◦ 23.76◦

5 66.46◦ 23.54◦

6 66.85◦ 23.15◦

Table 5.3: φ′ angle calculated from θ angle in each navigation section of rural
road section.

Navigation
Section

θ φ′

1 51.90◦ 38.10◦

2 51.59◦ 38.41◦

3 51.62◦ 38.38◦

4 51.64◦ 38.36◦

5 51.34◦ 38.66◦

6 50.08◦ 39.92◦

Table 5.4: φ′ angle calculated from θ angle in each navigation section of
urban road section.
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Figure 5.18: 2D broken and continuous line markings extracted from the (a)
first, (b) second, (c) third, (d) fourth, (e) fifth and (f) sixth data section of
the rural road.

Our algorithm extracted the broken and continuous line markings of both

the rural and urban road sections. Some broken line markings along the left

side of both road sections were not detected due to lower intensity values of

the laser return from them. The extracted markings contained some noise

along the left edge, as shown in Figure 5.18(a). This was primarily due to

extracted road edges extending incorrectly into a grass and soil area, as seen

in Figure 4.38(a). This surface produced high intensity values which were not

considered as noise and were not removed by our algorithm due to their large

physical dimension. The broken markings that were not detected along the

right side of the urban road section were attributed to a lower point density

of the LiDAR data along the right side. This was due to the use of a single
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Figure 5.19: 2D broken and continuous line markings extracted from the (a)
first, (b) second, (c) third, (d) fourth, (e) fifth and (f) sixth data section of
the urban road.

laser scanner in the XP-1 system during the data acquisition process.

5.3.2 Word Markings

The second road marking type selected was word markings, as defined by

the NRA, Ireland [NRA10]. These markings are inscribed as a word message

on the road surface to guide, regulate or warn the road user [MK06]. We

selected one 10 m section of rural road containing word markings along with

broken and continuous line markings, shown in Figure 5.22. To process the

selected road section, we used one 30 m ×10 m ×5 m section of LiDAR data

and one 10 m section of navigation data.

We applied our automated road edge extraction algorithm to the road
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Figure 5.20: Road markings extraction: (a) original LiDAR data and (b)
extracted 3D broken and continuous line markings of the rural road section.
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Figure 5.21: Road markings extraction: (a) original LiDAR data and (b)
extracted 3D broken and continuous line markings of the urban road section.
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Figure 5.22: Digital image of the rural road section containing word mark-
ings along with broken and continuous line markings (Geographic location:
53◦34

′
50.546

′′
N 7◦8

′
57.62

′′
W).

section with one variation to the parameters outlined in Section 4.4.2. We

increased κ4 to 3 to overcome noise due to a lower point density in the

LiDAR data along the right side of the road section. The output snake curve

obtained from this process is shown in Figure 5.23. We applied our road

marking extraction algorithm using c = 0.06 m2 and T = 70, with the road

section being divided into four blocks. The length of the linear structuring

element was 9, while φ′ = 343.52◦ was calculated from θ = 106.48◦. The

original LiDAR data and the extracted 3D word, broken and continuous line

markings of the rural road section are shown in figure 5.24.

Our algorithm successfully extracted the majority of the word, broken

and continuous line markings from the rural road section. The extracted

road markings contained some noise along the right edge. This was due

to the extracted road edges, extending incorrectly into grass and soil area

at some points, as shown in Figure 5.23. The primary reason for this was

the increased balloon energy pushing the snake curve beyond the weak edge

points. Some of the extracted words along the right side were incomplete.
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Figure 5.23: Output snake curve in the rural road section containing word
markings along with broken and continuous line markings.

Figure 5.24: Road markings extraction: (a) original LiDAR data and (b)
extracted 3D word, broken and continuous line markings of the rural road
section.
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Figure 5.25: Digital image of the national primary road section contain-
ing hatch and broken line markings (Geographic location: 53◦33

′
49.878

′′
N

7◦21
′
24.148

′′
W).

This was due to a lower LiDAR point density along that side of the road

section.

5.3.3 Hatch Markings

We selected hatch markings as the third road marking type to test our road

marking extraction algorithm. The hatch markings are generally used to

channel or control the traffic flow, reserve central traffic islands and indicate

a reduction in road width ahead [NRA10]. We selected one 10 m section of

national primary road containing hatch and broken line markings, shown in

Figure 5.25. We used one 30 m ×10 m ×5 m section of LiDAR data and one

10 m section of navigation data, to process the selected road section.

We applied our automated road edge extraction algorithm to the road

section with one modified parameter κ4 = 3. This was again to overcome

noise due to the lower point density of the LiDAR data along the right side of

the road section. The output snake curve obtained is shown in Figure 5.26.

We then applied our road marking extraction algorithm using c = 0.06 m2
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Figure 5.26: Output snake curve in the national primary road section con-
taining hatch and broken line markings.

and T = 70. The road section was divided into seven blocks due to the larger

width of road section. The length of the linear structuring element was 9,

while φ′ = 302.44◦ was calculated from θ = 147.56◦. The original LiDAR

data and the extracted 3D hatch and broken line markings of the national

primary road section are shown in Figure 5.27.

Our algorithm was able to extract the hatch and broken line markings

from the national primary road section. Noise present along the left side of

the road section was due to the extracted road edges extending incorrectly

into a grass and soil area, as can be seen in Figure 5.26. A reason for this

extension was the increased balloon energy which caused the snake curve to

move beyond the weak left edge points.

5.3.4 Arrow Markings

The fourth road marking type selected was arrow markings. Arrow markings

are used to give drivers advance indication of the correct lane to take when

approaching busy intersections [NRA10]. We selected one 10 m section of
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Figure 5.27: Road markings extraction: (a) original LiDAR data and (b)
extracted 3D hatch and broken line markings of the national primary road
section.

national primary road containing arrow and broken line markings, shown in

Figure 5.28. To process this road section, we used one 30 m ×10 m ×5 m

section of LiDAR data and one 10 m section of navigation data.

We applied our automated road edge extraction algorithm to the road

section with a modified parameter, κ4 = 3. The output snake curve obtained

from this process is shown in Figure 5.29. We then applied our road marking

extraction algorithm using c = 0.06 m2 and T = 60, with the road section

being split into six blocks. The length of the linear structuring element was

9, while φ′ = 296.35◦ was calculated from θ = 153.65◦. The original LiDAR

and the extracted 3D arrow and broken line markings are shown in Figure

5.30.

The algorithm was able to extract the arrow and broken line markings

from the national primary road section. The broken line markings along the

right side of the road section were not extracted due to a lower point density
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Figure 5.28: Digital image of the national primary road section contain-
ing arrow and broken line markings (Geographic location: 53◦35

′
30.558

′′
N

7◦22
′
28.428

′′
W).

of the LiDAR data along that side. Noise in the form of a continuous line

along the left side of the road section was due to the extracted road edges

extending into the grass and soil area, as can be seen in Figure 5.29. This

was again attributed to the increased balloon energy.

5.3.5 Pedestrian Crossing Markings

We selected pedestrian crossing markings as the fifth road marking type to

test our algorithm. The pedestrian crossing markings are used to provide

a safe road crossing facility for pedestrians [NRA10]. We selected one 10 m

section of urban road containing a pedestrian crossing, broken transverse line

and zig-zag markings, shown in Figure 5.31. To process this road section, we

used one 30 m ×10 m ×5 m section of LiDAR data and one 10 m section of

navigation data.

We applied our automated road edge extraction algorithm to the road

section with a modified parameter, κ4 = 5. This parameter was increased

compared to previous values in order to overcome noise due to a lower point
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Figure 5.29: Output snake curve in the national primary road section con-
taining arrow and broken line markings.

Figure 5.30: Road markings extraction: (a) original LiDAR data and (b)
extracted 3D arrow and broken line markings of the national primary road
section.
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Figure 5.31: Digital image of the urban road section containing pedes-
trian crossing, broken transverse and zig-zag markings (Geographic location:
53◦36

′
43.721

′′
N 7◦5

′
32.871

′′
W).

density of the LiDAR data along the right side of the road section. The

output snake curve obtained from this process is shown in Figure 5.32. We

applied our road marking extraction algorithm using c = 0.06 m2 and T = 70,

with the road section being divided into five blocks. The length of the linear

structuring element was 9, while φ′ = 49.10◦ was calculated from θ = 40.90◦.

The original LiDAR data and the extracted 3D pedestrian crossing, broken

transverse line and zig-zag markings are shown in Figure 5.33.

The algorithm was able to extract the pedestrian crossing, broken trans-

verse line and zig-zag markings from the urban road section. It failed to

detect a portion of the markings along the right side of the road section as

the snake curve was not able to fully converge to the right edge, as shown

in Figure 5.32. This was due to the presence of noise along that side of the

road section.
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Figure 5.32: Output snake curve in the urban road section containing pedes-
trian crossing, broken transverse and zig-zag markings.

Figure 5.33: Road markings extraction: (a) original LiDAR data and (b)
extracted 3D pedestrian crossing, broken transverse line and zig-zag markings
of the urban road section.

201



Figure 5.34: Digital image of the urban road section containing zig-zag mark-
ings (Geographic location: 53◦39

′
19.225

′′
N 7◦31

′
9.792

′′
W).

5.3.6 Zig-Zag Markings

The final road marking type selected was zig-zag markings. Zig-zag markings

are generally used with the pedestrian crossing to indicate that vehicles are

prohibited to park at that location as well as providing a visual warning to

drivers approaching the pedestrian crossing [NRA10]. We selected one 10 m

section of urban road containing zig-zag markings as shown in Figure 5.34.

We used one 30 m ×10 m ×5 m section of LiDAR data and one 10 m section

of navigation data, to process the selected road section.

We applied our automated road edge extraction algorithm to the road

section. The output snake curve obtained from this process is shown in

Figure 5.35. We then applied our road marking extraction algorithm using

c = 0.06 m2 and T = 70, with the road section being divided into four blocks.

The linear structuring element was used with length 9, while φ′ = 312.93◦

was calculated from θ = 137.07◦. The original LiDAR data and the extracted

3D zig-zag markings are shown in Figure 5.36.

Our algorithm was able to extract two zig-zag markings but failed to
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Figure 5.35: Output snake curve in the urban road section containing zig-zag
markings.

Figure 5.36: Road markings extraction: (a) original LiDAR data and (b)
extracted 3D zig-zag markings of the urban road section.
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detect the third one along the right side of the road section. This was due to

the lower point density of the LiDAR data along the right side of the road

section.

5.3.7 Results Validation

A quantitative assessment was used to validate the extracted road markings.

We counted a total of 93 road markings from 3D LiDAR data of the tested

road sections. Our road marking extraction algorithm correctly extracted 80

road markings but failed to detect 13 out of the total number. Thus, we were

able to detect 86% of the road markings. We identified 13 groups of noisy

raster cells or LiDAR points which were incorrectly labelled as extracted road

markings on the basis of their length and width.

5.4 Discussion

We presented our automated algorithm for extracting the road markings from

terrestrial mobile LiDAR data. Our algorithm was based on the assumption

that the intensity values of the laser returns from the road markings are

higher than those from other road surface elements. We expected to extract

these road markings by applying a threshold to the intensity values. We

considered four challenges while developing this algorithm. The first chal-

lenge was knowledge of the road surface. This was required to reduce false

positives and the processing effort in the road marking extraction process.

We applied our automated road edge extraction algorithm to determine the

road boundaries in the form of a snake curve. The output snake curve was

then used to identify the LiDAR points that belong to the road surface.
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The second challenge was to apply a threshold to the intensity values. The

LiDAR intensity attribute is dependent on the distance from the laser scan-

ner to the illuminated surface, the incidence angle of the laser pulse and the

illuminated surface characteristics. To successfully extract the road markings

from the intensity attribute, we developed a range dependent thresholding

function which attempts to deal with all three of the factors that affect the

intensity value. The use of a threshold itself clusters data based on the re-

flectivity from the illuminated surface, while the range dependent threshold

takes account of the distance and incidence angle factors. We used the navi-

gation data to select a range value that is used to apply the threshold to the

intensity values. We applied the range dependent threshold by converting

the LiDAR intensity and range attributes into 2D raster surfaces.

Our third challenge was to deal with the incomplete shapes of the road

markings and noise that is primarily introduced through the use of thresh-

olding. We proposed the use of morphological operations to overcome these

issues. To complete the road markings shapes, we first converted the raster

surface into a binary image and then applied the dilation operation. The bi-

nary cells were dilated using a linear shaped structuring element. The length

of the linear structuring element was selected empirically, while its angle

was calculated from the average heading of the mobile van. The noise was

removed based on a priori knowledge of the dimensions of the dilated road

markings. We then applied an erosion operation to counteract the artificial

growth in the dimensions of the road markings. The binary dilated cells were

eroded using the same linear shaped structuring element. After applying the

erosion operation, we can again remove any additional noise based on the di-

mensions of the eroded road markings. But it could have a negative impact
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on the extracted road markings. An example of noise removed only once

before applying the erosion operation, and removed twice, before and after

applying the erosion operation, is shown in Figure 5.37.

Figure 5.37: 2D hatch and broken line markings of the national primary
road section with the noise (a) removed only once before applying the ero-
sion operation and (b) removed twice, before and after applying the erosion
operation.

The final challenge was to automate our road marking extraction algo-

rithm through the recommendation of the most applicable values of input

parameter. This involves selecting an optimal cell size values for converting

the LiDAR data into 2D raster surfaces as well as threshold values for ap-

plying to the intensity as a function of the range. We demonstrated that

choosing a cell size that is too small will reduce the completeness and that

choosing a large cell size will output the road markings whose dimensions

are greater than the actual road markings. We recommended 0.06 m2 cell

size as the most applicable value which consistently produced the best re-

sults. We showed the importance of choosing an optimal threshold value for

extracting the road markings. If the threshold value is small, it will output
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road markings accompanied with large areas of noise. If the threshold value

is large, it will remove the noise at the expense of extracting all the road

markings. We selected 70 as an optimal threshold value and then created a

formula for applying the threshold values as a function of the range along

the road surface.

We tested our road marking extracting algorithm on seven different road

sections. These seven sections covered 150 m of rural, urban and national

primary roads which, in turn, contained six distinct types of the road mark-

ing. Out of the total of 93 road markings, our algorithm was able to extract

80 road markings, resulting in an 86% detection rate. The majority of unde-

tected road markings were along the right side of the road section, this was

due to a lower LiDAR point density along that side, while the road mark-

ings missed along the left side were generally due to lower intensity values

in the associated laser returns. Our algorithm identified 13 groups of noise

cells which were incorrectly labelled as road markings. The majority of these

false road markings were detected in rural and national primary road sec-

tions. These false detections were due to extracted road edges extending

incorrectly to the nearby grass and soil area which was primarily attributed

to the increased balloon energy pushing the snake curve beyond the weak

edge points. In the next chapter, we present our algorithm for estimating

the road roughness from terrestrial mobile LiDAR data.
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Chapter 6

Road Roughness Estimation

Terrestrial mobile LiDAR data provides 3D information that can be used

to estimate roughness along a road surface. Road roughness is generally

considered to be the deviation of the road surface from a designed surface

grade that can, in turn, influence safety conditions for road users. LiDAR

data can be used to provide a good estimation of roughness values along the

road surface without the requirement for any simulation processes. Road

roughness can be used to provide valuable information to road authorities

when planning routine route network maintenance schedules.

In this chapter, we present an automated algorithm to estimate road

roughness from terrestrial mobile LiDAR data. In the algorithm, we apply

our automated road edge extraction algorithm to determine the boundaries of

the road in the form of a snake curve. The output snake curve is used to iden-

tify the LiDAR points that belong to the road surface. A priori knowledge of

the road surface allows us to more accurately estimate the roughness along

the road surface. Our algorithm provides discrete estimation of road rough-

ness in the form of standard deviation values of elevation residual points.
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These residual points are obtained after fitting a surface grid to the LiDAR

points belonging to the road surface. In Section 6.1, we present a stepwise

description of our road roughness estimation algorithm. This involves the

identification of LiDAR points that belong to the road surface and fitting

a surface grid to them. We describe the standard deviation calculation of

the elevation residual points along the navigation track of the mobile van.

In Section 6.2, we test our road roughness estimation algorithm in various

road sections. In Section 6.3, we conclude by discussing the advantages and

limitations of our algorithm.

6.1 Algorithm

A work flow of the road roughness estimation algorithm is shown in Figure

6.1. In the following sections, we describe a number of processing steps

involved in our algorithm.

6.1.1 Road Surface Estimation

We apply our automated road edge extraction algorithm to determine the

road boundaries in the form of a snake curve, as described in Chapter 4. In

Step 1 of our road roughness estimation algorithm, we use the snake curve

to identify the LiDAR points that belong to the road surface. A snake curve

is laid over the LiDAR data, as shown in Figure 6.2(a). The LiDAR points

outside the snake curve are removed and those inside are retained as they

belong to the road surface, as shown in Figure 6.2(b).
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Figure 6.2: Snake curve is (a) laid over the LiDAR data and (b) the points
belonging to the road surface are identified.

6.1.2 Data Rotation

In Step 2 of our road roughness estimation algorithm, we rotate the LiDAR

and navigation points around the elevation axis and towards the Easting

axis. This rotation is carried out to assist the process of fitting a surface grid

to the LiDAR points described in the next section. Both the LiDAR and

navigation points are rotated through a φ angle, which is calculated from

the average heading angle, θ, of the mobile van. The process of calculating

φ from the θ is similar to that described in Figure 4.6.

The rotation of LiDAR and navigation points around the elevation axis

and towards the Easting axis is shown in Figure 6.3.

6.1.3 Surface Grid

In Step 3 of our algorithm, we use the RANSAC algorithm to fit a surface

grid to the LiDAR points that belong to the left side of the road surface.

The fitted surface grid is a representative of what the ideal road surface

should be. This surface is used to measure the elevation residuals along the
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Figure 6.3: Input LiDAR and navigation data in the (a) 3D, (b) 2D plane
and rotated LiDAR and navigation data in the (c) 3D, (d) 2D plane.

navigation track described in the next section. We do not fit a surface grid

to the LiDAR points that belong to the complete road surface as it does not

provide an accurate representation of the road surface due to its non-planar

shape, as can be seen in Figure 6.4.

The LiDAR points are divided into the left and right sides of the road

surface based on their rotated Northing values. We assume the centre of the

road is in the middle of the extracted road surface. Using the road boundaries

from our road edge extraction algorithm, we can easily split the road into two

parts. A surface grid is fitted to the LiDAR points belonging to the left side

of the road surface. The RANSAC approach uses the smallest set of initial

points and enlarges this set with compatible points based on the number
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Figure 6.4: Surface grid is fitted to the LiDAR points that belong to (a)
whole road surface and (b) the left side of the road surface.

of iterations, K, the size of the consensus set, t and the error tolerance, ε.

The ε value is estimated experimentally in the algorithm, while the K and

t values are provided based on the formulae described in Section 3.3.1. In

each iteration, we randomly select three minimum points that are required

to estimate an initial plane using a least square model and then enlarge them

with compatible points to provide a surface grid fitting to the LiDAR points.

The size of the cell in the surface grid is selected based on the surface area of

the foot-print of the mobile van’s wheel that comes into a contact with the

road surface. This cell size is chosen to measure the roughness experienced

at each discrete instant of the vehicle’s movement over the road surface. The

RANSAC surface grid fitted to the LiDAR points is shown in the 3D and 2D

planes in Figure 6.5.

6.1.4 Road Roughness

In Step 4 of our algorithm, we find the elevation residual values by calculating

the difference between the elevation of each LiDAR point and its respective

surface grid point. We determine a standard deviation of the elevation resid-
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Figure 6.5: RANSAC surface grid fitted to the LiDAR points in the (c) 3D
and (d) 2D plane.

uals in each cell along the navigation track of the mobile van as

s =

√√√√ 1

n

n∑
i=1

(zi − z)2, (6.1)

where,

z =
1

n

n∑
i=1

zi, (6.2)

z is the residual and n is the number of residuals in each cell. The estimated

standard deviation values provide the roughness information along the lon-

gitudinal road surface. Finally, the LiDAR points are inversely rotated to

their original position along the road surface. The inversely rotated surface

grid and LiDAR points along the navigation track for which the standard

deviation is estimated are shown in the 3D and 2D planes in Figure 6.6.

6.2 Experimentation

We selected four sections of road to test our road roughness estimation al-

gorithm. These four sections covered 120 m of urban and national primary
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Figure 6.6: Inversely rotated surface grid and LiDAR points along the navi-
gation track of the mobile van in the (c) 3D and (d) 2D plane.

roads. We selected these road sections to demonstrate the effectiveness of

our algorithm to estimate the roughness present along their surfaces. The

processed data was collected with the XP-1 system along these road sections.

In the following sections, we present the roughness estimation results.

6.2.1 Urban Roads

We selected one 50 m and two 10 m sections of urban road as shown in

Figure 6.7. To process the 50 m road section, we used six 30 m ×10 m ×5

m sections of LiDAR data and six 10 m sections of navigation data in the

same manner as that described in Chapter 4, with 2 m overlaps. We used the

output snake curves as obtained through the automated road edge extraction

algorithm applied to the data sections, as shown in Figure 4.40. Each 10 m

road section was processed using one 30 m ×10 m ×5 m section of LiDAR

data and one 10 m section of navigation data. We applied our automated

road edge extraction algorithm to the second and third road sections in the

same manner as that described in Section 4.4.2 and used the output snake

curves obtained from this process, as shown in Figure 6.8.
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Figure 6.7: Digital image of (a) first, (b) second and (c) third section
of urban road (Geographic locations: (a) 53◦36

′
33.68

′′
N 7◦5

′
46.39

′′
W, (b)

53◦36
′
36.587

′′
N 7◦5

′
41.671

′′
W and (c) 53◦36

′
40.584

′′
N 7◦5

′
37.789

′′
W).

In the first road section, we used LiDAR sections with an overlap of 2

m between them. In order to avoid the dual estimation of roughness in

the overlapped portions, we selected the first and second consecutive LiDAR

sections and removed the duplicate points in the first section. This step

ensured that sections did not overlapped as shown in Figure 6.9. The second

and third LiDAR sections were then selected and the duplicate points in the

second section were removed. This process was repeated to remove duplicate

points in all the LiDAR sections.

We applied our road roughness estimation algorithm to the first, second

and third road sections. In the first road section, we used the φ angle shown
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Figure 6.8: Output snake curve in the (a) second and (b) third section of
urban road.

in Table 4.12. In the second and third road sections, the φ angle was cal-

culated from the θ as shown in Table 6.1. The ε parameter was estimated

Road Section Navigation
Section

θ
(degree)

φ
(degree)

Second 1 31.85◦ 58.15◦

Third 1 39.06◦ 50.94◦

Table 6.1: φ angle calculated from θ, average heading angle in the navigation
sections of second and third urban road section.

experimentally in the algorithm. We selected p = 0.50 and q = 0.99, consid-

ering 50% probability for selecting any data point within the error tolerance

ε and 99% probability for producing a good set of points. Using p, q, m = 3

and Equation 3.22, the K parameter was calculated as 35. The t parameter

was computed using the number of points in the respective LiDAR section,

p and Equation 3.23. The values of the t and ε parameters used for fitting

surface grids to the LiDAR sections are shown in Table 6.2. The length and

width of each cell was 0.215 m and 0.18 m respectively. These values were

estimated based on the measured surface area of the foot-print of the mobile

van’s wheel that comes into contact with the road surface. The surface grids
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Figure 6.9: Duplicate points were removed in the first LiDAR section to
provide non-overlapped sections.

and LiDAR points along the navigation track in the first, second and third

road sections are shown in Figure 6.10.

6.2.2 National Primary Roads

We selected one 50 m section of the national primary road, shown in Figure

6.11. We used six 30 m ×10 m ×5 m sections of the LiDAR data and six

10 m sections of the navigation data to process the 50 m road section in

the same manner as that described in Chapter 4, with a 2 m overlap. The

output snake curves obtained through the automated road edge extraction

algorithm applied to the road section are shown in Figure 4.42.

We removed the duplicate points in the LiDAR section in the same man-

ner as described in the previous section. We then applied our road roughness
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Road Section LiDAR Sec-
tion

t ε

(m)

First 1 6986 0.078
2 10174 0.059
3 7767 0.029
4 7860 0.065
5 9392 0.032
6 11389 0.044

Second 1 16495 0.025

Third 1 23868 0.019

Table 6.2: t and ε parameters used for fitting the surface grid to each LiDAR
section of the urban road.

LiDAR Section t ε
(m)

1 19642 0.020
2 20665 0.036
3 20662 0.033
4 20399 0.013
5 20969 0.047
6 24327 0.029

Table 6.3: t and ε parameters used for fitting the surface grid to each LiDAR
section of the national primary road.

estimation algorithm to the road section using the φ rotation angle, shown in

Table 4.13. We used K = 35 while the values of t and ε parameters are shown

in Table 6.3. The length and width of each cell was again 0.215 m and 0.18

m respectively. The surface grids and LiDAR points along the navigation

track in the road section are shown in Figure 6.12.

6.2.3 Results

We generated road surface deviation maps for the first, second, third urban

and the national primary road sections, as shown in Figures 6.13, 6.14, 6.15

and 6.16. These deviations were calculated as the elevation residuals between
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Figure 6.10: Surface grids and LiDAR points along the navigation track in
the (a) first, (b) second and (c) third section of urban road.

the LiDAR points and the fitted surface grid points. The deviation maps

were generated with red and blue representing the highest and lowest values

respectively at their extreme ends. In the urban road sections, there was

more variation on the surface, while as expected in the national primary

road section, the variation was less.

We plotted a graph between the LiDAR points and their respective surface

grid points along the navigation track in the road sections. By summing the

mean and standard deviation of the elevation residuals we were able to plot

and highlight the difference between the LiDAR points and the fitted surface

grid points. The plots of the points along the navigation track in the first

and the second urban road section are shown in Figure 6.17. Similarly, the
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Figure 6.11: Digital image of the national primary road section (Geographic
locations: 53◦38

′
14.407

′′
N 7◦29

′
24.622

′′
W).

plots of the points along the navigation track in the third urban and the

national primary road section are shown in Figure 6.18. In these plots, the red

symbols represent the LiDAR points, the blue symbols represent the surface

grid points, while the green symbols highlight their elevation difference. In

the urban road sections, some of the LiDAR points were found to vary from

the surface grid points, while in the national primary road section, there was

less variation between the points.

Box plots of the standard deviation of the elevation residual points along

the navigation track in the first and the second urban road section are shown

in Figure 6.19, while box plots for the points along the navigation track in the

third urban and the national primary road section are shown in Figure 6.20.

We also made statistical analysis of the standard deviation values calculated

for the four road sections as shown in Table 6.4.

Considering just the minimum and maximum values, the best results were

produced for the national primary road section, while results were found to
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Figure 6.12: Inversely rotated surface grids and LiDAR points along the
navigation track in the national primary road section.

be poorest for the first urban road section. The mean and median values

were lowest for the national primary road section, while they were highest

for the third urban road section. Similarly, the number of outliers were least

for the national primary road section but highest for the second urban road

section. These values indicate a smoother surface in the national primary

road section and uneven surface at some of the points in the urban road

sections.

We can also find a correlation between the calculated standard deviation

and the IRI values, which will allow us to quantify the estimated road rough-

ness into their standard reference scale values. However, we were unable to

carry out the comparison as the IRI values were not available. Applying our

algorithm to LiDAR data provides spatially referenced and localised rough-

ness information along the road surface. We can also estimate the roughness

across any track on the road section including the cross-section road surface

profile.
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Figure 6.13: Road surface deviation maps for the first urban road section:
(a) 3D and (b) 2D.
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Figure 6.14: Road surface deviation maps for the second urban road section:
(a) 3D and (b) 2D.
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Figure 6.15: Road surface deviation maps for the third urban road section:
(a) 3D and (b) 2D.
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Figure 6.16: Road surface deviation maps for the national primary road
section: (a) 3D and (b) 2D.

226



F
ig

u
re

6.
17

:
P

lo
t

of
th

e
L

iD
A

R
p

oi
n
ts

an
d

th
e

su
rf

ac
e

gr
id

p
oi

n
ts

al
on

g
th

e
n
av

ig
at

io
n

tr
ac

k
in

(a
)

th
e

fi
rs

t
an

d
(b

)
th

e
se

co
n
d

u
rb

an
ro

ad
se

ct
io

n
.

227



F
ig

u
re

6.
18

:
P

lo
t

of
th

e
L

iD
A

R
p

oi
n
ts

an
d

th
e

su
rf

ac
e

gr
id

p
oi

n
ts

al
on

g
th

e
n
av

ig
at

io
n

tr
ac

k
in

(a
)

th
e

th
ir

d
u
rb

an
an

d
(b

)
th

e
n
at

io
n
al

p
ri

m
ar

y
ro

ad
se

ct
io

n
.

228



Figure 6.19: Box plot of the standard deviation of the elevation residual
points along the navigation track in (a) the first and (b) the second urban
road section.
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Figure 6.20: Box plot of the standard deviation of the elevation residual
points along the navigation track in (a) the third urban and (b) the national
primary road section.
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First
Urban

Second
Urban

Third
Urban

National
Primary

minimum (mm) 0 0 2.38 0

maximum (mm) 20.14 18.22 12.53 3.87

lower adjacent (mm) 0 0 2.38 1.01

upper adjacent (mm) 5.32 6.92 9.56 3.55

25th percentile (mm) 1.88 3.17 3.38 1.88

75th percentile (mm) 3.29 5.41 6.18 2.56

mean (mm) 2.88 5.23 5.25 2.18

median (mm) 2.31 3.76 4.54 2.19

outliers (%) 7.83 17.39 8.11 3.91

Table 6.4: Statistical analysis of the standard deviation of the elevation
residual points along the navigation track in the first, second, third urban
and the national primary road section.

6.3 Discussion

We presented our algorithm for estimating road roughness from terrestrial

mobile LiDAR data. Our algorithm was based on the assumption that by

fitting a surface grid to the LiDAR points belonging to the road surface and

computing the elevation difference, that road roughness could be estimated.

We considered two challenges while developing this algorithm. The first

challenge was to know the road surface extent, as was the case for the road

marking extraction algorithm discussed in Chapter 5. This information was

required to identify the LiDAR points that are relevant for estimating road

roughness. We used our road edge extraction algorithm to determine the

boundary of the road surface in the form of a snake curve allowing us to

estimate the LiDAR points that belong to the road surface.

The second challenge was to provide a robustly fitted surface grid to the

LiDAR points. In order to assist this process, the LiDAR points were rotated

around the elevation axis and towards the Easting axis based on the average

heading information of the mobile van along the road section under investi-
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gation. We first divide the road surface into two sections, left and right. The

RANSAC algorithm was applied to fit a surface grid to the LiDAR points

that belong to the left side of the road section. As shown in Figure 6.4,

this process was chosen due to the non-planar nature of full road surfaces.

Attempting to fit one plane to both the left and right side of the road results

in a surface that does not correctly fit either. We selected the surface grid

cell size based on the surface area of the foot-print of the vehicle’s wheel that

comes into a contact with the road surface. The reason for choosing this di-

mension was to measure the roughness at each discrete instant of the vehicle’s

movement over the road surface. The fitted surface grid is a representation

of the ideal road surface. The parameters used to apply the RANSAC were

selected experimentally. However, we need to investigate their optimal val-

ues which can be used in our algorithm. Using the fitted surface grid, we

determined the standard deviation value of the elevation residuals in each

cell along the navigation track. These values provided a discrete estimation

of the longitudinal road roughness. Our algorithm through the use of LiDAR

data has an additional benefit of estimating the spatially referenced and lo-

calised roughness information along the road surface. It can also provide an

estimate of the roughness across any track on the road section. The rough-

ness information can be quantified into their standard reference scale values

by finding a correlation between the calculated standard deviation and the

IRI values along the road surface. We did not estimate the roughness along

the right side of the road surface due to a lower density of the LiDAR points

along that side.

We tested our algorithm on various sample sections of road. We selected

four sections that covered 120 m of urban and national primary roads. In
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the 50 m road sections, we used six LiDAR sections with an overlap of 2

m between each of them. This overlap was taken into account to avoid

estimating the road roughness on these areas twice. The algorithm was

able to provide standard deviation values that indicated the longitudinal

roughness present along the navigation track. We generated surface deviation

maps for the tested road sections. These deviations were computed as the

elevation residuals between the LiDAR points and the fitted surface grid

points. We plotted and highlighted the difference between the LiDAR points

and the surface grid points by summing the mean and standard deviation of

their elevation residuals. We carried out a statistical analysis of the calculated

standard deviation values. In the national primary road section, the mean

and median values of the standard deviation were 2.18 mm and 2.19 mm

respectively, which indicate a smoother road surface. The values for the

urban road sections were comparatively higher than the national primary

roads. This indicates an uneven road surface in the former. The estimated

road roughness could not be quantified in their standard reference scale as

the IRI values were not available. In the next chapter, we discuss in more

detail the contributions we have made to the field of road features extraction

from LiDAR data.
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Chapter 7

Conclusion

We presented a detailed review of terrestrial MMSs including imaging, laser

scanning, navigation and data acquisition technology. This review provides

an in-depth understanding of the operating principles of an MMS in terms

of spatial data acquisition, direct georeferencing, synchronisation and data

storage. We presented the XP-1 system, developed at NUI Maynooth, and

described its components. We reviewed various methods developed for ex-

tracting road features from LiDAR data and identified short-comings in the

current research. We described the suitability of terrestrial MMSs to acquire

3D information of road networks and route corridor environments that can,

in turn, assist road authorities in identifying potential risk elements that may

affect road safety. In this Chapter, we discuss the three main contributions

we have made to the field of road feature extraction from LiDAR data.

7.1 Road Edge Extraction

We developed an automated algorithm for extracting road edges from ter-

restrial mobile LiDAR data. Our algorithm was based on the assumption
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that LiDAR data provides elevation, intensity and pulse width information

that can be used to differentiate the road surface from grass-soil edges in

rural regions and kerb edges in urban regions. The algorithm is based on the

novel use of a combination of two modified versions of the parametric active

contour model to extract the road edges. We convert the LiDAR point cloud

attributes into 2D raster surfaces in order to make the process of road edge

extraction computationally efficient.

Our algorithm begins with the generation of 2D raster surfaces from Li-

DAR data, which is usually accompanied with high frequency noise. This

inherent noise is filtered using a point thinning process in which multi-level

terrain pyramids are generated from the LiDAR attributes. Smooth 2D raster

surfaces are generated from the first level terrain pyramids using natural

neighbourhood interpolation. To estimate the GVF external energy terms,

we determine object boundaries from the raster surfaces with the consecutive

use of hierarchical thresholding and Canny edge detection. The GVF exter-

nal energy terms are estimated by iteratively diffusing the gradient vector

values of the object boundaries determined from the raster surfaces. The

balloon external energy is generated by providing a weight to the normal

unit vector of the snake curve. In combination with the external energy, the

balloon energy helps the snake grow to the road edges. The internal energy

is input to the snake curve by adjusting its elasticity and stiffness properties.

We developed a novel approach in which the snake curve is initialised as a

parametric ellipse over 2D raster surface based on the navigation track of the

mobile van. The navigation points and their associated headings are used to

compute the semi-major and semi-minor axis of the snake curve. The snake

curve is initialised at the centre of the road based on the angle between the
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major axis and the slant height from the first or last navigation point. This

angle is found empirically and fixed for the road sections with similar width.

We use batch processing to extract the left and right edges from the final

position of the closed snake curve. A series of overlapping snake curves are

combined in their final positions and then non road edge points are removed.

We have also developed an automated algorithm for validating the extracted

left and right road edges with respect to their manual digitisation. In this

validation algorithm, we consider navigation points as reference in order to

compute the euclidean distances between the extracted and digitised road

edge points.

We automate our road edge extraction algorithm through experimenta-

tion and the recommendation of optimal parameters and methods involved

in it. We demonstrated that choosing a small cell size for computing the

raster surfaces increases the computational cost without providing any con-

siderable improvement in the extraction results and choosing a large cell size

will affect the completeness and quality of the extracted road edges. We rec-

ommended a cell size of 0.06 m2. We investigated the computational cost of

the length of the road section to be processed. We found 10 m length of road

section to be optimum for which the algorithm took a reasonable amount of

time for processing. We analysed the importance and impact of the internal

energy weight parameters in the algorithm to find their optimal values. A

higher value of the α weight parameter resulted in the snake curve not being

able to reach the road edges while a lower value led to the snake curve being

jagged at the road edges. Similarly, a higher value of the β parameter caused

extreme bending in the snake curve at some of its points while a lower value

did not have any noticeable impact. We found optimal values for the α and
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β parameters empirically which were applied successfully to all road sections.

We also investigated the importance of the GVF and balloon external energy

weight parameters in the algorithm. We analysed different weight values for

the slope, reflectance and pulse width in the GVF energy and balloon energy

terms to find the best combination of their values in the algorithm. We de-

cided to assign the highest weight parameter to the slope based GVF energy

term due to the imperfect normalised intensity values in our data, the in-

ability of pulse width values to properly distinguish the kerb edges in urban

road sections and primarily to the importance of height change in detecting

edges. We expect correctly normalised intensity values would increase the

accuracy of our algorithm. The pulse width values are more useful in rural

road sections where they are able to distinguish grass-soil edges. The use of

an increased value of the balloon energy weight parameter can be useful in

noisy data as it can provide an additional inflation energy to the snake curve

to overcome the noise.

To test our road edges extraction algorithm, we selected three different

road sections. These sections covered 150 m of rural, urban and national

primary roads that consisted of three different types of edges. In the first

test, we applied our algorithm using the best manually selected hierarchical

thresholding parameters for each road section. In the second test, the auto-

mated algorithm was applied with a similar set of hierarchical thresholding

parameters for each road section. We validated both the manually and the

automatically extracted road edges with respect to their manual digitisation.

In the rural road section, the automated left and right edge displayed best re-

sults having mean accuracy values of 0.126 m and 0.038 m respectively. The

median values, 0.096 m and 0.029 m, were best for the manual left edge and
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the automated right edge respectively. The left edge accuracy results were

poor compared to the right edge. This was due to the weak cells along the

left edge which caused the snake curve to extend incorrectly into the grass

and soil area. The difference in accuracy between manual and automated

road edges were minimal. This was due to the similar values of the empiri-

cally and the median selected, Tslope and Tref , parameters used for this road

section. In the urban road section, the best mean and median values were

−0.033 m and −0.034 m respectively for the automated left edge, and 0.013

m and −0.078 m for the manual right edge. The right edge accuracy results,

in most cases, were poorer than the left edge due to a lower LiDAR point

density along the right side of the road section. The automated right edge

results were poor due to the use of Tref and Tpw median parameters which

were higher than their empirically selected values. For the national primary

road section, the best mean and median values were 0.165 m and 0.082 m for

the manual left edge, and −0.03 m and −0.001 m for the manual right edge.

The left edge accuracy results were poor due to the increased balloon energy

pushing the snake curve beyond the weak left edge points. The automated

road edge results were affected due to the use of Tslope median parameter

which was higher than its empirically selected value.

As expected, the manual road edges displayed better results than the

automated process. But in both the processes, our algorithm was able to

successfully extract the road edges. A decision on the selection of manual or

automated extraction of the road edges can be made on the basis of accuracy

or degree of automation required for extracting the road edges.
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7.2 Road Marking Extraction

We developed an automated algorithm for extracting road markings from

terrestrial mobile LiDAR data. The intensity returns of road markings from

the LiDAR data have higher values than other road surface elements. We

expected to extract these road markings by applying a threshold to the data.

We use our automated road edge extraction algorithm to determine the

boundaries of the road in the form of a snake curve. We can then identify

LiDAR points that belong to the road surface. A priori knowledge of the

road surface reduces false positives and the amount of processing in the road

markings extraction process. LiDAR intensity values depend upon the dis-

tance from the laser scanner to the illuminated surface, the incidence angle

of the laser pulse and the illuminated surface’s characteristics. We devel-

oped a range dependent thresholding function which attempts to deal with

all of these three factors that affect the intensity values. The use of a thresh-

old itself clusters data based on the reflectivity from the illuminated surface

while a range dependent threshold takes account of the distance and inci-

dence angle issues. The range dependent threshold is applied by converting

the LiDAR intensity and range attributes into 2D rasters surfaces. To com-

plete road markings shapes and to account for noise, we apply morphological

operations. The raster surface is first converted into a binary image and

then the dilation operation is applied. The binary cells are dilated using

a linear shaped structuring elements such that any gap in between them is

filled. The length of the structuring elements is selected empirically while

its angle is calculated from average heading of the mobile van. The noise is

removed based on a priori knowledge of the dimensions of the dilated road

markings. The binary dilated cells are then eroded using the same linear
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shaped structuring element.

Our algorithm was automated through the selection of the most applicable

values of input parameters. We recommended a cell size of 0.06 m2 for

creating the raster surfaces. We demonstrated that the selection of the cell

size dimension is a choice between accuracy and completeness. A cell size

that is too small reduces the completeness while a cell size that is too large

produces output road markings whose dimensions are greater than actual

road markings. We selected a single optimal threshold value empirically and

then developed a formula for applying the threshold values as a function of

range along the road surface. We demonstrated the importance of choosing

an optimal threshold value for extracting road markings. If the threshold

value is too small, the extracted road marking will be accompanied with

large areas of noise and if the threshold value is too large, it will remove the

noise at the expense of extracting all the road markings.

We tested our automated road markings extraction algorithm on seven

different road sections. These sections covered 170 m of rural, urban and

national primary roads that consisted six different types of the road markings.

Our algorithm was able to extract road markings, with an 86% detection rate.

The majority of the undetected road markings were due to a lower point

density of our LiDAR data along the right side of the road section. The

algorithm also falsely identified 13 road markings. Most of these identified

road markings were in rural and national primary road sections where the

extracted road edges extended incorrectly to the nearby grass and soil area.

This extension was primarily attributed to the use of increased balloon energy

in them.
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7.3 Road Roughness Estimation

We developed an automated algorithm for estimating road roughness from

terrestrial mobile LiDAR data. Our algorithm was based on the assumption

that fitting a surface grid to the LiDAR points belonging to the road sur-

face provides elevation residual values that can be used for estimating road

roughness. This road surface fitting process is an attempt to automatically

reconstruct an ideal road surface.

A priori knowledge of the road surface in the LiDAR data allows rough-

ness along the road surface to be estimated. We rotate the LiDAR points

around the elevation axis and towards the Easting axis based on the average

heading information of the mobile van. This step is carried out to assist the

process of fitting the surface grid to the LiDAR points. We divide the road

surface into left and right sections. We use a RANSAC algorithm to fit a sur-

face grid to the LiDAR points belonging to the left side of the road section.

We do not fit a surface grid to the LiDAR points belonging to the whole

road surface as it provides an improper representation of the road surface.

A cell size in the surface grid is provided based on the surface area of the

vehicle’s wheel foot-print that comes into a contact with the road surface at

any instant. This size is selected to measure the roughness experienced at

each instant of the vehicle’s movement over the road surface. We calculate

the standard deviation value of elevation residuals in each cell along the nav-

igation track of the mobile van. These values provide a discrete estimation

of the longitudinal road roughness. We do not find the roughness along the

right side of the road surface due to a lower point density of our LiDAR data

along that side. Applying our algorithm to LiDAR data has the advantage

of estimating spatially referenced and localised roughness information across
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any track on the road section.

We tested our automated road roughness estimation algorithm on four

different road sections. These sections included 120 m of urban and na-

tional primary roads. We removed duplicate points in the LiDAR sections

to avoid the dual estimation of the roughness during batch processing. Our

algorithm was able to estimate standard deviation values that indicated the

longitudinal roughness along the navigation track. We generated road sur-

face deviation maps and plotted graphs to highlight the difference between

the LiDAR points and the fitted surface grid points. We also carried out

a statistical analysis of the calculated standard deviation values. The best

mean and median values of the standard deviation were 2.18 mm and 2.19

mm respectively. These values were generated from the national primary

road section which indicate a smoother road surface. The statistical values

in the urban road sections were comparatively higher which indicate an un-

even surface. We were not able to quantify the estimated road roughness in

their standard reference scale as the IRI values were not available. In the

next chapter, we present future work.
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Chapter 8

Future Work

We have made three main contributions to the field of road feature extraction

from LiDAR data as outlines in this thesis. In this chapter, we detail future

research directions that are enabled by our work. We provide some recom-

mendations for improvements that can be made to the research presented in

this thesis.

8.1 Road Edge Extraction

Quantifying the effect of point density

The performance of the road edge extraction algorithm developed in the

course of this research can be affected by point density. Lower LiDAR point

density along the right side of the road section due to single LiDAR scanner

located on left side of the mobile platform gives rise to noisy cells in the

resulting 2D raster surfaces. Present day terrestrial mobile laser scanning

systems used in professional road surveys are generally equipped with more

than one laser scanner. This solution produces LiDAR data that has a more
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uniform point density along both sides of the road section. We intend to

test our road edge extraction algorithm using such LiDAR data as part of

our follow-up research programme. The use of these LiDAR data will lead

to the generation of smoother 2D raster surfaces, which in turn, will improve

the quality of extracted road edges. This will allow us to examine in more

detail the affect of point density on our algorithm, in terms of accuracy

and completeness. It will also allow us to determine the lower limits of

point density for extracting road edges at varying distances. This should

also remove the necessity to change the balloon energy weighting for road

sections based on varying point density.

Improving the quality of LiDAR reflectance attribute

The normalisation of intensity values to estimate reflectance is a relatively

new addition to laser scanners and has yet to be fully tested and implemented.

Our Riegl VQ-250 laser scanner does not provide reliable reflectance values.

We intend to develop a method to normalise intensity values with respect to

the illuminated surface characteristics, the distance from the laser scanner to

the illuminated surface and the incidence angle of the laser pulse. Their use

in the algorithm will lead to the generation of a smoother reflectance raster

surfaces. This will allow us to assign a higher weight to the more reliable

reflectance GVF energy parameter in the algorithm. This will be useful in

rural and national primary road sections consisting of grass-soil edges where

a slope difference between the road surface and grass-soil surface is negligible.
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Automated selection of intersection points for snake

curve merging

During batch processing of the consecutive road sections, we select intersec-

tion points with the highest and lowest Northing values between the overlap-

ping snake curves. We need to investigate alternative options for selecting

intersection points. The aim would be to identify the optimum approach to

remove points in the most irregular snake curve.

Road edge extraction and the geometric active contour

model

In our algorithm, we use a parametric active model since its implementation

is less computationally expensive when compared to the geometric active

contour model. Further research is required to investigate the applicability

of the latter for extracting road edges. This could be advantageous as it will

remove the requirement for weighting various input parameters.

Algorithm extensions

Two other extensions we intend to develop are error correction and larger

scale implementation. In our mobile mapping systems group at NUIM, algo-

rithms have been developed to remove false road edges which can be caused

by false positives or by occlusions. Large scale implementation of theses

algorithms will be enabled through the ongoing construction of a data man-

agement system to handle 100s of kms of LiDAR data at NUIM.
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8.2 Road Marking Extraction

Point density and accuracy

We intend to extend the testing of our road marking extraction algorithm

using high density LiDAR data that is regularly spaced. This should enable

complete detection of road markings along both sides of the road surface.

We will also be able to examine the accuracy of our road marking detection

and the accuracy of the object shape extraction.

Improving thresholding using improved reflectance val-

ues

The use of normalised values of intensity which represent reflectance attribute

will allow us to select a single threshold for extracting road markings. This

will remove the requirement of range dependent threshold values in our al-

gorithm which could improve accuracy.

Noise removal

Morphological operations present a useful approach in terms of completing

the shapes of road markings and in removing noise. These operations are

applied using the linear shaped structuring elements. Further research is

required to investigate alternative structuring elements which could be useful

in removing noise introduced through the extracted road edges, extending

incorrectly into grass and soil area.

246



Road marking classification

After we have a more robustly extracted road markings we can then imple-

ment a road markings recognition and classification tool. The output of our

algorithm is a set of LiDAR points and objects. By examining each object,

its shape, dimension and position on the road we intend to construct more

effective algorithm that can recognise and classify each road marking type.

8.3 Road Roughness Estimation

Increasing sensitivity to road roughness

Our road roughness estimation algorithm provides a discrete estimation of

the roughness in the form of the standard deviation of elevation residuals in

each cell of the surface grid. One short-coming of the discrete measurement

is that it may not produce a continuous measure of roughness similar to

conventional IRI approach. One solution might be to use a sliding surface

grid technique in which the grid could be simulated to slide along the road

surface. The standard deviation values could be estimated at each instant.

This could provide a dynamic estimation of the roughness along the road

surface.

Surface grid fitting

We use the RANSAC algorithm to fit a surface grid to the LiDAR points.

The fitted surface grid consists of slightly skewed cells. This step is intended

to provide an accurate representation of the ideal road surface. An example

of the fitted surface grid consisting of skewed cells is shown in Figure 8.1. The
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Figure 8.1: Fitted surface grid with an inset picture of its skewed cells.

parameters used to apply the RANSAC are selected experimentally. Further

research is required to investigate their optimal values in the algorithm in

order to generate a fitted surface grid that would best represent an ideal road

surface.

Correlating roughness estimation with IRI scale

Direct comparison with the international standard IRI scale is required to

aid interpretation of our road roughness estimation. Additional research is

required to find a correlation between the calculated standard deviation and

the IRI values along the road surface. This will allow us to quantify the

estimated road roughness against this globally accepted IRI scale. This also

requires us to process larger road sections as has been described in Section

8.1.
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Point density effect on roughness estimation

The underlying point density of the LiDAR will affect the surface grid fitting.

We need to investigate the limits of point density on our surface grid fitting

approach and recommend a point density for different road surface grades.
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