
ISSC 2004, Belfast, June 30 - July 2

A Realistic Distributed Interactive Application Testbed for
Static and Dynamic Entity State Data Acquisition

Damien Marshallφ, Aaron McCoy*, Declan Delaneyφ, Seamus McLoone*, Tomas Ward*

φDepartment of Computer Science,

NUI Maynooth
Maynooth, Co. Kildare

E-mail: damienm@cs.may.ie

* Department of Electronic Engineering
NUI Maynooth,

Maynooth, Co. Kildare
E-mail: tomas.ward@eeng.may.ie

__

 Abstract – Scalability is an important issue for Distributed
Interactive Application (DIA) designers. In order to achieve this, it
is important to minimise the network traffic required to maintain
the DIA. A commonly used technique to reduce network traffic is
through short-term entity dynamics extrapolation. However, this
technique makes no use of a priori information regarding entity
dynamics. We have been developing methods to employ this
information through a number of techniques, primarily statistical
in nature, which have shown great promise in constrained
experimental environments. The main tenet of our approach is that
user behaviour in real DIAs follows patterns, and through
acquisition, analysis and exploitation of these patterns, a reduction
in network traffic can be achieved. In this paper, we report on our
development of a realistic DIA based on an industry standard SDK
in which we have implemented data acquisition routines that allow
us to do this. Results are presented for trial runs using the system.
These results clearly exhibit patterns of user behaviour consistent
with our previous research and suggest that the exploitation of this
knowledge can help reduce network traffic.

Keywords –Distributed Interactive Applications, Entity State
Modelling, Human Behavioural Modelling.

__

I INTRODUCTION

A Distributed Interactive Application (DIA) is a
distributed virtual reality system through which
individuals can share information via individual and
collaborative interaction with each other and the
environment [1]. When the fast-paced nature of these
interactive applications is coupled with the
potentially large number of concurrent users, large
volumes of update packets tend to be generated.
This, along with latency, adversely affects the
scalability of the system.

If latency were a constant factor in such an
application, provisions could be made within it to
compensate for the delay. However, the variation in
latency times, known as jitter, makes any solution to
the latency problem even more difficult to
implement. Other problems in DIA design, such as
graphics rendering or physics simulation, may be

attributed to current technological limitations, and
possibly solved with the advent of faster hardware.
However, the same does not apply to network delay.
It is a common misconception that an increase in
bandwidth can eliminate the problems of latency and
jitter entirely. Due to the physical properties of
network packet transmission, delays are ultimately
insuperable [2].

Therefore, rather than combating these problems
directly, methods exist to compensate for their
effects on the user and the application. One popular
method is a client side prediction contract
mechanism known as dead reckoning [3].

However, short-term predictive methods such as
dead reckoning do not make use of a priori
information regarding entity dynamics. Techniques
employing user behaviour analysis, such as strategy-
based models, have been shown to perform better
than short-term models in constrained experimental
environments [4, 5].

Techniques such as dead reckoning and strategy
modelling have been tested in applications that
demonstrate their effectiveness but may be
considered unrelated to real world DIA scenarios [5,
6, 7]. There is a need for a DIA testbed that can
accurately recreate the performance, bandwidth
consumption, and user experience provided by
current popular DIAs, such as the well known
computer game Unreal Tournament [8].

This paper will focus on the development of such a
testbed for the comparison and testing of latency and
network traffic reduction mechanisms. Created using
an industry-proven game engine, it contains elements
comparable with modern day game systems, along
with comprehensive data acquisition routines.
Preliminary data gathered by these routines clearly
show player movement patterns that underlie the
motivation behind the strategy model approach [4,5].

Section two gives a brief overview of our chosen
research platform, Torque. In section three, the test
scenarios and environments are detailed, and our
results from these tests are discussed in detail in
section four. Finally, section five provides some
conclusions on these results, and gives some insight
into our future work in this area.

II TORQUE

a) A Brief History

The technology behind Torque is a modified version
of that which featured as the game engine behind the
award winning games Starsiege, Tribes, and Tribes
II, all of which were published by Sierra Games [9].
In 1998, former employees of Dynamix, the
developers of Tribes II, began negotiations with
Sierra for the rights to the source of this engine. With
the rights secured, they formed a company known as
Garage Games, and began to license the engine to
both amateur and commercial developers [10].

b) Torque as a Research Platform

One of the most important issues at the beginning of
our research was that we would have to pick a
platform that would allow us to conduct our research
as efficiently and as thoroughly as possible, and yet
still allow for a great deal of flexibility.

We considered using the Unreal Tournament engine.
Although it has a large user base, and a powerful
scripting language, we found the non-availability of
source code to be a major disadvantage. We also
deliberated over the use of the dated, but open
source, Quake engine [11], but found that the lack of
support and amateur development community would
hamper our ability to fully utilise the more powerful
aspects of the application

Finally, we decided that the Torque engine would
fully meet our needs. As mentioned above, the
engine is completely open source, and has a proven
track record with the popular Tribes series of games.
The fact that it is open source would allow us to
potentially develop any category of application using
the engine as a base.

It features a powerful scripting language that
facilitated the rapid development of our test bed
application, with minimal editing of the C++ source
code. In addition the source code was well
structured, clearly commented and easily
understandable. This makes the process of adapting
the application to our research easier.

The Tribes series were designed with play across a
network in mind. Because of this, the network code,
which is of most interest to our research group and is
among the most robust and reputable in the industry.

Due to these factors, a group of amateur developers,
which now number in the tens of thousands, have
formed a community around the engine, leading to
strong customer support, useful tutorials and a very
active forum service at the Garage Games website.
The presence of a supportive development
community was a very important consideration in
our choice of platform.

In this section we have introduced the Torque Game
Engine, and detailed our reasoning behind choosing
it as our main research platform. Next, we discuss
the test scenarios and environments that we
conceived and developed using the features of the
Torque engine.

III TEST SCENARIOS
Two separate testing scenarios were constructed in
order to acquire data related to two different
categories of strategy model, known as static and
dynamic strategies. The static test dealt with single
players and a static goal position, and the dynamic
test involved multiple players with ever changing
main goal and sub-goal positions.

In both cases, users were given a questionnaire in
order to assess user experience with such gaming
environments. They were also presented with a brief
explanation of the task that they were being asked to
accomplish within the environment. They were then
allowed a single run inside an empty training
environment in order to become accustomed to the
control interface. When the user indicated that they
were satisfied with the interface and the test rules,
the test began and the user was placed inside the
relevant test environment.

An overview of both test scenarios, along with their
respective environments, is now presented.

a) Static Test

The static test allowed for single players only. Both
the starting position of the player and target position
were invariant. The goal in this case was to navigate
from the starting position to the target position in the
shortest time possible. When the user reached the
target position, they were notified of the time taken
and the test was then restarted.

The static test featured two individual environments
that aimed to present different circumstances to the
user. The first environment consisted of a single
well-defined route from start to target position. In
order to disorientate the user, the environment
featured an apparent dead-end route and multiple
buildings – a plan view of the environment is shown
in Figure 1.

Figure 1: Static Test - Environment 1. The white

rectangles represent towering obstacles.

The second environment consisted of two, well-
defined routes from start to target position, with one
route initially more apparent to the user. These two
routes were comparable in the time taken to navigate.
In addition, an apparent dead-end route was added to
provide some user disorientation during navigation.
This second static test environment is shown below
in plan in Figure 2.

Figure 2: Static Test - Environment 2. There are two

obvious strategies to reach the target.

Data was recorded for the user on each test attempt.
This consisted of the user’s positional data within the
environment (X, Y, and Z co-ordinates), which was
recorded at regular intervals, along with any actions
that the user performed, such as pressing a keyboard
control to move forward or backward.

b) Dynamic Test

For the dynamic test a simple game was designed
that allowed multiple users to play against each other
in a single environment. The main feature of the
game is referred to as the ‘tag’. Each game featured a
game timer, initially set to 150 seconds. The goal of
the game is to be the player holding the tag when the
game timer reaches zero. When a player is holding
the tag, it is not possible for them to shoot. The game
time decrements only when a player has control of
the tag. Other players make the tag holder drop the
tag by disabling them with their weapon. Each player
has an on-screen radar that shows the position of any
players within close proximity.

In addition to the simple rules defined above, the
environment features four ‘health-houses’ that
correspond to North, South, East and West – see
figure 3. These houses allow for the full regeneration
of a player’s health. However, only one house is
active at any one time. Entering an active health
house results in the random selection of another
house to become active immediately.

The game randomly chooses the active health-house
at regular intervals and each player is sent a message
informing them of its location. These health houses
allow for the generation of sub goals during the test,
as players scramble to reach the active health house
before they are disabled.

Figure 3: Dynamic Test Environment - 'Bird's Eye' view

For each test, a single game server was created. Each
player then connected to this server as a client. As
with the static test environments, data was recorded
for each game that was played. Each client recorded
their own information, namely the player’s positional
data (X, Y and Z co-ordinates), along with any

actions that the user performed during the game. At
the end of each game, each client recorded the total
length of time that the user was in possession of the
tag throughout the game, and whether or not they
were the eventual winner. In addition, each client
recorded his or her local representation of the other
players that were playing the game. In effect, we are
capturing each player’s local view of the
environment and of the other players within that
environment.

Figure 4 details an in-game shot of the game in
action, along with the player’s Heads Up Display
(HUD).

Figure 4: First-person view, showing various components

of the ‘HUD’

c) Summary

This section has detailed the two main tests from
which data was gathered. A test featuring a static
user goal and also a dynamic test featuring multiple
players was detailed. The dynamic test accurately
recreates real world game play in terms of rules and
user experience, which should lead to data that is
more consistent with that of current genre leaders.

The next section analyses the preliminary data
acquired from these two tests, and provide some
insight into how these observations reinforce current
research in this area.

IV RESULTS

a) Static test results

Six independent tests were carried out using the
approach detailed in section three and the data was
collected accordingly. Test subjects of varying age,
sex and gaming experience were chosen, so as to
provide a broad range of data.

As a preliminary analysis of the data, we examined
the relationship between the time taken for each
attempt for the six test subjects and the number of
attempts taken, the results of which are shown in
Figure 5. From this plot, we can see that, in general,

as a user spends more time in an environment, the
time taken to achieve the goal decreases steadily.
Notice also that during the initial attempts of some
test subjects, a certain amount of variation occurs in
the goal achievement times. These fluctuations can
be attributed to exploration carried out by the test
subject.

Figure 5: Time vs. Number of Attempts

Figures 6 and 7 detail plots of the trajectories of all
user attempts in both test environments, with an
outline of the maze superimposed on each plot.
Observation of these plots show that the majority of
paths correspond to single strategies. Even in sub-
optimal attempts, test subjects still adopt similar
patterns. This observation underlies the motivation
behind the strategy model approach [4, 5].

Figure 6: Complete results of environment one showing all

trajectories for all users.

Figure 7: Complete results of environment two

In order to provide a clearer image of general user
behaviour in each environment, figures 7 and 8
consist of the fastest result of each of the six test
subjects, with the outline of the relevant environment
superimposed on the plot.

Figure 8: Plot of trajectories corresponding to the best

times for environment one

Figure 9: Plot of trajectories corresponding to the best

times for environment two

From these figures we can see that users eventually
adopt a steady-state strategy to reach their goal.
From observation of the subjects as they took the
test, we can attribute the difference in times to lack
of familiarity with the control scheme, although this
did not have much effect on the paths chosen by each
test subject.

From analysis of Figures 5-9 the following
observations can be made:

1. In an environment with a set goal and starting
point, users will quickly learn the layout of the
environment. Several exploratory attempts are
usually required in order to achieve this.

2. Over time, predominant strategies are adopted in
order to reach the goal. Players converge to
recognizable steady-state strategies.

3. During the initial attempts of the user in the
environment, a level of exploration occurs,
leading to erratic test times. Although user
behaviour appears random, comparison of
trajectories from different users at this stage in
the test shows that similar strategies are adopted.

4. Once initial exploration is finished, and the goal
is achieved in a reasonable time, users tend to
follow the same trajectory repeatedly, and
attempt to improve the performance on this path,
rather than search for new paths to the target.

b) Dynamic test results

Once again, six tests were carried out using test
subjects of varying age, sex and gaming experience.
A number of trials were conducted with pairs of
users and the data recorded as before. Figures 10 and
11 shows the data collected for two different trials
for one pair of users.

Figure 10: Entity positional state (x,y) versus time, trial 1.

The solid and dotted lines represent users 1 and 2
respectively.

Figure 11: Entity positional state (x,y) versus time, trial 4.

The solid and dotted lines represent users 1 and 2
respectively.

These plots clearly illustrate that the interaction
between the two players results in vastly different
behaviour to that of the static case. Here, it is
intuitively obvious that static spatial patterns will not
emerge due to the changing nature of the goal, viz.,
finding the other player. Consequently it is difficult
to discern patterns of behaviour from a purely spatial
representation of the data without reference to its
temporal properties. Hence we have plotted the data

with time as the abscissa. An interesting observation
that can be made in the dynamic case is the similarity
between the trajectories followed by the two users.
This clearly reflects the pursuit of the tag-carrying
user by the second player. This is an obvious and
apparently universal strategy in this game scenario.
Such patterns in dynamic scenarios could be utilised
in further development of entity state update
mechanisms.

V CONCLUSIONS AND FUTURE WORK

In this paper we have described a DIA testbed that
accurately recreates realistic game situations in terms
of user experience and graphical, aural, and network
performance. These properties are important as it
leads to the collection of data that is closer to a real
world game scenario and therefore more useful for
accurate research.

Using the data collection routines of this testbed, we
have acquired results that exhibit patterns of
behaviour consistent with our previous knowledge of
this area. We have shown in the static case that given
a set goal and a set starting point, users tend to adopt
similar strategies and patterns in order to reach their
goal. In the dynamic scenario we do not get obvious
spatial patterns as the trajectories of users are tightly
coupled, leading to interactivity-based patterns of
temporal behaviour.

Future work will involve collection of data of further
dynamic scenarios in order to build on our
knowledge of current patterns of user behaviour in
such environments. We also hope to exploit the data
gathered from both tests to help in the development
of techniques that help reduce network traffic, and
also compensate for the effects of latency.

ACKNOWLEDGEMENT
This work was funded by Enterprise Ireland Basic
Research Grant SC/2002/129/.

REFERENCES

[1] E. F. Churchill, D. N. Snowdon, and A. J.
Munro, Collaborative Virtual
Environments. Digital Places and Spaces
for Interaction: Springer, 2001.

[2] S. Cheshire, "It's the latency, Stupid," in
http://rescomp.standford.edu/~cheshire/rant
s/Latency.html, 1996.

[3] S. K. Singhal and M. Zyda, Networked
Virtual Environments. New York: ACM
Press, 1999.

[4] J. D. Delaney, T. Ward, and S. Mcloone,
"On Network Latency In Distributed
Interactive Applications," presented at
National University of Ireland Maynooth

Postgraduate Colloquium March 28,
Maynooth, Ireland, 2003.

[5] D. Delaney, T. Ward, and S. Mc Loone,
"Reducing Update Packets in Distributed
Interactive Applications using a Hybrid
Model," presented at 16th International
Conference on Parallel and Distributed
Computing Systems, August 13-15, Reno,
USA, 2003.

[6] Richard C. Waters, David B. Anderson,
John W. Barrus, David C. Brogan, Michael
A. Casey, Stephan G. McKeown, Tohei
Nitta, Ilene B. Sterns, and W. S. Yerazunis,
"Diamond Park and Spline: A Social Virtual
Reality System with 3D Animation, Spoken
Interaction, and Runtime Modifiability," in
Presence, vol. 6, 1996, pp. 461-480.

[7] E. Frécon and M. Stenius, "Dive: A
Scalable Network Architecture for
Distributed Virtual Environments," in
Distributed systems Engineering Journal,
vol. 5, 1998, pp. 91-100.

[8] Epic Games, in www.epicgames.com
[9] Sierra Games, www.sierra.com.
[10] GarageGames Staff, "Torque License

FAQ," in
http://www.garagegames.com/index.php?se
c=mg&mod=resource&page=category&qi
d=122, 1999.

[11] ID Software, www.idsoftware.com

