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ABSTRACT 
This report concerns the design and clinical use of a reflective brachial photoplethysmograph. A 

plethysmograph is an instrument to obtain tracings showing volume changes of a part of the body. 

Originally this related to volume variations due to blood circulation within the body part of interest. The 

instrument is said to have been invented by Mosso of Turin around 1870 [1], known in Italian as a 

"pletismografo", and first reported in Scientific American in July 1872. A photoplethysmograph is an 

optical detector that indicates the volume of blood in or passing through an area of tissue. By placing the 

photoplethysmograph at or near the site of a human artery the pulse waveform can be detected and 

measured. The photoplethysmograph can be transmissive or reflective. There are a variety of sites 

around the body that are commonly used for detecting the pulse waveform including the finger, the ear 

lobe, and the foot. The device developed in this work is a reflective detector that uses the brachial artery 

as a photoplethysmographic site. There appear to be no prior indications in academic or patent literature 

of this site being used with this type of detector and consequently the authors believe this device to be 

novel and worthy of reporting to the research community.  
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1 Introduction 

During the development of an experimental procedure to correlate pulse transit time (PTT) with blood 

pressure [1] in humans, it became necessary to find a waveform detection site on the same artery but 

‘upstream’ of the finger. Pulse transit time is the time an arterial pressure wave takes to travel between 

two points along the same artery. The brachial artery was the natural site as it rises to the surface of the 

upper arm before sinking deep into the tissue of the lower arm. This location is known as the anticubital 

fossa. Here the brachial artery splits into the ulnar and radial arteries. The traditional method of 

measuring PTT is to use the R-wave of the ECG as one timing reference and to use a consistent feature 

of the photoplethysmograph (PPG) as the other. Having conducted experiments using this technique, a 

consistent jitter in the PTT data suggested that there may have been variation in the timing of the R-

wave. The timing variation is indicated as arising from isovolumetric contraction period variations [3]. It 

is assumed, in experiments using this timing reference that the R-wave of the ECG coincides with 

contraction of the left ventricle and systole. The source of jitter observed in the PTT data needed to be 

researched to establish if the ECG was the source and to examine whether a better timing reference 

could be found. The clearest approach was to cannulise a variety of subjects with a brachial cannula [3], 

giving a direct measurement of the pulse waveform. Fitting the subjects with an ECG and a finger 

photoplethysmograph would provide all the data needed to examine the problem. Cannulisation is both 

uncomfortable and risky in subjects so another means of looking at the brachial pulse waveform was 

required. The reflective brachial PPG was developed as a result of the unique requirements of this 

experimental protocol. 

 

 

2 Technical development 

The most common application of photoplethysmography is in pulse oximetry [4]. It was apparent from 

product literature that reflective oximetry probes existed for paediatric use. Leading commercial 

companies Nellcor© and Nonin© produced service manuals that indicated the type of circuit topology 

used in this sort of device.��
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Figure 1 Principles of oximeter operation (reproduced by permission of Dr J Moyle) 

 

Referring to figure 1(a) there are four absorption strata at a PPG site indicated. The majority of light 

produced by an oximetry probe is scattered by tissue, venous blood and arterial blood. A small 

proportion of light experiences variable scatter due to the pulsation of arterial blood.  Some proportion 

of this light is detected by an optoelectronic detector and contains the signature of the pulsatile 

component of arterial blood flow. From figure 1(b) it is apparent that the proportion of the detected light 

that contains the pulsatile component is a fraction of the total received light. This large DC offset clearly 

has implications in the design of a pulse oximeter or PPG. Oximetry concerns the measurement of 

relative absorption of two different frequencies of light. This provides a metric of the ratio of 

oxyhaemoglobin to deoxyhaemoglobin. In the development of a PPG probe we can choose to work with 

either infrared or red light as both will show the variances in absorption required to produce a PPG 

characteristic. It was decided to use infrared light because of the availability of infrared detectors ‘tuned’ 

to different frequencies. Additionally, it was felt that an infrared detector would be less prone to 

interference from changes in ambient lighting conditions. Figure 1(c) shows a typical oximeter system 
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diagram. In common with this diagram most literature shows the oximeter or PPG in the transmissive 

configuration. The optical properties that give rise to transmissive changes also give rise to reflective 

changes. Consequently a reflective probe should look similar to a transmissive probe except in its 

physical configuration (Figure 3(b)). 

 

2.1 Circuit design 

A number of disposable oximetry probes were sourced with the intention of experimenting with them as 

the front end of the amplification circuit. The probes however contained parts that had no useable 

references or numbers and consequently it was not possible to examine data sheets. It was decided that 

both the circuit and the probe would need to be developed from first principles. As the probe was 

required to operate in conjunction with a transmissive finger probe and an electrocardiograph (ECG) 

amplifier, the other circuits were constructed onto a single printed circuit board (PCB) [4].  

The PPG circuit comprises a current source driving an infrared LED. This was implemented with a 

linear regulator and rheostat arrangement, as a pulse width modulated (PWM) source would have 

potentially introduced noise into the system. The compromise here is that the source may need to be 

adjusted manually if the signal, detected by the photodiode, is not strong enough. The infrared detector, 

Texas Instruments TSL262, comprises a photodiode and an initial FET gain stage, detecting the 

transmitted light through the finger. The signal from the photodiode contains a large DC component or 

offset. Superimposed on this is an AC characteristic reflecting the pulsatile component of the circulation. 

This component can vary between 0.01% and 1% of the DC level. The signal from the IR detector is 

filtered and then amplified on the circuit board. A Butterworth, single pole, band pass filter is used, 

where the lower cut-off frequency is 0.05Hz. The upper cut-off frequency is 10Hz. The gain of the filter 

is G=522. To ensure the 'cleanest' possible signal, the PPG system is implemented with high quality 

active and passive components on a double sided PCB. A system diagram is shown in figure 2. There 

are two aspects to the circuit. An infrared source is controlled by a variable current source, a reflected 

component is detected, filtered and amplified. 
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Figure 2 System diagram of ECG, PPGf and PPGb circuit 

 

2.2 Probe design 

Two probes were designed and tested. Figure 2(a) shows the first prototype. Three high intensity 

infrared light emitting diodes (LEDs) or emitters surround an IR detector. Both emitters and detectors 

are housed in an opaque black plastic disk and are flush with the surface.  There is a raised ring around 

the detector such that when the front surface is pressed against the flesh there is no direct path for the IR 

light to travel between emitters and detector. The probe is positioned above the elbow, at the point 

where the brachial pulse is detected by hand. The emitters bathe an area around and including the 

brachial artery with IR light. The detector, if it is placed directly over the artery, will detect variations in 

reflected light and consequently the pulsatile waveform. This prototype probe worked well in tests 

conducted in the Dep’t of Anaesthesiology in St Vincent’s Hospital, under the direction of Dr Leo 

Kevin. The probe was however highly sensitive to motion, and being of rigid construction, had to be 

pushed into the flesh causing a certain degree of discomfort as well as unpredictable behaviour given 

any movement. 
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Figure 3 Probe designs 

In figure 2(b) a number of changes to the design are shown. The principal change is reduction from three 

emitters to one emitter. This was due to the fact that in the first prototype the detector output level 

frequently saturated indicating too much IR light. The second change was the move to a flexible opaque 

medium called Sorbothane©.  This is a viscoelastic material similar to a very low durometer rubber that 

conforms to the contour of the skin but can retain the emitter and detector components. Sorbothane, 

unlike rubber, is latex free and more suitable than rubber as a skin contact probe under biocompatibility 

guidelines. This probe proved substantially more stable in operation. Being slightly smaller than the first 

prototype, it lent itself to better attachment to the skin. The cable on this probe was lighter than the first 

prototype and this may also have contributed to enhanced stability. The performance enhancements 

achieved through the use of a smaller, more flexible probe with a lighter cable suggest that a further 

reduction in size and a telemetric solution to cabling could optimise this probe.    

 

3 Clinical Testing  

Having decided that the second prototype probe was superior to the first a trial was set up in which the 

probe would be used in a clinical setting. A series of 10 subjects were fitted with the probe and a data 

logging program was developed to collect the resulting data.  

Figure 5 shows a sample of output from the brachial PPG. The sample has the morphology that might be 

expected but demonstrates both a high frequency component and some baseline wander. Predictably 
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(a) First prototype probe (b) Second prototype probe 
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enough, a spectrum produced from the data in Matlab© shows the high frequency component to be due 

to 50Hz mains ‘breakthrough’. The baseline wander, occurring at about 0.8Hz, may have physiological 

significance but this is beyond the scope of this report. It is notable that there was no EMG type noise 

detected. This is due to the fact that the probe, being optical in nature, is galvanically isolated from the 

body. Figure 6 shows the signal after band-pass filtering. The time and amplitude are represented in 

samples where the A/D has an input range -10V to 10V. The A/D card offers 12 bit resolution so 1 

sample = 4.88 x 10-3 V. The data is sampled at 10kHz so 1 sample = 1 x 10-4 seconds. The offline filter 

was implemented in Matlab© and is a 4 pole Butterworth design. 

 

 
 

Figure 5 PPG probe output unfiltered  
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Figure 6 PPG probe output band pass filtered 
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4 Discussion 

The objectives of this work were to design, and use a reflective brachial PPG in a clinical environment. 

The process of design took much from the oximetry application and as such was completed quickly and 

inexpensively. The use of instrumentation amps as gain stages might be seen as ‘overkill’ in this 

application. In a commercial embodiment of such a device this might be so however for the purposes of 

this work the flexibility that they provided enabled experimentation with many emitter/detector pairs 

and filter parameters. 

The probe was sensitive to motion and on occasion saturated the amplifier when movement occurred. 

This situation was improved by the use of an arm splint. The splint comprised a short length of 

cardboard tube cut down its long axis. The splint was secured to the arm using loose fitting Velcro© 

straps.  

A variety of solutions to the issue of resilience and stability of the signal may form the core of further 

work. Among the suggestions was the possibility of a matrix of detectors or emitter/detector pairs 

covering the general area in which the brachial artery is found. Some system of polling the matrix 

elements to read the strongest signal or an aggregated signal from several elements seems plausible. The 

second interesting suggestion was that of an automated gain circuit that would compensate for variations 

in the output signal. This would be achieved by controlling the output intensity of the emmiter/s and 

varying the gain of the detector. 

The final objective was to use the device in a clinical setting. The device proved simple to use being 

attached to the arm with surgical tape. It was necessary to monitor the output on an oscilloscope to 

ensure there was a good signal. In the first probe the use of three high power emitters generated a degree 

of heat that was at times uncomfortable for the subject. The second probe, produced no perceivable 

heating effects. 

The brachial photoplethysmographic probe is a device with much development potential. Its usefulness 

in examining pulse transit time has been demonstrated in subsequent work [6]. The authors believe that 

this non-invasive device may be useful in looking at the morphology of the blood pressure characteristic 

and has commercial potential in the area of ambulatory blood pressure measurement. 
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