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SYNOPSIS

Bacterial phosphotriesterases are binuclear metalloproteins from which the catalytic

mechanism has been studied with a variety of techniques, principally using active sites

reconstituted in vitro from apo-enzymes. Here, atomic absorption spectroscopy and

anomalous X-ray scattering and have been used to determine the identity of the metals

incorporated into the active site in vivo. We have recombinantly expressed the

phosphotriesterase from Agrobacterium radiobacter (OpdA) in Escherichia coli grown in

medium supplemented with 1 mM CoCl2, and in unsupplemented medium. Anomalous

scattering data, collected from a single crystal at the Fe-K, Co-K and Zn-K edges,

indicate that iron and cobalt are the primary constituents of the two metal binding sites in

the catalytic centre (� and �), in protein expressed in E. coli grown in supplemented

medium. Comparison to OpdA expressed in unsupplemented medium demonstrates that

the cobalt present in the supplemented medium replaced zinc at the �-position of the

active site, which results in an increase in the catalytic efficiency of the enzyme. These

results suggest an essential role for iron in the catalytic mechanism of bacterial

phosphotriesterases, and that they are natively heterobinuclear iron-zinc enzymes.
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INTRODUCTION

The bacterial phosphotriesterases are members of a relatively small group of binuclear

metallohydrolases that catalyse the hydrolysis of organophosphate triesters (E.C.:

3.1.8.1). The toxicity of organophosphate triesters, and their use in agriculture as

pesticides, means occupational or intentional exposure is a significant health hazard [1].

An enzyme (OpdA) capable of rapidly hydrolysing a phosphotriester bond in these

compounds, thereby detoxifying them, has been isolated from an Agrobacterium

radiobacter strain [2]. Because of the potential utility of this enzyme for the

detoxification of organophosphate pesticides, there is considerable interest in better

understanding the catalytic mechanism and improving its efficiency.

The structure of OpdA, determined for crystals grown in Co2+-supplemented

medium, has been solved in the presence and absence of various products and inhibitors

[3, 4]. OpdA adopts an (�/�)8 barrel structure with a binuclear metal centre at the active

site. A carboxylated lysine and a hydroxide ion bridge the metal ions. The coordination

environment of the two metal ions varies according to the crystallization conditions. The

invariant metal ion ligands are shown in Figure 1, demonstrating that the �-site is more

symmetrical owing to the presence of D301. Further coordination has been found to

depend upon the crystallization conditions. In the absence of products or inhibitors, both

metal ions are coordinated in a distorted octahedral arrangement, with the addition of

terminal ligands at each metal (a water/hydroxide at the �-site and ethylene glycol at the

�-site), and a second water molecule 2.5 Å from the �-metal ion in an axial position. In

the structure of an OpdA-dimethyl thiophosphate (DMTP) complex, the �-metal is

coordinated in a trigonal bipyramidal arrangement, with the equatorial (terminal)

water/hydroxide ligand replaced by the sulfur atom of DMTP, and the movement of R254

in the second coordination sphere displacing the axial water ligand [4]. The homologous

enzyme from Pseudomonas diminuta (PTE), in which all metal ion-coordinating site

residues are conserved, has also been extensively studied using crystallography [5]. The

coordination geometry of the �-metal in PTE crystallized with Zn2+ in the active site is

best described as a distorted trigonal bipyramid, owing to the lack of the terminally

coordinated ligand observed in the OpdA structures at this position. We have previously
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suggested that differences in the first coordination spheres of OpdA and PTE may be a

consequence of the presence of different metals in the active site [4].

Both OpdA and PTE are catalytically active with a variety of metal ions (Zn2+,

Mn2+, Co2+, Cd2+) [3, 6]. Most of the physical characterization of PTE has been

accomplished with Zn2+ in the active site, although both enzymes are more active toward

phosphothionate compounds with Co2+ in the active site [3, 6]. The mechanism of

substrate hydrolysis is proposed to involve monodentate coordination of the substrate to

the �-metal ion, followed by nucleophilic attack from a water/hydroxide molecule

terminally coordinated to the �-metal ion [7]. This is consistent with (i) kinetic studies

that have demonstrated that the � -metal determines the strength of the attacking

nucleophile, while the �-metal affects substrate binding [8], and (ii) crystallographic

studies that have unequivocally demonstrated the production of the product dimethyl

thiophosphate dually bound to the two metals without disruption to the bridging

hydroxide [4]. Further work has demonstrated that catalysis can occur rapidly, in a one-

step SN2 reaction, or via intermediates in an addition-elimination reaction [7].

Field trials of OpdA as a bioremediation agent have been conducted [9], and it is

already in use as a commercial product to detoxify organophosphates, sold under the

brand name LandGuard� from Orica Watercare (Australia). Removal of the metals from

the active site using chelating agents such as EDTA, and reconstitution with known metal

ions is the most accurate method of controlling the identity of the metal ions at the active

site. However, commercial production of proteins typically involves large-scale industrial

fermentation and the removal of unlysed cells. Accordingly, it is important to understand

which metal ions are incorporated into the active site when it is recombinantly expressed,

as this can direct efforts toward improving the efficiency of the enzyme.

The collection of diffraction data at wavelengths corresponding to the absorption

edges of particular metals is a valuable technique for their identification [10]. Transition

metals, such as Fe, Co and Zn have absorption edges in the accessible range for

collection of diffraction data at synchrotron beamlines (Figure 2) [11]. The metal ions

present in the active site of the bacterial phosphotriesterases have an important impact

upon their activity [12]. It is therefore important, for the development of OpdA as a

bioremediation agent, to distinguish which metals are present in the recombinantly

Biochemical Journal Immediate Publication. Published on 11 May 2006 as manuscript BJ20060276

Copyright 2006 Biochemical Society



5

expressed protein, and whether they have a preference for the � or � site. Consequently,

we have collected anomalous dispersion data from a single OpdA crystal at the Fe-K, Co-

K and Zn-K absorption edges. The goal of this study was to ascertain the identity of the

metal ions at each site and to relate this information to our current knowledge of the

structure/function relationship in OpdA.

EXPERIMENTAL

Materials

All chemicals were purchased from Sigma-Aldrich unless otherwise noted. Methyl

parathion was purchased from Chem Service (PA, USA). The purity of the

organophosphate was >95% according to the manufacturers. Bacto-tryptone and Bacto-

yeast extract were purchased from Difco Laboratories. Molecular biology reagents were

purchased from New England Biolabs (Australia) or Roche Molecular Diagnostics

(Australia) unless otherwise stated. Chromatography resins were purchased from

Amersham Pharmacia (Sweden).

Bacterial strains and plasmids

Construction of the plasmid (pCy76-opdA) used to express OpdA (NCBI protein

sequence database accession number: AAK85308) has been described previously [3].

The protein was expressed in E. coli DH5� cells (Invitrogen).

Protein expression, purification and crystallization

Electrocompetent E. coli DH5� cells were transformed with the plasmid pCy76-opdA by

electroporation, and a 20 mL starter culture of LB media (supplemented with 50 µg/mL

ampicillin) was inoculated then incubated at 30 °C for 8 hours. For the purpose of direct

comparison, 100 µL of the same starter culture was used to inoculate two large scale

cultures in parallel: unsupplemented LB media (10 g/L tryptone, 5 g/L yeast extract, 10
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g/L NaCl, pH 7.0, 50 µg/mL ampicillin), and TB media (24 g/L of yeast extract, 12 g/L

of tryptone, 100 mM K2HPO4/KH2PO4, pH 7.0, 0.4% glycerol, 50 µg/mL ampicillin)

supplemented with 1 mM CoCl2. Both cultures were incubated at 37 °C for 30 hours.

Expression of OpdA from pCy76 is constitutive. Excess CoCl2 in LB media was

inhibitory to cell growth, hence the need to use TB growth medium for expression in the

presence of 1 mM CoCl2.

Cells were harvested and resuspended in 50 mM HEPES buffer, pH 8.0. Cell lysis

was achieved using a French Press and cell debris was separated from the soluble fraction

by centrifugation at 30,000 RCF 30 minutes, followed by filtration through a 0.45 µm

nitrocellulose membrane (Millipore). The soluble fraction was loaded on to a DEAE

Fractogel column. OpdA did not bind to the column, and was collected in the flow

through. The protein was then dialyzed against 50 mM HEPES, pH 7.0 for 12 hours, and

loaded onto an SP-Sepharose column. Bound OpdA was eluted at approximately 150 mM

NaCl using a linear gradient from 0 to 1 M. SDS–PAGE analysis of the eluted OpdA

indicated purity greater than 95%. The protein was stored at 4 °C in 50 mM HEPES pH

7.0, 150 mM NaCl. OpdA was dialyzed against 50 mM HEPES pH 7.0, 150 mM NaCl, 1

mM CoCl2 and concentrated via ultrafiltration to 6.4 mg/ml for crystallization. Protein

concentrations were measured by UV absorption at 280 nm. The extinction coefficient

for OpdA was calculated as 29,280 M–1 cm–1 [3].

Crystals were grown in hanging drops using vapour diffusion. Drops were made

by mixing 5 µL of protein solution with 5 µL of reservoir solution that consisted of 20%

PEG-3350, 0.2 M sodium nitrate. We were unable to obtain crystals of OpdA purified

from unsupplemented media.

X-ray data collection

OpdA crystals were transferred to a cryobuffer solution that consisted of the

crystallization buffer with 40% PEG-3350, and flash cooled to 100 K on an Oxford

Cryostream. The crystals were then transferred to a Taylor Wharton CX100 dry shipper

at 77K for transport to beamline 9-2 at the SSRL synchrotron (Stanford, USA). Data were

collected remotely from Australia using Blue-Ice and NX-Client/Server software. An
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excitation fluorescence spectrum of the crystal was recorded to check for the presence of

various metal ions (Figure 3). Individual fluorescence scans were then performed to

ascertain the precise energies of the absorption edges. Complete X-ray anomalous

datasets, consisting of 180 x 1 degree oscillations, were collected at the Fe-K (7131.80

eV), Co-K (7724.88 eV) and Zn-K (9576.29 eV) edges from a single OpdA crystal to 1.9

Å resolution (Table 1). Data integration, scaling and reduction were performed using the

programs MOSFLM and SCALA [13, 14]. This was again performed on SSRL

computers remotely from Australia. Data collection statistics are given in Table 1.

Refinement

The crystal cell parameters (Table 1) were found to be isomorphous with a previously

solved structure (2D2J) [4]. The asymmetric unit contained a single monomer of the

enzyme. Initial protein phases were calculated using the refined OpdA structure as a

model. Refinement was undertaken using the program REFMAC [15], as implemented in

the CCP4 suite of programs [16]. The structure of ethylene glycol (EGL) was taken from

the previous study [4].

Anomalous scattering analysis

The fast fourier transform (FFT) application from the CCP4 suite of programs was used

to construct Bijvoet Difference Fourier Maps (BDFM) [17], using the anomalous data

collected at each wavelength. These maps were calculated using the phases from the

structure refined against the data collected at 7131.8 eV. The intensities of the anomalous

peaks at each metal site (e/Å3) were determined using the program Coot [18]. As an

internal standard, the intensity of an anomalous peak corresponding to the sulfur atom

from the methionine residue M325 was also determined. This was then used to scale the

intensity of the peaks to account for the variation in incident X-ray intensity at the three

different wavelengths, taking into account the theoretical reduction of the anomalous

sulfur signal with wavelength. Anomalous dispersion coefficients for Fe, Co and Zn [19]
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at 7100, 7700 and 9600 eV were used to estimate the amount of residual scattering from

the molecules at wavelengths remote from their absorption edge (Table 2; Figure 2).

Atomic Absorption Metal Analysis

The content of protein-bound metal ions was determined in triplicate by atomic

absorption spectroscopy using a Varian SpectrAA 220FS. Standard solutions for iron,

cobalt and zinc, ranging in concentration from 20 ppb to 100 ppb, were prepared from

analytical stock solutions (Merck) using MilliQ water. Protein samples were diluted with

desalted buffer (50 mM HEPES, pH 7.0). This buffer and MilliQ water were used as

controls in atomic absorption measurements; no measurable quantities of metal ions were

detected. The estimated error for each metal ion was less than 5% (Table 2).

Measurement of enzyme activity and kinetic parameters

Activity measurements of crude extracts were carried out in triplicate to determine the

level of phosphotriesterase activity in supplemented and unsupplemented cultures

expressing OpdA. One to ten µL of cell culture were added to a 1 mL reaction mix

containing 250 µM methyl parathion, 100 mM CHES pH 9.1, 10% methanol, 2.5 %

PEG-8000, and 1% of the cell lysis reagent BugBuster (Novagen). The specific activity

was determined by measuring the release of 4-nitrophenolate (�=16,600 M-1 cm-1)

spectrophotometrically, using a Varian Cary 1E UV-Visible spectrophotometer.

Kinetic parameters of purified OpdA were determined by varying the

concentration of methyl parathion from 31.25 to 1000 µM. Because of the poor solubility

of methyl parathion, this was the largest substrate concentration range achievable. The

reaction mixture contained 10% methanol, 2.5% PEG-8000, 100 mM CHES pH 9.1, and

1 mg/mL bovine serum albumin. All measurements were made in duplicate. The values

for Vmax and Km were determined from a fit of the data to equation 1:

� = Vmax A / (Km + A) (1)
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where � is the initial velocity, Vmax is the maximum velocity, Km is the Michaelis

constant, and A is the substrate concentration. The kcat was calculated by dividing Vmax by

the concentration of enzyme used in the reaction (Vmax = kcat[E]).

Metal ion addition

To determine whether ferrous or ferric iron is required for activity, metal ion addition

studies were performed. OpdA expressed and purified from unsupplemented medium was

transferred to a solution containing either 10 mM FeSO4, 10 mM Fe(NO3)3 or no

exogenous metal in 100 mM HEPES pH 7.9, 1 mM ascorbic acid. Following an

incubation period of one hour at room temperature an aliquot was then diluted thirty-fold

into the assay mix, consisting of 250 µM methyl parathion, 100 mM CHES, pH 9.1, 10%

methanol and 2.5 % PEG-8000. Absorbance changes at 405 nm were measured with a

plate reader (Labsystems) in 10 second intervals.

Biochemical Journal Immediate Publication. Published on 11 May 2006 as manuscript BJ20060276

Copyright 2006 Biochemical Society



10

RESULTS

Protein expression and purification

We sought to determine whether the growth media would affect the level of OpdA

expression. SDS-PAGE analysis demonstrates that OpdA is expressed at higher levels in

TB media supplemented with 1 mM CoCl2 than in unsupplemented LB medium (Figure

4). This is consistent with the yield of purified protein from each culture: supplemented

TB produced 4.9 mg soluble OpdA per litre, unsupplemented LB produced 1.8 mg per

litre (Table 3).

Determination of specific activity and kinetic parameters

The calculated phosphotriesterase activity of the TB and LB cultures are shown in Table

3. The level of activity in the supplemented culture was approximately 14 fold higher

than that in the unsupplemented culture. Because a cell lysis agent, BugBuster, was

included in the reaction mix, these measurements were not affected by transport or

diffusion of parathion across the cell membrane.

The specific activities, and values of kcat, Km, and k cat/Km for purified OpdA,

determined by fitting the data to equation 1, are also shown in Table 3. These results

demonstrate that the catalytic efficiency of the enzyme is enhanced when it is expressed

in enriched medium supplemented with 1 mM CoCl2, as indicted by an approximately

five-fold increase in the kcat and kcat/Km; the Km value is not significantly affected by

changes in the growth medium.

Atomic Absorption Metal Analysis

The content of Fe, Zn and Co in OpdA purified from the CoCl2 supplemented medium

was 0.93, 0.32 and 0.65 per active site (1: 0.35: 0.7), respectively (Table 2). In contrast,

OpdA purified from the unsupplemented medium contained 0.53 Fe and 0.47 Zn per

active site (1:0.9), with the amount of cobalt below the limit of detection. Thus, OpdA
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from unsupplemented medium had half the metal content of the fully occupied active site

of OpdA purified from supplemented medium. Additionally, it is evident that the addition

of Co2+ to the growth medium results in the replacement of Zn2+, with the relative amount

of Zn2+ decreasing from 0.9 to 0.35 and that of Co increasing from 0 to 0.7, relative to

iron.

The quality of the crystal structure

The overall structure is essentially identical to that previously solved (2D2J) [4]. These

data were refined principally to provide phases for the construction of anomalous

difference maps and there is no new structural information to report. Data collection and

refinement statistics are listed in Table 4 and indicate that the data and refinement are

robust.

Anomalous X-ray scattering

The excitation fluorescence scan, shown in Figure 3, demonstrates that the only metals

present in significant concentrations in the crystal are Na, Fe, Co and Zn. The presence of

sodium is an artefact due to the crystallization conditions and cryoprotectant. Data were

collected at the Fe-K, Co-K and Zn-K edges. Figures 5 and 6 show anomalous difference

Patterson maps and BDFMs calculated from the data collected at these wavelengths. The

electron densities of the anomalous peaks are listed in Table 2a alongside corrected

values to account for differences in the incident radiation intensity. The theoretical

anomalous dispersion coefficients at wavelengths close to the energies used (Figure 2)

are also shown. These were used to subtract the residual anomalous signal from all edges

to provide an estimate of the relative metal concentrations. It is clear that the residual

absorption from Fe at the �-site accounts for the majority of the density at 7725 eV, and a

significant proportion of the density at 9576 eV. This indicates that at least 80% of the

metal ion at this position is Fe, with a small amount of Zn present. The densities at the �-

site also appear to be dominated by a single metal ion: residual absorption from the high

proportion of cobalt accounts for the density at 9576 eV, and a significant amount of the
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density at 7132 eV. This indicates that the primary constituent of the �-site is Co, with a

small amount of Fe (~15%) and Zn (~20%) present. This is in very good agreement with

the atomic absorption measurements, summarised in Table 2b. The anomalous scattering

is shown graphically in Figure 6: electron density at the Fe-K edge (7131.8 eV) is ~four

times stronger at the �-site, relative to the �-site. The density at the �-site then increases

~three fold upon moving to the Co-K edge (7724.9 eV). Irrespective of the stochiometry

of the minor metals at each position, the data provides an unequivocal indication that iron

and cobalt occupy the majority of the � and � positions, respectively.

Metal ion addition

In order to examine whether OpdA is active with Fe2+ or Fe3+ ions in the active site, OpdA

that had been expressed in and purified from unsupplemented medium was transferred to

a solution containing either 10 mM FeSO4 (Fe2+) or 10 mM Fe(NO3)3 (Fe3+), before the

activity was measured by monitoring changes in specific activity over several minutes

(Figure 7). The addition of Fe2+ increases the activity approximately two-fold in

comparison to the control (no added metal ions), whereas adding Fe3+ inhibits the activity

approximately four-fold. This observation demonstrates that OpdA requires iron to be in

the divalent, ferrous, state for catalytic activity.

DISCUSSION

The level of OpdA expression, and the specific activity of the enzyme, is

enhanced through the use of TB medium supplemented with 1 mM CoCl2 (Figure 4,

Table 3). The addition of metal ions has previously been shown to enhance the specific

activity of PTE expressed in E. coli [20]. A more recent study demonstrated that the

expression of PTE in E. coli was not affected by the addition of cobalt, and concluded

that the enhancement of activity in cultures grown in supplemented media is a result of

the conversion of apo-PTE to dimetal-PTE [21]. Our results agree with some aspects of

this: OpdA purified from unsupplemented media had a metal content ratio of 1 per

enzyme molecule; because metals add pairwise to the bacterial phosphotriesterases [22],
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this indicates that half the purified enzyme was inactive apo-OpdA. In contrast, the metal

ion content of OpdA purified from supplemented medium is 1.9 per enzyme molecule

(Table 2b), indicating that the majority of the purified enzyme molecules are in the active

(dimetal) form. However, we have also found that the expression level and yield of

soluble protein are higher in supplemented medium (Figure 4, Table 3), which we believe

is a consequence of the constitutive expression of OpdA from pCY76. It has been

reported that the apo-form of the bacterial phosphotriesterases is considerably less stable

[23], and that stabilisation of the apo-enzyme enhances the expression of the protein [24].

Because the availability of metal ions in unsupplemented media is considerably less than

in supplemented media, a significantly greater proportion of OpdA expressed under

unsupplemented conditions will be in the apo-form and therefore less resistant to

breakdown, resulting in the production of less soluble protein after 30 hours of

expression. However, other differences in the growth media cannot be ruled out as the

cause of increased expression. It is suspected that the large proportion of apo-enzyme

present in enzyme purified from unsupplemented medium has contributed to the inability

to grow crystals from this preparation, presumably because of the heterogeneity in the

protein solution.

The AAS data shows that the relative amount of iron is unchanged and that zinc

specifically replaces cobalt in the relative amounts of the three metals, when the protein

is not expressed in Co2+ supplemented medium. Although this experiment cannot identify

whether the increase in the concentration of zinc has occurred at the � or � sites, this can

be deduced from our prior knowledge from anomalous scattering (Table 2). The

anomalous scattering analysis indicates that the occupancies of the � and � sites are

dominated by iron and cobalt, respectively, and that there is no cobalt present at the �

site. Because the relative concentration of Fe and Zn in the medium is unaltered when the

enzyme is expressed in and purified from unsupplemented medium, the � site will retain

its preference for iron over zinc. Thus, since zinc has replaced cobalt (present only at the

� site), iron should remain the primary constituent of the � site, with zinc the primary

constituent of the � site. Therefore, while we cannot rule out that the metal distribution

has changed, we think it is highly likely that OpdA expressed in unsupplemented medium

contains ~80% iron at the � site and ~80% zinc at the � site.

Biochemical Journal Immediate Publication. Published on 11 May 2006 as manuscript BJ20060276

Copyright 2006 Biochemical Society



14

The level of phosphotriesterase activity in supplemented medium was

approximately 14 fold higher than that in unsupplemented medium, which is in good

agreement with the 2.7-fold greater yield of soluble protein and its five-fold greater

specific activity (2.7 x 5 = 13.5) (Table 3). Although the Km values of OpdA+Co2+

(supplemented) and OpdA-Co2+ (unsupplemented) are similar, the kcat of OpdA+Co2+ is

five-times larger. While half of the OpdA-Co2+ is inactive apoenzyme (see above), this

increase in reactivity together with the observation that the �-site is predominantly

occupied by iron in both cases (OpdA + Co2+ and OpdA - Co2+) does demonstrate that the

substitution of Zn by Co in the �-site is responsible for ~2.5-fold improved catalytic

efficiency. Based on the half-occupancy of OpdA-Co2+ (Table 2b) the maximum specific

activity of the Fe-Zn derivative can be estimated to ~70 U/mg (Table 3). Approximately

one third of this Fe-Zn form also contributes to the activity of OpdA+Co2+ (70/3 ~23

U/mg). The remaining activity of OpdA + Co2+ (168 U/mg – 23 U/mg = 145 U/mg; Table

3) is expected to be due to the Fe-Co derivative (Table 2b). Thus, since the Fe-Co

derivative comprises approximately two thirds of OpdA + Co2+ (Table 2b) its maximum

specific activity is estimated to be ~220 U/mg, approximately three times that of the Fe-

Zn derivative.

Previous studies on OpdA, and PTE, have reported that the metal ions at the �

and � positions are responsible for generating the nucleophile, and the binding the

substrates, respectively [4, 8]. The presence of iron at the �-site thus makes very good

sense from a physiological perspective: the pKA of Fe2+-H2O is significantly lower than

that of Zn2+-H2O, Co2+-H2O, or Mn2+-H2O (6.7 vs 9.0, 8.9, 10.6, respectively [25]),

making it the most efficient Lewis acid in the physiological pH range. Furthermore,

enzyme kinetics have demonstrated that the rate limiting step in the rapid hydrolysis of

substrates such as parathion is diffusion, rather than the chemical reaction itself [8, 26].

Accordingly, the increased kcat observed here for the Fe-Co derivative of OpdA is

consistent with our previous work that demonstrated that the metal ion in the �-site (Co

or Zn) does not significantly affect the reactivity of substrates by differential polarization

of the electrophilic phosphorous. Instead, it is proposed that cobalt improves the catalytic

efficiency of OpdA toward phosphothionates by increasing the amount of productive
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substrate binding (affecting the rate of diffusion into the active site) as a consequence of

the greater affinity of cobalt for sulphur, compared to zinc [7].

One of the most significant results from our study is the observation that in OpdA,

phosphotriesterase activity is principally achieved through catalysis by a heterobinuclear

iron-cobalt or iron-zinc active site. The combination of X-ray anomalous scattering and

atomic absorption measurements demonstrates that cobalt specifically displaces zinc

from the �-site of OpdA, and does not affect the incorporation of iron into the �-site.

These two coordination spheres in the active site of OpdA are similar, but not identical. It

is impossible to predict the affinity of active sites for different metals, and Co2+, Fe2+, and

Zn2+ are able to be accommodated by a variety of coordination geometries [27]. The extra

carboxylate ligand in the �-site (D301) can affect the metal ion preference by altering the

hard-soft/acid-base characteristics, but perhaps more significantly, it will also make this

coordination sphere more symmetrical (Figure 1). It is known that Fe2+ has a greater

preference for more symmetrical coordination than Zn2+ or Co2+, which may explain its

preference for the �-site. This is also consistent with differences in the coordination

geometry of the �-site in PTE and OpdA: there is trigonal bipyramidal coordination of

Zn2+ in PTE [5], and octahedral coordination of Fe2+ in OpdA [4].

Iron is used by a large number of metalloenzymes to catalyse the hydrolysis of

phosphate ester bonds. Examples relevant to this study include the purple acid

phosphatases from red kidney bean and sweet potato [28, 29], and calcineurin (protein

phosphatase 2B) [30]. Red kidney bean purple acid phosphatase and calcineurin are

believed to contain Fe-Zn active sites in-vivo; however, the oxidation state of their iron

ions is different. Purple acid phosphatases contain a tyrosine ligand in the coordination

sphere of the iron, stabilising the metal ion in its ferric state. In contrast, calcineurin

possesses a histidine in an equivalent position, which favours the ferrous state. This has

been confirmed through the inactivation of calcineurin through oxidation of Fe2+ by

superoxide and hydrogen peroxide [31]. The � coordination sphere of OpdA is very

similar to that of calcineurin (two waters, two carboxylate groups and a histidine), which

is consistent with our observation that ferrous, not ferric, iron is required for activity

(Figure 7).
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Our finding that OpdA contains an heterobinuclear iron-zinc active site was

somewhat surprising, because PTE (which shares the same six metal coordinating amino

acid residues H55, H57, K169, H201, H230, D301) has been described as a naturally

occurring zinc enzyme [8]. This assumption was based on 1:1 Zn:enzyme stoichiometry

[32], and further analysis indicated that PTE recombinantly expressed in E. coli grown in

unsupplemented media contained ~1 Zn per protein, and no Co, Mg, Ca or Ni; iron was

evidently not tested for [12]. The latter study also reported that the activity of PTE

purified in the presence of iron was around 50 fold lower than a Zn-Zn enzyme, and 160

fold lower than a Co-Co enzyme. This is in contrast to the very high catalytic efficiency

(3.3 x 106 s-1 M-1) of the iron containing OpdA purified in our study. A possible reason

for the low activity of PTE purified in the presence of iron is that the iron may have been

predominantly in the ferric state, since no antioxidant was added during purification. This

explanation is consistent with the observation that the addition of Fe2+ activates OpdA,

while the addition of Fe3+ is inhibitory (Figure 7).

The results we have presented here indicate that the bacterial phosphotriesterase

from A. radiobacter utilises a divalent iron ion at the �-site to generate the nucleophile

for the reaction. This result is important as it indicates that the bacterial

phosphotriesterases may be naturally occurring heterobinuclear iron-zinc enzymes, rather

than homobinuclear zinc enzymes. Furthermore, it provides evidence that although the

structural scaffold of the enzyme is related to the zinc enzyme dihydroorotase [33], and

other members of the amidohydrolase family, the mechanism it utilizes to catalyse

phosphate ester bond hydrolysis has significant similarities to other iron-zinc binuclear

metallophosphatases such as purple acid phosphatase and calcineurin.
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Table 1 Data collection statistics for OpdA at 7132, 7725 and 9576 eV

Data Collection Fe-K (7132 eV) Co-K (7725 eV) Zn-K (9576 eV)
Space Group P3121

a=108.9, c=62.4 Å
P3121
a=108.9,c=62.4 Å

P3121
a=108.9, c=62.4 Å

No. of observations 351555 360482 368460
No. of unique reflections 33940 33957 33964
Completeness (%) 100 100 100
<I/�(I)> 29.9 30.7 31.0
Resolution range, overall (Å) 62.0 - 1.9 62.0 - 1.9 62.0 - 1.9
Resolution range, outer (Å) 2.0 - 1.9 2.0 - 1.9 2.0 - 1.9
Rscal (overall/outer shell) 6.3/23.0 6.2/22.9 6.1/20.7
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Table 2a Electron density (e/Å3) at the � and � metal sites, measured from the BDFMs.

The corrected values were scaled using the anomalous scattering for the M325 S atom as

an internal standard to account for different incident intensities at the various

wavelengths. Electron density is shown, after removal of residual anomalous scattering

for the other absorption edges, with the ratio of electron density per metal in parenthesis.

2b Atomic absorption spectroscopy metal ion analysis of OpdA expressed in

supplemented (+CoCl2) and unsupplemented (-CoCl2) media. Ratios of metals are shown

in parenthesis.

(a) Anomalous Scattering

Metal Edge Fe-K (7132 eV) Co-K (7725 eV) Zn-K (9576 eV)

�

e/Å3 0.77 0.61 0.50

Corrected 0.77 0.64 0.63

�

e/Å3 0.21 0.69 0.39

Corrected 0.21 0.72 0.50

Theoretical Anomalous Signal (%)

Fe 100 86 61

Co 14 100 69
Zn 22 19 100
Electron Density (without residual
anomalous signal)
� 0.77 0.00 0.16

� 0.13 0.62 0.20

Total (ratio) 0.90 (1) 0.62 (0.69) 0.36 (0.40)

(b) AAS

+CoCl2 Total/mol (ratio) 0.93 ± 0.03 (1) 0.65 ± 0.03 (0.70) 0.32 ± 0.01 (0.34)

-CoCl2 Total/mol (ratio) 0.53 ± 0.02 (1) 0.00 ± 0.00 (0.00) 0.47 ± 0.02 (0.89)

* Theoretical f" values are also shown to indicate the level of residual scattering. Edge values

calculated at the edge, off edge values at the nearest 100 eV.
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Table 3 Yield of soluble protein, specific activity, and kinetic parameters for the

hydrolysis of methyl parathion by OpdA expressed in the presence (+) or absence (-) of

CoCl2.

Protein

Activity

(µM/min/µL

culture)

 Soluble protein

 (mg/L)

Specific

activity

(U/mg)

kcat

(s-1)

Km

(M)

kcat/Km

(s-1 M-1)

OpdA + Co2+ 1.94 ± 0.12 4.9 168 ± 3 1180 ± 80 3.6 x 10-4 ± 0.6 x 10-4 3.3 x 106 ± 0.8 x 106

OpdA - Co2+ 0.14 ± 0.01 1.8 34 ± 1 255 ± 16 4.1 x 10-4 ± 0.6 x 10-4 6.3 x 105 ± 1.3 x 105
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Table 4 Refinement statistics for data collected at 7132 eV.

Refinement

Resolution range, overall (Å) 62.0 - 1.9

Resolution range, outer shell (Å) 2.0 - 1.9

Reflections in working set 32249

Reflections in test set 1668

R/Rfree (%) (overall/outer shell) 17.4/20.4

No. of protein atoms 2511

No. of water molecules 241

No. of metal ions 2

No. of ethylene glycol molecules 2

R.m.s. deviation from target bonds

Lengths (Å) 0.015

Bonds (°) 1.394

B-factors (Å2)

Main Chain 19.6

Side Chain 22.0

Metals 24.4

Waters 32.1

Ramachandran plot (%)

Most favoured region 89.7

Additionally allowed 9.9

Generously allowed 0.4

Disallowed 0
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Figure Captions

Figure 1 A schematic representation of the active site of OpdA [4].

Figure 2 A plot of the values of f' and f" for Fe, Co and Zn (courtesy of the biomolecular

structure centre at the University of Washington).

Figure 3 The excitation fluorescence scan performed on a single crystal of OpdA

Figure 4 SDS-PAGE analysis of the expression of OpdA in TB media supplemented by 1

mM CoCl2 (+) or in unsupplemented LB media (-). Purified OpdA (P) and molecular

weight marker (M; kDa) are also shown.

Figure 5 Anomalous difference Patterson map, displaying the Z=2/3 Harker section

Figure 6 Bijvoet Difference Fourier Maps (BDFMs) contoured at 20 and 40 � for data

collected at the Fe-K, Co-K and Zn-K edges.

Figure 7  Relative activity of OpdA with or without addition of Fe2+ or Fe3+
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Figure 1
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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