
© IJIGS/University of Wolverhampton/EUROSIS

REPRESENTING RANDOM TERRAIN ON RESOURCE LIMITED DEVICES

DAMIEN MARSHALLφ, DECLAN DELANEYφ, SEAMUS MCLOONE*, TOMAS WARD*

φDepartment of Computer Science,
NUI Maynooth

Maynooth, Co. Kildare
E-mail: damienm@cs.may.ie

* Department of Electronic Engineering
NUI Maynooth,

Maynooth, Co. Kildare
E-mail: tomas.ward@eeng.may.ie

KEYWORDS
Random Terrain, Perlin Noise, Mobile Devices, Game Boy
Advance

ABSTRACT

Random terrain generation is the procedural creation of a set
of data that represents closely a believable landscape.
Common techniques of achieving this include the use of
fractals and noise. Such techniques usually require a large
volume of memory, as the geometry of the terrain needs to be
calculated and stored at run time. Given the limited memory
available on mobile devices, such as mobile telephones, the
storage of the data required to represent massive terrains can
be difficult. In this paper, we propose a novel method of
storing terrain data on devices with limited memory. This
method involves placing pre-computed blocks of terrain,
known as terrain tiles, together in a psuedo-random manner
as governed by a noise function known as Perlin noise. This
allows large amounts of terrain data to be represented while
still giving the appearance of a randomly generated terrain.
Traditionally, Perlin noise is used in the procedural
generation of textures and the modeling of naturally
occurring phenomena. Using Perlin noise, only a subset of
the overall data generated by the function needs to be stored
at any one time. The approach outlined in this paper
associates a tile of terrain with each value generated by the
Perlin Noise function, meaning that only a subsection of the
total terrain is stored in memory at any one time. We show
how this process can be executed in real time on a resource
limited device known as the Game Boy Advance, and also
illustrate a significant reduction in the memory requirements
of terrain storage when compared with traditional methods.

INTRODUCTION

A random terrain is a group of procedurally calculated values
that represents closely a believable landscape. They are
utilised in all areas of computer science, especially computer
graphics and games (Pickover 1995), where they allow for
the creation of game content with minimal time overhead.
Also, as terrain maps can be quite large, techniques of
generating random terrain, such as fractals (Dudgeon and
Gopalakrishnan 1996), and models of naturally occurring
phenomena (Kelley et al. 1988), help to minimise fixed
storage requirements. However, this means that such
methods usually require a voluminous amount of Random
Access Memory (RAM).

With recent advances in processing power, computer games
are becoming more popular on handheld devices (Rittern et

al. 2003). However, there are still limitations to the amount
of available RAM for such devices, so that the creation of
randomly generated terrain for computer games on such
devices can be problematic.

In this paper, a novel method based on the use of terrain tiles
and a pseudo random noise known as Perlin Noise is
described (Rabinovich and Gotsman 1997; Perlin 2002)
Traditionally, Perlin noise is used in the generation of
procedural textures and the modeling of naturally occurring
phenomena such as clouds and smoke (Ye and Lewis 1999;
Holtkämper 2003) – see Figure 7. Here, we propose an
approach that associates a tile of terrain with each Perlin
noise value. A terrain tile describes a square block of terrain
data. Using Perlin noise, only a subset of the overall data
generated by the function needs to be stored at any one time.
Therefore, large terrain maps can be represented in real time
with a small memory footprint, as only the terrain tiles of
interest to the user are stored at any given time.

The proposed method is implemented on a limited device
known as a Game Boy Advance (www.nintendo.com), and
results are presented for the implementation We show that
significant saving can be made in terms of memory space
required when compared to traditional methods of storing
and representing terrain. As this method makes no use of
floating point arithmetic it is very efficient, making it suitable
for use on a wide variety of devices where no dedicated
floating-point unit is available. It would be particularly
suitable for mobile telephones, as it allows for the generation
of massive terrain maps with a minimal over the air
download. This is of significant importance as large
downloads have been identified as a limiting factor in the
next generation of three-dimensional games on mobile
telephones (EDGE Magazine 2004).

The rest of the paper is laid out as follows. The next section
introduces Perlin Noise and outlines the suitability of the
Game Boy Advance as a testbed. The Implementation
section details the realisation of the proposed method,
followed by a selection of performance values in the Results
section. Finally, the paper concludes with suggestions for
future work.

BACKGROUND

Perlin Noise

Perlin noise is one of the more important noise functions
(Perlin 2002). Created by Ken Perlin, this noise has the
special property of appearing random to the perceiver, yet

© IJIGS/University of Wolverhampton/EUROSIS

remaining entirely controllable. It works by defining a
number of key points at set distances apart, and defining the
values of the intermediate points procedurally using
interpolation. Any subsection of the data created by the
Perlin noise function can be reconstructed, without the need
to store and generate the entire data set. In this sense, Perlin
noise can be considered to be quasi-random noise. Further
detail regarding an implementation of Perlin Noise is given
in the Implementation section.

Game Boy Advance

Released in 2001, the Game Boy Advance (GBA) is the
successor to the multi-million selling Game Boy and Game
Boy Color. The most important specifications of the Game
Boy Advance are detailed in Table 1.

From Table 1, it can be seen that the GBA is very limited in
terms of processing power and available Random Access
Memory (RAM). Coupled with the ease of programming for
the system, this makes the GBA a perfect platform on which
to test our implementation.

In the next section, the implementation details of the
proposed method are described, and example screenshots of
the application in action on the GBA are given.

IMPLEMENTATION

In this section, the method by which massive terrains can be
constructed with a minimal memory footprint is discussed.
The means by which the terrain data is rendered to screen at
a stable frame rate on the GBA is also introduced.

Perlin Noise Map of Terrain Tiles

The basis of the technique described here is what is known as
a terrain tile. A tile describes a square block of terrain.
Terrain tiles are used extensively in many popular game
engines such as Torque (Marshall et al. 2004). Each tile is
typically defined by two groups of data – a height map,
which details the geometry of the terrain, and a texture map,
which details the colours and shading of the terrain
(Rabinovich and Gotsman 1997). Figure 1 (a) and (b) details
examples of both category of maps. Both images in Figure 1
were created using the Wilbur random terrain generation
application (Slayton 2001).

By placing these tiles together in a random order, a large area
of terrain can be defined – see Figure 2(a). However, as the
tile size decreases, the storage cost of the order of the tiles
can become expensive, and can eventually begin to approach
that of the traditional method of storing each height of terrain
in an array – see Figure 2 (b) and (c). This can make such an
approach unsuitable for a limited memory device.

This problem can be alleviated using Perlin noise to govern
the placement of tiles. As mentioned in the previous section,
any subsection of the data generated by a Perlin noise
function can be recreated given the same input values,
without the need to store the complete data set generated by
the function. Therefore, only the section of data of interest to
the viewer needs to be calculated and stored at any one time,
and it is guaranteed that other subsections of the data will be
generated consistently with the same values.

The main tenet of the approach outlined in this paper is that
by defining a number of tiles with small dimensions, and
associating each value generated by the Perlin noise function
with a terrain tile, then only the small portion of a massive
terrain map needs to generated and stored at any one time,
thus providing dramatic saving in terms of computation time
and memory - see Figure 3. In Figure 3, each tile is
represented by a different shade of gray. As the user moves
about the large terrain map, the subset of terrain tile data is
repopulated to represent the users immediate environment.

Perlin Noise Implementation

The first aspect of the approach explained in this paper is the
manner by which the Perlin noise map of terrain values is
generated. The primary step of this process is the definition
of a grid that defines the overall layout of the map. Each
value in this grid is known as a terrain structure value. These
terrain structure values are simply random numbers, and are
not related to any particular terrain tile. Rather, they are used
in conjunction with adjacent terrain structure values in order
to define intermediate terrain tile values procedurally. Each

Processor 16Mhz
Memory 384 kilobytes
Screen Resolution 240 * 160 pixels
Available Colours 32,768

Figure 2 (a) Four 128*128 tiles (b) Eight 64 *64 tiles. (c) Sixty four
32 * 32 tiles. A decrease in tile size increases detail, but leads to an
increase in memory requirements.

Figure 1 (a) Texture map (b) Grayscale Height Map.

 (a) (b)

Table 1 Important specifications of the GBA

Figure 3 Only a small subset of all the tile values is stored at any one
time using a Perlin noise function. This is repopulated as the user
moves about the terrain.

Full map of terrain
values generated
using Perlin Noise

Only a subset of all the
terrain values is stored
at any one time.

 (a) (b) (c)

Terrain tiles
are placed in
a random
order

Terrain tiles

© IJIGS/University of Wolverhampton/EUROSIS

of these terrain tile values is a reference to a particular terrain
tile. Although this grid of terrain structure values will have
tiny dimensions, it can be thought of as being virtually large,
as each element represents a point along a larger map – see
Figure 4. So, for example, a 4 * 4 array, with a virtual
distance of 1024 pixels between elements of the array,
represents a 4096 * 4096 pixel terrain map.

Next, the terrain structure values are used to procedurally
define the intermediate terrain tile references that describe
the terrain immediately surrounding the user.

Firstly, the area within the grid of terrain structure values that
currently houses the user is located, and the points that define
the boundaries of that area are recorded. So, taking the
example from above, if the player was at point (1056,3042)
on a 4*4 map with a virtual distance of 1024 pixels between
each element, then the player would be located between the
terrain structure elements (1,2), (1,3), (2,2) and (2,3), as
detailed in Figure 5 below.

By linearly interpolating between the two top and the two
bottom bounding values using the player’s horizontal
position, and interpolating between the results of these
operations using the player’s vertical position, a value which
represents the tile in which the user resides can be defined –
see Figure 6.

Map of Terrain Tiles

Traditionally, the value generated by this process would be
used in conjunction with other generated values in order to
represent a texture or naturally occurring phenomena
procedurally, as in Figure 7.

However, for this implementation, each value is actually a
reference to a particular terrain tile. As there will be only a
limited number of terrain tiles, and the generated value may
exceed the total number of terrain tiles, the result may have
to be scaled. This can be achieved using a simple modulus
operation.

This process is repeated using the coordinates surrounding
the player. The number of repetitions required will vary,
depending on the size of each individual tile and the overall
map size required. This results in a temporary array of data
containing references to the terrain tiles that immediately
surround the user. An example of such an array is given in
Figure 8. For clarity, each separate map is represented by a
different shade of gray. Each colour represents a map similar
to that in Figure 1(a).

However, as can be seen in Figure 8, through the use of this
method alone, a series of distinct patterns can be observed in
the placement of terrain tiles. Such patterns are exactly what
Perlin noise is celebrated for. However, in the technique
under discussion, more randomness is desired to generate
truly random landscapes. This is achieved via the use of
another array of random values, which is populated along
with the terrain structure grid. The value acquired by the
interpolation process is used to index into this random array,
allowing for another layer of randomness, with little
computation overhead. An example of the temporary array of
terrain tile values produced using this method is given in
Figure 9. Again, for clarity, each separate map is represented
by a different shade of gray.

Virtual distance
between terrain
structure values

Bounding
Values

Random Terrain Structure
Value

Bounding Values

Player Position

Virtual distance
between grid
values

0

Terrain structure
values

Figure 4 A grid of terrain structure values defines the overall layout
of the terrain. Intermediate values are calculated procedurally.

Figure 9 No discernable patterns appear when a random number
look-up table is utilised

Position of player
within the terrain

Terrain tiles
surrounding the
player. No
patterns occur
with usage of
random array.

Random Terrain Structure
Value
Bounding Values

Player Position

Terrain tiles
surrounding the
player. Distinct
patterns can
emerge.

Position of player
within the terrain

Figure 8 Only the terrain tiles that immediately surround the player
are calculated. The player is located at the centre of these tiles.

Interpolation
Point

Step 1: Interpolate
between top and
bottom values.
Step 2: Interpolate
between results of
Step 1 above.

Figure 6 Resolving the terrain tile value based on the players
position and the calculated bounding values.

Player Position

Full map of
terrain values

Intermediate terrain tile
values are calculated
procedurally

Figure 5 Location of a player’s position within the terrain structure
grid.

 1

2

3

Figure 7 An example of a traditional output from the Perlin noise
function

 1 2 3

© IJIGS/University of Wolverhampton/EUROSIS

This temporary array represents only a small subsection of
the overall terrain data. However, this fact is not noticeable
to the user, as the temporary array of terrain tile references is
repopulated when the player reaches a certain distance from
the perimeter of the map. This array is then used as input to
the rendering process.

Rendering Process

The rendering process uses a method known as ray-casting
and voxels in order to draw the relevant terrain tiles to the
screen in a timely fashion (Kreeger et al. 1998; Steinbach et
al. 2000). Although this method has its limitations, such as
only two planes of movement, it allows for a pseudo three-
dimensional effect on resource-limited hardware such the
GBA, at a stable frame-rate. Figure 10 details screenshots of
the rendering application in action on the GBA.
Superimposed on the images is a grid defining the
boundaries of each terrain tile. Figure 10 also reinforces the
relationship between terrain tiles, as seen in Figure 1 (a) and
(b), and the temporary array of tile references as seen in
Figure 8 and 9.

RESULTS

Computation Time

As a preliminary exercise, the computation time required to
calculate the temporary array of terrain tiles surrounding the
player was recorded. This is achieved by using an in-built
timer on the GBA that is incremented on every clock tick. A
running average of the amount of time in milliseconds taken
to populate the tile map is noted. In each case, the tile map
required was 1024 * 1024 pixels. The tester navigated the
environment for 60 seconds, and at the end of this time, the
average computation time was recorded. The results of this
experiment are presented in Table 2.

As can be seen from Table 2, the computation time required
is minimal, and can be calculated in real time on the GBA.
As no floating-point arithmetic is used in the calculation of
the terrain tile values, this process is suitable for a wide range
of devices where no hardware support for floating point
values is available. To further demonstrate the efficiency of
this approach, the computation time required for the creation
of a completely new random map was also investigated. In
each case, random maps were generated for 60 seconds, and
a running average of the computation time was recorded

using the in-built GBA timers. As this process simply
involves the regeneration of the terrain structure grid, the
computation time required is minimal, as detailed in Table 3.

Tile Size Tiles required Time
128 * 128 pixels 8 * 8 tiles <1 ms

64 * 64 pixels 16 * 16 tiles 10 ms
32 * 32 pixels 32 * 32 tiles 67 ms
16 * 16 pixels 64 * 64 tiles 165 ms

Terrain Structure grid dimension Time
4 * 4 grid elements 1. 25µs

8 * 8 grid elements 3.5µs

12 * 12 grid elements 6.625 µs
16 * 16 grid elements 16.5µs

Memory Usage

The most critical aspect of implementing the proposed
technique in mobile devices is how it exploits the available
memory. We therefore consider memory usage to be the
most important metric by which to assess our proposed
approach. This will be done by performing a comparative
analysis with the traditional technique of storing a single
large terrain geometry map and texture map.

In Table 4 the memory usage of a traditional terrain
geometry map and texture map is analysed. Every element of
each map is assumed to be a 16 bit unsigned integer.

As can be seen from Table 4, the storage of a single
randomly generated map utilises a large volume of memory
resources. The generation of a small 256 * 256 pixel map
requires approximately 66% of the entire 384 KB of RAM
on a GBA. As the map dimensions double, the memory
requirements quadruple.

Next, the storage cost of the approach detailed in this paper
was analysed – see Table 5. Results are given for the cost of
storing one hundred terrain tiles both in fixed storage and in
RAM. Each tile consists of a height and texture map, and
every element of a map is an unsigned 16-bit integer. The
RAM columns display the cost of storing the temporary array
of terrain tile references that is procedurally generated. The
dimensions of this array vary depending on the individual
terrain tile size. If, for example, a temporary map of
dimensions 1024 * 1024 pixels is required using terrain tiles
of dimensions 8 * 8 pixels, then a 128 * 128 temporary
terrain tile reference array is required.

Individual Map Size RAM
256 * 256 pixels 256 kb
512 * 512 pixels 1024 kb

1024 * 1024 pixels 4096 kb
2048 * 2048 pixels 16384 kb

Figure 10 (a) The temporary array of tile values rendered to the screen.
Each tile is represented by a separate colour. (b) The associated height
and colour maps rendered to the screen.

Table 2 The computation time required for the generation of a
1024 * 1024 pixel map using terrain tiles of varying size.

Each value of the temporary array is a reference to a particular terrain tile

 (a) (b)

Table 3 The computation time required for the generation of a new
random map is minimal as the terrain structure grid size is insignificant.

Table 4 Values representing cost of storing full maps in memory.

© IJIGS/University of Wolverhampton/EUROSIS

 Table 5 shows that the amount of RAM employed by the
proposed approach is minimal. If the individual map
dimensions are increased in size by 100%, the amount of
RAM required reduces by 75% whereas the fixed storage
requirements increase by 400%. However, the cost of
storing the terrain tiles is nominal at smaller sizes, thus
making them suitable for download over low bandwidth
connections, such as on a mobile phone network.

Regardless of the dimensions of the overall terrain map
required, the figures presented in the RAM columns of Table
5 remain constant. This is due to the fact that, as discussed in
the Implementation section, only a subset of the overall
terrain map is ever stored, regardless of variation in the
dimensions of the overall terrain map. Therefore, any size
map could be potentially represented on a resource-limited
device such as the Game Boy Advance, with no implications
for the overall memory requirements.

CONCLUSIONS

In this paper we have described a method of representing the
large volumes of data required to store a random terrain on a
device with a limited amount of Random Access Memory
known as the Game Boy Advance. By using terrain tiles and
Perlin Noise, we have shown how this technique is
particularly suitable to devices with limited processing
power, as it makes no use of floating point arithmetic.
Therefore, the terrain tile positions can be calculated easily at
run time. In addition, a totally new random terrain can be
generated rapidly, as only the small terrain structure grid
needs to be repopulated.

It has also been shown that a massive terrain can be
represented using a minimal amount of both fixed and
dynamic memory. The cost required to store the necessary
terrain tiles can be small, thus making this approach suitable
for devices with limited storage capacity, and slow download
speeds such as mobile telephones. As only a portion of the
overall terrain is stored at any one time, the volume of
memory used is fixed, regardless of variation in the
dimensions of the overall terrain.

Future work will involve investigating methods of seamless
blending between adjacent terrain tiles, so as to provide a
more uniform visual experience to the user.

ACKNOWLEDGEMENT

This work was funded by Enterprise Ireland Basic Research
Grant SC/2002/129/.

REFERENCES

Dudgeon, J. E. and R. Gopalakrishnan (1996). "Fractal-based

modeling of 3D terrain surfaces".In Bringing Together
Education, Science and Technology, (Tampa, Florida, USA, 11-
14 April 1996), IEEE, 246 - 252.

EDGE Magazine (2004). "Mobiles prepare for 3D revolution."In
EDGE Magazine Issue 135, April 2004: 7-9.

Holtkämper, T. (2003). "Real-time gaseous phenomena: a
phenomenological approach to interactive smoke and steam".In
Computer graphics, virtual reality, visualisation and interaction
in Africa, (Cape Town, South Africa, February 03 - 05), ACM
Press, New York, NY, USA, 25 - 30.

Kelley, A. D., M. A. Casey and G. M. Nielson (1988). "Terrain
simulation using a model of stream erosion".In 15th Annual
Conference on Computer graphics and interactive
techniques1988), ACM Press New York, NY, USA, 263 - 268.

Kreeger, K., I. Bitter, F. Dachille, B. Chen and A. Kaufman (1998).
"Adaptive perspective ray casting".In 1998 IEEE symposium on
Volume visualization, (Research Triangle Park, North Carolina,
United States, ACM Press, New York, NY, USA, 55 - 62.

Marshall, D., A. McCoy, D. Delaney, S. McLoone and T. Ward
(2004). "A Realistic Distributed Interactive Application Testbed
for Static and Dynamic Entity State Data Acquisition".In Irish
Systems and Signals Conference, (Belfast, Ireland, 30 June - 2
July), IEE, 83-88.

Perlin, K. (2002). "Improving Noise".In 29th annual conference on
Computer graphics and interactive techniques, (San Antonio,
Texas, July 23 - 26), ACM Press New York, NY, USA, 681 -
682.

Pickover, C. A. (1995). "Generating extraterrestrial terrain."In
Computer Graphics and Applications, IEEE Issue 2, March
1995: 18 - 21.

Rabinovich, B. and C. Gotsman (1997). "Visualization of large
terrains in resource-limited computing environments".In 8th
conference on Visualization '97, (Phoenix, Arizona, United
States, 19-24 October), IEEE Computer Society Press, Los
Alamitos, CA, USA, 95 - 102.

Rittern, H., T. Voigt, M. Tian and J. Schiller (2003). "Experiences
using a dual wireless technology infrastructure to support ad-hoc
multiplayer games".In Proceedings of the 2nd workshop on
Network and system support for games, (Redwood City,
California, May 22 - 23), ACM Press, New York, NY, USA, 101
- 105.

Slayton, J. (2001). Wilbur Terrain Generator
http://www.ridgecrest.ca.us/~jslayton/index.html.

Steinbach, E., B. Girod, P. Eisert and A. Betz (2000). "3-D
reconstruction of real-world objects using extended voxels".In
2000 International Conference on Image Processing,
(Vancouver, BC Canada, 10-13 September 2000), 569 - 572.

Ye, A. G. and D. M. Lewis (1999). "Procedural texture mapping on
FPGAs".In 1999 ACM/SIGDA seventh international symposium
on Field programmable gate arrays, (Monterey, California,
United States, February 21 - 23), ACM Press, New York, NY,
USA, 112 - 120.

Terrain Tile
Dimensions

Cost to store
100 Terrain Tiles

RAM
256 * 256 map

RAM
 512 * 512 map

RAM
 1024 * 1024 map

RAM
2048 * 2048 map

8 * 8 pixels 25 kb 2 kb 8 kb 32 kb 128 kb
16 * 16 pixels 100 kb 0.5 kb 2 kb 8 kb 32 kb
32 * 32 pixels 400 kb 0.125 kb 0.5 kb 2 kb 8 kb
64 * 64 pixels 1600 kb 0.03125 kb 0.125 kb 0.5 kb 2 kb

128 * 128 pixels 6400 kb 0.0078125 kb 0.03125 kb 0.125 kb 0.5 kb

Table 5 Values representing memory cost of storing the terrain tiles and the cost of storing temporary tile value array in Random Access Memory
(RAM).

