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FORMALLY-REVERSIBLE MAPS OF C2

ANTHONY G. O’FARRELL & DMITRI ZAITSEV*

Abstract. An element g of a group is called reversible if it is conjugate in the group to its
inverse. This paper is about reversibles in the group G = G2 of formally-invertible pairs of formal
power series in two variables, with complex coefficients. The main result is a description of the
generic reversible elements of G2. We list two explicit sequences of reversibles which between them
represent all the conjugacy classes of such reversibles. We show that each such element is reversible
by some element of finite order, and hence is the product of two elements of finite even order. Those
elements that may be reversed by an involution are called strongly reversible. We also characterise
these.

We draw some conclusions about generic reversibles in the group G = G2 of biholomorphic germs
in two variables, and about the factorization of formal maps as products of reversibles. Specifically,
each product of reversibles reduces to the product of five.

1. Introduction

An element g of a group is called reversible if it is conjugate to its inverse, i.e. the conjugate
gh := h−1gh equals g−1 for some h from the group. We say that h reverses g or h is a reverser of
g, in this case. Furthermore, if the reverser h can be chosen to be an involution, g is called strongly
reversible. (Note that some literature uses the terminology “weakly reversible” and “reversible”
instead of respectively “reversible” and “strongly reversible” used here.)
Reversible maps have their origin in problems of classical dynamics, such as the harmonic

oscilator, the n-body problem or the billiards and Birkhoff [4] was one of the first to realize their
significance. He observed that a Hamiltonian system with Hamiltonian quadratic in the momentum
p (such as the n-body problem) or, more generally any system in of the form

(1.1)

{
∂q/∂t = Lp,

∂p/∂t = V (p, q),
(q, p) ∈ R

n × R
n, t ∈ R,

where L is linear, admits the so-called “time reversal symmetry” (t, q, p) 7→ (−t, q,−p). In
particular, the flow map (q0, p0) 7→ (q(t), p(t)), where (q(t), p(t)) is the solution of (1.1) with
(q(0), p(0)) = (q0, p0) is reversed by the involution (q, p) 7→ (q,−p).
In CR geometry reversible maps played important role in the celebrated work of Moser and

Webster [11], arising as products of two involutions naturally associated to a CR singularity. Such
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a reversible map is called there “a discrete version of the Levi form” and plays a fundamental role
in the proof of the convergence of the normal form for a CR singularity. More recently, this map
has been used by Ahern and Gong [1] for so-called parabolic CR singularities.
There is a class of diffeomorphisms of R2 that has received considerable attention: the so-called

standard maps, or Taylor-Chirikov maps, which arise in many applications in physics, and are
strongly-reversible in the group of real-analytic diffeomorphisms [8, Section 1.1.4]. The standard
maps fix the origin and are area-preserving. When they are real-analytic, they thus give reversible
elements of our power-series group.

This paper aims to classify formally reversible maps in two complex variables, for which the
eigenvalues of the linear part are not roots of unity. The presence of roots of unity is a well-known
obstruction leading to the presence of additional resonances.
Reversibility is already understood [12] in the groupG1 of formal power series maps of C without

constant terms (see also [2] for reversibility in the group G1 of biholomorphic map germs of C fixing
the origin):

Theorem 1.1. [12, Theorem 5] A formal power series self-map of C without constant term is
reversible if and only if it is formally conjugate to

(1.2) ϕµ,λ,k(z) :=
µz

(1 + λzk)1/k

for some integer k ≥ 1, µ = ±1 and λ ∈ {0, 1}. The map (1.2) is reversed by any rotation z 7→ ωz
with ωk = −1.

Note that for k = 1, ϕ1,1,1 is precisely the (unique up to conjugation) map z 7→ z+HOT that is
conjugate to a projective transformation, whereas ϕ1,1,k is obtained from ϕ1,1,1 via “conjugation”
under the non-invertible map z 7→ zk, i.e. (ϕ1,1,k(z))

k = ϕ1,1,1(z
k).

In this paper, our main focus is on the group G = G2 of formal power series self-maps of C2

without constant terms. We obtain the following formal normal form:

Theorem 1.2. A formal power series map of C2 whose linear part has eigenvalue λ not a root of
unity is reversible if and only if it is (formally) conjugate either to its linear part or to one of the
following maps, which are all pairwise inequivalent under conjugation:

(1.3) (z1, z2) 7→

(
λ(1 + pk)z1,

1

λ(1 + pk)
z2

)
,

(
λ(1 + pk)

1

k

(1 + 2pk)
1

k

z1,
1

λ(1 + pk)
1

k

z2

)
, p = z1z2,

where k ≥ 1 is an integer. Furthermore, the following hold:

(1) Each map in (1.3) is reversed by any Jc(z1, z2) = c(z2, z1) such that c2k = 1 for the first
series of maps and c2k = −1 for the second.

(2) A map in (1.3) (with λ not a root of unity) is strongly reversible if and only if it is in the
first series.

(3) Each reverser of a map in (1.3) has finite order.



3

Similarly to (1.2), the maps (1.3) can be obtained from those corresponding to k = 1 by a
“conjugation” under the non-invertible map (z1, z2) 7→ (zk1 , z

k
2 ). The ‘generic type’ condition that

λ not be a root of unity is important as the following example shows. (Note that a similar condition
also appears in the work of Moser-Webster [11], where it is also shown to be crucial for the existence
of the formal normal form constructed there.)

Example 1.3. The assumption that λ is not root of unity cannot be dropped in Theorem 1.2.
Indeed, the map

(1.4) F (z1, z2) =

(
z1

1 + z1
,

z2
1 + z1

)

is reversed by the involution (z1, z2) 7→ (−z1, z2), (in fact, it is the projectivization of the linear
map (z0, z1, z2) 7→ (z0 + z1, z1, z2) reversed by (z0, z1, z2) 7→ (z0,−z1, z2)). However, it has the
second order terms (−z21 ,−z2z1) that cannot be eliminated by conjugation and do not occur in a
map from (1.3). Hence, F is not conjugate to any map in (1.3).

We also obtain polynomial representatives conjugate to the maps of the second series:

Proposition 1.4. For every k, the map from the second series in (1.3) is formally conjugate to
the polynomial map

(z1, z2) 7→
(
λ(1 + pk)z1, λ

−1
(
1 + pk + (2k + 1)p2kz2

))
, p = z1z2.

Remark 1.5. Moser [10] showed that real-analytic area preserving maps germs on (R2, 0) having a
hyperbolic fixed point at the origin may be conjugated by a convergent coordinate change to the
normal form

(1.5) (σ · x · exp(w(xy)), σ · y · exp(−w(xy))) ,

where σ = ±1 and w is a convergent series. Thus they are strongly reversible and are conjugate to
an element of our first series in (1.3), with some real λ 6= ±1. On the other hand, a general map
conjugate to (1.5) is always strongly reversible but need not be area preserving, whereas maps of
the second series in (1.3) are not area-preserving.

Theorem 1.2 and Proposition 1.4 are proved in Section 7.
Furthermore, following the arguments of Moser-Webster [11] we come to a biholomorphic clas-

sification for the maps conjugate to the first series:

Theorem 1.6. If a biholomorphic map germ in C2 is formally conjugate to a map in the first
series in (1.3) with |λ| 6= 1, then it is biholomorphically conjugate to it.

Note that any map in the first series in (1.3) is conjugated to itself by (i.e. commutes with)
any map of the form (z1, z2) 7→

(
z1ϕ(p), z2/ϕ(p)

)
, where ϕ is a formal power series in t ∈ C with

ϕ(0) 6= 0. Hence the biholomorphic conjugation map may differ from the original formal one.
The statement of Theorem 1.6 does not necessarily hold for maps conjugate to the second

second series in (1.3). In fact, Example 8.1 below shows that a biholomorphic map conjugate to a
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map in the second series in (1.3) (and hence formally reversible), may fail to be biholomorphically
conjugate to its formal normal form and may even fail to be biholomorphically reversible.
The statement of Theorem 1.6 also does not hold without the assumption |λ| 6= 1 due to

the remarkable theorem of Gong [6, Theorem 1.1] stating the existence of a biholomorphic map
F (z1, z2) = (λz1, λ

−1z2) + HOT with λ not a root of unity and |λ| = 1 such that F is formally
reversible by an involution (and hence F is formally conjugate to a map in the first series in
(1.3)) but is not reversible by a biholomorphic involution (and hence F is not biholomorphically
conjugate to its formal normal form).
We shall further discuss reversibility and centralisers in some related groups, along the way. We

draw some conclusions about generic reversibles in the group G2 of biholomorphic germs in two
variables (Theorem 10.1), and about the factorization of maps as products of reversibles. Since a
reversible element of G2 has linear part of determinant ±1 (see §2.4), any product of them has
the same property. Conversely we show:

Theorem 1.7. Each element of G2 whose linear part has determinant ±1 is the product of at
most four reversibles and an involution.

Theorem 1.7 is proved in §9.

2. Notation and Preliminaries

2.1. The map L. A typical element F ∈ G takes the form

F (z) = (F,1(z), F,2(z)) = (F,1(z1, z2), F,2(z1, z2))

where each F,j(z) is a power series in two variables having complex coefficients, and no constant
term. We shall refer to such series F as maps, even though they may be just ‘formal’, i.e. the
series may fail to converge at any z 6= 0.
We usually write the formal composition of two maps F,G ∈ G as FG. We also write the

product of two complex numbers a and b as ab, but in cases where there might be some ambiguity
we use a · b.
The series F may be expressed as a sum

F =
∞∑

k=1

Lk(F ),

where Lk(F ) is homogeneous of degree k. We abbreviate L1(F ) to L(F ). This term, the linear
part of F , belongs to the group GL = GL(2,C). We have inclusions GL → G, and L : G → GL is a
group homomorphism.
The elements of the kernel of L are said to be tangent to the identity.

2.2. Elements of Finite Order. We note the following, in which Gn denotes the group of all
invertible formal power series self-maps of Cn without constant coefficients. (Various cases of this
lemma,and the idea of its simple proof, are well-known. The case n = 1 is very classical. For
holomorphic maps in n variables, see [3, p.298]. In the differentiable category, Montgomery and
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Zippin [9] proved the local conjugacy of any involution to its derivative at a fixed point. The
equivalent global question is more delicate.)

Lemma 2.1. Let n ∈ N and let H be a subgroup of Gn such that
(1) L(F ) ∈ H whenever F ∈ H, and
(2) H ∩ kerL is closed under convex combinations, i.e. if F1, F2 ∈ H, L(F1) = L(F2) = id and
0 < α < 1, then αF1 + (1− α)F2 ∈ H.
Suppose Θ ∈ H has finite order. Then Θ is conjugated by an element of H∩kerL to its linear part
L(Θ).

Proof. Suppose F k = id. Let T = L(Θ), and form

(2.1) H =
1

k

(
id+ T−1Θ+ T−2Θ2 + · · ·+ T−k−1Θk−1

)
.

Then the assumptions imply that H ∈ H, and a short calculation shows that T−1HΘ = H , so
that TH = Θ, as required. �

This applies to H = G, G ∩ kerL, G ∩ ker(det ◦L) = L−1(SL(2,C)), L−1(U(2,C)) (and, more
generally to L−1(H) for any subgroup H ≤ GL), to the corresponding subgroups of biholomor-
phic germs (i.e. series that converge on a neighbourhood of the origin) and to other subgroups
introduced below. It applies to the intersection of any two groups to which it applies.
In particular, in any H to which the lemma applies, each involution is conjugate to one of the

linear involutions in the group. In GL = GL(n,C), a matrix is an involution if and only if it is
diagonalizable with eigenvalues ±1.

2.3. Reversibles in one variable. Here we collect facts about reversibles in one variable that
will be used throughout the paper.

Lemma 2.2. A map h ∈ G1 is a reverser of the map (1.2) with µ = 1 and λ 6= 0 if and only if it
is of the form

(2.2) hω,ν(z) =
ωz

(1 + νzk)1/k
,

where ν, ω ∈ C are arbitrary with ωk = −1.

Proof. Since ϕ1,λ,k is the inverse of ϕ1,−λ,k, the map hω,0(z) = ωz reverses ϕ1,λ,k for any ω with
ωk = −1. Furthermore, since any map h1,ν commutes with ϕ1,λ,k, we have

h−1
ω,νϕ1,λ,khω,ν = h−1

1,νh
−1
ω,0ϕ1,λ,khω,0h1,ν = h−1

1,νϕ
−1
1,λ,kh1,ν = ϕ−1

1,λ,k

and therefore any hω,ν reverses ϕ1,λ,k. Vice versa, if h reverses ϕ1,λ,k, comparing the coefficients of
zk+1 in the equation

(2.3) hϕ1,−λ,k = ϕ1,λ,kh

yields h(z) = ωz + O(z2) for some ωk = −1. Furthermore, we can choose ν such that g := h−1
ω,νh

has no coefficient of zp+1. Then it follows from (2.3) that g commutes with ϕ1,−λ. We claim that
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g = id. Suppose on the contrary, that g(z) = z + azβ + · · · with a 6= 0 and β 6= p + 1. Then
comparing the coefficients of zβ+k+1 in the identity gϕ1,λ,k = ϕ1,λ,kg yields a contradiction. Hence
g = id proving that h is of the form (2.3). �

Corollary 2.3. Any reverser of the map (1.2) with µ = 1 and λ 6= 0 is of finite order at most 2k.

Proof. Since hω,0 reverses ϕ1,λ,k, we have

h2kω,ν = (hω,0ϕ1,ν,khω,0ϕ1,ν,k)
k = (hω,0hω,0ϕ

−1
1,ν,kϕ1,ν,k)

k = h2kω,0 = id.

�

2.4. Linear reversibles. Reversibility is preserved by homomorphisms, so a map F ∈ Gn is
reversible only if L(F ) is reversible in GL(n,C). Classification of linear reversible maps is simple.
Suppose F ∈ GL(n,C) is reversible. Since the Jordan normal form of F−1 consists of blocks of
the same size as F with inverse eigenvalues, the eigenvalues of F that are not ±1 must split into
groups of pairs λ, λ−1. Furthermore, we must have the same number of Jordan blocks of each size
for λ as for λ−1. Vice versa, if the eigenvalues of F are either ±1 or split into groups of pairs λ, λ−1

with the same number of Jordan blocks of each size, then both F and F−1 have the same Jordan
normal form and are therefore conjugate to each other.

2.5. The Group GL(2,C). In particular, a linear map is reversible in GL(2,C) if and only if it is

an involution or is conjugate to

(
1 1
0 1

)
,

(
−1 1
0 −1

)
or to a matrix of the form

(2.4)

(
µ 0
0 µ−1

)
,

for some µ ∈ C×. Thus each reversible F is conjugate in G (by a linear conjugacy) to a map
having one of these types as its linear part.
The collection of maps (2.4) forms an abelian subgroup, which we denote by D. The element

(2.4) has infinite order precisely when µ is not a root of unity, and this is what we regard as the
generic situation. In this paper, we are going to concentrate on the following question:

Q. Which elements F ∈ G for which L(F ) has an eigenvalue that is not a root of unity are
reversible?

To approach this, we are going to begin by studying the centraliser of D in G. In fact, the
classical Poincaré-Dulac Theorem [7, Section 4.8, Theorem 4.22] implies that any map F ∈ Gn is
conjugate to a map in the centralizer of the linear part L(F ). In case L(F ) = diag(µ, µ−1) ∈ D and
µ is not a root of unity, it is easy to see that the centralizer of L(F ) coincides with the centralizer
of D. We shall, incidentally, discover some classes of reversibles F that have L(F ) = id, although
our focus is not on these non-generic examples. Apart from the maps given in (1.3), which are
tangent to the identity when λ = 1, we also meet the maps given in Equation (7.9) below.



7

2.6. The Groups C = CD(G) and E = ED(G). A map F ∈ G is in the centralizer of D if and
only if it commutes with any particular element of D of infinite order, and if and only if it takes
the form F =M(ϕ, ψ), given by

(2.5) M(ϕ, ψ)(z) = (z1ϕ(z1z2), z2ψ(z1z2)),

where ϕ(t) and ψ(t) are series in one variable such that ϕ(0) 6= 0 6= ψ(0) (i.e. they are series
having nonzero constant term). We denote by C the group of all such maps:

C := CD(G) = {M(ϕ, ψ)(z) : ϕ, ψ ∈ G1, ϕ(0) 6= 0 6= ψ(0)}.

In the following we shall adopt the notation

p := z1z2, J(z) = z̃ := (z2, z1).

Then J reverses every Λ ∈ D, i.e. J−1ΛJ = Λ−1. Furthermore, a map Θ ∈ G reverses each (or any
fixed infinite-order) element Λ ∈ D if and only if JΘ commutes with Λ and hence, if and only if

(2.6) Θ(z) = (z2ϕ(p), z1ψ(p)),

where ϕ(t) and ψ(t) are as before. This may be written as Θ =M(ϕ, ψ)J = JM(ψ, ϕ). We denote
the collection of such Θ by R:

R := {JF : F ∈ C} = {FJ : F ∈ C}

and note that it is both a left and a right coset of C.
The extended centraliser ES(G) of a subset S in a group G is the set of all elements of the

group that either commute with all the elements of the subset or reverse them all. We denote the
extended centraliser of D in G, by E:

E := ED(G) = C ∪R.

This is a group, in which C has index 2.
Lemma 2.1 applies to H = C and to H = E:

Lemma 2.4. If F ∈ E has finite order, then there exists H ∈ C such that FH is linear.

2.7. The Homomorphisms P , H, and Φ. To F ∈ E we associate the one variable power series

P (F ) = ρ(t) ∈ G1, ρ(t) := t · ϕ(t) · ψ(t),

where F is given by the right-hand side of either (2.5) or (2.6). Note that, following our convention,
we use · for the (formal) pointwise multiplication of power series. Denoting

p = π(z1, z2) := z1z2,

we have the basic property

(2.7) P (F ) ◦ π = π ◦ F,

i.e. P (F ) is “semi-conjugate” to F via π. Property (2.7) determines P (F ) uniquely. A routine
calculation using (2.7) proves:

Lemma 2.5. P : E → G1 is a group homomorphism.
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The map P and its homomorphic property have been fundamentally used in [5] in a more
general context of one-resonant maps.
The kernel of P is the set of maps F of the form

F (z) =

(
z1ϕ(p),

z2
ϕ(p)

)
or

(
z2ϕ(p),

z1
ϕ(p)

)
,

and C ∩ kerP is abelian.
Define the “lifting” homomorphism map H : G1 → C by

(2.8) H(χ)(z) =

(
z1χ(p)

p
, z2

)
,

whose basic property is P (H(χ)) = χ. In particular, the restriction P |C is surjective. We also
consider the “lifting” to the second argument given by

(JH(χ)J)(z) =

(
z1,

z2χ(p)

p

)

that also has the basic property P (JH(χ)J) = χ.

We denote by F×
1 the multiplicative group of the ring of formal power series ϕ(t) = a0+a1t+ · · ·

in one variable having a0 6= 0, (in which the group operation corresponds to convolution on the
coefficients, the formal equivalent of pointwise multiplication, as opposed to composition). The
map

Φ :






F×
1 → C,

ϕ 7→

(
z1ϕ(p),

z2
ϕ(p)

)
,

is a group isomomorphism onto its image, which is equal to C ∩ kerP .

We note that each F ∈ C has a unique factorization in the form H(ρ)Φ(ψ), and another in the
form JH(ρ)JΦ(ϕ). However, C is not the direct product of imH and imΦ.

3. Centralisers in E

3.1. Centralisers in C. A routine calculation gives:

Lemma 3.1. Let Fj(z) = (z1ϕj(p), z2ψj(p)), and ρj = P (Fj), for j = 1, 2. Then

(3.1) F1(F2(z)) = (z1ϕ2(p)ϕ1(ρ2(p)), z2ψ2(p)ψ1(ρ2(p))) .

This immediately yields:

Lemma 3.2. Let Fj(z) = (z1ϕj(p), z2ψj(p)), and ρj = P (Fj), for j = 1, 2. Then F1F2 = F2F1 if
and only if

(3.2)

{
ϕ2(p)ϕ1(ρ2(p)) = ϕ1(p)ϕ2(ρ1(p))
ψ2(p)ψ1(ρ2(p)) = ψ1(p)ψ2(ρ1(p))

.
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Lemma 3.3. Let F1 ∈ imΦ (= C ∩ kerP ) and F2 ∈ E. Suppose F1F2 = F2F1. Then either F1 is
linear (and hence is in the group D of matrices (2.4)) or P (F2) has finite order.

The proof is based on the following useful fact in one variable:

Lemma 3.4. Let ϕ(t) be a formal power series in one variable that is invariant under a formal
change of variables t′ = ρ(t) ∈ G1 with ρ(0) = 0, i.e.

(3.3) ϕ(ρ(t)) = ϕ(t).

Then either ϕ = const or ρ has finite order.

Proof. Suppose that ϕ 6= const, i.e.

ϕ(t) = ϕ(0) + αtk +

∞∑

j=1

αjt
k+j, α 6= 0.

Since ρ(t) = ct+ · · · , comparing the coefficients of tk in (3.3) gives ck = 1. Then, replacing ρ with
ρk, we may assume c = 1. It clearly suffices to show that ρ = id. Assuming the contrary, we have

ρ(t) = t(1 + βtr + HOT), β 6= 0,

where HOT denotes terms of degree greater than r. Now

ϕ(ρ(t)) = 1 + αρ(t)k +
∑∞

j=1 αjρ(t)
k+j

= 1 + αtk(1 + kβtr) +
∑r

j=1 αjt
k+j + HOT

where HOT denotes terms of degree greater than k + r, so comparing coefficients of tk+r in (3.3),
we get αβk = 0, a contradiction. �

Proof of Lemma 3.3. Replacing F2 with F 2
2 if necessary, we may assume that F2 ∈ C. In the

notation of Lemma 3.2 we have ρ1(t) = t and therefore the first identity in (3.2) implies ϕ1(ρ2(t)) =
ϕ1(t). Then by Lemma 3.4, either ϕ1 = const and then F1 ∈ D or ρ2 = P (F2) has finite order. �

Corollary 3.5. If commuting elements F1 ∈ imΦ and F2 ∈ C are tangent to the identity, then
F1 = id or F2 ∈ imΦ. In fact, it suffices to assume that F1 and P (F2) are tangent to the identity.

Proof. By Lemma 3.3, either F1 is linear and hence F1 = id or P (F2) has finite order and hence is
the identity. �

Corollary 3.6. The centraliser of imΦ in E is imΦ.

Proof. Recall that E = C ∪R (see Section 2.6 for the notation). Suppose F ∈ E commutes with

all elements of imΦ. If F ∈ R, then it does not commute with, for instance,

(
2 0
0 1

2

)
, so F must

belong to C, in particular, Λ := L(F ) ∈ D. Since Λ commutes with each element of imΦ, it follows
that F2 = Λ−1F commutes with each element of imΦ, and is tangent to the identity. Taking F1 to
be any element of imΦ that is tangent to the identity but not equal to the identity, and applying
the last corollary, we conclude that F2 ∈ imΦ. �

Corollary 3.7. imΦ is a maximal abelian subgroup of E.
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4. Reversibility in E

Involutions are trivially reversible (by the identity), in any group. By Lemma 2.4, each involution
in C is conjugate to (±z1,±z2), and each proper involution in R is conjugate to ±(z2, z1). It is not
altogether clear what other elements of R are reversible in E, but we do not need to know this,
for our purposes. We concentrate on describing the elements of C reversible in E.

4.1. Elements of imΦ.

Lemma 4.1. Each element of imΦ is strongly-reversible in E.

Proof. Such maps are obviously reversed by the involution J . �

4.2. Elements of C. We remark that if F ∈ C is reversible, then det(L(F )) = ±1, so P (F )(t) =

±t + · · · . Thus L(F ) takes the form

(
±µ 0
0 µ−1

)
for some nonzero µ ∈ C, so L(F 2) ∈ D.

Theorem 4.2. Let F ∈ C be reversed by Θ ∈ E, i.e.

(4.1) Θ−1FΘ = F−1.

Then either P (F ) has finite order or some power of Θ belongs to the matrix group D.

We use the following simple relation between reversers and commuting maps:

Lemma 4.3. If F is reversed by Θ, then F is reversed by any Θm with m ∈ Z odd and commutes
with any Θm with m ∈ Z even.

Proof. The statement is straightforward for m ≥ 0. Taking the inverse of (4.1) yields Θ−1F−1Θ =
F showing the statement for m = −1 and therefore for any m < 0. �

Proof of Theorem 4.2. Replacing F by F 2, if need be, we may assume L(F ) ∈ D. Suppose P (F )
has infinite order. Since P (F ) (which takes the form t+ · · · ) is reversed by P (Θ), it follows from
Corollary 2.3 that P (Θ) has finite order, so we may choose k ∈ N such that Θ2k ∈ imΦ. Since
Θ2k also commutes with F by Lemma 4.3, we may apply Lemma 3.3 with F1 = Θ2k and F2 = F ,
and conclude that Θ2k ∈ D. �

Corollary 4.4. Suppose F ∈ C has linear part L(F ) ∈ D, with L(F ) 6= ±id, and is reversible in
E. Then (1) each reverser of F lies in R, and (2) F may be reversed in E by some element of
finite order.

Proof. Suppose Θ ∈ E reverses F . Then L(Θ) reverses L(F ), which takes the form (2.4), with
µ 6= ±1. Thus L(Θ) has to interchange the eigenvectors of µ and 1/µ, and must take the form
(az2, bz1) for some nonzero a and b. In particular, the reverser cannot belong to C, so part (1)
is proved. Composing with an element of D, we may assume that the reverser Θ has linear part
(cz2, cz1). Then Theorem 4.2 tells us that 1◦ P (F ) has finite order or 2◦ some power Θ2k ∈ D.
In case 1◦, P (F ) is linearizable by Lemma 2.1. Furthermore, since L(F ) ∈ D, the map P (F )

is also tangent to the identity. Hence we must have P (F ) = id and therefore F ∈ imΦ, which is
reversed by J .
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In case 2◦, Θ2k = L(Θ)2k = c2k · id, but the only multiples of the identity belonging to D are
±id, so Θ has order at most 4k. �

Corollary 4.5. Suppose F ∈ C has linear part L(F ) ∈ D with L(F ) 6= ±id, and is reversible in
E. Then either F is linear or each reverser of F in E has finite order.

Proof. We have seen this in case 2◦ (see Proof of Corollary 4.4). In case 1◦, F ∈ imΦ is reversed by
J , so each other reverser of F takes the form JG, where G commutes with F , and G belongs to C

since L(F ) has two different eigenvalues. Then for Λ := L(G) ∈ D, the map Λ−1G is tangent to the
identity and commutes with L(F )−1F . If F 6= L(F ), then Corollary 3.5 tells us that Λ−1G ∈ imΦ,
hence G ∈ imΦ, so (JG)2 = JGG−1J = id. �

We draw a further corollary from the proof of Corollary (4.4):

Corollary 4.6. Suppose F ∈ C is reversible in E and has linear part L(F ) 6= ±id. Then F is
conjugate in E to a map reversed by one of the maps Jc(z) = cz̃, where c is a root of unity.

Proof. In case 1◦, we may take c = 1. In case 2◦, multiplying with suitable element Λ ∈ D, Θ can
be assumed to be of finite order and satisfy L(Θ) = Jc, where c is a root of unity. The statement
now follows from Lemma 2.1. �

5. Maps Reversed by Jc(z) = cz̃

Here we fix one of the linear maps Jc ∈ R identified in the last subsection, and we describe all
the elements of C that it reverses. We assume that c is a root of unity, and set ω = c̄2. Let k be
the least natural number with ω2k = 1 (i.e. k is the order of ω2).

5.1. If a map Θ reverses two commuting maps F and G, then it also reverses their composition
FG. Thus if Jc reverses a map F ∈ C having linear part Λ, then, since Jc reverses Λ, it also
reverses the map G = Λ−1F , which is tangent to the identity. Thus each F ∈ C reversed by Jc
factors as ΛG, where G ∈ C is tangent to the identity, and is reversed by Jc.

5.2. If Jc reverses an F ∈ E. Then ρ = P (F ) is reversed by c2t = ω̄t (and hence by the inverse
ωt, see Lemma 4.3), i.e.

(5.1) ω−1ρ(ωρ(t)) = t.

In particular, Lemma 4.3 implies

(5.2) ρ(ω2t) = ω2ρ(t).

Also reversibility implies ρ(t) = ±t + HOT (see §2.4). Furthermore, since Jc interchanges the
eigenspaces of L(F ), we must have L(F ) ∈ D and therefore

(5.3) ρ(t) = t+ HOT.
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5.3. Consider an arbitrary F ∈ C, with L(F ) ∈ D, of the form F = (z1ϕ(p), z2ψ(p)), with
ρ = P (F ). For any complex c, we calculate

(FJ−1
c FJc)(z) =

(
z1 · ψ(c

2p) · ϕ
(
p · ϕ(c2p) · ψ(c2p)

)
, z2 · ϕ(c

2p) · ψ
(
p · ϕ(c2p) · ψ(c2p)

))
.

Thus Jc reverses F if and only if

(5.4)
ψ(c2t) · ϕ (tϕ(c2t)ψ(c2t)) = 1,
ϕ(c2t) · ψ (tϕ(c2t)ψ(c2t)) = 1,

}

or, equivalently,

(5.5)
ψ(c2t) · ϕ (ωρ(c2t)) = 1,
ϕ(c2t) · ψ (ωρ(c2t)) = 1,

}

where as before ρ(t) = tϕ(t)ψ(t).
Now define

(5.6) σ(t) := ωρ(t),

which satisfies

(5.7) σ(t) = ωt+ HOT

in view of (5.3). Then the reversibility equation (5.1) for ρ becomes

(5.8) σ2(t) = ω2t,

and the reversibility equations (5.5) for F become

(5.9)
ψ(t) · ϕ (σ(t)) = 1,
ϕ(t) · ψ (σ(t)) = 1,

}

where we replaced c2t by t. Denoting

(5.10) g(t) :=
ϕ(t)

ψ(t)
,

we obtain from (5.9) that

(5.11) g(σ(t)) =
ϕ(σ(t))

ψ(σ(t))
=
ϕ(t)

ψ(t)
= g(t).

In view of (5.8), it follows that

(5.12) g(ω2t) = g(σ2(t)) = g(t).

Equation (5.8) admits two possibilities, a priori:

1◦: σ may be the linear map σ(t) = ωt. In this case, Equation (5.6) yields ψ(t) = 1/ϕ(t), so
F ∈ imΦ. Equations (5.9) then yield ϕ(ωt) = ϕ(t), i.e. ϕ(t) takes the form ϕ1(t

k), where k is the
order of ω.
Conversely, Jc reverses F (z) = (z1ϕ(p), z2/ϕ(p)) whenever ϕ(c

2t) = ϕ(t), i.e. ϕ(t) is a function
of tk and the order of c divides 2k.
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We note that each of these F is reversed by the involution J = J1.

2◦: The more interesting possibility is that σ is a nonlinear solution of (5.8). Since ω is a root of
unity, σ has finite even order. Then Lemma 2.1 implies the existence of some h(t) = t+ · · · such
that σh(t) = ωt, where σh denotes the conjugate h−1σh, i.e. h−1(σ(h(t))) = ωt or, equivalently,

(5.13) h(ωt) = σ(h(t)).

Since σ(ω2t) = ω2σ(t), it follows from the formula (2.1) that h(ω2t) = ω2h(t). Furthermore, setting
g1(t) = g(h(t)) we obtain using (5.13) and (5.11):

(5.14) g1(ωt) = g(h(ωt)) = g(σ(h(t))) = g(h(t)) = g1(t).

The equations

ϕ(t)ψ(t) =
ρ(t)

t
,

ϕ(t)

ψ(t)
= g(t),





are clearly equivalent to

(5.15)
ϕ(t) =

(
ρ(t)g(t)

t

) 1

2

,

ψ(t) =

(
ρ(t)

tg(t)

) 1

2

,

where the branches of the square roots are chosen to make

(5.16) ϕ(0) =
1

ψ(0)
= λ,

the first eigenvalue of F . It follows from (5.15), (5.2) and (5.12) that

(5.17) ϕ(ω2t) = ϕ(t), ψ(ω2t) = ψ(t),

so that these functions, also, depend only on tk.

Conversely, suppose c is a 4k-th root of unity, for some k, and take any invertible h ∈ G1 with
h(t) = t + HOT and h(ω2t) = ω2h(t), i.e. h is any power series h(t) = t(1 +

∑
j≥1 hjt

kj) . Define

(5.18) σ(t) = h(ωh−1(t)), ρ(t) = ω−1σ(t) = ω−1h(ωh−1(t)),

in particular, σh(t) = ωt. Then clearly both σ and ρ commute with ω2, and

σ2(t) = h(ωh−1(h(ωh−1(t)))) = ω2t,

i.e. (5.8) holds, which is equivalent to ρ being reversed by ωt. Note that σ has order dividing 2k.
Take any λ 6= 0 and g1(t) = λ2 + HOT satisfying g1(ωt) = g1(t), and define

(5.19) g(t) = g1(h
−1(t)),
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so (5.14) holds. Since h and g1 commute with ωt, g also does, i.e. g(ω2t) = g(t). Furthermore,

g(σ(t)) = g1((h
−1(h(ωh−1(t))))) = g(t).

Finally define holomorphic germs ϕ and ψ by (5.15). Then

ψ (t)ϕ(σ(t)) =

(
ω−1σ2(t)

σ(t)

) 1

2

(
ω−1σ(t)

t

) 1

2

= 1,

so the first equation in (5.9) holds. The second equation follows from the first, using (5.10) and
(5.11) (and may also be verified by direct calculation). Thus Jc reverses F .

Example 5.1. An explicit example of F in case 2◦, reversed by Ji(z) = iz̃, and corresponding to
the choice

h(t) =
t

1− t
, g1(t) = g(t) = λ2,

and hence

ρ(t) = −σ(t) =
t

1 + 2t
, ϕ(t) =

λ

(1 + 2t)1/2
, ψ(t) =

λ−1

(1 + 2t)1/2
,

is given by

F (z1, z2) =

(
λz1

(1 + 2z1z2)1/2
,

λ−1z2
(1 + 2z1z2)1/2

)
.

Alternatively choosing

g1(t) =
4λ2

1 + t
,

and hence

g(t) = g1(h
−1(t)) = λ2

(1 + t)2

1 + 2t
, ϕ(t) = λ

1 + t

1 + 2t
, ψ(t) = λ−1 1

1 + t
,

we obtain an example of a rational map

F (z1, z2) =

(
λ(1 + z1z2)z1
(1 + 2z1z2)

,
z2

λ(1 + z1z2)

)
.

These maps are not reversed by J or any other involution. Indeed, if an involution T reverses
F , then L(T ) = ±J and hence P (T )(t) = t + HOT and therefore P (T )(t) = id since T is an
involution. But then P (T ) cannot reverse P (F ).

Assembling the cases, we have identified all the series F ∈ C reversed by a given Jc, and can
state a theorem:

Theorem 5.2. (1) Let c2k = 1. Then each F ∈ imΦ reversed by Jc takes the form

(z1ϕ(p), z2/ϕ(p)) ,

where ϕ(c2t) = ϕ(t).
(2) Let c4k = 1, and ω = c̄2. Then each F ∈ C with L(F ) = diag(λ, λ−1) that is reversed by
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Jc and does not belong to imΦ takes the form (z1ϕ(p), z2ψ(p)), where ϕ and ψ are defined by
the equations (5.15) and (5.16), ρ is defined by (5.18) for some h ∈ G1 tangent to the identity
that satisfies h(ω2t) = ω2h(t), and g is defined by (5.19) for some g1(t) = λ2 +HOT that satisfies
g1(ωt) = g1(t). In particular, both ϕ and ψ depend only on tk. Moreover all these maps are reversed
by Jc.

In part (2), the map F may also be written in the notation of §2.7 in the form

(5.20) F (z) = JH(ρ)JΦ(ϕ) = H(ρ)Φ(1/ψ),

where ϕ(ω2t) = ϕ(t) by (5.17), and ρ = P (F ) is reversed by t 7→ ωt (see §5.2), so that both ϕ(t)
and ρ(t)/t depend only on tk. However, such maps F are not reversed by Jc in general, unless ϕ
is constructed as above from h and some g1.

6. Reversibility in G

6.1. Resonances.

Lemma 6.1. If F ∈ G is reversible in G, and has an eigenvalue that is not a root of unity, then
F is conjugate to some element of C having L(F ) ∈ D of infinite order. Moreover, the conjugating
map can be chosen to be tangent to the identity.

Proof. By a linear conjugation, we may convert L(F ) to the form Λ =

(
λ 0
0 λ−1

)
∈ D. Since λ is

not a root of unity, the only resonance relations are of the form

λ = λk+1(1/λ)k, 1/λ = λk(1/λ)k+1,

so the Poincaré-Dulac Theorem [7, Section 4.8, Theorem 4.22] tells us that F may be conjugated
to the resonant form (2.5). �

Lemma 6.2. Suppose that F ∈ G has L(F ) ∈ D, with L(F ) 6= ±id, and is reversible. Then each
reverser Θ ∈ G has linear part of the form L(Θ)(z1, z2) = (az2, bz1). Also, it is possible to choose
a reverser with linear part Jc.

Proof. The first assertion follows from the fact that L(Θ) must interchange the eigenspaces of
L(F ). In view of Lemma 6.1, we may assume that F ∈ C. In general, the composition of a reverser
of F and an element of the centraliser CF (G) is another reverser of F . Since D ≤ CF , we may
compose Θ with an element of D to convert its linear part to the form Jc. �

6.2. Terminology. It is usual to say that a map is in resonant form if the homogeneous terms
in its expansion commute with the linear part. For maps F that belong to G and have L(F ) ∈ D
of infinite order, this just means that they belong to C, and is independent of the particular F .
For maps with L(F ) of finite order, resonance amounts to a less restrictive condition. Since we
are concentrating on the generic case, we shall use the term D-resonant map to mean an element
of C. Similarly, we shall refer to all elements of R as D-inverse-resonant maps.
More generally, we extend this terminology to maps that may not be invertible:
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Definition 6.3. A formal power series map G : (Cn, 0) → (Cn, 0) is called D-resonant (resp.
D-inverse-resonant) if G ◦M =M ◦G (resp. G ◦M =M−1 ◦G), whenever M ∈ D.

Remark 6.4. So a series G : (C2, 0) → (C2, 0) with L(G) ∈ D of infinite order is D-resonant (resp.
D-inverse-resonant) if and only if it is the sum of monomials pkaz (resp. pkaz̃), where a is some
diagonal matrix, p = z1z2 and z̃ = (z2, z1).

We have the following obvious properties:

Lemma 6.5. Let G1, G2 be D-resonant and H1, H2 be D-inverse-resonant. Then G1 ◦ G2 and
H1 ◦H2 are D-resonant, whereas G1 ◦H1 and H1 ◦G1 are D-inverse-resonant.

6.3. Reversers of Resonant Maps.

Proposition 6.6. Suppose that F ∈ C, with Λ = L(F ) of infinite order, and F is reversed by
some Θ ∈ G. Then Θ ∈ R.

Proof. By Lemma 6.2, the linear part of Θ belongs to R. Assume by induction that all terms of or-
der less than k in the expansion of Θ are D-inverse-resonant. Identifying homogeneous components
of order k in the basic reversibility equation

(6.1) F ◦Θ ◦ F = Θ,

we obtain an identity ΛLk(Θ)(Λz) = Lk(Θ)(z)+ . . . (using the notation introduced in §2.1), where
the dots contain expressions involving only Lm(Θ) with m < k. It then follows from the inductive
assumption and Lemma 6.5 that these terms areD-inverse-resonant. Hence ΛLk(Θ)(Λz)−Lk(Θ)(z)
is D-inverse-resonant, which is only possible when Lk(Θ) is D-inverse-resonant, as is readily seen
by using the fact that Λ has infinite order. The proof is complete. �

Combining Lemmas 6.1 and 6.6, we have:

Theorem 6.7. Let F ∈ G and suppose L(F ) has an eigenvalue that is not a root of unity. Then
F is reversible in G if and only if it is conjugate in G to some D-resonant element G ∈ C, having
L(G) ∈ D, that is reversed by some D-inverse-resonant element Θ ∈ R.

7. Conjugacy Classes of Reversibles

By Theorem 6.7, each generic reversible of G is conjugate in G to a map of the form ΛF , where
Λ ∈ D and F ∈ C is tangent to the identity and is reversible in E. By Corollary 4.4, ΛF , and hence
F , may be reversed by some element of finite order in R, and by a further conjugation (using an
element of C, which does not disturb the factorization ΛF ), we may arrange that F is reversed by
some linear map, which may be taken to be a Jc, for some root of unity c. By Theorem 5.2, F is
of one of two kinds. Now we turn to the question of cataloging the conjugacy classes in G of the
maps of these two kinds.
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7.1. First we consider their conjugacy classes in E.
The key idea is to use the conjugacy actions induced by the homomorphisms H : G1 → C and

Φ : F×
1 → C on the group C (as introduced in §2.7).

Consider general F =M(ϕ, ψ) ∈ C reversible or not, given by (2.5). Let ρ = P (F ). For χ ∈ G1,
letting K1 = H(χ) and K2 = JH(χ)J , we calculate

(7.1) K−1
1 FK1(z) =

(
z1ρ

χ(p)

pψ(χ(p))
, z2ψ(χ(p))

)
,

and, similarly,

(7.2) K−1
2 FK2(z) =

(
z1ϕ(χ(p)),

z2ρ
χ(p)

pϕ(χ(p))

)
.

Also, for any ϕ ∈ F×
1 , we calculate

(7.3) Φ(ϕ1)
−1FΦ(ϕ1)(z) =

(
z1ϕ(p)ϕ1(p)

ϕ1(ρ(p))
,
z2ψ(p)ϕ1(ρ(p))

ϕ1(p)

)
.

Now consider the two kinds of reversible F ∈ C, tangent to, but not equal to, the identity,
reversed by Jc, as in Theorem 5.2:

1◦: F ∈ imΦ, so ρ = id.
We have ϕ(t) = 1 + αtk + HOT, for some k ∈ N and α 6= 0. Then we may choose χ ∈ G1 so that
ϕ(χ(t)) = 1 + tk, and then

(7.4) K−1
2 FK2(z) =

(
z1(1 + pk),

z2
(1 + pk)

)
.

Thus F is represented, up to conjugacy in C, by one of the maps (7.4), for some k ∈ N.

2◦: ρ 6= id. F takes the form

(7.5)

(
z1ϕ(p),

z2ρ(p)

pϕ(p)

)
= JH(ρ)JΦ(ϕ),

for some reversible ρ ∈ G1, with ρ = t + HOT, but ρ 6= id, (reversed by ωt, where ωk = −1, for
some k ∈ N) and some ϕ(t) that depends only on tk (see §5.3). Then [12] ρ is conjugate to

(7.6) fk(t) =
t

(1− ktk)
1

k

= t+ tk+1 +

(
k + 1

2

)
t2k+1 + HOT,

which is also reversed by all odd powers of ωt (where ω = c̄2, as before). Let χ ∈ G1 conjugate ρ
to fk. Then conjugating F by JH(χ)J , we may assume that ρ = fk. Then the formal iterate ρα

is given by

(7.7) ρα(t) = fα
k (t) =

t

(1− kαtk)
1

k

= t
(
1 + αtk + HOT

)
,

whenever α ∈ C.
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Choose α ∈ C such that ϕ(t) = 1 + αtk + HOT (note that F is tangent to the identity). Then
ρα(t)
ϕ(t)

= t(1 + HOT), where the higher terms involve only monomials bjt
jk with j ≥ 2, so we may

choose ϕ1(t), depending only on tk, such that

ϕ1(t)

ϕ1(ρ(t))
=
ρα(t)

tϕ(t)
.

The latter fact follows by writing ϕ1(t) = 1 +
∑
ajt

jk, expanding the formula

(7.8) 1 +
∑

ajt
jk =

(
1 +

∑

j≥2

bjt
jk
)(

1 +
∑

aj(t(1 + tk + HOT))jk
)
,

identifying coefficients of tjk and solving inductively for aj−1.
Then the conjugation (7.3) converts F to the form

(7.9) F =

(
z1ρ

α(p)

p
,
z2ρ(p)

ρα(p)

)
,

and this is reversed by
Φ(ϕ1)

−1JcΦ(ϕ1) = JcΦ(ϕ
2
1).

We calculate (using the fact that z 7→ ωz reverses ρα) that

F Jc(z) = Jc̄F (cz2, cz1)

= Jc̄

(
cz2ρ

α(ω̄p)

ω̄p
,
cz1ρ(ω̄p)

ρα(ω̄p)

)

=

(
cz2ω̄ρ

−α(p)

ω̄p
,
cz1ω̄ρ

−1(p)

ω̄ρ−α(p)

)

=

(
z1ρ

−1(p)

ρ−α(p)
,
z2ρ

−α(p)

p

)
,

H(ρ)Φ

(
ρα(t)

ρ(t)

)
(z) = H(ρ)

(
z1ρ

α(p)

ρ(p)
,
z2ρ(p)

ρα(p)

)

=

(
z1ρ

α(p)

ρ(p)

ρ(p)

p
,
z2ρ(p)

ρα(p)

)
= F (z),

F−1(z) = Φ

(
ρα(t)

ρ(t)

)−1

H(ρ)−1(z)

= Φ

(
ρ(t)

ρα(t)

)
H(ρ−1)(z)

= Φ

(
ρ(t)

ρα(t)

)(
z1ρ

−1(p)

p
, z2

)

=

(
z1ρ

−1(p)

p
·
ρ(ρ−1(p)

ρα(ρ−1(p))
,
z2ρ

α(ρ−1(p))

ρ(ρ−1(p))

)

=

(
z1ρ

−1(p)

ρα−1(p)
,
z2ρ

α−1(p)

p

)
.
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But conjugation of M(ϕ, ψ) by Φ(ϕ1), and hence by Φ(ϕ2
1), does not change the coefficient of tk

in ϕ, so comparing this coefficient in the maps F Jc and F−1, we obtain α − 1 = −α, or α = 1
2
.

Thus F takes the form

(7.10) F (z) =

(
z1ρ

1

2 (p)

p
,
z2ρ(p)

ρ
1

2 (p)

)
.

Conjugating with ν(z) = z̃ we obtain

(7.11) F (z) =

(
z1ρ(p)

ρ
1

2 (p)
,
z2ρ

1

2 (p)

p

)
=

(
(1− k

2
pk)

1

k

(1− kpk)
1

k

z1,
1

(1− k
2
pk)

1

k

z2

)
.

Conjugating further by suitable scaling, F̃ takes the form

(7.12) F (z) =

(
(1 + pk)

1

k

(1 + 2pk)
1

k

z1,
1

(1 + pk)
1

k

z2

)
.

The alternative forms

(7.13)

(
(1− 1

2
pk)

(1− kpk)
1

k

z1,
1

(1− 1
2
pk)

z2

)
,

(
1

(1− kpk)
1

k (1 + 1
2
pk)

z1,
(
1 +

1

2
pk
)
z2

)

may be obtained from (7.11) by a conjugation of the type (7.3) with ϕ1 satisfying respectively

ϕ1(t)

ϕ1(ρ(t))
=

(1− 1
2
pk)

(1− k
2
pk)1/k

or
ϕ1(t)

ϕ1(ρ(t))
=

1

(1− k
2
pk)1/k(1 + 1

2
pk)

.

The latter fact follows by the argument analogous to the one preceeding (7.8).

Vice versa, we have the following lemma that can be verified by direct calculation:

Lemma 7.1. Let ρ(t) = t+ HOT be reversed by the rotation t 7→ ωt with ω = c−2. Then

(7.14) F (z) =

(
z1ρ(p)

ρ
1

2 (p)
,
z2ρ

1

2 (p)

p

)
, p = z1z2,

is reversed by Jc.

Proof of Theorem 1.2. Summarizing, we obtain that any reversible map is formally conjugate ei-
ther to a linear map or to a map (7.4) or to a map (7.12), which proves the first assertion of
Theorem 1.2.
To show that these map are pairwise inequivalent under conjugation, note that the maps F

in (7.4) have P (F ) = id, whereas the ones in (7.12) have P (F ) conjugate to fk. As consequence
of Poincaré-Dulac, any conjugation map between those maps must be D-resonant, i.e. in the
centralizer C. Consequently, the corresponding one-variable maps P (F ) must be conjugate. This
shows that the maps in (7.12) are pairwise inequivalent under conjugation and are not conjugate to
any map in (7.4). To see that also the maps in (7.4) are pairwise inequivalent, since any map in C
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splits as H(χ)Φ(ϕ), it suffices to observe any conjugation by Φ(ϕ) is trivial, whereas a conjugation
by H(χ) is given by (7.2) and hence cannot change the integer k.
The statement (1) of Theorem 1.2 is evident for maps in (7.4) and follows from Lemma 7.1 for

maps in (7.12).
To show the statement (2), observe that any map in (7.4) is reversed by the involution J(z) = z̃

and hence is strongly reversible. On the other hand, suppose a map F in (7.12) is reversed by
an involution Θ. Then we know from Proposition 6.6 that Θ must be D-inverse-resonant, i.e. it
reverses the linear part of F . Since Θ is an involution and λ 6= λ−1, we must have L(Θ) = ±J and
therefore P (Θ)(t) = t+HOT. But then, since P (Θ) is also an involution, it follows that P (Θ) = id.
Consequently P (Θ) cannot reverse P (F ) 6= P (F )−1 and hence Θ cannot reverse F .
Finally the statement (3) follows from Corollary 4.5. �

Proof of Proposition 1.4. In the foregoing argument, the specific form fk may be replaced by any
element ρ(t) ∈ G1 that only has powers t1+jk and takes the form

ρ(t) = t

(
1 + tk +

(
k + 1

2

)
t2k + HOT

)
,

and we still obtain the normal form (7.10) with the new ρ. To see this, note first that each such
ρ is conjugate in G1 to fk, and that the conjugating map, say χ, only has powers t1+jk and may
be chosen equal to be equal to the identity up to the terms of order 2k + 1. It follows that Jc
commutes with H(χ) up to order 4k + 1 and therefore it reverses FH(χ) up to terms of degree
4k + 1 in z, and, arguing as before, we can conjugate FH(χ) to the form (7.9), and then we still
get α = 1

2
. Hence FH(χ) is conjugate to (7.13). Now, noting that

ρ(t)

t(1 + 1
2
tk)

= 1 +
1

2
tk +

(
2k + 1

4

)
t2k + HOT,

we may choose

ρ(t) = t
(
1 +

1

2
tk +

(2k + 1

4

)
t2k
)(

1 +
1

2
tk
)

and get the form

F (z) =

(
z1

(
1 +

1

2
pk
)
, z2

(
1 +

1

2
pk +

(
2k + 1

4

)
p2k
))

.

Conjugating by z 7→ αz, with α2k = 2, we get the tidier polynomial form

(7.15) F (z) =
(
z1(1 + pk), z2

(
1 + pk + (2k + 1)p2k

))
.

�

The alternate forms (7.10)/(7.15) each have their advantages. The second has the simpler form,
but the first is reversed by the simple map Jc.
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Remark 7.2. We have seen that maps of the form (7.9) are only reversed by some Jc when α = 1
2
.

However, it is worth remarking that for every α ∈ C they are reversed by the D-resonant maps
c · H(ρα), as is readily checked. This does not mean, of course, that the original map is ΛF is
reversible for α 6= 1

2
but might be of interest for the study of reversible F ∈ G that are tangent to

the identity.

8. Convergence properties of the normal form

The convergence of the normal form as stated in Theorem 1.6 is obtained by closely following the
arguments of the proof of Theorem 4.1 in [11], page 283. In fact, assume that F is biholomorphic
and admits a formal Poincaré-Dulac normal form

(8.1) ξ =Mξ, η =M−1η,

(written in the form similar to (3.6) in [11]), where M is a formal power series in the product ξη.
Changing the notation (x, y) = (z1, z2) as in [11] and writing F as

(8.2) x′ = λx+ f(x, y), y′ = λ−1y + g(x, y)

with f and g convergent of order at least 2, analogously to (3.2) in [11], and the conjugation map
ψ into the normal form as

(8.3) x = U(ξ, η) = ξ + u(ξ, η), y = V (ξ, η) = η + v(ξ, η)

with u and v of order at least 2, analogously to (3.3) in [11], the fact that ψ conjugates F to (8.1)
can be written as

(8.4) U(Mξ,M−1η)− λU(ξ, η) = f(U, V ), V (Mξ,M−1η)− λV (ξ, η) = g(U, V ),

analogously to (4.1) in [11].
As in [11] a formal power series p(ξ, η) is said to have type s if it can be written

p(ξ, η) =
∑

i−j=s

pijξ
iηj

and any power series p admits an unique decomposition

p(ξ, η) =
∑

ps(ξ, η)

with ps having type s. According to the proof of Poincaré-Dulac, we may assume that the con-
jugating map ψ has no resonant terms, which as in [11, (3.4)] can be written using the type
decomposition as

(8.5) u1 = 0, v−1 = 0.

As in [11, (4.2)], taking terms of the same type in (8.4) yields

(8.6) (Ms − λ)Us = [f(U, V )]s, (Ms − λ−1)Vs = [g(U, V )]s.

Then proceeding as in [11], pages 284–286, we obtain a convergent series W (ξ) majorizing u(ξ, ξ)
and v(ξ, ξ) and hence proving the convergence of the conjugating map ψ. Note that this proof



22 A. O’FARRELL & D. ZAITSEV

gives the convergence of the (unique) map ψ satisfying (8.5) and conjugating F to a normal form
(8.1).
Finally, once F is biholomorphically conjugate to (8.1) withM convergent, its further biholomor-

phic conjugation into a form (7.4) is obtained by suitable K2 = H(χ) associated with convergent
χ. This ends the proof of Theorem 1.6.

The following example shows that, in contrast to the first series in (1.3), biholomorphic reversible
maps conjugate to a map in the second series in (1.3) may fail to be biholomorphically conjugate
to their formal normal form.

Example 8.1. Let ρ(t) = t + HOT be any one-variable biholomorphic map that is formally but
not biholomorphically reversible, see [2, Example 4.8] for the existence of such maps. Let θ be a
formal map reversing ρ. Then any two-variable map

F := ΛH(ρ) =

(
ρ(p)

p
λz1, λ

−1z2

)

is formally reversible by H(θ). On the other hand, any biholomorphic reverser Θ of F with λ
not a root of unity, would be inverse-resonant by Proposition 6.6. But then ρ = P (F ) would be
reversible by the biholomorphic map P (Θ), which is impossible due to the choice of ρ. Hence F
cannot be biholomorphically reversible. In particular, it cannot be biholomorhically conjugate to
any map in (1.3).

9. Factorization in G

The homomorphisms Φ and H may also be applied to resolve another question. It is an inter-
esting fact that in many very large groups each element may be factored as the product of a fixed
small number of elements of a handful of conjugacy classes. For instance, any permutation of a
finite set is a product of transpositions, and also the product of two involutions. Of particular
interest are products of involutions, and, more generally, products of reversibles. In the present
case, we have the following:

Theorem 9.1. If F ∈ G has detL(F ) = 1, then it may be factorized as F = g1g2g3g4, where each
gj is reversible in G.

Remark 9.2. Each product F = f1 · · · fn of reversible fj ’s has detL(F ) = ±1, so (multiplying
if necessary by a suitable linear involution) it follows from the theorem that each product of
reversibles reduces to the product of five. It also follows that the elements that are products of
reversibles are precisely those with detL(F ) = ±1.

Proof of Theorem 9.1. In fact, if detL(F ) = 1, then conjugating to a Jordan normal form and

multiplying by some (reversible) Λ ∈ D we can arrange that L(F Λ̃) is conjugate to an infinite-

order element of D, where Λ̃ is conjugate to Λ and therefore reversible. Then by Poincaré-Dulac,

F Λ̃ is conjugate (say by K ∈ G) to some element of the centralizer C, so that (F Λ̃)K is resonant
and hence may be factored as H(χ)Φ(ϕ), where χ(t) = t + HOT. Now Φ(ϕ) is reversible, and we
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know [12, Theorem 9(2)] that χ is the product of two reversibles in G1, so H(χ) is the product of
two reversibles, say H(χ1) and H(χ2). Thus

FK = H(χ1)H(χ2)Φ(ϕ)(Λ̃
−1)K

is the product of four reversibles, and conjugating with K−1 we obtain the result. �

Theorem 1.7 now follows from Theorem 9.1. Indeed, if detL(F ) = 1, it is the product of 4
reversibles with the involution equal to the identity. Otherwise if detL(F ) = −1, consider the
involution ν(z1, z2) = (−z1, z2). Then detL(Fν) = 1 and hence Fν is the product of 4 reversibles,
implying the result.

10. Reversible Biholomorphic Maps

For series in one variable, the single formal conjugacy class of fk in G1, intersected with the
subgroup G1 of biholomorphic maps splits into uncountably many conjugacy classes. Functional
moduli for these classes have been provided by Écalle and Voronin[7]. It is not necessarily true
that every formally-reversible biholomorphic map is biholomorphically-reversible, but because of
the fact that all reversers are of finite order it is true that every reversible biholomorphic map is
conjugate to one that is reversed by a rational rotation. The same principle carries over to our
present context:

Theorem 10.1. Let F ∈ G be an invertible biholomorphic germ on (C2, 0), and suppose that
L(F ) has an eigenvalue that is not a root of unity. Then F is reversible in G if and only if it is
conjugate in G to a map that is reversed by linear map of finite order.

Proof. Suppose Θ ∈ G reverses F 6= id in G. Then Θ reverses F in G by Theorem 1.2, and hence
has finite order. Thus, by Lemma 2.1, Θ is conjugate in G to a linear map. Applying the same
conjugation to F , we obtain the result. �

Remark 10.2. It remains open, even for one-variable maps, whether results such as Theorems 9.1
or 1.7 hold for biholomorphic maps.
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